1
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
2
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Voronina S, Chvanov M, De Faveri F, Mayer U, Wileman T, Criddle D, Tepikin A. Autophagy, Acute Pancreatitis and the Metamorphoses of a Trypsinogen-Activating Organelle. Cells 2022; 11:cells11162514. [PMID: 36010591 PMCID: PMC9406838 DOI: 10.3390/cells11162514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have highlighted the importance of autophagy and particularly non-canonical autophagy in the development and progression of acute pancreatitis (a frequent disease with considerable morbidity and significant mortality). An important early event in the development of acute pancreatitis is the intrapancreatic activation of trypsinogen, (i.e., formation of trypsin) leading to the autodigestion of the organ. Another prominent phenomenon associated with the initiation of this disease is vacuolisation and specifically the formation of giant endocytic vacuoles in pancreatic acinar cells. These organelles develop in acinar cells exposed to several inducers of acute pancreatitis (including taurolithocholic acid and high concentrations of secretagogues cholecystokinin and acetylcholine). Notably, early trypsinogen activation occurs in the endocytic vacuoles. These trypsinogen-activating organelles undergo activation, long-distance trafficking, and non-canonical autophagy. In this review, we will discuss the role of autophagy in acute pancreatitis and particularly focus on the recently discovered LAP-like non-canonical autophagy (LNCA) of endocytic vacuoles.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Chvanov
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesca De Faveri
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tom Wileman
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - David Criddle
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence:
| |
Collapse
|
5
|
Ge L, Shin W, Arpino G, Wei L, Chan CY, Bleck CKE, Zhao W, Wu LG. Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. SCIENCE ADVANCES 2022; 8:eabm6049. [PMID: 35714180 PMCID: PMC9205584 DOI: 10.1126/sciadv.abm6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.
Collapse
Affiliation(s)
- Lihao Ge
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | | - Weidong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Marolt U, Paradiž Leitgeb E, Pohorec V, Lipovšek S, Venglovecz V, Gál E, Ébert A, Menyhárt I, Potrč S, Gosak M, Dolenšek J, Stožer A. Calcium imaging in intact mouse acinar cells in acute pancreas tissue slices. PLoS One 2022; 17:e0268644. [PMID: 35657915 PMCID: PMC9165796 DOI: 10.1371/journal.pone.0268644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.
Collapse
Affiliation(s)
- Urška Marolt
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Menyhárt
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Stojan Potrč
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| |
Collapse
|
7
|
Arpino G, Somasundaram A, Shin W, Ge L, Villareal S, Chan CY, Ashery U, Shupliakov O, Taraska JW, Wu LG. Clathrin-mediated endocytosis cooperates with bulk endocytosis to generate vesicles. iScience 2022; 25:103809. [PMID: 35198874 PMCID: PMC8841809 DOI: 10.1016/j.isci.2022.103809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Clathrin-mediated endocytosis, the most prominent endocytic mode, is thought to be generated primarily from relatively flat patches of the plasma membrane. By employing conventional and platinum replica electron microscopy and super-resolution STED microscopy in neuroendocrine chromaffin cells, we found that large Ω-shaped or dome-shaped plasma membrane invaginations, previously thought of as the precursor of bulk endocytosis, are primary sites for clathrin-coated pit generation after depolarization. Clathrin-coated pits are more densely packed at invaginations rather than flat membranes, suggesting that invaginations are preferred sites for clathrin-coated pit formation, likely because their positive curvature facilitates coated-pit formation. Thus, clathrin-mediated endocytosis closely collaborates with bulk endocytosis to enhance endocytic capacity in active secretory cells. This direct collaboration between two classically independent endocytic pathways is of broad importance given the central role of both clathrin-mediated endocytosis and bulk endocytosis in neurons, endocrine cells, immune cells, and many other cell types throughout the body.
Collapse
Affiliation(s)
- Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lihao Ge
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Seth Villareal
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Uri Ashery
- Life Science Faculty, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Translational Biomedicine, St Petersburg State University, St Petersburg, Russia
| | | | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
8
|
Cyge B, Voronina V, Hoque M, Kim EN, Hall J, Bailey-Lundberg JM, Pazour GJ, Crawford HC, Moon RT, Li FQ, Takemaru KI. Loss of the ciliary protein Chibby1 in mice leads to exocrine pancreatic degeneration and pancreatitis. Sci Rep 2021; 11:17220. [PMID: 34446743 PMCID: PMC8390639 DOI: 10.1038/s41598-021-96597-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Primary cilia protrude from the apical surface of many cell types and act as a sensory organelle that regulates diverse biological processes ranging from chemo- and mechanosensation to signaling. Ciliary dysfunction is associated with a wide array of genetic disorders, known as ciliopathies. Polycystic lesions are commonly found in the kidney, liver, and pancreas of ciliopathy patients and mouse models. However, the pathogenesis of the pancreatic phenotype remains poorly understood. Chibby1 (Cby1), a small conserved coiled-coil protein, localizes to the ciliary base and plays a crucial role in ciliogenesis. Here, we report that Cby1-knockout (KO) mice develop severe exocrine pancreatic atrophy with dilated ducts during early postnatal development. A significant reduction in the number and length of cilia was observed in Cby1-KO pancreta. In the adult Cby1-KO pancreas, inflammatory cell infiltration and fibrosis were noticeable. Intriguingly, Cby1-KO acinar cells showed an accumulation of zymogen granules (ZGs) with altered polarity. Moreover, isolated acini from Cby1-KO pancreas exhibited defective ZG secretion in vitro. Collectively, our results suggest that, upon loss of Cby1, concomitant with ciliary defects, acinar cells accumulate ZGs due to defective exocytosis, leading to cell death and progressive exocrine pancreatic degeneration after birth.
Collapse
Affiliation(s)
- Benjamin Cyge
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Vera Voronina
- Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine and Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| | - Mohammed Hoque
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eunice N Kim
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jason Hall
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jennifer M Bailey-Lundberg
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Howard C Crawford
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Henry Ford Health System, Detroit, MI, 48202, USA
| | - Randall T Moon
- Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine and Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| | - Feng-Qian Li
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11974, USA
| | - Ken-Ichi Takemaru
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794, USA.
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11974, USA.
- Department of Pharmacological Sciences, Stony Brook University, BST 7-182, 101 Nicolls Rd., Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
9
|
Otomo K, Goto A, Yamanaka Y, Hori T, Nakayama H, Nemoto T. High-peak-power 918-nm laser light source based two-photon spinning-disk microscopy for green fluorophores. Biochem Biophys Res Commun 2020; 529:238-242. [PMID: 32703417 DOI: 10.1016/j.bbrc.2020.05.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
High-speed imaging of living specimen was performed using two-photon microscopy equipped with a spinning-disk scanning unit. Typically, a high-peak-power laser light source is needed to simultaneously induce two-photon excitation processes at several hundred focal points, generating the limitations of excitable fluorophores. Therefore, a high-peak-power neodymium-based 918-nm laser light source was used for intravital imaging of the most popular fluorophores, green fluorescent proteins. As a result, the proposed system obtained approximately 30 times brighter fluorescent signal than that obtained using a conventional mode-locked titanium:sapphire laser light source. Furthermore, the system visualized four-dimensional (xyz-t) calcium responses of pancreatic acinar cells agonist stimulations in the living G-CaMP7-expressing mouse with 60 million μm3 volume.
Collapse
Affiliation(s)
- Kohei Otomo
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; National Institute for Physiological Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Graduate School of Advanced Studies Sciences (SOKENDAI), 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan.
| | - Ai Goto
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan
| | - Yumi Yamanaka
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan
| | - Takashi Hori
- IMRA America, Inc., 1044 Woodridge Avenue, Ann Arbor, MI, 48105, USA
| | - Hiroshi Nakayama
- Yokogawa Electric Corporation, 2-3 Hokuyoudai, Kanazawa, 920-0177, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; National Institute for Physiological Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Graduate School of Advanced Studies Sciences (SOKENDAI), 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan
| |
Collapse
|
10
|
Klein O, Sagi-Eisenberg R. Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J Immunol Res 2019; 2019:9542656. [PMID: 31011586 PMCID: PMC6442490 DOI: 10.1155/2019/9542656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023] Open
Abstract
Anaphylaxis is a notorious type 2 immune response which may result in a systemic response and lead to death. A precondition for the unfolding of the anaphylactic shock is the secretion of inflammatory mediators from mast cells in response to an allergen, mostly through activation of the cells via the IgE-dependent pathway. While mast cells are specialized secretory cells that can secrete through a variety of exocytic modes, the most predominant mode exerted by the mast cell during anaphylaxis is compound exocytosis-a specialized form of regulated exocytosis where secretory granules fuse to one another. Here, we review the modes of regulated exocytosis in the mast cell and focus on compound exocytosis. We review historical landmarks in the research of compound exocytosis in mast cells and the methods available for investigating compound exocytosis. We also review the molecular mechanisms reported to underlie compound exocytosis in mast cells and expand further with reviewing key findings from other cell types. Finally, we discuss the possible reasons for the mast cell to utilize compound exocytosis during anaphylaxis, the conflicting evidence in different mast cell models, and the open questions in the field which remain to be answered.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Klein O, Roded A, Hirschberg K, Fukuda M, Galli SJ, Sagi-Eisenberg R. Imaging FITC-dextran as a Reporter for Regulated Exocytosis. J Vis Exp 2018. [PMID: 29985342 DOI: 10.3791/57936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulated exocytosis is a process by which cargo, which is stored in secretory granules (SGs), is released in response to a secretory trigger. Regulated exocytosis is fundamental for intercellular communication and is a key mechanism for the secretion of neurotransmitters, hormones, inflammatory mediators, and other compounds, by a variety of cells. At least three distinct mechanisms are known for regulated exocytosis: full exocytosis, where a single SG fully fuses with the plasma membrane, kiss-and-run exocytosis, where a single SG transiently fuses with the plasma membrane, and compound exocytosis, where several SGs fuse with each other, prior to or after SG fusion with the plasma membrane. The type of regulated exocytosis undertaken by a cell is often dictated by the type of secretory trigger. However, in many cells, a single secretory trigger can activate multiple modes of regulated exocytosis simultaneously. Despite their abundance and importance across cell types and species, the mechanisms that determine the different modes of secretion are largely unresolved. One of the main challenges in investigating the different modes of regulated exocytosis, is the difficulty in distinguishing between them as well as exploring them separately. Here we describe the use of fluorescein isothiocyanate (FITC)-dextran as an exocytosis reporter, and live cell imaging, to differentiate between the different pathways of regulated exocytosis, focusing on compound exocytosis, based on the robustness and duration of the exocytic events.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Amit Roded
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, School of Medicine, Stanford University
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
12
|
Dolai S, Liang T, Orabi AI, Holmyard D, Xie L, Greitzer-Antes D, Kang Y, Xie H, Javed TA, Lam PP, Rubin DC, Thorn P, Gaisano HY. Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis. Gastroenterology 2018; 154:1805-1821.e5. [PMID: 29360461 PMCID: PMC6461447 DOI: 10.1053/j.gastro.2018.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. METHODS We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-μm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2+/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. RESULTS Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. CONCLUSIONS In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen.
Collapse
Affiliation(s)
- Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abrahim I Orabi
- Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Huanli Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tanveer A Javed
- Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick P Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deborah C Rubin
- Division of Gastroenterology, Departments of Medicine, and Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| | - Peter Thorn
- University of Sydney, Sydney, New South Wales, Australia
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Stevenson NL, White IJ, McCormack JJ, Robinson C, Cutler DF, Nightingale TD. Clathrin-mediated post-fusion membrane retrieval influences the exocytic mode of endothelial Weibel-Palade bodies. J Cell Sci 2017; 130:2591-2605. [PMID: 28674075 PMCID: PMC5558267 DOI: 10.1242/jcs.200840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/10/2017] [Indexed: 01/15/2023] Open
Abstract
Weibel-Palade bodies (WPBs), the storage organelles of endothelial cells, are essential to normal haemostatic and inflammatory responses. Their major constituent protein is von Willebrand factor (VWF) which, following stimulation with secretagogues, is released into the blood vessel lumen as large platelet-catching strings. This exocytosis changes the protein composition of the cell surface and also results in a net increase in the amount of plasma membrane. Compensatory endocytosis is thought to limit changes in cell size and retrieve fusion machinery and other misplaced integral membrane proteins following exocytosis; however, little is known about the extent, timing, mechanism and precise function of compensatory endocytosis in endothelial cells. Using biochemical assays, live-cell imaging and correlative spinning-disk microscopy and transmission electron microscopy assays we provide the first in-depth high-resolution characterisation of this process. We provide a model of compensatory endocytosis based on rapid clathrin- and dynamin-mediated retrieval. Inhibition of this process results in a change of exocytic mode: WPBs then fuse with previously fused WPBs rather than the plasma membrane, leading, in turn, to the formation of structurally impaired tangled VWF strings. This article has an associated First Person interview with the first authors of the paper. Summary: Compensatory endocytosis plays key roles in Weibel-Palade body exocytosis. Inhibition of this process results in a change of exocytic mode and the release of von Willebrand factor as tangled strings.
Collapse
Affiliation(s)
- Nicola L Stevenson
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ian J White
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jessica J McCormack
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher Robinson
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel F Cutler
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
14
|
Woo SS, James DJ, Martin TFJ. Munc13-4 functions as a Ca 2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles. Mol Biol Cell 2017; 28:792-808. [PMID: 28100639 PMCID: PMC5349786 DOI: 10.1091/mbc.e16-08-0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells.
Collapse
Affiliation(s)
- Sang Su Woo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
15
|
Kunii M, Ohara-Imaizumi M, Takahashi N, Kobayashi M, Kawakami R, Kondoh Y, Shimizu T, Simizu S, Lin B, Nunomura K, Aoyagi K, Ohno M, Ohmuraya M, Sato T, Yoshimura SI, Sato K, Harada R, Kim YJ, Osada H, Nemoto T, Kasai H, Kitamura T, Nagamatsu S, Harada A. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. J Cell Biol 2016; 215:121-138. [PMID: 27697926 PMCID: PMC5057288 DOI: 10.1083/jcb.201604030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Kunii et al. reveal that the SNARE protein SNAP23 plays distinct roles in the secretion of amylase in exocrine cells and of insulin in endocrine cells the pancreas and show that MF286, a novel inhibitor of SNAP23, may be a new drug candidate for diabetes. The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.
Collapse
Affiliation(s)
- Masataka Kunii
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Ryosuke Kawakami
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Bangzhong Lin
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Mitsuyo Ohno
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Ohmuraya
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Reiko Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Department of Judo Therapy, Takarazuka University of Medical and Health Care, Hyogo 666-0152, Japan
| | - Yoon-Jeong Kim
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Akihiro Harada
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Intravital imaging technology reveals immune system dynamics in vivo. Allergol Int 2016; 65:225-7. [PMID: 27238377 DOI: 10.1016/j.alit.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
Fluorescent 'intravital' imaging is a new research technique by which the interior of living tissues and organs (in living bodies, if possible) can be observed, revealing the kinetics of cell and molecular processes in real time. Recent technological innovations in optical equipment and fluorescence imaging techniques have enabled a variety of cellular phenomena in different tissues and organs to be characterized under completely native conditions. This shift from static to dynamic biology constitutes the beginning of a new era in biomedical sciences.
Collapse
|
17
|
Abstract
High-resolution deep tissue imaging is possible with two-photon excitation microscopy. With the combined application of two-photon imaging and perfusion with a polar fluorescent tracer, we have established a method to detect exocytic events inside secretory tissues. This method displays the spatiotemporal distribution of exocytic sites, dynamics of fusion pores, and modes of exocytosis. In glucose-stimulated pancreatic islets, exocytic events were observed to be synchronized with an increase in cytosolic Ca(2+) concentrations. Full fusion of a single secretory granule is the typical mode of exocytosis and compound exocytosis is inhibited. Because two-photon excitation enables simultaneous multicolor imaging due to the broadened excitation spectra, the distributions and conformational changes in fluorescent-labeled molecules can be simultaneously visualized with exocytic events. Therefore, we can analyze the dynamics of the molecules involved in membrane fusion and their association with exocytosis in living tissues.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo
| |
Collapse
|
18
|
Granuphilin exclusively mediates functional granule docking to the plasma membrane. Sci Rep 2016; 6:23909. [PMID: 27032672 PMCID: PMC4817151 DOI: 10.1038/srep23909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/16/2016] [Indexed: 11/08/2022] Open
Abstract
In regulated exocytosis, it is generally assumed that vesicles must stably “dock” at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca2+ -triggered release, while others are accelerated to fuse without a pause for stable docking. These findings suggest that stable docking is unnecessary, and can even be inhibitory or nonfunctional, for fusion. Consistently, pancreatic β cells deficient in the Rab27 effector, granuphilin, lack insulin granules directly attached to the plasma membrane in electron micrographs but nevertheless exhibit augmented exocytosis. Here we directly compare the exocytic behaviors between granuphilin-positive and -negative insulin granules. Although granuphilin makes granules immobile and fusion-reluctant beneath the plasma membrane, those granuphilin-positive, docked granules release a portion of granuphilin upon fusion, and fuse at a frequency and time course similar to those of granuphilin-negative undocked granules. Furthermore, granuphilin forms a 180-nm cluster at the site of each docked granule, along with granuphilin-interacting Rab27a and Munc18-1 clusters. These findings indicate that granuphilin is an exclusive component of the functional and fusion-inhibitory docking machinery of secretory granules.
Collapse
|
19
|
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat Commun 2015; 5:3356. [PMID: 24561832 PMCID: PMC4267856 DOI: 10.1038/ncomms4356] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022] Open
Abstract
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles.
Collapse
|
20
|
Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells. Biophys J 2015; 108:251-60. [PMID: 25606674 DOI: 10.1016/j.bpj.2014.11.3462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells.
Collapse
|
21
|
Li XH, Xu YX, Vance G, Wang Y, Lv LB, van Dam GJ, Cao JP, Wilson RA. Evidence That Rhesus Macaques Self-Cure from a Schistosoma japonicum Infection by Disrupting Worm Esophageal Function: A New Route to an Effective Vaccine? PLoS Negl Trop Dis 2015; 9:e0003925. [PMID: 26161644 PMCID: PMC4498593 DOI: 10.1371/journal.pntd.0003925] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background Rhesus macaques are unusual among schistosome hosts, self-curing from an established infection and thereafter manifesting solid immunity against a challenge, an ideal model for vaccine development. Previously, the immunological basis of self-cure was confirmed; surviving worms had ceased feeding but how immunological pressure achieved this was unclear. The schistosome esophagus is not simply a conduit for blood but plays a central role in its processing. Secretions from the anterior and posterior esophageal glands mix with incoming blood causing erythrocyte lysis and tethering and killing of leucocytes. Methodology/Principal Findings We have analysed the self-cure process in rhesus macaques infected with Schistosoma japonicum. Faecal egg output and circulating antigen levels were used to chart the establishment of a mature worm population and its subsequent demise. The physiological stress of surviving females at perfusion was especially evident from their pale, shrunken appearance, while changes in the structure and function of the esophagus were observed in both sexes. In the anterior region electron microscopy revealed that the vesicle secretory process was disrupted, the tips of lining corrugations being swollen by greatly enlarged vesicles and the putative sites of vesicle release obscured by intense deposits of IgG. The lumen of the posterior esophagus in starving worms was occluded by cellular debris and the lining cytoplasmic plates were closely adherent, also potentially preventing secretion. Seven proteins secreted by the posterior gland were identified and IgG responses were detected to some or all of them. Intrinsic rhesus IgG colocalized with secreted SjMEGs 4.1, 8.2, 9, 11 and VAL-7 on cryosections, suggesting they are potential targets for disruption of function. Conclusions/Significance Our data suggest that rhesus macaques self-cure by blocking esophagus function with antibody; the protein products of the glands provide a new class of potential vaccine targets. Rhesus macaques can self-cure from a schistosome infection. Antibody is crucial to drive this process and adult worm elimination is preceded by cessation of blood feeding. Recently we have shown that the schistosome esophagus plays a central role in blood processing. We first confirm the self-cure process in rhesus macaques infected with Schistosoma japonicum and provide evidence that the self-cure mechanism involves blocking the worm esophagus function with antibody. In the anterior region, secretion of light vesicles is disrupted hence their contents are not released into the lumen to interact with blood components to fulfil their tasks. The plates in the posterior lining stick together whilst the lumen is occluded, hampering blood processing. Furthermore, rhesus IgG binds strongly to the worm esophageal lumen and co-localizes completely with five esophageal secreted proteins, SjMEGs 4.1, 8.2, 9, 11 and VAL-7. Our results indicate that rhesus macaques eliminate their adult worms by disrupting esophageal function making blood difficult to ingest; feeding stops eventually causing their demise because nutrient uptake across the body surface cannot fully compensate.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; Key Laboratory of Parasitology and Vector Biology, Ministry of Health, Shanghai, China
| | - Yu-Xin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; Key Laboratory of Parasitology and Vector Biology, Ministry of Health, Shanghai, China
| | - Gill Vance
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Yun Wang
- Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China
| | - Long-Bao Lv
- Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; Key Laboratory of Parasitology and Vector Biology, Ministry of Health, Shanghai, China
| | - R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
22
|
Shitara A, Weigert R. Imaging membrane remodeling during regulated exocytosis in live mice. Exp Cell Res 2015; 337:219-25. [PMID: 26160452 DOI: 10.1016/j.yexcr.2015.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
In this mini-review we focus on the use of time-lapse light microscopy to study membrane remodeling during protein secretion in live animals. In particular, we highlight how subcellular intravital microscopy has enabled imaging the dynamics of both individual secretory vesicles and the plasma membrane, during different steps in the exocytic process. This powerful approach has provided us with the unique opportunity to unravel the role of the actin cytoskeleton in regulating this process under physiological conditions, and to overcome the shortcomings of more reductionist model systems.
Collapse
Affiliation(s)
- Akiko Shitara
- Intracellular Membrane Trafficking Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, United States
| | - Roberto Weigert
- Intracellular Membrane Trafficking Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, United States.
| |
Collapse
|
23
|
Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion. PLoS One 2015; 10:e0125596. [PMID: 25951179 PMCID: PMC4423933 DOI: 10.1371/journal.pone.0125596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/16/2015] [Indexed: 01/24/2023] Open
Abstract
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.
Collapse
|
24
|
Otomo K, Hibi T, Murata T, Watanabe H, Kawakami R, Nakayama H, Hasebe M, Nemoto T. Multi-point scanning two-photon excitation microscopy by utilizing a high-peak-power 1042-nm laser. ANAL SCI 2015; 31:307-13. [PMID: 25864674 DOI: 10.2116/analsci.31.307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/14/2015] [Indexed: 12/16/2023]
Abstract
The temporal resolution of a two-photon excitation laser scanning microscopy (TPLSM) system is limited by the excitation laser beam's scanning speed. To improve the temporal resolution, the TPLSM system is equipped with a spinning-disk confocal scanning unit. However, the insufficient energy of a conventional Ti:sapphire laser source restricts the field of view (FOV) for TPLSM images to a narrow region. Therefore, we introduced a high-peak-power Yb-based laser in order to enlarge the FOV. This system provided three-dimensional imaging of a sufficiently deep and wide region of fixed mouse brain slices, clear four-dimensional imaging of actin dynamics in live mammalian cells and microtubule dynamics during mitosis and cytokinesis in live plant cells.
Collapse
Affiliation(s)
- Kohei Otomo
- Research Institute for Electronic Science, Hokkaido University
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nemoto T, Kawakami R, Hibi T, Iijima K, Otomo K. Two-photon excitation fluorescence microscopy and its application in functional connectomics. Microscopy (Oxf) 2014; 64:9-15. [DOI: 10.1093/jmicro/dfu110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
26
|
Oshima Y, Imamura T, Shintani A, Kajiura-Kobayashi H, Hibi T, Nagai T, Nonaka S, Nemoto T. Ultrasensitive imaging of Ca2+ dynamics in pancreatic acinar cells of yellow cameleon-nano transgenic mice. Int J Mol Sci 2014; 15:19971-86. [PMID: 25372943 PMCID: PMC4264150 DOI: 10.3390/ijms151119971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022] Open
Abstract
Yellow Cameleons are genetically encoded Ca2+ indicators in which cyan and yellow fluorescent proteins and calmodulin work together as a fluorescence (Förster) resonance energy transfer Ca2+-sensor probe. To achieve ultrasensitive Ca2+ imaging for low resting Ca2+ or small Ca2+ transients in various organs, we generated a transgenic mouse line expressing the highest-sensitive genetically encoded Ca2+ indicator (Yellow Cameleon-Nano 15) in the whole body. We then focused on the mechanism of exocytotic events mediated by intracellular Ca2+ signaling in acinar cells of the mice with an agonist and observed them by two-photon excitation microscopy. In the results, two-photon excitation imaging of Yellow Cameleon-Nano 15 successfully visualized intracellular Ca2+ concentration under stimulation with the agonist at nanomolar levels. This is the first demonstration for application of genetically encoded Ca2+ indicators to pancreatic acinar cells. We also simultaneously observed exocytotic events and an intracellular Ca2+ concentration under in vivo condition. Yellow Cameleon-Nano 15 mice are healthy and no significant deteriorative effect was observed on physiological response regarding the pancreatic acinar cells. The dynamic range of 165% was calculated from Rmax and Rmin values under in vivo condition. The mice will be useful for ultrasensitive Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Yusuke Oshima
- Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon City, Ehime 791-0295, Japan.
| | - Takeshi Imamura
- Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon City, Ehime 791-0295, Japan.
| | - Atsuko Shintani
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Hiroko Kajiura-Kobayashi
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Terumasa Hibi
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | - Shigenori Nonaka
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
27
|
Masedunskas A, Appaduray M, Hardeman EC, Gunning PW. What makes a model system great? INTRAVITAL 2014. [DOI: 10.4161/intv.26287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Kiskin NI, Babich V, Knipe L, Hannah MJ, Carter T. Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane. PLoS One 2014; 9:e108093. [PMID: 25233365 PMCID: PMC4169479 DOI: 10.1371/journal.pone.0108093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 01/13/2023] Open
Abstract
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.
Collapse
Affiliation(s)
- Nikolai I. Kiskin
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Division of Neurophysiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Victor Babich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Laura Knipe
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Matthew J. Hannah
- Microbiology Services Colindale, Public Health England, London, United Kingdom
| | - Tom Carter
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Cardiovascular and Cell Sciences Research Institute, St George’s University, London, United Kingdom
| |
Collapse
|
29
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
30
|
Gaisano HY. Here come the newcomer granules, better late than never. Trends Endocrinol Metab 2014; 25:381-8. [PMID: 24746186 DOI: 10.1016/j.tem.2014.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 01/03/2023]
Abstract
Exocytosis in pancreatic β-cells employs Munc18/soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that mediate the priming and docking onto the plasma membrane (PM) of insulin granules, called predocked granules, that sit on the PM until Ca(2+) influx evokes fusion. This accounts for most of the initial peak secretory response. However, the subsequent sustained phase of glucose-stimulated insulin secretion arises from newcomer granules that have a minimal residence time at the PM before fusion. In this Opinion I discuss recent work that has begun to decipher the components of the exocytotic machinery of newcomer granules, including a Munc18/SNARE complex that is different from that mediating the fusion of predocked granules and which can potentially rescue defective insulin secretion in diabetes. These insights are applicable to other neuroendocrine cells that exhibit sustained secretion.
Collapse
Affiliation(s)
- Herbert Y Gaisano
- Department of Medicine, University of Toronto, M5S 1A8, Toronto, Canada.
| |
Collapse
|
31
|
Aida K, Saitoh S, Nishida Y, Yokota S, Ohno S, Mao X, Akiyama D, Tanaka S, Awata T, Shimada A, Oikawa Y, Shimura H, Furuya F, Takizawa S, Ichijo M, Ichijo S, Itakura J, Fujii H, Hashiguchi A, Takasawa S, Endo T, Kobayashi T. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG) protein in fulminant type 1 diabetes. PLoS One 2014; 9:e95110. [PMID: 24759849 PMCID: PMC3997392 DOI: 10.1371/journal.pone.0095110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/23/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs), extracellular matrix (ECM), and possible cell clusters, are unclear. PROCEDURES The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG) Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.
Collapse
Affiliation(s)
- Kaoru Aida
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yoriko Nishida
- Department of Nursing, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sadanori Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Saseho, Nagasaki, Japan
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiayang Mao
- Department of Computer Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Daiichiro Akiyama
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shoichiro Tanaka
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takuya Awata
- Division of Endocrinology and Diabetes, Department of Medicine, Saitama Medical School, Moroyama, Saitama, Japan
| | - Akira Shimada
- Department of Internal Medicine, Saiseikai Central Hospital, Tokyo, Japan
| | - Youichi Oikawa
- Department of Internal Medicine, Saiseikai Central Hospital, Tokyo, Japan
| | - Hiroki Shimura
- Department of Laboratory Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Fumihiko Furuya
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Soichi Takizawa
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masashi Ichijo
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sayaka Ichijo
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jun Itakura
- Department of Surgery I, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hideki Fujii
- Department of Surgery I, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Wakayama, Japan
| | - Toyoshi Endo
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tetsuro Kobayashi
- Department of Internal Medicine III, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- * E-mail:
| |
Collapse
|
32
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
33
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Cabeza JM, Acosta J, Alés E. Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem 2013; 288:20293-305. [PMID: 23709219 DOI: 10.1074/jbc.m113.459065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified "large-capacitance flickers" that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent "compound cavicapture," most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.
Collapse
Affiliation(s)
- Jose M Cabeza
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | | | | |
Collapse
|
35
|
Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 2013; 24:227-39. [PMID: 23647915 DOI: 10.1016/j.cytogfr.2013.04.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways - both conventional and unconventional - and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | | |
Collapse
|
36
|
Thorn P, Gaisano H. Molecular control of compound Exocytosis: A key role for VAMP8. Commun Integr Biol 2012; 5:61-3. [PMID: 22482012 DOI: 10.4161/cib.18058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exocytosis is the process of fusion of a membrane-bound vesicle with the cell membrane and subsequent release of the vesicle content to the outside. It is now widely accepted that SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are key components in the molecular machinery of exocytosis. SNARE proteins on the vesicle membrane selectively form complexes with specific SNAREs on the cell membrane. In a variant of exocytosis, called compound exocytosis, secretory vesicles still fuse with the cell membrane but vesicle-to-vesicle fusion enhances secretory output. Two types of compound exocytosis occur, either vesicles fuse with each other and then fuse with the cell membrane, or a vesicle fuses with the cell membrane and then becomes a target for further vesicles to fuse with it. It is expected that SNAREs are important for vesicle-to-vesicle fusion but the mechanism(s) that control these processes is unknown. In our recent paper (Behrendorff et al. 2011) we provide evidence that VAMP8 (a Q-SNARE) is essential in regulating compound exocytosis. Here we discuss the implications of our findings with reference to a new model for the control of vesicle-to-vesicle fusion.
Collapse
|
37
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
38
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
39
|
Dolai S, Liang T, Lam PPL, Fernandez NA, Chidambaram S, Gaisano HY. Effects of ethanol metabolites on exocytosis of pancreatic acinar cells in rats. Gastroenterology 2012; 143:832-843.e7. [PMID: 22710192 DOI: 10.1053/j.gastro.2012.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS During development of alcoholic pancreatitis, oxidative (acetaldehyde) and nonoxidative metabolites (ethyl palmitate, ethyl oleate), rather than ethanol itself, mediate toxic injury. Exposure of pancreatic acini to ethanol blocks cholecystokinin (CCK)-8-stimulated apical exocytosis and redirects exocytosis to the basolateral plasma membrane, causing interstitial pancreatitis. We examined how each ethanol metabolite contributes to these changes in exocytosis. METHODS Rat pancreatic acini were incubated with concentrations of ethanol associated with alcoholic pancreatitis (20-50 mmol/L) or ethanol metabolites (1-3 mmol/L) and then stimulated with CCK-8. We performed single zymogen granule (ZG) exocytosis assays, Ca(2+) imaging studies, ultrastructural analyses (with electron microscopy), and confocal microscopy to assess the actin cytoskeleton and track the movement of vesicle-associated membrane protein (VAMP)-8-containing ZGs. Coimmunoprecipitation assays were used to identify complexes that contain the distinct combinations of Munc18 and the soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins, which mediate apical (ZG-apical plasma membrane) and basolateral exocytosis and fusion between ZGs (ZG-ZG). RESULTS The ethanol metabolites acetaldehyde, ethyl palmitate, and ethyl oleate reduced CCK-8-stimulated apical exocytosis and formation of apical exocytotic complexes (between Munc18b and Syntaxin-2, synaptosomal-associated protein of 23 kilodaltons [SNAP23], and VAMP2) in rat pancreatic acini. Acetaldehyde and ethyl oleate redirected CCK-8-stimulated exocytosis to the basal and lateral plasma membranes and translocation of VAMP8-containing ZGs toward the basolateral plasma membrane. This process was mediated primarily via formation of basolateral exocytotic complexes (between Munc18c and Syntaxin-4, SNAP23, and VAMP8). Exposure of the acini to acetaldehyde and ethyl oleate followed by CCK-8 stimulation mildly perturbed the actin cytoskeleton and Ca(2+) signaling; exposure to ethyl palmitate severely affected Ca(2+) signaling. Acetaldehyde, like ethanol, promoted fusion between ZGs by the formation of ZG-ZG exocytotic complexes (between Munc18b and Syntaxin-3, SNAP23, and VAMP8), whereas ethyl palmitate and ethyl oleate reduced ZG-ZG fusion and formation of these complexes. CONCLUSIONS The ethanol metabolites acetaldehyde, ethyl palmitate, and ethyl oleate perturb exocytosis processes in cultured rat pancreatic acini (apical blockade, basolateral exocytosis, and fusion between ZGs). Acetaldehyde and, to a lesser degree, ethyl oleate produce many of the same pathologic effects of ethanol on CCK-8-stimulated exocytosis in pancreatic acini.
Collapse
Affiliation(s)
- Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick P L Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nestor A Fernandez
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Jang Y, Soekmadji C, Mitchell JM, Thomas WG, Thorn P. Real-time measurement of F-actin remodelling during exocytosis using Lifeact-EGFP transgenic animals. PLoS One 2012; 7:e39815. [PMID: 22768313 PMCID: PMC3388092 DOI: 10.1371/journal.pone.0039815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/26/2012] [Indexed: 11/25/2022] Open
Abstract
F-actin remodelling is essential for a wide variety of cell processes. It is important in exocytosis, where F-actin coats fusing exocytic granules. The purpose of these F-actin coats is unknown. They may be important in stabilizing the fused granules, they may play a contractile role and promote expulsion of granule content and finally may be important in endocytosis. To elucidate these functions of F-actin remodelling requires a reliable method to visualize F-actin dynamics in living cells. The recent development of Lifeact-EGFP transgenic animals offers such an opportunity. Here, we studied the characteristics of exocytosis in pancreatic acinar cells obtained from the Lifeact-EGFP transgenic mice. We show that the time-course of agonist-evoked exocytic events and the kinetics of each single exocytic event are the same for wild type and Lifeact-EGFP transgenic animals. We conclude that Lifeact-EGFP animals are a good model to study of exocytosis and reveal that F-actin coating is dependent on the de novo synthesis of F-actin and that development of actin polymerization occurs simultaneously in all regions of the granule. Our insights using the Lifeact-EGFP mice demonstrate that F-actin coating occurs after granule fusion and is a granule-wide event.
Collapse
Affiliation(s)
- Yujin Jang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Carolina Soekmadji
- The Australian Prostate Research Centre – Queensland, Princess Alexandra Hospital, Buranda, Queensland, Australia
| | - Justin M. Mitchell
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Walter G. Thomas
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter Thorn
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
41
|
Hammel I, Meilijson I. Function suggests nano-structure: electrophysiology supports that granule membranes play dice. J R Soc Interface 2012; 9:2516-26. [PMID: 22628211 DOI: 10.1098/rsif.2012.0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular communication depends on membrane fusion mechanisms. SNARE proteins play a fundamental role in all intracellular fusion reactions associated with the life cycle of secretory vesicles, such as vesicle-vesicle and vesicle plasma membrane fusion at the porosome base in the cell plasma membrane. We present growth and elimination (G&E), a birth and death model for the investigation of granule growth, its evoked and spontaneous secretion and their information content. Using a statistical mechanics approach in which SNARE components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation behind granule growth and secretion. Results from experimental work, mathematical calculations and statistical modelling suggest that for vesicle growth a minimal aggregation of three SNAREs is required, while for the evoked secretion one SNARE is enough. Furthermore, the required number of SNARE aggregates (which varies between cell types and is nearly proportional to the square root of the mean granule diameter) affects and is statistically identifiable from the size distributions of spontaneous and evoked secreted granules. The new statistical mechanics approach to granule fusion is bound to have a significant changing effect on the investigation of the pathophysiology of secretory mechanisms and methodologies for the investigation of secretion.
Collapse
Affiliation(s)
- Ilan Hammel
- Sackler Faculty of Medicine, Department of Pathology, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
42
|
Ogata S, Miki T, Seino S, Tamai S, Kasai H, Nemoto T. A novel function of Noc2 in agonist-induced intracellular Ca2+ increase during zymogen-granule exocytosis in pancreatic acinar cells. PLoS One 2012; 7:e37048. [PMID: 22615885 PMCID: PMC3355174 DOI: 10.1371/journal.pone.0037048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/12/2012] [Indexed: 11/29/2022] Open
Abstract
Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca2+-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 µM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca2+]i-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca2+]i increases.
Collapse
Affiliation(s)
- Sho Ogata
- Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Hoppa MB, Jones E, Karanauskaite J, Ramracheya R, Braun M, Collins SC, Zhang Q, Clark A, Eliasson L, Genoud C, MacDonald PE, Monteith AG, Barg S, Galvanovskis J, Rorsman P. Multivesicular exocytosis in rat pancreatic beta cells. Diabetologia 2012; 55:1001-12. [PMID: 22189485 PMCID: PMC3296018 DOI: 10.1007/s00125-011-2400-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/17/2011] [Indexed: 11/04/2022]
Abstract
AIMS/HYPOTHESIS To establish the occurrence, modulation and functional significance of compound exocytosis in insulin-secreting beta cells. METHODS Exocytosis was monitored in rat beta cells by electrophysiological, biochemical and optical methods. The functional assays were complemented by three-dimensional reconstruction of confocal imaging, transmission and block face scanning electron microscopy to obtain ultrastructural evidence of compound exocytosis. RESULTS Compound exocytosis contributed marginally (<5% of events) to exocytosis elicited by glucose/membrane depolarisation alone. However, in beta cells stimulated by a combination of glucose and the muscarinic agonist carbachol, 15-20% of the release events were due to multivesicular exocytosis, but the frequency of exocytosis was not affected. The optical measurements suggest that carbachol should stimulate insulin secretion by ∼40%, similar to the observed enhancement of glucose-induced insulin secretion. The effects of carbachol were mimicked by elevating [Ca(2+)](i) from 0.2 to 2 μmol/l Ca(2+). Two-photon sulforhodamine imaging revealed exocytotic events about fivefold larger than single vesicles and that these structures, once formed, could persist for tens of seconds. Cells exposed to carbachol for 30 s contained long (1-2 μm) serpentine-like membrane structures adjacent to the plasma membrane. Three-dimensional electron microscopy confirmed the existence of fused multigranular aggregates within the beta cell, the frequency of which increased about fourfold in response to stimulation with carbachol. CONCLUSIONS/INTERPRETATION Although contributing marginally to glucose-induced insulin secretion, compound exocytosis becomes quantitatively significant under conditions associated with global elevation of cytoplasmic calcium. These findings suggest that compound exocytosis is a major contributor to the augmentation of glucose-induced insulin secretion by muscarinic receptor activation.
Collapse
Affiliation(s)
- M. B. Hoppa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - E. Jones
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - J. Karanauskaite
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - R. Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - M. Braun
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - S. C. Collins
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - Q. Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - A. Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - L. Eliasson
- Lund University Diabetes Centre, Clinical Research Centre, Malmo, Sweden
| | - C. Genoud
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - P. E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | - S. Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J. Galvanovskis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - P. Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
44
|
Gaisano HY. Deploying insulin granule-granule fusion to rescue deficient insulin secretion in diabetes. Diabetologia 2012; 55:877-80. [PMID: 22307686 DOI: 10.1007/s00125-012-2483-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
According to our current understanding of insulin exocytosis, insulin granules dock on the plasma membrane, undergo priming and then wait for calcium-triggered fusion. In this issue of Diabetologia, Hoppa et al (doi 10.1007/s00125-011-2400-5 ) report that cholinergic stimulation induces granule-granule, or multivesicular, fusion to effect more efficient insulin release. Other exocytotic modes of insulin secretion, particularly those induced by incretin stimulation, include orderly granule fusion with granules already fused with the plasma membrane, called sequential exocytosis, and recruitment of newcomer granules to fuse with plasma membrane with minimal time for docking and priming. The molecular machineries that mediate these distinct exocytotic modes of granule-granule fusion and newcomer granules remain undefined, but they could be therapeutically targeted to couple to cholinergic and incretin stimulation to rescue the deficient glucose-stimulated insulin secretion in diabetes.
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Thorn P. Measuring calcium signals and exocytosis in tissues. Biochim Biophys Acta Gen Subj 2012; 1820:1179-84. [PMID: 22402251 DOI: 10.1016/j.bbagen.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since the 1960s it has been clear that calcium is a key regulator of exocytosis. Early experiments directly showed that the secretory output was calcium dependent. But it has taken improvements in technology and clever experimentation to determine the relationships between the calcium signal and exocytosis. Today controversies still remain because of limitations in our ability to record both the calcium responses within the local domains that control secretion and in the methods used to record exocytosis. SCOPE OF REVIEW Here the techniques used to measure calcium and exocytosis are reviewed with a distinction being drawn between measurements in excitable cells versus measurements in non-excitable cells. The review has a focus on techniques that are relevant to in vitro studies of native tissues and recent in vivo recordings. MAJOR CONCLUSIONS There are a range of methods used to study the stimulus-secretion pathway. Each presents their own advantages and drawbacks. These are discussed with reference to the latest work determining the factors controlling exocytosis in tissues. GENERAL SIGNIFICANCE Stimulus-secretion coupling is the fundamental step in the control of neurotransmitter release, hormone secretion and protein secretion. Understanding secretory control is therefore important in understanding the physiological regulation of processes ranging from learning and memory to pancreatic secretion. Recent technological advances are now enabling us to study stimulus-secretion coupling within native tissues. This is helping us to understand the physiological complexities of secretory control. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Science, University of Queensland, QLD, Australia.
| |
Collapse
|
46
|
Masedunskas A, Porat-Shliom N, Weigert R. Regulated exocytosis: novel insights from intravital microscopy. Traffic 2012; 13:627-34. [PMID: 22243493 DOI: 10.1111/j.1600-0854.2012.01328.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Regulated exocytosis is a fundamental process that every secretory cell uses to deliver molecules to the cell surface and the extracellular space by virtue of membranous carriers. This process has been extensively studied using various approaches such as biochemistry, electrophysiology and electron microscopy. However, recent developments in time-lapse light microscopy have made possible imaging individual exocytic events, hence, advancing our understanding of this process at a molecular level. In this review, we focus on intravital microscopy (IVM), a light microscopy-based approach that enables imaging subcellular structures in live animals, and discuss its recent application to study regulated exocytosis. IVM has revealed differences in regulation and modality of regulated exocytosis between in vitro and in vivo model systems, unraveled novel aspects of this process that can be appreciated only in in vivo settings and provided valuable and novel information on its molecular machinery. In conclusion, we make the case for IVM being a mature technique that can be used to investigate the molecular machinery of several intracellular events under physiological conditions.
Collapse
Affiliation(s)
- Andrius Masedunskas
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, USA
| | | | | |
Collapse
|
47
|
|
48
|
Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proc Natl Acad Sci U S A 2011; 108:13552-7. [PMID: 21808006 DOI: 10.1073/pnas.1016778108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.
Collapse
|
49
|
Behrendorff N, Dolai S, Hong W, Gaisano HY, Thorn P. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem 2011; 286:29627-34. [PMID: 21733851 DOI: 10.1074/jbc.m111.265199] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.
Collapse
|
50
|
Zhang J, Castle D. Regulation of fusion pore closure and compound exocytosis in neuroendocrine PC12 cells by SCAMP1. Traffic 2011; 12:600-14. [PMID: 21272170 DOI: 10.1111/j.1600-0854.2011.01170.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During exocytosis, neuroendocrine cells can achieve partial release of stored secretory products from dense core vesicles (DCVs) by coupling endocytosis directly at fusion sites and without full discharge. The physiological role of partial secretion is of substantial interest. Much is known about SNARE-mediated initiation of exocytosis and dynamin-mediated completion of endocytosis, but little is known about coupling events. We have used real-time microscopy to examine the role of secretory carrier membrane protein SCAMP1 in exo-endocytic coupling in PC12 cells. While reduced SCAMP1 expression is known to impede dilation of newly opened fusion pores during onset of DCV exocytosis, we now show that SCAMP1 deficiency also inhibits closure of fusion pores after they have opened. Inhibition causes accumulation of fusion figures at the plasma membrane. Closure is recovered by restoring expression and accelerated slightly by overexpression. Interestingly, inhibited pore closure resulting from loss of SCAMP1 appears to increase secondary fusion of DCVs to already-fused DCVs (compound exocytosis). Unexpectedly, reinternalization of expanded DCV membranes following compound exocytosis appears to proceed normally in SCAMP1-deficient cells. SCAMP1's apparent dual role in facilitating dilation and closure of fusion pores implicates its function in exo-endocytic coupling and in the regulation of partial secretion. Secondarily, SCAMP1 may serve to limit the extent of compound exocytosis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology, Molecular, Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22908-0732, USA.
| | | |
Collapse
|