1
|
Wu H, Jia Y, Chen X, Jiang N, Zhang Z, Chai S. Novel Allelic Gene Variations in CmCLAVATA3 ( CmCLV3) Were Identified in a Genetic Population of Melon ( Cucumis melo L.). Int J Mol Sci 2024; 25:6011. [PMID: 38892198 PMCID: PMC11173160 DOI: 10.3390/ijms25116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Carpel number (CN) is an important trait affecting the fruit size and shape of melon, which plays a crucial role in determining the overall appearance and market value. A unique non-synonymous single nucleotide polymorphism (SNP) in CmCLAVATA3 (CmCLV3) is responsible for the variation of CN in C. melo ssp. agrestis (hereafter agrestis), but it has been unclear in C. melo ssp. melo (hereafter melo). In this study, one major locus controlling the polymorphism of 5-CN (multi-CN) and 3-CN (normal-CN) in melo was identified using bulked segregant analysis (BSA-seq). This locus was then fine-mapped to an interval of 1.8 Mb on chromosome 12 using a segregating population containing 1451 progeny. CmCLV3 is still present in the candidate region. A new allele of CmCLV3, which contains five other nucleotide polymorphisms, including a non-synonymous SNP in coding sequence (CDS), except the SNP reported in agrestis, was identified in melo. A cis-trans test confirmed that the candidate gene, CmCLV3, contributes to the variation of CNs in melo. The qRT-PCR results indicate that there is no significant difference in the expression level of CmCLV3 in the apical stem between the multi-CN plants and the normal-CN plants. Overall, this study provides a genetic resource for melon fruit development research and molecular breeding. Additionally, it suggests that melo has undergone similar genetic selection but evolved into an independent allele.
Collapse
Affiliation(s)
| | | | | | | | | | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Y.J.); (X.C.); (N.J.); (Z.Z.)
| |
Collapse
|
2
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
3
|
The NGATHA-like Genes DPA4 and SOD7 Are Not Required for Stem Cell Specification during Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231912007. [PMID: 36233309 PMCID: PMC9569844 DOI: 10.3390/ijms231912007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2023] Open
Abstract
In plants, stem cells are embedded in structures called meristems. Meristems can be formed either during embryogenesis or during the plant's life such as, for instance, axillary meristems. While the regulation of the stem cell population in an established meristem is well described, how it is initiated in newly formed meristems is less well understood. Recently, two transcription factors of the NGATHA-like family, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2 have been shown to facilitate de novo stem cell initiation in Arabidopsis thaliana axillary meristems. Here, we tested whether the DPA4 and SOD7 genes had a similar role during stem cell formation in embryo shoot apical meristems. Using DPA4 and SOD7 reporter lines, we characterized the expression pattern of these genes during embryo development, revealing only a partial overlap with the stem cell population. In addition, we showed that the expression of a stem cell reporter was not modified in dpa4-2 sod7-2 double mutant embryos compared to the wild type. Together, these observations suggest that DPA4 and SOD7 are not required for stem cell specification during embryo shoot apical meristem initiation. This work stresses the difference in the regulatory network leading to meristem formation during the embryonic and post-embryonic phases.
Collapse
|
4
|
Nicolas A, Laufs P. Meristem Initiation and de novo Stem Cell Formation. FRONTIERS IN PLANT SCIENCE 2022; 13:891228. [PMID: 35557739 PMCID: PMC9087721 DOI: 10.3389/fpls.2022.891228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Plant aerial development relies on meristem activity which ensures main body plant axis development during plant life. While the shoot apical meristem (SAM) formed in the embryo only contributes to the main stem, the branched structure observed in many plants relies on axillary meristems (AMs) formed post-embryonically. These AMs initiate from a few cells of the leaf axil that retain meristematic characteristics, increase in number, and finally organize into a structure similar to the SAM. In this review, we will discuss recent findings on de novo establishment of a stem cell population and its regulatory niche, a key step essential for the indeterminate fate of AMs. We stress that de novo stem cell formation is a progressive process, which starts with a transient regulatory network promoting stem cell formation and that is different from the one acting in functional meristems. This transient stage can be called premeristems and we discuss whether this concept can be extended to the formation of meristems other than AMs.
Collapse
Affiliation(s)
- Antoine Nicolas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Université Paris-Saclay, Orsay, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
5
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
6
|
Kusnandar AS, Itoh JI, Sato Y, Honda E, Hibara KI, Kyozuka J, Naramoto S. NARROW AND DWARF LEAF 1, the Ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2022; 63:265-278. [PMID: 34865135 DOI: 10.1093/pcp/pcab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.
Collapse
Affiliation(s)
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yutaka Sato
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Eriko Honda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810 Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
7
|
Rehman F, Gong H, Bao Y, Zeng S, Huang H, Wang Y. CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. PLANT MOLECULAR BIOLOGY 2022; 108:157-173. [PMID: 35032250 DOI: 10.1007/s11103-021-01229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Domestication traits particularly fruit size and plant architecture and flowering are critical in transforming a progenitor's wild stature into a super improved plant. The latest advancements in the CRISPR system, as well as its rapid adoption, are speeding up plant breeding. Solanaceae has a varied range of important crops, with a few model crops, such as tomato and, more recently, groundcherry, serving as a foundation for developing molecular techniques, genome editing tools, and establishing standards for other crops. Domestication traits in agricultural plants are quantified and widely adopted under modern plant breeding to improve small-fruited and bushy crop species like goji berry. The molecular mechanisms of the FW2.2, FW3.2, FW11.3, FAS/CLV3, LC/WUS, SP, SP5G, and CRISPR genome editing technology have been described in detail here. Furthermore, special focus has been placed on CRISPR gene editing achievements for revolutionizing Solanaceae breeding and changing the overall crop landscape. This review seeks to provide a thorough overview of the CRISPR technique's ongoing advancements, particularly in Solanaceae, in terms of domesticated features, future prospects, and regulatory risks. We believe that this vigorous discussion will lead to a broader understanding of CRISPR gene editing as a tool for achieving key breeding goals in other Solanaceae minor crops with significant industrial value.
Collapse
Affiliation(s)
- Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yufei Bao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hongwen Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Tiwari M, Pandey V, Singh B, Yadav M, Bhatia S. Evolutionary and expression dynamics of LRR-RLKs and functional establishment of KLAVIER homolog in shoot mediated regulation of AON in chickpea symbiosis. Genomics 2021; 113:4313-4326. [PMID: 34801685 DOI: 10.1016/j.ygeno.2021.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
Chickpea shoot exogenously treated with cytokinin showed stunted phenotype of root, shoot and significantly reduced nodule numbers. Genome-wide identification of LRR-RLKs in chickpea and Medicago resulted in 200 and 371 genes respectively. Gene duplication analysis revealed that LRR-RLKs family expanded through segmental duplications in chickpea and tandem duplications in Medicago. Expression profiling of LRR-RLKs revealed their involvement in cytokinin signaling and plant organ development. Overexpression of KLAVIER ortholog of chickpea, Ca_LRR-RLK147, in roots revealed its localization in the membrane but showed no effect on root nodulation despite increased cle peptide levels. Two findings (i) drastic effect on nodule number by exogenous cytokinin treatment to only shoot and restoration to normal nodulation by treatment to both root and shoot tissue and (ii) no effect on nodule number by overexpression of Ca_LRR-RLK147 establishes the fact that despite presence of cle peptides in root, the function of Ca_LRR-RLK147 was shoot mediated during AON.
Collapse
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manisha Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
9
|
Owusu Adjei M, Xiang Y, He Y, Zhou X, Mao M, Liu J, Hu H, Luo J, Zhang H, Feng L, Yang W, Li X, Ma J. Adventitious root primordia formation and development in the stem of Ananas comosus var. bracteatus slip. PLANT SIGNALING & BEHAVIOR 2021; 16:1949147. [PMID: 34288829 PMCID: PMC8525929 DOI: 10.1080/15592324.2021.1949147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
There are about 4-6 slips on a fruit, and they are good materials for effective regeneration of Ananas comosus var. bracteatus. Adventitious root (AR) induction is essential for the propagation of Ananas comosus var. bracteatus slips. Growth regulator treatment, and culture medium are imperative factors that affect slip growth and rooting. In order to screen the optimal methods for slips rooting and reveal the anatomic procedure of slip rooting, this study induced slip rooting by different treatment of growth regulator, culture medium, observed the slip stem structure, AR origination and formation procedure through paraffin sections. The results showed that, slip cuttings treated with 100 mg/L of Aminobenzotriazole (ABT) for 6 hrs, cultured in river sand: coconut chaff: garden soil 2:2:1 medium is the optimal method for rooting. The proper supplementary of ABT can enhance the soluble sugar content, soluble protein content, polyphenol oxidase (PPO) activity and peroxidase (POD) enzyme activity, which resulted in the improvement of rooting. The slip stem structure is quite different from other monocots, which consists of epidermis, cortex, and stele with vascular tissues distributed in the cortex and stele. The AR primordia originates from the parenchyma cells located on the borderline between the cortex and stele. The vascular tissues in the AR develop and are connected with vascular tissue of the stem before the AR grew out the stem. The number of primary xylem poles in AR is about 30.
Collapse
Affiliation(s)
- Mark Owusu Adjei
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Yixuan Xiang
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Yehua He
- Horticultural Biotechnology College of South China Agricultural University, Guangdong, China
| | - Xuzixin Zhou
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Meiqin Mao
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Jiawen Liu
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Hao Hu
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Jiaheng Luo
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Huiling Zhang
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Lijun Feng
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Wei Yang
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Xi Li
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| | - Jun Ma
- College of Landscape Architecture-Sichuan Agricultural University, Chengdu- Sichuan, China
| |
Collapse
|
10
|
Olas JJ, Apelt F, Annunziata MG, John S, Richard SI, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:1508-1524. [PMID: 34052393 DOI: 10.1016/j.molp.2021.05.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 05/24/2023]
Abstract
In plants, the shoot apical meristem (SAM) is essential for the growth of aboveground organs. However, little is known about its molecular responses to abiotic stresses. Here, we show that the SAM of Arabidopsis thaliana displays an autonomous heat-stress (HS) memory of a previous non-lethal HS, allowing the SAM to regain growth after exposure to an otherwise lethal HS several days later. Using RNA sequencing, we identified genes participating in establishing the SAM's HS transcriptional memory, including the stem cell (SC) regulators CLAVATA1 (CLV1) and CLV3, HEAT SHOCK PROTEIN 17.6A (HSP17.6A), and the primary carbohydrate metabolism gene FRUCTOSE-BISPHOSPHATE ALDOLASE 6 (FBA6). We demonstrate that sugar availability is essential for survival of plants at high temperature. HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2A) directly regulates the expression of HSP17.6A and FBA6 by binding to the heat-shock elements in their promoters, indicating that HSFA2 is required for transcriptional activation of SAM memory genes. Collectively, these findings indicate that plants have evolved a sophisticated protection mechanism to maintain SCs and, hence, their capacity to re-initiate shoot growth after stress release.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany.
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Maria Grazia Annunziata
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sarah Isabel Richard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
11
|
Vinogradova GY, Zhinkina NA. Why does only one embryo sac develop in the Paeonia ovule with multiple archesporium? PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:267-274. [PMID: 33119967 DOI: 10.1111/plb.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Structure of the multiple archesporium in an ovule, time and place of archesporial cell differentiation and their developmental potential have not been studied in detail. In Paeonia species supernumerary archesporial cells are formed and differentiate as multiple megasporocytes, but only one embryo sac usually develops into an ovule. The reasons leading to development of one gametophyte and the death of most megasporocytes are unknown. The morphological structure of the multiple archesporium in Paeonia veitchii and P. caucasica was studied using cytoembryological methods. We used staining with aniline blue and fluorescence microscopy for visualization of callose on the megasporocyte walls. All cells of the ovule in investigated Paeonia species are uniform and meristematic at the earliest development stage. The onset of archesporium differentiation correlates with inner integument initiation. The sporogenous complex includes ten to 25 cells which develop asynchronously. The cell located in the central part of the sporogenous complex is differentiated into a megasporocyte earlier than in neighbouring cells. Only this megasporocyte is enveloped in callose; it develops further through to meiosis and forms a female gametophyte. The other megasporocytes degenerate during ovule development. We consider that callose participates in the mechanism of 'lateral inhibition' during megasporocyte maturation. The cell located in the central part of the Paeonia ovule is the first to receive signals that stimulate the onset of megasporogenesis and formation of the callose wall. It is possible that callose participates in blocking of development signals to neighbouring megasporocytes, leading to the arrest of their development.
Collapse
Affiliation(s)
- G Yu Vinogradova
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - N A Zhinkina
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
12
|
Santini F, Kefauver SC, Araus JL, Resco de Dios V, Martín García S, Grivet D, Voltas J. Bridging the genotype-phenotype gap for a Mediterranean pine by semi-automatic crown identification and multispectral imagery. THE NEW PHYTOLOGIST 2021; 229:245-258. [PMID: 32893885 DOI: 10.1111/nph.16862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Progress in high-throughput phenotyping and genomics provides the potential to understand the genetic basis of plant functional differentiation. We developed a semi-automatic methodology based on unmanned aerial vehicle (UAV) imagery for deriving tree-level phenotypes followed by genome-wide association study (GWAS). An RGB-based point cloud was used for tree crown identification in a common garden of Pinus halepensis in Spain. Crowns were combined with multispectral and thermal orthomosaics to retrieve growth traits, vegetation indices and canopy temperature. Thereafter, GWAS was performed to analyse the association between phenotypes and genomic variation at 235 single nucleotide polymorphisms (SNPs). Growth traits were associated with 12 SNPs involved in cellulose and carbohydrate metabolism. Indices related to transpiration and leaf water content were associated with six SNPs involved in stomata dynamics. Indices related to leaf pigments and leaf area were associated with 11 SNPs involved in signalling and peroxisome metabolism. About 16-20% of trait variance was explained by combinations of several SNPs, indicating polygenic control of morpho-physiological traits. Despite a limited availability of markers and individuals, this study is provides a successful proof-of-concept for the combination of high-throughput UAV-based phenotyping with cost-effective genotyping to disentangle the genetic architecture of phenotypic variation in a widespread conifer.
Collapse
Affiliation(s)
- Filippo Santini
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
| | - Shawn Carlisle Kefauver
- AGROTECNIO (Center for Research in Agrotechnology), Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, E-08028, Spain
| | - José Luis Araus
- AGROTECNIO (Center for Research in Agrotechnology), Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, E-08028, Spain
| | - Víctor Resco de Dios
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Ave., Mianyang, 621010, China
| | | | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid, E-28040, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
| |
Collapse
|
13
|
Slugina MA, Filyushin MA, Shchennikova AV, Kochieva EZ, Skryabin KG. FAS, YABBY2, and YABBY5 Gene Expression Profile Correlates with Different Fruit Locule Number in Tomato. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wang H, Xu Y, Hong L, Zhang X, Wang X, Zhang J, Ding Z, Meng Z, Wang ZY, Long R, Yang Q, Kong F, Han L, Zhou C. HEADLESS Regulates Auxin Response and Compound Leaf Morphogenesis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2019; 10:1024. [PMID: 31475021 PMCID: PMC6707262 DOI: 10.3389/fpls.2019.01024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 05/28/2023]
Abstract
WUSCHEL (WUS) is thought to be required for the establishment of the shoot stem cell niche in Arabidopsis thaliana. HEADLESS (HDL), a gene that encodes a WUS-related homeobox family transcription factor, is thought to be the Medicago truncatula ortholog of the WUS gene. HDL plays conserved roles in shoot apical meristem (SAM) and axillary meristem (AM) maintenance. HDL is also involved in compound leaf morphogenesis in M. truncatula; however, its regulatory mechanism has not yet been explored. Here, the significance of HDL in leaf development was investigated. Unlike WUS in A. thaliana, HDL was transcribed not only in the SAM and AM but also in the leaf. Both the patterning of the compound leaves and the shape of the leaf margin in hdl mutant were abnormal. The transcriptional profile of the gene SLM1, which encodes an auxin efflux carrier, was impaired and the plants' auxin response was compromised. Further investigations revealed that HDL positively regulated auxin response likely through the recruitment of MtTPL/MtTPRs into the HDL repressor complex. Its participation in auxin-dependent compound leaf morphogenesis is of interest in the context of the functional conservation and neo-functionalization of the products of WUS orthologs.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Limei Hong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, Shandong Normal University, Ji’nan, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanjiang Kong
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Reyes-Olalde JI, de Folter S. Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. PLANT REPRODUCTION 2019; 32:123-136. [PMID: 30671644 DOI: 10.1007/s00497-018-00359-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/24/2018] [Indexed: 05/29/2023]
Abstract
Overview of the current understanding of the molecular mechanisms that regulate meristem activity in the CMM compared to the SAM. Meristems are undifferentiated cells responsible for post-embryonic plant development. The meristems are able to form new organs continuously by carefully balancing between stem cell proliferation and cell differentiation. The plant stem cell niche in each meristem harbors the stem cells that are important to maintain each meristem. The shoot apical meristem (SAM) produces all above-parts of a plant and the molecular mechanisms active in the SAM are actively studied since many years, and models are available. During the reproductive phase of the plant, the inflorescence meristem gives rise to floral meristems, which give rise to the flowers. During floral development, the gynoecium forms that contains a new meristem inside, called the carpel margin meristem (CMM). In Arabidopsis, the gynoecium consists out of two fused carpels, where the CMM forms along the fused carpel margins. In this review, we focus on the molecular mechanisms taking place in the CMM, and we discuss similarities and differences found in the SAM.
Collapse
Affiliation(s)
- J Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP 36824, Irapuato, Guanajuato, Mexico
- Universidad Politécnica del Valle de Toluca, CP 50904, Almoloya de Juárez, Estado de México, Mexico
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, CP 50180, Toluca, Estado de Mexico, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
16
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
17
|
Li X, Salman A, Guo C, Yu J, Cao S, Gao X, Li W, Li H, Guo Y. Identification and Characterization of LRR-RLK Family Genes in Potato Reveal Their Involvement in Peptide Signaling of Cell Fate Decisions and Biotic/Abiotic Stress Responses. Cells 2018; 7:cells7090120. [PMID: 30150583 PMCID: PMC6162732 DOI: 10.3390/cells7090120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of receptor-like kinases (RLKs) and play important roles in regulating growth, development, and stress responses in plants. In this study, 246 LRR-RLK genes were identified in the potato (Solanum tuberosum) genome, which were further classified into 14 subfamilies. Gene structure analysis revealed that genes within the same subgroup shared similar exon/intron structures. A signature small peptide recognition motif (RxR) was found to be largely conserved within members of subfamily IX, suggesting that these members may recognize peptide signals as ligands. 26 of the 246 StLRR-RLK genes were found to have arisen from tandem or segmental duplication events. Expression profiling revealed that StLRR-RLK genes were differentially expressed in various organs/tissues, and several genes were found to be responsive to different stress treatments. Furthermore, StLRR-RLK117 was found to be able to form homodimers and heterodimers with StLRR-RLK042 and StLRR-RLK052. Notably, the overlapping expression region of StLRR-RLK117 with Solanum tuberosumWUSCHEL (StWUS) suggested that the CLV3–CLV1/BAM–WUS feedback loop may be conserved in potato to maintain stem cell homeostasis within the shoot apical meristem.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ahmad Salman
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jing Yu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Songxiao Cao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Wei Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hong Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
18
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
19
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
20
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
21
|
Goff KE, Ramonell KM. The Role and Regulation of Receptor-Like Kinases in Plant Defense. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Receptor-like kinases (RLKs) in plants are a large superfamily of proteins that are structurally similar. RLKs are involved in a diverse array of plant responses including development, growth, hormone perception and the response to pathogens. Current studies have focused attention on plant receptor-like kinases as an important class of sentinels acting in plant defense responses. RLKs have been identified that act in both broad-spectrum, elicitor-initiated defense responses and as dominant resistance (R) genes in race-specific pathogen defense. Most defense-related RLKs are of the leucine-rich repeat (LRR) subclass although new data are highlighting other classes of RLKs as important players in defense responses. As our understanding of RLK structure, activation and signaling has expanded, the role of the ubiquitin/proteasome system in the regulation of these receptors has emerged as a central theme.
Collapse
Affiliation(s)
- Kerry E. Goff
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344 U.S.A
| | - Katrina M. Ramonell
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344 U.S.A
| |
Collapse
|
22
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Mirzaei S, Batley J, El-Mellouki T, Liu S, Meksem K, Ferguson BJ, Gresshoff PM. Neodiversification of homeologous CLAVATA1-like receptor kinase genes in soybean leads to distinct developmental outcomes. Sci Rep 2017; 7:8878. [PMID: 28827708 PMCID: PMC5566472 DOI: 10.1038/s41598-017-08252-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 11/09/2022] Open
Abstract
The CLAVATA pathway that regulates stem cell numbers of the shoot apical meristem has exclusively been studied in Arabidopsis; as such insight into other species is warranted. In this study, a GmCLV1A mutant (F-S562L) with altered lateral organ development, and two mutants of GmNARK, isolated from a Forrest M2 population (EMS-mutated soybean) were studied. GmCLV1A and GmNARK encode for LRR receptor kinases, and share 92% of protein sequence. While GmNARK is critical for systemic regulation of nodulation (new organ made on the root through symbiosis), we show that GmCLV1A functions locally and has no apparent function in nodulation or root development. However, a recessive, loss-of-function mutation (S562L) in a putative S-glycosylation site of GmCLV1A causes stem nodal identity alterations as well as flower and pod abnormalities (deformed flower and pod). The mutant also exhibits a homeotic phenotype, displaying abnormal leaf development/number, vein-derived leaf emergence, and a thick, faciated stem. The mutant phenotype is also temperature-sensitive. Interestingly, a novel truncated version of GmCLV1A was identified upstream of GmCLV1A that is absent from GmNARK, but is present upstream of the GmNARK orthologues, MtSUNN and PvNARK. Taken together, our findings indicate that GmCLV1A acts on shoot architecture, whereas GmNARK, functions in controlling nodule numbers.
Collapse
Affiliation(s)
- Saeid Mirzaei
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Tarik El-Mellouki
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
24
|
Li H, Qi M, Sun M, Liu Y, Liu Y, Xu T, Li Y, Li T. Tomato Transcription Factor SlWUS Plays an Important Role in Tomato Flower and Locule Development. FRONTIERS IN PLANT SCIENCE 2017; 8:457. [PMID: 28408915 PMCID: PMC5374213 DOI: 10.3389/fpls.2017.00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/15/2017] [Indexed: 05/19/2023]
Abstract
Tomato is a model species for fleshy fruit development. The shapes and sizes of tomato (Solanum lycopersicum L.) are mainly controlled by several loci, including locule number (lc). Two single nucleotide polymorphisms were found downstream of WUSCHEL (SlWUS) in a putative tomato CArG cis-regulatory element. The lc mutation may affect the binding of AGAMOUS(AG), cause the up-regulation of SlWUS and result in increased locule numbers. In this study, tissue expression levels showed that SlWUS is expressed in young floral buds and shoot apexes. Silencing SlWUS on an lc mutant genetic background with an RNA interference (RNAi) strategy resulted in smaller flowers and fruit than those of the wild-type plants, with decreased locule number. Further study revealed that the SlWUS RNAi lines exhibited altered expression levels of the TAG1 and SlCLV3 genes that participate in the regulation of tomato flower and fruit locule development. In conclusion, this study provides the first genetic evidence that SlWUS may be the candidate gene of the lc locus and reveals the function of SlWUS in flower development.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Mingfang Qi
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Meihua Sun
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Ying Liu
- Liaoyang Academy of Agricultural and Forestry ScienceLiaoyang, China
| | - Yudong Liu
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Tao Xu
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Yanbing Li
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
| | - Tianlai Li
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural UniversityShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf RegionShenyang, China
- *Correspondence: Tianlai Li,
| |
Collapse
|
25
|
Jun Z, Zhang Z, Gao Y, Zhou L, Fang L, Chen X, Ning Z, Chen T, Guo W, Zhang T. Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt. Sci Rep 2015; 5:15048. [PMID: 26446555 PMCID: PMC4597213 DOI: 10.1038/srep15048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Verticillium dahliae is a causative fungal pathogen and only a few genes have been identified that exhibit critical roles in disease resistance and few has shown positive effects on the resistance to Verticillium wilt in transgenic cotton. We cloned a receptor-like kinase gene (GbRLK) induced by Verticillium dahliae (VD) in the disease-resistant cotton Gossypium barbadense cv. Hai7124. Northern blotting revealed that the GbRLK was induced by VD at 96 h after inoculation. The functional GbRLK is from D subgenome since a single base deletion results in a frameshift or dysfunctional homologue in the A subgenome in tetraploid cotton. To verify the function of GbRLK, we developed the overexpression transgenic GbRLK cotton and Arabidopsis lines, and found that they all showed the higher resistance to Verticillium in the greenhouse and field trial. The results of the expression profile using transgenic and non-transgenic Arabidopsis thaliana revealed that the GbRLK regulated expressions of a series genes associated with biotic and abiotic stresses. Therefore, we propose that the increased resistance to Verticillium dahliae infection in transgnic plants could result from reduction in the damage of water loss and regulation of defense gene expression.
Collapse
Affiliation(s)
- Zhao Jun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Zhiyuan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Yulong Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Lei Zhou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Lei Fang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Xiangdong Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Zhiyuan Ning
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Tianzi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu province, China
| |
Collapse
|
26
|
Sun L, Rodriguez GR, Clevenger JP, Illa-Berenguer E, Lin J, Blakeslee JJ, Liu W, Fei Z, Wijeratne A, Meulia T, van der Knaap E. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6471-82. [PMID: 26175354 PMCID: PMC4588892 DOI: 10.1093/jxb/erv361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.
Collapse
Affiliation(s)
- Liang Sun
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Gustavo R Rodriguez
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Josh P Clevenger
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Eudald Illa-Berenguer
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Jinshan Lin
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Wenli Liu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Asela Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, The Ohio State University/OARDC, Wooster, OH 44691, USA
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH 44691, USA
| |
Collapse
|
27
|
Wang L, Li J, Zhao J, He C. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:248. [PMID: 25918515 PMCID: PMC4394660 DOI: 10.3389/fpls.2015.00248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
- Graduate University of Chinese Academy of Sciences, BeijingChina
| | - Jing Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
- Graduate University of Chinese Academy of Sciences, BeijingChina
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
- *Correspondence: Chaoying He, State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
| |
Collapse
|
28
|
Abstract
The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.
Collapse
|
29
|
van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang Z, Keyhaninejad N, Mu Q, Sun L, Wang Y, Wu S. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. FRONTIERS IN PLANT SCIENCE 2014; 5:227. [PMID: 24904622 PMCID: PMC4034497 DOI: 10.3389/fpls.2014.00227] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/06/2014] [Indexed: 05/19/2023]
Abstract
Domestication of fruit and vegetables resulted in a huge diversity of shapes and sizes of the produce. Selections that took place over thousands of years of alleles that increased fruit weight and altered shape for specific culinary uses provide a wealth of resources to study the molecular bases of this diversity. Tomato (Solanum lycopersicum) evolved from a wild ancestor (S. pimpinellifolium) bearing small and round edible fruit. Molecular genetic studies led to the identification of two genes selected for fruit weight: FW2.2 encoding a member of the Cell Number Regulator family; and FW3.2 encoding a P450 enzyme and the ortholog of KLUH. Four genes were identified that were selected for fruit shape: SUN encoding a member of the IQD family of calmodulin-binding proteins leading to fruit elongation; OVATE encoding a member of the OVATE family proteins involved in transcriptional repression leading to fruit elongation; LC encoding most likely the ortholog of WUSCHEL controlling meristem size and locule number; FAS encoding a member in the YABBY family controlling locule number leading to flat or oxheart shape. For this article, we will provide an overview of the putative function of the known genes, when during floral and fruit development they are hypothesized to act and their potential importance in regulating morphological diversity in other fruit and vegetable crops.
Collapse
Affiliation(s)
- Esther van der Knaap
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
- *Correspondence: Esther van der Knaap, Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave., Wooster, OH, 44691, USA e-mail:
| | - Manohar Chakrabarti
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Yi Hsuan Chu
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Josh P. Clevenger
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Eudald Illa-Berenguer
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Zejun Huang
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Neda Keyhaninejad
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Qi Mu
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Liang Sun
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| | - Yanping Wang
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
- Department of Pomology, College of Agriculture and Biotechnology, China Agricultural UniversityBeijing, China
| | - Shan Wu
- Department of Horticulture and Crop Science, The Ohio State UniversityWooster, OH, USA
| |
Collapse
|
30
|
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:362. [PMID: 25132838 PMCID: PMC4116805 DOI: 10.3389/fpls.2014.00362] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shweta Kalve
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium ; Department of Mathematics and Computer Science, University of Antwerp Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| |
Collapse
|
31
|
Rocheta M, Sobral R, Magalhães J, Amorim MI, Ribeiro T, Pinheiro M, Egas C, Morais-Cecílio L, Costa MMR. Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber. FRONTIERS IN PLANT SCIENCE 2014; 5:599. [PMID: 25414713 PMCID: PMC4222140 DOI: 10.3389/fpls.2014.00599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 05/03/2023]
Abstract
Monoecious species provide a comprehensive system to study the developmental programs underlying the establishment of female and male organs in unisexual flowers. However, molecular resources for most monoecious non-model species are limited, hampering our ability to study the molecular mechanisms involved in flower development of these species. The objective of this study was to identify differentially expressed genes during the development of male and female flowers of the monoecious species Quercus suber, an economically important Mediterranean tree. Total RNA was extracted from different developmental stages of Q. suber flowers. Non-normalized cDNA libraries of male and female flowers were generated using 454 pyrosequencing technology producing a total of 962,172 high-quality reads with an average length of 264 nucleotides. The assembly of the reads resulted in 14,488 contigs for female libraries and 10,438 contigs for male libraries. Comparative analysis of the transcriptomes revealed genes differentially expressed in early and late stages of development of female and male flowers, some of which have been shown to be involved in pollen development, in ovule formation and in flower development of other species with a monoecious, dioecious, or hermaphroditic sexual system. Moreover, we found differentially expressed genes that have not yet been characterized and others that have not been previously shown to be implicated in flower development. This transcriptomic analysis constitutes a major step toward the characterization of the molecular mechanisms involved in flower development in a monoecious tree with a potential contribution toward the knowledge of conserved developmental mechanisms in other species.
Collapse
Affiliation(s)
- Margarida Rocheta
- Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Rómulo Sobral
- Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Joana Magalhães
- Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Maria I. Amorim
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
| | - Teresa Ribeiro
- Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Miguel Pinheiro
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Conceição Egas
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Leonor Morais-Cecílio
- Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
- *Correspondence: Leonor Morais-Cecílio, Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal e-mail:
| | - Maria M. R. Costa
- Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of MinhoBraga, Portugal
- Maria M. R. Costa, Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal e-mail:
| |
Collapse
|
32
|
Yue M, Li Q, Zhang Y, Zhao Y, Zhang Z, Bao S. Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS One 2013; 8:e83258. [PMID: 24349476 PMCID: PMC3861506 DOI: 10.1371/journal.pone.0083258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/01/2013] [Indexed: 11/18/2022] Open
Abstract
The shoot apical meristem (SAM) is the source of all of the above-ground tissues and organs in post-embryonic development in higher plants. Studies have proven that the expression of genes constituting the WUSCHEL (WUS)-CLAVATA (CLV) feedback loop is critical for the SAM maintenance. Several histone lysine acetylation and methylation markers have been proven to regulate the transcription level of WUS. However, little is known about how histone arginine methylation regulates the expression of WUS and other genes. Here, we report that H4R3 symmetric dimethylation (H4R3sme2) mediated by SKB1/PRMT5 represses the expression of CORYNE (CRN) to maintain normal SAM geometrics. SKB1 lesion results in small SAM size in Arabidopsis, as well as down-regulated expression of WUS and CLV3. Up-regulation of WUS expression enlarges SAM size in skb1 mutant plants. We find that SKB1 and H4R3sme2 associate with the chromatin of the CRN locus to down-regulate its transcription. Mutation of CRN rescues the expression of WUS and the small SAM size of skb1. Thus, SKB1 and SKB1-mediated H4R3sme2 are required for the maintenance of SAM in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Minghui Yue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaoliang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC PLANT BIOLOGY 2013; 13:110. [PMID: 23915077 PMCID: PMC3750506 DOI: 10.1186/1471-2229-13-110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/29/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cotton (Gossypium spp.) is widely cultivated due to the important economic value of its fiber. However, extreme environmental degradation impedes cotton growth and production. Receptor-like kinase (RLK) proteins play important roles in signal transduction and participate in a diverse range of processes in response to plant hormones and environmental cues. Here, we introduced an RLK gene (GbRLK) from cotton into Arabidopsis and investigated its role in imparting abiotic stress tolerance. RESULTS GbRLK transcription was induced by exogenously supplied abscisic acid (ABA), salicylic acid, methyl jasmonate, mock drought conditions and high salinity. We cloned the promoter sequence of this gene via self-formed adaptor PCR. Sequence analysis revealed that the promoter region contains many cis-acting stress-responsive elements such as ABRE, W-Box, MYB-core, W-Box core, TCA-element and others. We constructed a vector containing a 1,890-bp sequence in the 5' region upstream of the initiation codon of this promoter and transformed it into Arabidopsis thaliana. GUS histochemical staining analysis showed that GbRLK was expressed mainly in leaf veins, petioles and roots of transgenic Arabidopsis, but not in the cotyledons or root hairs. GbRLK promoter activity was induced by ABA, PEG, NaCl and Verticillium dahliae. Transgenic Arabidopsis with constitutive overexpression of GbRLK exhibited a reduced rate of water loss in leaves in vitro, along with improved salinity and drought tolerance and increased sensitivity to ABA compared with non-transgenic Col-0 Arabidopsis. Expression analysis of stress-responsive genes in GbRLK Arabidopsis revealed that there was increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtRD26) and antioxidant genes (AtCAT1, AtCCS, AtCSD2 and AtCSD1) but not ion transporter genes (AtNHX1, AtSOS1). CONCLUSIONS GbRLK is involved in the drought and high salinity stresses pathway by activating or participating in the ABA signaling pathway. Overexpression of GbRLK may improve stress tolerance by regulating stress-responsive genes to reduce water loss. GbRLK may be employed in the genetic engineering of novel cotton cultivars in the future. Further studying of GbRLK will help elucidate abiotic stress signaling pathways.
Collapse
Affiliation(s)
- Jun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Yulong Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Zhiyuan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Tianzi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| |
Collapse
|
34
|
Sugawara K, Honma Y, Komatsu K, Himeno M, Oshima K, Namba S. The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. PLANT PHYSIOLOGY 2013; 162:2005-14. [PMID: 23784461 PMCID: PMC3729778 DOI: 10.1104/pp.113.218586] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/11/2013] [Indexed: 05/18/2023]
Abstract
Phytoplasmas are insect-borne plant pathogenic bacteria that alter host morphology. TENGU, a small peptide of 38 residues, is a virulence factor secreted by phytoplasmas that induces dwarfism and witches' broom in the host plant. In this study, we demonstrate that plants process TENGU in order to generate small functional peptides. First, virus vector-mediated transient expression demonstrated that the amino-terminal 11 amino acids of TENGU are capable of causing symptom development in Nicotiana benthamiana plants. The deletion of the 11th residue significantly diminished the symptom-inducing activity of TENGU, suggesting that these 11 amino acids constitute a functional domain. Second, we found that TENGU undergoes proteolytic processing in vitro, generating peptides of 19 and 21 residues including the functional domain. Third, we observed similar processing of TENGU in planta, and an alanine substitution mutant of TENGU, for which processing was compromised, showed reduced symptom induction activity. All TENGU homologs from several phytoplasma strains possessed similar symptom induction activity and went through processing, which suggests that the processing of TENGU might be related to its function.
Collapse
Affiliation(s)
- Kyoko Sugawara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Youhei Honma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Misako Himeno
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan
| |
Collapse
|
35
|
Rogge-Renner GD, Steiner N, Schmidt EC, Bouzon ZL, Farias FL, Guerra MP. Structural and component characterization of meristem cells in Araucaria angustifolia (Bert.) O. Kuntze zygotic embryo. PROTOPLASMA 2013; 250:731-739. [PMID: 23014896 DOI: 10.1007/s00709-012-0457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
Araucaria angustifolia, the Brazilian pine, is an endangered native conifer with economic and ecological importance. The female cone develops seeds containing the zygotic embryo, which, at cotyledonary stage, shows well-developed meristems. Little is known about the structure of gymnosperm meristems. In the present work, the composition and morphological organization of Araucaria angustifolia shoot and root apical meristems were studied during embryo development, using histochemical and microscope analyses. Histochemical evaluation revealed the presence of cellulose within the cell wall, cells with the presence of total proteins that react with Coomassie Brilliant Blue, starch grains, and large nuclei with evident nucleoli in the cytoplasm. Scanning electron microscopy showed apical meristem surface morphology, and both scanning and transmission microscopy revealed a thin and irregular cell wall with plasmodesmata and within the cells, mitochondria, many vacuoles, lipid bodies, Golgi bodies, and many amyloplasts with endoplasmic reticulum surrounding them and large nuclei. Similar to angiosperm cells, A. angustifolia meristem cells exhibit pluripotent characteristics, such as apparatus for intercellular communication and differentiation.
Collapse
Affiliation(s)
- Gladys D Rogge-Renner
- Graduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, PO Box 476, Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci U S A 2013; 110:10010-5. [PMID: 23716655 DOI: 10.1073/pnas.1220015110] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.
Collapse
|
37
|
Dai N, Wang W, Patterson SE, Bleecker AB. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 2013; 8:e60990. [PMID: 23613767 PMCID: PMC3628703 DOI: 10.1371/journal.pone.0060990] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/06/2013] [Indexed: 12/25/2022] Open
Abstract
Mechanisms that govern the size of plant organs are not well understood but believed to involve both sensing and signaling at the cellular level. We have isolated loss-of-function mutations in the four genes comprising the transmembrane kinase TMK subfamily of receptor-like kinases (RLKs) in Arabidopsis. These TMKs have an extracellular leucine-rich-repeat motif, a single transmembrane region, and a cytoplasmic kinase domain. While single mutants do not display discernable phenotypes, unique double and triple mutant combinations result in a severe reduction in organ size and a substantial retardation in growth. The quadruple mutant displays even greater severity of all phenotypes and is infertile. The kinematic studies of root, hypocotyl, and stamen filament growth reveal that the TMKs specifically control cell expansion. In leaves, TMKs control both cell expansion and cell proliferation. In addition, in the tmk double mutants, roots and hypocotyls show reduced sensitivity to applied auxin, lateral root induction and activation of the auxin response reporter DR5: GUS. Thus, taken together with the structural and biochemical evidence, TMKs appear to orchestrate plant growth by regulation of both cell expansion and cell proliferation, and as a component of auxin signaling.
Collapse
Affiliation(s)
- Ning Dai
- Department of Botany and Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | |
Collapse
|
38
|
Lee C, Clark SE. Core pathways controlling shoot meristem maintenance. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:671-84. [PMID: 24014453 DOI: 10.1002/wdev.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Essential to the function of shoot meristems in plants to act as sites of continuous organ and tissue formation is the ability of cells within the meristem to remain undifferentiated and proliferate indefinitely. These are characteristics of the stem cells within meristems that are critical for their growth properties. Stem cells are found in tight association with the stem cell niche-those cells that signal to maintain stem cells. Shoot meristems are unique among stem cell systems in that the stem cell niche is a constantly changing population of recent daughter stem cells. Recent progress from Arabidopsis and other systems have uncovered a large number of genes with defined roles in meristem structure and maintenance. This review will focus on well-studied pathways that represent signaling between the stem cells and the niche, that prevent ectopic differentiation of stem cells, that regulate the chromatin status of stem cell factors, and that reveal intersection of hormone signaling and meristem maintenance.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
39
|
Kaeothip S, Ishiwata A, Ito Y. Stereoselective synthesis of Arabidopsis CLAVATA3 (CLV3) glycopeptide, unique protein post-translational modifications of secreted peptide hormone in plant. Org Biomol Chem 2013; 11:5892-907. [DOI: 10.1039/c3ob41212a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Laura M, Borghi C, Regis C, Cassetti A, Allavena A. Ectopic expression of Kxhkn5 in the viviparous species Kalanchoe × Houghtonii induces a novel pattern of epiphyll development. Transgenic Res 2012; 22:59-74. [PMID: 22829336 DOI: 10.1007/s11248-012-9628-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/15/2012] [Indexed: 11/26/2022]
Abstract
KxhKN5 (class 1 KNOX gene) was cloned from Kalanchoe × houghtonii with strong tendency to form epiphylls on leaves. KxhKN5 appear to be homologue of BP of A. thaliana on the basis of phylogeny, expression and phenotype analysis. Beside the modification of several plant and leaf traits, the appearance of epiphylls was drastically reduced by both the silencing and the over-expression of KxhKN5 in most of the generated clones. In silenced clones, epiphyll production followed the morphogenetic pathway of the WT plants: somatic embryos outbreak in the centre of each leaf-pedestal, grown in the notch between leaf indentations and were supported by a suspensor. The connection between the epiphyll and the mother plant did not include any vasculature and as a result, the epiphylls dropped easily from the mother plant. The most represented category of over expressor clones, disclosed a novel pattern of epiphyll development: the leaf-pedestals were absent and single bud outbreaks in each leaf notch. Buds developed into shoots which remained attached to the maternal plant by a strong vascular connection. The leaves supporting shoots, produced a thickened midrib and veins, and their lamina ceased expanding. Finally, the leaf/shoot structure resembles a lateral branch. The ectopic expression of KxhKN5 in K. × houghtonii induces a process comparable to the alternation of leaf and shoot formation in other species and support the idea, that it is the variation in shared molecular and developmental processes which produces the growth of specific structures.
Collapse
Affiliation(s)
- Marina Laura
- Agricultural Research Council, Research Unit for Floriculture and Ornamental Species (CRA-FSO), Corso Inglesi 508, 18038, Sanremo, IM, Italy.
| | | | | | | | | |
Collapse
|
41
|
Wardhan V, Jahan K, Gupta S, Chennareddy S, Datta A, Chakraborty S, Chakraborty N. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance. PLANT MOLECULAR BIOLOGY 2012; 79:479-93. [PMID: 22644439 DOI: 10.1007/s11103-012-9925-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/10/2012] [Indexed: 05/15/2023]
Abstract
Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.
Collapse
Affiliation(s)
- Vijay Wardhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | |
Collapse
|
42
|
Betsuyaku S, Sawa S, Yamada M. The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions. THE ARABIDOPSIS BOOK 2011; 9:e0149. [PMID: 22303273 PMCID: PMC3268505 DOI: 10.1199/tab.0149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE) peptides consist of 12 or 13 amino acids, including hydroxylated proline residues that may or may not contain sugar modifications, and function in a non-cell-autonomous fashion. The CLE gene was first reported in Zea mays (maize) as an endosperm-specific gene, ESR, in 1997 (Opsahl-Ferstad et al., 1997). CLE genes encode secreted peptides that function in the extracellular space as intercellular signaling molecules and bind to cellular surface receptor-like proteins to transmit a signal. CLE peptides regulate various physiological and developmental processes and its signaling pathway are conserved in diverse land plants. Recent CLE functional studies have pointed to their significance in regulating meristematic activity in plant meristems, through the CLE-receptor kinase-WOX signaling node. CLV3 and CLE40 are responsible for maintenance of shoot apical meristem (SAM) and root apical meristem (RAM) function, regulating homeodomain transcription factors, WUSCHEL (WUS) and WUSCHEL-related homeobox 5 (WOX5), respectively. CLE and WOX form an interconnected and self-correcting feedback loop to provide robustness to stem cell homeostasis. CLE peptides are required for certain plant-microbe interactions, such as those that occur during legume symbiosis and phytopathogenic nematode infection. Understanding the molecular properties of CLE peptides may provide insight into plant cell-cell communication, and therefore also into plant-microbe interactions.
Collapse
Affiliation(s)
- Shigeyuki Betsuyaku
- Division of Life Sciences, Komaba Organization for Educational Excellence, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, 860-8555 Kumamoto Japan
| | - Masashi Yamada
- Department of Biology and Institute for Genome Science and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
43
|
Chae K, Lord EM. Pollen tube growth and guidance: roles of small, secreted proteins. ANNALS OF BOTANY 2011; 108:627-36. [PMID: 21307038 PMCID: PMC3170145 DOI: 10.1093/aob/mcr015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/04/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen-pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. SCOPE In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.
Collapse
|
44
|
Nemoto K, Seto T, Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T. Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. PHYTOCHEMISTRY 2011; 72:1136-44. [PMID: 21477822 DOI: 10.1016/j.phytochem.2011.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/19/2011] [Accepted: 02/24/2011] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation is one of the main process in the signal transduction pathway. In recent years, there has been increasing attention to plant phosphorylation signaling and many laboratories are trying to elucidate pathways using various approaches. Although more than 1000 protein kinase (PK) genes have been annotated in the Arabidopsis genome, biochemical characterization of those PKs is limited. In this work, we demonstrate high-throughput profiling of serine/threonine autophosphorylation activity by a combination of the 759N-terminal biotinylated proteins library, produced using a wheat germ cell-free protein production system, and a commercially available luminescence system. Luminescent analysis revealed that 179 of the 759 PKs had autophosphorylation activity. From these 179 PKs, 67 of the most active PKs were analyzed to determine their function using the PlantP database. This analysis revealed that 35 (53%) of the proteins were classified as non-transmembrane protein kinases, and 15 (23%) were receptor-like protein kinases. Additionally, PKs from Group 4.4-MAP3K, Group 1.6, Group 4.5-MAPK/CDC/CK2/GSK kinases and Group 1.10-receptor like cytoplasmic kinases contained the highest percentage of autophosphorylated activity. Next, to get a better overview of the annotated 67 PKs, we used the gene ontology annotation search on the TAIR website to classify the 67 PKs into functional category. As a result, some of these PKs may be involved in phospho-signaling pathways such as signal transduction, stress response, and the regulation of cell division. Information from this study may shed light on many unknown plant PKs. This study will be a basis for understanding the function of PKs in phosphorylation network for future research.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development. MOLECULAR PLANT 2011; 4:616-25. [PMID: 21357646 PMCID: PMC3146736 DOI: 10.1093/mp/ssr007] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/07/2011] [Indexed: 05/18/2023]
Abstract
Plant hormones regulate many aspects of plant growth and development. Both auxin and cytokinin have been known for a long time to act either synergistically or antagonistically to control several significant developmental processes, such as the formation and maintenance of meristem. Over the past few years, exciting progress has been made to reveal the molecular mechanisms underlying the auxin-cytokinin action and interaction. In this review, we shall briefly discuss the major progress made in auxin and cytokinin biosynthesis, auxin transport, and auxin and cytokinin signaling. The frameworks for the complicated interaction of these two hormones in the control of shoot apical meristem and root apical meristem formation as well as their roles in in vitro organ regeneration are the major focus of this review.
Collapse
Affiliation(s)
| | | | - Xian-Sheng Zhang
- To whom correspondence should be addressed. E-mail , fax +86 538 8226399, tel. +86 538 8249418
| |
Collapse
|
46
|
Uchida N, Igari K, Bogenschutz NL, Torii KU, Tasaka M. Arabidopsis ERECTA-family receptor kinases mediate morphological alterations stimulated by activation of NB-LRR-type UNI proteins. PLANT & CELL PHYSIOLOGY 2011; 52:804-14. [PMID: 21427109 DOI: 10.1093/pcp/pcr032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Shoot apical meristems (SAMs), which maintain stem cells at the tips of stems, and axillary meristems (AMs), which arise at leaf axils for branch formation, play significant roles in the establishment of plant architecture. Previously, we showed that, in Arabidopsis thaliana, activation of NB-LRR (nucleotide-binding site-leucine-rich repeat)-type UNI proteins affects plant morphology through modulation of the regulation of meristems. However, information about genes involved in the processes was still lacking. Here, we report that ERECTA (ER) receptor kinase family members cooperatively mediate the morphological alterations that are stimulated by activation of UNI proteins. uni-1D is a gain-of-function mutation in the UNI gene and uni-1D mutants exhibit early termination of inflorescence stem growth and also formation of extra AMs at leaf axils. The former defect involves modulation of the SAM activity and is suppressed by er mutation. Though the AM phenotype is not affected by a single er mutation, it is suppressed by simultaneous mutations of ER-family members. It was previously shown that trans-zeatin (tZ)-type cytokinins were involved in the morphological phenotypes of uni-1D mutants and that expression of CYP735A2, which is essential for biosynthesis of tZ-type cytokinins, was modulated in uni-1D mutants. We show that this modulation of CYP735A2 expression requires activities of ER-family members. Moreover, the ER activity in UNI-expressing cells contributes to all morphological phenotypes of uni-1D mutants, suggesting that a cross-talk between ER-family-dependent and UNI-triggered signaling pathways plays a significant role in the morphological alterations observed in uni-1D mutants.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | |
Collapse
|
47
|
Roeder AHK, Tarr PT, Tobin C, Zhang X, Chickarmane V, Cunha A, Meyerowitz EM. Computational morphodynamics of plants: integrating development over space and time. Nat Rev Mol Cell Biol 2011; 12:265-73. [PMID: 21364682 PMCID: PMC4128830 DOI: 10.1038/nrm3079] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6895, FAX (626) 449-0756
| | - Paul T. Tarr
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6895, FAX (626) 449-0756
| | - Cory Tobin
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626) 395-4936,
FAX (626) 449-0756
| | - Xiaolan Zhang
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-8438, FAX (626) 449-0756
| | - Vijay Chickarmane
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6895, FAX (626) 449-0756
| | - Alexandre Cunha
- Center for Advanced Computing Research MC 158-79, California Institute of
Technology, 1200 E. California Blvd., Pasadena, CA 91125,
, (626) 395-8031
| | - Elliot M. Meyerowitz
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6889, FAX (626) 449-0756
| |
Collapse
|
48
|
Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J. The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:861-71. [PMID: 21276104 DOI: 10.1111/j.1365-313x.2010.04474.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The number of root nodules developing on legume roots after rhizobial infection is controlled by the plant shoot through autoregulation and mutational inactivation of this mechanism leads to hypernodulation. We have characterised the Pisum sativum (pea) Sym28 locus involved in autoregulation and shown that it encodes a protein similar to the Arabidopsis CLAVATA2 (CLV2) protein. Inactivation of the PsClv2 gene in four independent sym28 mutant alleles, carrying premature stop codons, results in hypernodulation of the root and changes to the shoot architecture. In the reproductive phase sym28 shoots develops additional flowers, the stem fasciates, and the normal phyllotaxis is perturbed. Mutational substitution of an amino acid in one leucine rich repeat of the corresponding Lotus japonicus LjCLV2 protein results in increased nodulation. Similarly, down-regulation of the Lotus Clv2 gene by RNAi mediated reduction of the transcript level also resulted in increased nodulation. Gene expression analysis of LjClv2 and Lotus hypernodulation aberrant root formation Har1 (previously shown to regulate nodule numbers) indicated they have overlapping organ expression patterns. However, we were unable to demonstrate a direct protein-protein interaction between LjCLV2 and LjHAR1 proteins in contrast to the situation between equivalent proteins in Arabidopsis. LjHAR1 was localised to the plasma membrane using a YFP fusion whereas LjCLV2-YFP localised to the endoplasmic reticulum when transiently expressed in Nicotiana benthamiana leaves. This finding is the most likely explanation for the lack of interaction between these two proteins.
Collapse
Affiliation(s)
- Lene Krusell
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cho E, Zambryski PC. Organ boundary1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc Natl Acad Sci U S A 2011; 108:2154-9. [PMID: 21245300 PMCID: PMC3033305 DOI: 10.1073/pnas.1018542108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identify a gene, organ boundary1 (OBO1), by its unique pattern of enhancer- driven GFP expression at the boundaries between the apical meristems and lateral organs in Arabidopsis embryos, seedlings, and mature plants. OBO1 also is expressed at the root apical meristem and in distinct cell files surrounding this area. OBO1 is one of a 10-member plant-specific gene family encoding a single small domain (133 amino acids) with unknown function. One member of this gene family, OBO2, is identical to a previously studied gene, light-sensitive hypocotyl1. Overexpression of OBO1 causes an abnormal number and size of petals and petal-stamen fusions. The patterns of OBO1 gene expression are distinct but overlap with other genes involved in boundary formation in the Arabidopsis shoot apical meristem, including cup-shaped cotyledon, lateral organ boundaries, blade-on-petiole, asymmetric leaves, and lateral organ fusion. Nuclear localization of OBO1 suggests that it might act with one or more of the transcription factors encoded by the foregoing genes. Ablation of the specific cells expressing OBO1 leads to loss of the shoot apical meristem and lateral organs. Thus, the cells expressing OBO1 are important for meristem maintenance and organogenesis in Arabidopsis.
Collapse
Affiliation(s)
| | - Patricia C. Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
50
|
Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. PLANT & CELL PHYSIOLOGY 2011; 52:14-29. [PMID: 20965998 PMCID: PMC3023851 DOI: 10.1093/pcp/pcq157] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/13/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, the CLAVATA (CLV) pathway operates in the regulation of the size of the stem cell population in the shoot apical meristem (SAM). CLV3 functions as a small peptide ligand to negatively regulate the expression of the WUSCHEL (WUS) transcription factor through three major receptor kinase complexes of CLV1, CLV2-SUPPRESSOR OF LLP1-2 (SOL2)/CORYNE (CRN) and recently identified RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2)/TOADSTOOL 2 (TOAD2). Aiming to understand the precise molecular details of CLV3 signaling, we investigated the contribution of phospho-signaling, potentially regulated by these kinase complexes, to the CLV pathway. We detected CLV3-triggered CLV1 phosphorylation, which is also conditioned by the rest of the CLV receptors, presumably by their direct association. Our comprehensive analysis of the activities of the respective CLV receptors on mitogen-activated protein kinases (MAPKs) suggested that the precise balanced regulation of MAPK activity by the CLV receptors is likely to be key for SAM homeostasis.
Collapse
Affiliation(s)
- Shigeyuki Betsuyaku
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|