1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Martínez‐Torres A, Morán J. CB1 Receptor Activation Provides Neuroprotection in an Animal Model of Glutamate-Induced Excitotoxicity Through a Reduction of NOX-2 Activity and Oxidative Stress. CNS Neurosci Ther 2024; 30:e70099. [PMID: 39496572 PMCID: PMC11534500 DOI: 10.1111/cns.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Excitotoxicity is a process in which NADPH oxidase-2 (NOX-2) plays a pivotal role in the generation of reactive oxygen species (ROS). Oxidative stress influences the expression of Aquaporin 4 (AQP4), a water channel implicated in blood-brain barrier (BBB) permeability and edema formation. The endocannabinoid system is widely distributed in the brain, particularly through the cannabinoid receptor type 1 (CB1) and type 2 (CB2), which have been shown to have a neuroprotective function in brain injury. Given the significant involvement of NOX-2 in ROS production during excitotoxicity, our research aims to assess the participation of NOX-2 in the neuroprotective effect of the cannabinoid receptor agonist WIN55,212-2 against glutamate-induced excitotoxicity damage in the striatum using in vivo model. METHODS Wild-type mice (C57BL/6) and NOX-2 KO (gp91Cybbtm1Din/J) were stereotactically injected in the striatum with monosodium glutamate or vehicle. Subsequently, a group of mice was administered an intraperitoneal dose of WIN55,212-2, AM251, or AM251/WIN55,212-2 following the intracerebral injection. Motor activity was assessed, and the lesion was examined through histological sections stained with cresyl violet. Additionally, brain water content and Evans blue assay were conducted. The activity of NOX was quantified, and the protein expression of CB1, gp91phox, AQP4, Iba-1, TNF-α, and NF-κB was analyzed using Western blot. Furthermore, ROS formation was measured through the DHE assay. RESULTS The activation of the endocannabinoid receptors demonstrated a neuroprotective response during excitotoxicity, meditated by NOX-2. The reduction in ROS production led to a decrease in neuroinflammation, and AQP4 expression, resulting in reduced edema formation, and BBB permeability. CONCLUSIONS During excitotoxic damage, WIN55,212-2 inhibits NOX-2-induced ROS production, reducing brain injury.
Collapse
Affiliation(s)
- Ari Misael Martínez‐Torres
- División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
3
|
Eyolfson E, Suesser KRB, Henry H, Bonilla-Del Río I, Grandes P, Mychasiuk R, Christie BR. The effect of traumatic brain injury on learning and memory: A synaptic focus. Neuroscientist 2024:10738584241275583. [PMID: 39316552 DOI: 10.1177/10738584241275583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Deficits in learning and memory are some of the most commonly reported symptoms following a traumatic brain injury (TBI). We will examine whether the neural basis of these deficits stems from alterations to bidirectional synaptic plasticity within the hippocampus. Although the CA1 subregion of the hippocampus has been a focus of TBI research, the dentate gyrus should also be given attention as it exhibits a unique ability for adult neurogenesis, a process highly susceptible to TBI-induced damage. This review examines our current understanding of how TBI results in deficits in synaptic plasticity, as well as how TBI-induced changes in endocannabinoid (eCB) systems may drive these changes. Through the synthesis and amalgamation of existing data, we propose a possible mechanism for eCB-mediated recovery in synaptic plasticity deficits. This hypothesis is based on the plausible roles of CB1 receptors in regulating inhibitory tone, influencing astrocytes and microglia, and modulating glutamate release. Dysregulation of the eCBs may be responsible for deficits in synaptic plasticity and learning following TBI. Taken together, the existing evidence indicates eCBs may contribute to TBI manifestation, pathogenesis, and recovery, but it also suggests there may be a therapeutic role for the eCB system in TBI.
Collapse
Affiliation(s)
- Eric Eyolfson
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Kirsten R B Suesser
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Holly Henry
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian R Christie
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
4
|
Sadino A, Saptarini NM, Levita J, Ramadhan DSF, Fristiohady A, Jiranusornkul S. Identifying Potential Human Monoacylglycerol Lipase Inhibitors from the Phytoconstituents of Morinda Citrifolia L. Fruits by in silico Pharmacology and in vitro Study. J Exp Pharmacol 2024; 16:295-309. [PMID: 39345798 PMCID: PMC11436673 DOI: 10.2147/jep.s477956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Human monoacylglycerol lipase (MGL) is accountable for the hydrolysis of 2-arachidonoylglycerol (2-AG), thus contributing pivotally to neuroprotection because 2-AG is the main source of arachidonic acid, the precursor of prostaglandins production. Inhibiting MGL reduces inflammatory damage in the ischemic brain and enhances cerebral blood flow. Plants have been reported for their neuroprotective effect, such as Morinda citrifolia on pentylenetetrazol (PTZ)-induced kindling seizures in mice, by reducing the seizures and restoring behavioral and biochemical changes, although the mechanism is not described. Purpose To evaluate the binding affinity and stability of phytoconstituents in M. citrifolia fruits toward human MGL (PDB ID 3PE6), compared to the known MGL inhibitors (JZL195 and ZYH). The in silico pharmacology study was validated by an in vitro study of the phytosterols and the ethanol extract of M. citrifolia fruits (EEMC) towards MGL. Methods Initially, nine phytoconstituents of M. citrifolia fruits were docked to the catalytic pocket of human MGL (PDB ID: 3PE6), and compounds with the best affinity were subjected to a molecular dynamic (MD) simulation. The in vitro study was performed using the MGL inhibitor screening assay kit. Results The best binding affinity and stability toward human MGL were shown by stigmasterol and beta-sitosterol, and the MM-PBSA total binding energy of stigmasterol and beta-sitosterol to MGL is stronger than that of JZL195 and ZYH. Moreover, beta-sitosterol and EEMC inhibit MGL with an IC50 value of, respectively, 8.10 μg/mL and 196.20 μg/mL, while JZL195 shows an IC50 of 0.028 μg/mL. Conclusion Beta-sitosterol of Morinda citrifolia fruits may have the potential to protect human neurons by occupying the catalytic site of human MGL, thus competitively inhibiting the substrate of the enzyme. However, the inhibitory activity towards human MGL is lower than JZL195.
Collapse
Affiliation(s)
- Asman Sadino
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Mathematics and Natural Sciences, Garut University, Garut, West Java, 44151, Indonesia
| | - Nyi Mekar Saptarini
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, West Java, Indonesia
| | - Dwi Syah Fitra Ramadhan
- Department of Pharmacy, Poltekkes Kemenkes Makassar, Makassar, South Sulawesi, 90222, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kendari, Southeast Sulawesi, 93132, Indonesia
| | - Supat Jiranusornkul
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
6
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
7
|
Dragon J, Obuchowicz E. How depression and antidepressant drugs affect endocannabinoid system?-review of clinical and preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4511-4536. [PMID: 38280009 DOI: 10.1007/s00210-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
As major depressive disorder is becoming a more and more common issue in modern society, it is crucial to discover new possible grip points for its diagnosis and antidepressive therapy. One of them is endocannabinoid system, which has been proposed as a manager of emotional homeostasis, and thus, endocannabinoid alterations have been found in animals undergoing various preclinical models of depression procedures as well as in humans suffering from depressive-like disorders. In this review article, studies regarding those alterations have been summed up and analyzed. Another important issue raised by the researchers is the impact of currently used antidepressive drugs on endocannabinoid system so that it would be possible to predict reversibility of endocannabinoid alterations following stress exposure and, in the future, to be able to design individually personalized therapies. Preclinical studies investigating this topic have been analyzed and described in this article. Unfortunately, too few clinical studies in this field exist, what indicates an urgent need for collecting such data, so that it would be possible to compare them with preclinical outcomes and draw reliable conclusions.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| |
Collapse
|
8
|
Mu X, Ma ZB, Chen H, Liang R, Li Z, Guo XX, Xu TR, Xiang C. Therapeutic potential of CB 1R activation by Qingyangshen glycoside M1 for seizure relief. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117982. [PMID: 38423411 DOI: 10.1016/j.jep.2024.117982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 μM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS At a concentration of 400 μM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 μM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.
Collapse
Affiliation(s)
- Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Zhao-Bin Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Hao Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Rui Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Zhao Li
- Laboratory Animal Center, Yunnan University, Kunming, Yunnan, 650500, PR China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China.
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
9
|
Creanga-Murariu I, Filipiuc LE, Gogu MR, Ciorpac M, Cumpat CM, Tamba BI, Alexa-Stratulat T. The potential neuroprotective effects of cannabinoids against paclitaxel-induced peripheral neuropathy: in vitro study on neurite outgrowth. Front Pharmacol 2024; 15:1395951. [PMID: 38933665 PMCID: PMC11199736 DOI: 10.3389/fphar.2024.1395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia. Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture. Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values. Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Carmen Marinela Cumpat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
10
|
Karan AA, Spivak YS, Suleymanova EM, Gerasimov KA, Bolshakov AP, Vinogradova LV. Distant neuroinflammation acutely induced by focal brain injury and its control by endocannabinoid system. Exp Neurol 2024; 373:114679. [PMID: 38190933 DOI: 10.1016/j.expneurol.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
INTRODUCTION We studied spatiotemporal features of acute transcriptional inflammatory response induced by a focal brain injury in distant uninjured neuronal tissue and a role of endocannabinoid (eCB) system in its control. MATERIALS AND METHODS A focal excitotoxic lesion was induced by a unilateral injection of kainate in the dorsal hippocampus of awake Wistar rats. During acute post-injury period (3 h and 24 h post-injection), mRNA levels of genes associated with neuroinflammation (Il1b, Il6, Tnf, Ccl2; Cx3cl1, Zc3 h12a, Tgfb1) and eCB receptors of CB1 and CB2 types (Cnr1 and Cnr2) in intact regions of the hippocampus and neocortex were measured using qPCR. Occurrence of acute symptomatic seizures was controlled electrographically. To modulate eCB signaling during injury and acute post-injury period, antagonists (AM251, AM630) and agonist (WIN55-212-2) of eCB receptors were administered before the injury induction. RESULTS Local intrahippocampal injury triggered widespread time- and region-dependent neuroinflammation in undamaged brain regions remote from the lesion site. The distant areas of the hippocampus and hippocampal meninges exhibited early (3 h) transient upregulation of pro- and anti-inflammatory cytokines simultaneously with occurrence of acute symptomatic seizures. The neocortex and its meninges showed minor neuroinflammation early after injury (3 h) but later (24 h) significantly upregulated several genes, mainly with anti-inflammatory properties. Focal lesion also changed expression of eCB receptors in the distant extra-lesional regions - CB1 receptors at 3 h and both CB1 and CB2 receptors at 24 h. Within the hippocampus, significant regional differences in constitutive and post-injury expression CB1 receptors were found. Pharmacological blockade of eCB receptors during injury and early post-injury period lengthened hippocampal neuroinflammation and reversed upregulation of anti-inflammatory molecules in the neocortex. CONCLUSION The findings show that focal brain injury rapidly triggers widespread parenchymal and extraparenchymal neuroinflammation. The early injury-induced response is likely to represent neurogenic neuroinflammation produced by network hyperexcitability (acute symptomatic seizures). Activation of eCB signaling during acute phase of the brain injury is important for initiation of adaptive anti-inflammatory processes and prevention of chronic pathologic neuroinflammation in distant uninjured structures. However, the beneficial role of injury-induced eCB activity appears to depend on many factors including time, brain region, eCB tone etc.
Collapse
Affiliation(s)
- Anna A Karan
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Yulia S Spivak
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Elena M Suleymanova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Konstantin A Gerasimov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia; Pirogov Russian National Research Medical University, Ostrovityanova street 1, Moscow 117997, Russia
| | - Alex P Bolshakov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Lyudmila V Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia.
| |
Collapse
|
11
|
Beldarrain G, Chillida M, Hilario E, Herrero de la Parte B, Álvarez A, Alonso-Alconada D. URB447 Is Neuroprotective in Both Male and Female Rats after Neonatal Hypoxia-Ischemia and Enhances Neurogenesis in Females. Int J Mol Sci 2024; 25:1607. [PMID: 38338884 PMCID: PMC10855747 DOI: 10.3390/ijms25031607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The need for new and effective treatments for neonates suffering from hypoxia-ischemia is urgent, as the only implemented therapy in clinics is therapeutic hypothermia, only effective in 50% of cases. Cannabinoids may modulate neuronal development and brain plasticity, but further investigation is needed to better describe their implication as a neurorestorative therapy after neonatal HI. The cannabinoid URB447, a CB1 antagonist/CB2 agonist, has previously been shown to reduce brain injury after HI, but it is not clear whether sex may affect its neuroprotective and/or neurorestorative effect. Here, URB447 strongly reduced brain infarct, improved neuropathological score, and augmented proliferative capacity and neurogenic response in the damaged hemisphere. When analyzing these effects by sex, URB447 ameliorated brain damage in both males and females, and enhanced cell proliferation and the number of neuroblasts only in females, thus suggesting a neuroprotective effect in males and a double neuroprotective/neurorestorative effect in females.
Collapse
Affiliation(s)
- Gorane Beldarrain
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Marc Chillida
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
12
|
Sunny A, James RR, Menon SR, Rayaroth S, Daniel A, Thompson NA, Tharakan B. Matrix Metalloproteinase-9 inhibitors as therapeutic drugs for traumatic brain injury. Neurochem Int 2024; 172:105642. [PMID: 38008261 DOI: 10.1016/j.neuint.2023.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality among young adults and the elderly. In the United States, TBI is responsible for around 30 percent of all injuries brought on by injuries in general. Vasogenic cerebral edema due to blood-brain barrier (BBB) dysfunction and the associated elevation of intracranial pressure (ICP) are some of the major causes of secondary injuries following traumatic brain injury. Matrix metalloproteinase-9 (MMP-9) is a therapeutic target for being an enzyme that degrades the proteins that make up a part of the microvascular basal lamina as well as inter-endothelial tight junctions of the blood-brain barrier. MMP-9-mediated BBB dysfunctions and the compromise of the BBB is a major pathway that leads the development of vasogenic cerebral edema, elevation of ICP, poor cerebral perfusion and brain herniation following traumatic brain injury. That makes MMP-9 an effective therapeutic target and endogenous or exogenous MMP-9 inhibitors as therapeutic drugs for preventing secondary brain damage after traumatic brain injury. Although our understanding of the mechanisms that underlie the primary and secondary stages of damage following a TBI has significantly improved in recent years, such information has not yet resulted in the successful development of novel pharmacological treatment options for traumatic brain injury. Recent pre-clinical and/or clinical studies have demonstrated that there are several compounds with specific or non-specific MMP-9 inhibitory properties either directly binding and inhibiting MMP-9 or by indirectly inhibiting MMP-9, with potential as therapeutic agents for traumatic brain injury. This article reviews the efficacy of several such medications and potential agents that include endogenous and exogeneous compounds that are at various levels of research and development. MMP-9-based therapeutic drug development has enormous potential in the pharmacological treatment of cerebral edema and/or neuronal injury resulting from traumatic brain injury.
Collapse
Affiliation(s)
- Angel Sunny
- Icahn School of Medicine at Mount Sinai, Elmhurst, NY, USA
| | | | | | | | - Abhijith Daniel
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Namita Ann Thompson
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Yilmaz A, Liraz-Zaltsman S, Shohami E, Gordevičius J, Kerševičiūtė I, Sherman E, Bahado-Singh RO, Graham SF. The longitudinal biochemical profiling of TBI in a drop weight model of TBI. Sci Rep 2023; 13:22260. [PMID: 38097614 PMCID: PMC10721861 DOI: 10.1038/s41598-023-48539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, particularly among individuals under the age of 45. It is a complex, and heterogeneous disease with a multifaceted pathophysiology that remains to be elucidated. Metabolomics has the potential to identify metabolic pathways and unique biochemical profiles associated with TBI. Herein, we employed a longitudinal metabolomics approach to study TBI in a weight drop mouse model to reveal metabolic changes associated with TBI pathogenesis, severity, and secondary injury. Using proton nuclear magnetic resonance (1H NMR) spectroscopy, we biochemically profiled post-mortem brain from mice that suffered mild TBI (N = 25; 13 male and 12 female), severe TBI (N = 24; 11 male and 13 female) and sham controls (N = 16; 11 male and 5 female) at baseline, day 1 and day 7 following the injury. 1H NMR-based metabolomics, in combination with bioinformatic analyses, highlights a few significant metabolites associated with TBI severity and perturbed metabolism related to the injury. We report that the concentrations of taurine, creatinine, adenine, dimethylamine, histidine, N-Acetyl aspartate, and glucose 1-phosphate are all associated with TBI severity. Longitudinal metabolic observation of brain tissue revealed that mild TBI and severe TBI lead distinct metabolic profile changes. A multi-class model was able to classify the severity of injury as well as time after TBI with estimated 86% accuracy. Further, we identified a high degree of correlation between respective hemisphere metabolic profiles (r > 0.84, p < 0.05, Pearson correlation). This study highlights the metabolic changes associated with underlying TBI severity and secondary injury. While comprehensive, future studies should investigate whether: (a) the biochemical pathways highlighted here are recapitulated in the brain of TBI sufferers and (b) if the panel of biomarkers are also as effective in less invasively harvested biomatrices, for objective and rapid identification of TBI severity and prognosis.
Collapse
Affiliation(s)
- Ali Yilmaz
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
- Department of Sports Therapy, Institute for Health and Medical Professions, Ono Academic College, Qiryat Ono, Israel
| | - Esther Shohami
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juozas Gordevičius
- VUGENE LLC, 625 EKenmoor Avenue Southeast, Suite 301, PMB 96578, Grand Rapids, MI, 49546, USA
| | - Ieva Kerševičiūtė
- VUGENE LLC, 625 EKenmoor Avenue Southeast, Suite 301, PMB 96578, Grand Rapids, MI, 49546, USA
| | - Eric Sherman
- Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Ray O Bahado-Singh
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA
| | - Stewart F Graham
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA.
| |
Collapse
|
14
|
Bietar B, Tanner S, Lehmann C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int J Mol Sci 2023; 24:16728. [PMID: 38069049 PMCID: PMC10705908 DOI: 10.3390/ijms242316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.
Collapse
Affiliation(s)
- Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
15
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
16
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
17
|
Lins BR, Anyaegbu CC, Hellewell SC, Papini M, McGonigle T, De Prato L, Shales M, Fitzgerald M. Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds. J Neuroinflammation 2023; 20:77. [PMID: 36935484 PMCID: PMC10026409 DOI: 10.1186/s12974-023-02734-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis' active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.
Collapse
Affiliation(s)
- Brittney R Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
| | - Luca De Prato
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Matthew Shales
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| |
Collapse
|
18
|
Ahluwalia M, Mcmichael H, Kumar M, Espinosa MP, Bosomtwi A, Lu Y, Khodadadi H, Jarrahi A, Khan MB, Hess DC, Rahimi SY, Vender JR, Vale FL, Braun M, Baban B, Dhandapani KM, Vaibhav K. Altered endocannabinoid metabolism compromises the brain-CSF barrier and exacerbates chronic deficits after traumatic brain injury in mice. Exp Neurol 2023; 361:114320. [PMID: 36627040 PMCID: PMC9904276 DOI: 10.1016/j.expneurol.2023.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hannah Mcmichael
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mario P Espinosa
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Asamoah Bosomtwi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - David C Hess
- Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Scott Y Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States of America; VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Neurology, Neuroscience Center of Excellence, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States of America; Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
19
|
Zhu D, Zhang J, Gao F, Hu M, Hashem J, Chen C. Augmentation of 2-arachidonoylglycerol signaling in astrocytes maintains synaptic functionality by regulation of miRNA-30b. Exp Neurol 2023; 361:114292. [PMID: 36481187 PMCID: PMC9892245 DOI: 10.1016/j.expneurol.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
2-Arachidonoylglycerol (2-AG), the most abundant endocannabinoid, displays anti-inflammatory and neuroprotective properties. Inhibition of 2-AG degradation by inactivation of monoacylglycerol lipase (MAGL), a key enzyme degrading 2-AG in the brain, alleviates neuropathology and improves synaptic and cognitive functions in animal models of neurodegenerative diseases. In particular, global inactivation of MAGL by genetic deletion of mgll enhances hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory. However, our understanding of the molecular mechanisms by which chronic inactivation of MAGL enhances synaptic activity is still limited. Here, we provide evidence that pharmacological inactivation of MAGL suppresses hippocampal expression of miR-30b, a small non-coding microRNA, and upregulates expression of its targets, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2). Importantly, suppression of miR-30b and increase of its targets by inactivation of MAGL result primarily from inhibition of 2-AG metabolism in astrocytes, rather than in neurons. Inactivation of MAGL in astrocytes prevents miR-30b overexpression-induced impairments in synaptic transmission and long-term potentiation (LTP) in the hippocampus. Suppression of miR-30b expression by inactivation of MAGL is apparently associated with augmentation of 2-AG signaling, as 2-AG induces a dose-dependent decrease in expression of miR-30b. 2-AG- or MAGL inactivation-suppressed expression of miR-30b is not mediated via CB1R, but by peroxisome proliferator-activated receptor γ (PPARγ). This is further supported by the results showing that MAGL inactivation-induced downregulation of miR-30b and upregulation of its targets are attenuated by antagonism of PPARγ, but mimicked by PPARγ agonists. In addition, we observed that 2-AG-induced reduction of miR-30b expression is mediated via NF-kB signaling. Our study provides evidence that 2-AG signaling in astrocytes plays an important role in maintaining the functional integrity of synapses in the hippocampus by regulation of miR-30b expression.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
21
|
Zhu D, Zhang J, Hashem J, Gao F, Chen C. Inhibition of 2-arachidonoylglycerol degradation enhances glial immunity by single-cell transcriptomic analysis. J Neuroinflammation 2023; 20:17. [PMID: 36717883 PMCID: PMC9885699 DOI: 10.1186/s12974-023-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND 2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid. Inhibition of 2-AG metabolism by inactivation of monoacylglycerol lipase (MAGL), the primary enzyme that degrades 2-AG in the brain, produces anti-inflammatory and neuroprotective effects in neurodegenerative diseases. However, the molecular mechanisms underlying these beneficial effects are largely unclear. METHODS Hippocampal and cortical cells were isolated from cell type-specific MAGL knockout (KO) mice. Single-cell RNA sequencing was performed by 10 × Genomics platform. Cell Ranger, Seurat (v3.2) and CellChat (1.1.3) packages were used to carry out data analysis. RESULTS Using single-cell RNA sequencing analysis, we show here that cell type-specific MAGL KO mice display distinct gene expression profiles in the brain. Inactivation of MAGL results in robust changes in expression of immune- and inflammation-related genes in microglia and astrocytes. Remarkably, upregulated expression of chemokines in microglia is more pronounced in mice lacking MAGL in astrocytes. In addition, expression of genes that regulate other cellular functions and Wnt signaling in astrocytes is altered in MAGL KO mice. CONCLUSIONS Our results provide transcriptomic evidence that cell type-specific inactivation of MAGL induces differential expression of immune-related genes and other fundamental cellular pathways in microglia and astrocytes. Upregulation of the immune/inflammatory genes suggests that tonic levels of immune/inflammatory vigilance are enhanced in microglia and astrocytes, particularly in microglia, by inhibition of 2-AG metabolism, which likely contribute to anti-inflammatory and neuroprotective effects produced by inactivation of MAGL in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dexiao Zhu
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jian Zhang
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jack Hashem
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Fei Gao
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Chu Chen
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA ,grid.267309.90000 0001 0629 5880Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
22
|
Mechoulam R. A Delightful Trip Along the Pathway of Cannabinoid and Endocannabinoid Chemistry and Pharmacology. Annu Rev Pharmacol Toxicol 2023; 63:1-13. [PMID: 35850522 DOI: 10.1146/annurev-pharmtox-051921-083709] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products. During the last few decades, most of my research has been on plant cannabinoids, the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and endogenous anandamide-like compounds, all of which are involved in a wide spectrum of physiological reactions. Two plant cannabinoids, Δ9-tetrahydrocannabinol and cannabidiol, are approved drugs. However, the endogenous cannabinoids and the anandamide-like constituents have not yet been well investigated in humans. For me, intellectual freedom-the ability to do research based on my own scientific interests-has been the most satisfying part of my working life. Looking back over the 91 years of my long life, I conclude that I have been lucky, very lucky, both personally and scientifically.
Collapse
Affiliation(s)
- Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
23
|
Rodriguez-Almaraz JE, Butowski N. Therapeutic and Supportive Effects of Cannabinoids in Patients with Brain Tumors (CBD Oil and Cannabis). Curr Treat Options Oncol 2023; 24:30-44. [PMID: 36633803 PMCID: PMC9867687 DOI: 10.1007/s11864-022-01047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OPINION STATEMENT The potential medicinal properties of Cannabis continue to garner attention, especially in the brain tumor domain. This attention is centered on quality of life and symptom management; however, it is amplified by a significant lack of therapeutic choices for this specific patient population. While the literature on this matter is young, published and anecdotal evidence imply that cannabis could be useful in treating chemotherapy-induced nausea and vomiting, stimulating appetite, reducing pain, and managing seizures. It may also decrease inflammation and cancer cell proliferation and survival, resulting in a benefit in overall patient survival. Current literature poses the challenge that it does not provide standardized guidance on dosing for the above potential indications and cannabis use is dominated by recreational purposes. Furthermore, integrated and longitudinal studies are needed but these are a challenge due to arcane laws surrounding the legality of such substances. The increasing need for evidence-based arguments about potential harms and benefits of cannabis, not only in cancer patients but for other medical use and recreational purposes, is desperately needed.
Collapse
Affiliation(s)
- J. Eduardo Rodriguez-Almaraz
- Neuro Surgery Department Division of Neuro-Oncology, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
- Deparment of Epidemiology and Biostatistics, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
| | - Nicholas Butowski
- Neuro Surgery Department Division of Neuro-Oncology, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
- Deparment of Molecular Science, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
| |
Collapse
|
24
|
Tanaka M, Zhang Y. Preclinical Studies of Posttraumatic Headache and the Potential Therapeutics. Cells 2022; 12:cells12010155. [PMID: 36611947 PMCID: PMC9818317 DOI: 10.3390/cells12010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache developed within 7 days after head injury, and in a substantial number of patients PTH becomes chronic and lasts for more than 3 months. Current medications are almost entirely relied on the treatment of primary headache such as migraine, due to its migraine-like phenotype and the limited understanding on the PTH pathogenic mechanisms. To this end, increasing preclinical studies have been conducted in the last decade. We focus in this review on the trigeminovascular system from the animal studies since it provides the primary nociceptive sensory afferents innervating the head and face region, and the pathological changes in the trigeminal pathway are thought to play a key role in the development of PTH. In addition to the pathologies, PTH-like behaviors induced by TBI and further exacerbated by nitroglycerin, a general headache inducer through vasodilation are reviewed. We will overview the current pharmacotherapies including calcitonin gene-related peptide (CGRP) monoclonal antibody and sumatriptan in the PTH animal models. Given that modulation of the endocannabinoid (eCB) system has been well-documented in the treatment of migraine and TBI, the therapeutic potential of eCB in PTH will also be discussed.
Collapse
|
25
|
Chen C. Endocannabinoid control of neuroinflammation in traumatic brain injury by monoacylglycerol lipase in astrocytes. Neural Regen Res 2022; 18:1023-1024. [PMID: 36254984 PMCID: PMC9827788 DOI: 10.4103/1673-5374.355755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chu Chen
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Correspondence to: Chu Chen, or .
| |
Collapse
|
26
|
Zeng W, Li W, Huang K, Lin Z, Dai H, He Z, Liu R, Zeng Z, Qin G, Chen W, Wu Y. Predicting futile recanalization, malignant cerebral edema, and cerebral herniation using intelligible ensemble machine learning following mechanical thrombectomy for acute ischemic stroke. Front Neurol 2022; 13:982783. [PMID: 36247767 PMCID: PMC9554641 DOI: 10.3389/fneur.2022.982783] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo establish an ensemble machine learning (ML) model for predicting the risk of futile recanalization, malignant cerebral edema (MCE), and cerebral herniation (CH) in patients with acute ischemic stroke (AIS) who underwent mechanical thrombectomy (MT) and recanalization.MethodsThis prospective study included 110 patients with premorbid mRS ≤ 2 who met the inclusion criteria. Futile recanalization was defined as a 90-day modified Rankin Scale score >2. Clinical and imaging data were used to construct five ML models that were fused into a logistic regression algorithm using the stacking method (LR-Stacking). We added the Shapley Additive Explanation method to display crucial factors and explain the decision process of models for each patient. Prediction performances were compared using area under the receiver operating characteristic curve (AUC), F1-score, and decision curve analysis (DCA).ResultsA total of 61 patients (55.5%) experienced futile recanalization, and 34 (30.9%) and 22 (20.0%) patients developed MCE and CH, respectively. In test set, the AUCs for the LR-Stacking model were 0.949, 0.885, and 0.904 for the three outcomes mentioned above. The F1-scores were 0.882, 0.895, and 0.909, respectively. The DCA showed that the LR-Stacking model provided more net benefits for predicting MCE and CH. The most important factors were the hypodensity volume and proportion in the corresponding vascular supply area.ConclusionUsing the ensemble ML model to analyze the clinical and imaging data of AIS patients with successful recanalization at admission and within 24 h after MT allowed for accurately predicting the risks of futile recanalization, MCE, and CH.
Collapse
Affiliation(s)
- Weixiong Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Dai
- Hospital Office, Ganzhou People's Hospital, Ganzhou, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Zilong He
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renyi Liu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaodong Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Genggeng Qin
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Weiguo Chen
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongming Wu
| |
Collapse
|
27
|
Kemble AM, Hornsperger B, Ruf I, Richter H, Benz J, Kuhn B, Heer D, Wittwer M, Engelhardt B, Grether U, Collin L. A potent and selective inhibitor for the modulation of MAGL activity in the neurovasculature. PLoS One 2022; 17:e0268590. [PMID: 36084029 PMCID: PMC9462760 DOI: 10.1371/journal.pone.0268590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic inflammation and blood–brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood–brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood–brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood–brain barrier dysfunction caused by inflammatory insults.
Collapse
Affiliation(s)
- Alicia M. Kemble
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hans Richter
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Benz
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominik Heer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Wittwer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Uwe Grether
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
29
|
Song S, Kong X, Wang B, Sanchez-Ramos J. Administration of Δ 9-Tetrahydrocannabinol Following Controlled Cortical Impact Restores Hippocampal-Dependent Working Memory and Locomotor Function. Cannabis Cannabinoid Res 2022; 7:424-435. [PMID: 34747647 PMCID: PMC9418466 DOI: 10.1089/can.2021.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypothesis: Administration of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) will enhance brain repair and improve short-term spatial working memory in mice following controlled cortical impact (CCI) by upregulating granulocyte colony-stimulating factor (G-CSF) and other neurotrophic factors (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF]) in hippocampus (HP), cerebral cortex, and striatum. Materials and Methods: C57BL/6J mice underwent CCI and were treated for 3 days with Δ9-THC 3 mg/kg intraperitoneally (i.p.). Short-term working memory was determined using the spontaneous alternations test during exploratory behavior in a Y-maze. Locomotor function was measured as latency to fall from a rotating drum (rotometry). These behaviors were recorded at baseline and 3, 7, and 14 days after CCI. Groups of mice were euthanized at 7 and 14 days. Extent of microgliosis, astrocytosis, and G-CSF, BDNF, and GDNF expression were measured at 7 and 14 days in cerebral cortex, striatum, and HP on the side of the trauma. Levels of the most abundant endocannabinoid (2-arachidonoyl-glycerol [2-AG]) was also measured at these times. Results: Δ9-THC-treated mice exhibited marked improvement in performance on the Y-maze indicating that treatment with the phytocannabinoid could reverse the deficit in working memory caused by the CCI. Δ9-THC-treated mice ran on the rotarod longer than vehicle-treated mice and recovered to normal rotarod performance levels at 2 weeks. Δ9-THC-treated mice, compared with vehicle-treated animals, exhibited significant upregulation of G-CSF as well as BDNF and GDNF in the cerebral cortex, striatum, and HP. Levels of 2-AG were also increased in the Δ9-THC-treated mice. Conclusion: Administration of the phytocannabinoid Δ9-THC promotes significant functional recovery from traumatic brain injury (TBI) in the realms of working memory and locomotor function. This beneficial effect is associated with upregulation of brain 2-AG, G-CSF, BDNF, and GDNF. The latter three neurotrophic factors have been previously shown to mediate brain self-repair following TBI and stroke.
Collapse
Affiliation(s)
- Shijie Song
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Xiaoyuan Kong
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
| | - Bangmei Wang
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Juan Sanchez-Ramos
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
30
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
31
|
Joffre J, Wong E, Lawton S, Lloyd E, Nguyen N, Xu F, Sempio C, Kobzik L, Zlatanova I, Schumacher M, Klawitter J, Su H, Rabl K, Wilhelmsen K, Yeh CC, Hellman J. N-Oleoyl dopamine induces IL-10 via central nervous system TRPV1 and improves endotoxemia and sepsis outcomes. J Neuroinflammation 2022; 19:118. [PMID: 35610647 PMCID: PMC9131699 DOI: 10.1186/s12974-022-02485-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The transient receptor potential vanilloid 1 (TRPV1) participates in thermosensation and inflammatory pain, but its immunomodulatory mechanisms remain enigmatic. N-Oleoyl dopamine (OLDA), an endovanilloid and endocannabinoid, is a TRPV1 agonist that is produced in the central nervous system and the peripheral nervous system. We studied the anti-inflammatory effects and TRPV1-dependent mechanisms of OLDA in models of inflammation and sepsis. Methods Mice were challenged intratracheally or intravenously with LPS, or intratracheally with S. aureus to induce pneumonia and sepsis, and then were treated intravenously with OLDA. Endpoints included plasma cytokines, leukocyte activation marker expression, mouse sepsis scores, lung histopathology, and bacterial counts. The role of TRPV1 in the effects of OLDA was determined using Trpv1−/− mice, and mice with TRPV1 knockdown pan-neuronally, in peripheral nervous system neurons, or in myeloid cells. Circulating monocytes/macrophages were depleted using clodronate to determine their role in the anti-inflammatory effects of OLDA in endotoxemic mice. Levels of exogenous OLDA, and of endovanilloids and endocannabinoids, at baseline and in endotoxemic mice, were determined by LC–MS/MS. Results OLDA administration caused an early anti-inflammatory response in endotoxemic and septic mice with high serum levels of IL-10 and decreased levels of pro-inflammatory cytokines. OLDA also reduced lung injury and improved mouse sepsis scores. Blood and lung bacterial counts were comparable between OLDA- and carrier-treated mice with S. aureus pneumonia. OLDA’s effects were reversed in mice with pan-neuronal TRPV1 knockdown, but not with TRPV1 knockdown in peripheral nervous system neurons or myeloid cells. Depletion of monocytes/macrophages reversed the IL-10 upregulation by OLDA in endotoxemic mice. Brain and blood levels of endovanilloids and endocannabinoids were increased in endotoxemic mice. Conclusions OLDA has strong anti-inflammatory actions in mice with endotoxemia or S. aureus pneumonia. Prior studies focused on the role of peripheral nervous system TRPV1 in modulating inflammation and pneumonia. Our results suggest that TRPV1-expressing central nervous system neurons also regulate inflammatory responses to endotoxemia and infection. Our study reveals a neuro-immune reflex that during acute inflammation is engaged proximally by OLDA acting on neuronal TRPV1, and through a multicellular network that requires circulating monocytes/macrophages, leads to the systemic production of IL-10. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02485-z.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Erika Wong
- Pediatric Critical Care Division UCSF Benioff Children's Hospitals, San Francisco, CA, 94158, USA
| | - Samira Lawton
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Elliot Lloyd
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Nina Nguyen
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Cristina Sempio
- Institute of Cognitive Science, CU Boulder, iC42 Integrated Solutions in Systems Biology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Lester Kobzik
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Ivana Zlatanova
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA, 94158, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA.,Division of Pain Medicine, UCSF School of Medicine, San Francisco, CA, 94143, USA
| | - Jost Klawitter
- Institute of Cognitive Science, CU Boulder, iC42 Integrated Solutions in Systems Biology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Katalin Rabl
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Che-Chung Yeh
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA.
| |
Collapse
|
32
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
33
|
Borgonetti V, Benatti C, Governa P, Isoldi G, Pellati F, Alboni S, Tascedda F, Montopoli M, Galeotti N, Manetti F, Miraldi E, Biagi M, Rigillo G. Non-psychotropic Cannabis sativa L. phytocomplex modulates microglial inflammatory response through CB2 receptors-, endocannabinoids-, and NF-κB-mediated signaling. Phytother Res 2022; 36:2246-2263. [PMID: 35393641 PMCID: PMC9325551 DOI: 10.1002/ptr.7458] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and β-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Cristina Benatti
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Siena, Italy
| | | | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Alboni
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Siena, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
34
|
Molecular Signatures of Mitochondrial Complexes Involved in Alzheimer’s Disease via Oxidative Phosphorylation and Retrograde Endocannabinoid Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9565545. [PMID: 35432724 PMCID: PMC9006080 DOI: 10.1155/2022/9565545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Objective The inability to intervene in Alzheimer's disease (AD) forces the search for promising gene-targeted therapies. This study was aimed at exploring molecular signatures and mechanistic pathways to improve the diagnosis and treatment of AD. Methods Microarray datasets were collected to filter differentially expressed genes (DEGs) between AD and nondementia controls. Weight gene correlation network analysis (WGCNA) was employed to analyze the correlation of coexpression modules with AD phenotype. A global regulatory network was established and then visualized using Cytoscape software to determine hub genes and their mechanistic pathways. Receiver operating characteristic (ROC) analysis was conducted to estimate the diagnostic performance of hub genes in AD prediction. Results A total of 2,163 DEGs from 13,049 background genes were screened in AD relative to nondementia controls. Among the six coexpression modules constructed by WGCNA, DEGs of the key modules with the strongest correlation with AD were extracted to build a global regulatory network. According to the Maximal Clique Centrality (MCC) method, five hub genes associated with mitochondrial complexes were chosen. Further pathway enrichment analysis of hub genes, such as oxidative phosphorylation and retrograde endocannabinoid signaling, was identified. According to the area under the curve (AUC) of about 70%, each hub gene exhibited a good diagnostic performance in predicting AD. Conclusions Our findings highlight the perturbation of mitochondrial complexes underlying AD onset, which is mediated by molecular signatures involved in oxidative phosphorylation (COX5A, NDUFAB1, SDHB, UQCRC2, and UQCRFS1) and retrograde endocannabinoid signaling (NDUFAB1) pathways.
Collapse
|
35
|
Heath DM, Koslosky EJ, Bartush KC, Hogue GD. Marijuana in Orthopaedics: Effects on Bone Health, Wound-Healing, Surgical Complications, and Pain Management. JBJS Rev 2022; 10:01874474-202202000-00011. [PMID: 35180183 DOI: 10.2106/jbjs.rvw.21.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
» Marijuana use is on the rise in the United States, and there is a paucity of information on the effects of cannabis and its chemical constituents on bone health, wound-healing, surgical complications, and pain management. » Current evidence suggests that cannabidiol (CBD) may enhance bone health and metabolism, while Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component in marijuana, has an inhibitory effect. » Marijuana users are at higher risk for delayed bone-healing, demonstrate lower bone mineral density, are at increased risk for fracture, and may experience postoperative complications such as increased opioid use and hyperemesis.
Collapse
Affiliation(s)
- David M Heath
- Department of Orthopaedics, UT Health San Antonio, San Antonio, Texas
| | | | | | - Grant D Hogue
- Department of Orthopaedics, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Hu M, Zhu D, Zhang J, Gao F, Hashem J, Kingsley P, Marnett LJ, Mackie K, Chen C. Enhancing endocannabinoid signalling in astrocytes promotes recovery from traumatic brain injury. Brain 2022; 145:179-193. [PMID: 35136958 PMCID: PMC8967103 DOI: 10.1093/brain/awab310] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury is an important risk factor for development of Alzheimer's disease and dementia. Unfortunately, no effective therapies are currently available for prevention and treatment of the traumatic brain injury-induced Alzheimer's disease-like neurodegenerative disease. This is largely due to our limited understanding of the mechanisms underlying traumatic brain injury-induced neuropathology. Previous studies showed that pharmacological inhibition of monoacylglycerol lipase, a key enzyme degrading the endocannabinoid 2-arachidonoylglycerol, attenuates traumatic brain injury-induced neuropathology. However, the mechanism responsible for the neuroprotective effects produced by inhibition of monoacylglycerol lipase in traumatic brain injury remains unclear. Here we first show that genetic deletion of monoacylglycerol lipase reduces neuropathology and averts synaptic and cognitive declines in mice exposed to repeated mild closed head injury. Surprisingly, these neuroprotective effects result primarily from inhibition of 2-arachidonoylglycerol metabolism in astrocytes, rather than in neurons. Single-cell RNA-sequencing data reveal that astrocytic monoacylglycerol lipase knockout mice display greater resilience to traumatic brain injury-induced changes in expression of genes associated with inflammation or maintenance of brain homeostasis in astrocytes and microglia. The monoacylglycerol lipase inactivation-produced neuroprotection is abrogated by deletion of the cannabinoid receptor-1 or by adeno-associated virus vector-mediated silencing of astrocytic peroxisome proliferator-activated receptor-γ. This is further supported by the fact that overexpression of peroxisome proliferator-activated receptor-γ in astrocytes prevents traumatic brain injury-induced neuropathology and impairments in spatial learning and memory. Our results reveal a previously undefined cell type-specific role of 2-arachidonoylglycerol metabolism and signalling pathways in traumatic brain injury-induced neuropathology, suggesting that enhanced 2-arachidonoylglycerol signalling in astrocytes is responsible for the monoacylglycerol lipase inactivation-produced alleviation of neuropathology and deficits in synaptic and cognitive functions in traumatic brain injury.
Collapse
Affiliation(s)
- Mei Hu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dexiao Zhu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Philip Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Correspondence to: Chu Chen, PhD Department of Cellular and Integrative Physiology, School of Medicine University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive, San Antonio, TX 78229, USA E-mail: or
| |
Collapse
|
37
|
OUP accepted manuscript. Brain 2022; 145:7-10. [DOI: 10.1093/brain/awac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
|
38
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
39
|
Selvaraj P, Tanaka M, Wen J, Zhang Y. The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model. Cells 2021; 10:cells10123454. [PMID: 34943962 PMCID: PMC8700188 DOI: 10.3390/cells10123454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3212
| |
Collapse
|
40
|
Bhatti FI, Mowforth OD, Butler MB, Bhatti AI, Adeeko S, Akhbari M, Dilworth R, Grodzinski B, Osunronbi T, Ottewell L, Teh JQ, Robinson S, Suresh G, Waheed U, Walker B, Kuhn I, Smith L, Bartlett RD, Davies BM, Kotter MRN. Systematic review of the impact of cannabinoids on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury. Spinal Cord 2021; 59:1221-1239. [PMID: 34392312 PMCID: PMC8629762 DOI: 10.1038/s41393-021-00680-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic spinal cord injury (SCI), with the aim of determining suitability for clinical trials involving SCI patients. METHODS A systematic search was performed in MEDLINE and Embase databases, following registration with PROPSERO (CRD42019149671). Studies evaluating the impact of cannabinoids (agonists or antagonists) on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic SCI were included. Data extracted from relevant studies, included sample characteristics, injury model, neurobehavioural outcomes assessed and study results. PRISMA guidelines were followed and the SYRCLE checklist was used to assess risk of bias. RESULTS The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals. WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies. CONCLUSION Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function in SCI patients.
Collapse
Affiliation(s)
- Faheem I Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Oliver D Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Max B Butler
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aniqah I Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | - Ben Grodzinski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Jye Quan Teh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Isla Kuhn
- Cambridge University Medical Library, Cambridge, UK
| | | | - Richard D Bartlett
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Benjamin M Davies
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Mark R N Kotter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Sheppard SG, Wall PV, Wheatley B, Kent W. Effects of Marijuana Use in Patients with Orthopaedic Trauma. JBJS Rev 2021; 9:01874474-202112000-00007. [PMID: 35102050 DOI: 10.2106/jbjs.rvw.21.00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
➢ The use of cannabis and cannabis-related products has increased dramatically in the last 2 decades. As states continue to legalize cannabis products, it is important for surgeons to understand the effects they may have on patients who have sustained orthopaedic trauma. ➢ Cannabinoids have been shown to decrease the severity of certain symptoms related to traumatic brain injury as well as posttraumatic stress disorder. ➢ Cannabinoids can modulate the body's endocannabinoid system, which can play an important role in bone homeostasis. Activation of cannabinoid receptors has been shown to be bone-protective in adults. ➢ Venous thromboembolism is a major concern for trauma patients. Cannabis use has been linked to overall increased rates of venous thromboembolism events. ➢ Literature regarding human-based cannabis studies is sparse; however, the growing field is opening new opportunities for research of this topic.
Collapse
|
42
|
The Role of Cannabinoids in Bone Metabolism: A New Perspective for Bone Disorders. Int J Mol Sci 2021; 22:ijms222212374. [PMID: 34830256 PMCID: PMC8621131 DOI: 10.3390/ijms222212374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.
Collapse
|
43
|
Boullon L, Abalo R, Llorente-Berzal Á. Cannabinoid Drugs-Related Neuroprotection as a Potential Therapeutic Tool Against Chemotherapy-Induced Cognitive Impairment. Front Pharmacol 2021; 12:734613. [PMID: 34867342 PMCID: PMC8632779 DOI: 10.3389/fphar.2021.734613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
In recent years, and particularly associated with the increase of cancer patients’ life expectancy, the occurrence of cancer treatment sequelae, including cognitive impairments, has received considerable attention. Chemotherapy-induced cognitive impairments (CICI) can be observed not only during pharmacological treatment of the disease but also long after cessation of this therapy. The lack of effective tools for its diagnosis together with the limited treatments currently available for alleviation of the side-effects induced by chemotherapeutic agents, demonstrates the need of a better understanding of the mechanisms underlying the pathology. This review focuses on the comprehensive appraisal of two main processes associated with the development of CICI: neuroinflammation and oxidative stress, and proposes the endogenous cannabinoid system (ECS) as a new therapeutic target against CICI. The neuroprotective role of the ECS, well described in other cognitive-related neuropathologies, seems to be able to reduce the activation of pro-inflammatory cytokines involved in the neuroinflammatory supraspinal processes underlying CICI. This review also provides evidence supporting the role of cannabinoid-based drugs in the modulation of oxidative stress processes that underpin cognitive impairments, and warrant the investigation of endocannabinoid components, still unknown, that may mediate the molecular mechanism behind this neuroprotective activity. Finally, this review points forward the urgent need of research focused on the understanding of CICI and the investigation of new therapeutic targets.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de La Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- Unidad Asociada I+D+i Del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Madrid, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de La Sociedad Española Del Dolor), Madrid, Spain
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- *Correspondence: Álvaro Llorente-Berzal,
| |
Collapse
|
44
|
Zhu D, Gao F, Chen C. Endocannabinoid Metabolism and Traumatic Brain Injury. Cells 2021; 10:cells10112979. [PMID: 34831202 PMCID: PMC8616221 DOI: 10.3390/cells10112979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of morbidity and disability and is a risk factor for developing neurodegenerative diseases, including Alzheimer’s disease (AD). However, no effective therapies are currently available for TBI-induced AD-like disease. Endocannabinoids are endogenous lipid mediators involved in a variety of physiological and pathological processes. The compound 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid with profound anti-inflammatory and neuroprotective properties. This molecule is predominantly metabolized by monoacylglycerol lipase (MAGL), a key enzyme degrading about 85% of 2-AG in the brain. Studies using animal models of inflammation, AD, and TBI provide evidence that inactivation of MAGL, which augments 2-AG signaling and reduces its metabolites, exerts neuroprotective effects, suggesting that MAGL is a promising therapeutic target for neurodegenerative diseases. In this short review, we provide an overview of the inhibition of 2-AG metabolism for the alleviation of neuropathology and the improvement of synaptic and cognitive functions after TBI.
Collapse
|
45
|
Saulino PA, Greenwald BD, Gordon DJ. The changing landscape of the use of medical marijuana after traumatic brain injury: a narrative review. Brain Inj 2021; 35:1510-1520. [PMID: 34632896 DOI: 10.1080/02699052.2021.1978548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To summarize the potential therapeutic benefits of medical marijuana for patients with traumatic brain injury (TBI). METHODS A systematic search was conducted using PubMed and Cochran's library for information regard the safety and efficacy of medical marijuana as a therapeutic agent. We investigated, in depth, articles specifically evaluating medical marijuana's use in TBI, as well as articles that summarized the effects of marijuana in general. Articles from the year 2000-2020 were included. RESULTS A total of 37 articles met our inclusion criteria. An additional 3 articles were obtained from reference lists. CONCLUSION Studies have shown that medical marijuana can potentially aid the recovery from TBI by modulating the endocannabinoid system, reducing inflammation and secondary injury. Adverse cognitive and physiological effects have been observed in the acute setting as well as chronically, though more research is necessitated. There is also the concern of significant drug-drug interactions that have not been thoroughly studied. Thus, while there is evidence that medical marijuana can be beneficial in the treatment of TBI, more research is necessitated to fully explore the long-term efficacy and adverse effects.
Collapse
Affiliation(s)
- Patrick A Saulino
- Rutgers Robert Wood Johnson Medical School, Ringgold Standard Institution, Piscataway, New Jersey, USA
| | - Brian D Greenwald
- Center for Brain Injuries, JFK Johnson Rehabilitation Institute, Ringgold Standard Institution - Physical Medicine and Rehabilitation, Edison, New Jersey, USA.,Rutgers Robert Wood Johnson Medical School New Brunswick, - Physical Medicine and Rehabilitation, Edison, New Jersey, USA
| | - Dustin J Gordon
- Rehabilitation Specialists, Ringgold Standard Institution, Fairleigh Dickinson University, Fair Lawn, New Jersey, USA.,Fairleigh Dickinson University in Teaneck, New Jersey, USA
| |
Collapse
|
46
|
Jiang H, Li H, Cao Y, Zhang R, Zhou L, Zhou Y, Zeng X, Wu J, Wu D, Wu D, Guo X, Li X, Wu H, Li P. Effects of cannabinoid (CBD) on blood brain barrier permeability after brain injury in rats. Brain Res 2021; 1768:147586. [PMID: 34289379 DOI: 10.1016/j.brainres.2021.147586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Cannabidiol is a natural herbal medicine known to protect the brain from traumatic brain injury (TBI). Here, a TBI rat model was established, with cannabidiol administered intraperitoneally at doses of 5, 10, or 20 mg/kg, 30 min before surgery and 6 h after surgery until sacrifice. Brain water content, body weight, and modified neurological severity scores were determined, and enzyme-linked immunosorbent assay, immunofluorescence staining, hematoxylin and eosin staining, Nissl staining, Evans-blue dye extravasation, and western blotting were performed. Results showed that cannabidiol decreased the number of aquaporin-4-positive and glial fibrillary acidic protein-positive cells. Cannabidiol also significantly reduced the protein levels of proinflammatory cytokines (TNF-α and IL-1β) and significantly increased the expression of tight junction proteins (claudin-5 and occludin). Moreover, cannabidiol administration significantly mitigated water content in the brain after TBI and blood-brain barrier disruption and ameliorated the neurological deficit score after TBI. Cannabidiol administration improved the integrity and permeability of the blood-brain barrier and reduced edema in the brain after TBI.
Collapse
Affiliation(s)
- Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China; Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yan Cao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ruilin Zhang
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China
| | - Lei Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ying Zhou
- Department of Kunming Medical University Electron Microscope Laboratory, Kunming Medical University, Kunming 650500, China
| | - Xiaofeng Zeng
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China
| | - Jia Wu
- Department of Morphology Laboratory, Kunming Medical University, Kunming 650500, China
| | - Douwei Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, Zibo 255213, Shandong, China
| | - Xiaobing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xiaowen Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
47
|
Paudel P, Ross S, Li XC. Molecular Targets of Cannabinoids Associated with Depression. Curr Med Chem 2021; 29:1827-1850. [PMID: 34165403 DOI: 10.2174/0929867328666210623144658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Novel therapeutic strategies are needed to address depression, a major neurological disorder affecting hundreds of millions of people worldwide. Cannabinoids and their synthetic derivatives have demonstrated numerous neurological activities and may potentially be developed into new treatments for depression. This review highlights cannabinoid (CB) receptors, monoamine oxidase (MAO), N-methyl-D-aspartate (NMDA) receptor, gamma-aminobutyric acid (GABA) receptor, and cholecystokinin (CCK) receptor as key molecular targets of cannabinoids that are associated with depression. The anti-depressant activity of cannabinoids and their binding modes with cannabinoid receptors are discussed, providing insights into rational design and discovery of new cannabinoids or cannabimimetic agents with improved druggable properties.
Collapse
Affiliation(s)
- Pradeep Paudel
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Samir Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
48
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
49
|
Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:4122-4133. [PMID: 33939165 DOI: 10.1007/s12035-021-02400-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic models of AD. While inhibition of 2-AG metabolism mitigates β-amyloid (Aβ) neuropathology, it is still not clear whether inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau protein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced proinflammatory cytokines, astrogliosis, phosphorylated GSK3β and tau, cleaved caspase-3, and phosphorylated NF-kB while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a promising therapeutic target for AD.
Collapse
|
50
|
Buciuc M, Conte GM, Scharf EL. Endocannabinoid Response in Acute Ischemic Stroke: Elevated 2-Arachidonoylglycerol. Stroke 2021; 52:e131-e132. [PMID: 33827241 DOI: 10.1161/strokeaha.121.034131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marina Buciuc
- Department of Neurology (M.B., E.L.S.), Mayo Clinic, Rochester, MN
| | | | - Eugene L Scharf
- Department of Neurology (M.B., E.L.S.), Mayo Clinic, Rochester, MN
| |
Collapse
|