1
|
Zhao WH, Yan JY, Xie KX, Wu XY, Qian H, Luo XC, Liao J, An CY, Liang S, Lu JP, Khan IA, Zhu XM, Lin FC, Liu XH. FK506 Targets MoFpr1 to Modulate Autophagy and Ubiquitination, Inhibiting the Pathogenicity of Magnaporthe oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40490869 DOI: 10.1021/acs.jafc.5c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production. This study explores the antifungal potential of the immunosuppressant FK506 and identifies its target protein, MoFpr1 (FK506-binding protein 1B). FK506 inhibited mycelial growth, appressorium formation, and pathogenicity of M. oryzae in an MoFpr1-dependent manner. Mechanistic analyses revealed that FK506 impairs autophagy and ubiquitination, supported by transcriptomic and metabolomic data. Structural studies using X-ray crystallography and site-directed mutagenesis confirmed the direct interaction between FK506 and MoFpr1, highlighting the importance of residues Gly95 and Ile97. Furthermore, FK506 demonstrated broad-spectrum antifungal activity against various plant pathogens and effectively controlled rice blast in laboratory, net-chamber, and field trials with minimal phytotoxicity. These findings position FK506 as a promising antifungal agent and offer insights into its molecular mechanism, suggesting its potential for sustainable plant disease management.
Collapse
Affiliation(s)
- Wen-Hui Zhao
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiong-Yi Yan
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ke-Xin Xie
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi-Yu Wu
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hui Qian
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xi-Chun Luo
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jian Liao
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chun-Yue An
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuang Liang
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Irshad Ali Khan
- Department of Agriculture (Plant Pathology), The University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Xue-Ming Zhu
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fu-Cheng Lin
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiao-Hong Liu
- State Key Laboratory for Quality and Safety of Agro - Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Hanna AD, Chang T, Ho KS, Yee RSZ, Walker WC, Agha N, Hsu CW, Jung SY, Dickinson ME, Samee MAH, Ward CS, Lee CS, Rodney GG, Hamilton SL. Mechanisms underlying dilated cardiomyopathy associated with FKBP12 deficiency. J Gen Physiol 2025; 157:e202413583. [PMID: 39661086 PMCID: PMC11633665 DOI: 10.1085/jgp.202413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a highly prevalent and genetically heterogeneous condition that results in decreased contractility and impaired cardiac function. The FK506-binding protein FKBP12 has been implicated in regulating the ryanodine receptor in skeletal muscle, but its role in cardiac muscle remains unclear. To define the effect of FKBP12 in cardiac function, we generated conditional mouse models of FKBP12 deficiency. We used Cre recombinase driven by either the α-myosin heavy chain, (αMHC) or muscle creatine kinase (MCK) promoter, which are expressed at embryonic day 9 (E9) and E13, respectively. Both conditional models showed an almost total loss of FKBP12 in adult hearts compared with control animals. However, only the early embryonic deletion of FKBP12 (αMHC-Cre) resulted in an early-onset and progressive DCM, increased cardiac oxidative stress, altered expression of proteins associated with cardiac remodeling and disease, and sarcoplasmic reticulum Ca2+ leak. Our findings indicate that FKBP12 deficiency during early development results in cardiac remodeling and altered expression of DCM-associated proteins that lead to progressive DCM in adult hearts, thus suggesting a major role for FKBP12 in embryonic cardiac muscle.
Collapse
Affiliation(s)
- Amy D. Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin S. Ho
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Nadia Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Mary E. Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Christopher S. Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - George G. Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Susan L. Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Chan JA, Munro ML. Time-dependent effect of FKBP12 loss in the development of dilated cardiomyopathy. J Gen Physiol 2025; 157:e202413673. [PMID: 39665747 PMCID: PMC11636550 DOI: 10.1085/jgp.202413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Hanna et al. reveal that early, but not late, developmental cardiac FKBP12 deficiency leads to dilated cardiomyopathy in the adult heart.
Collapse
Affiliation(s)
- Joan A. Chan
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Michelle L. Munro
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Bayan Atawna
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
LeMaster DM, Bashir Q, Hernández G. Propagation of conformational instability in FK506-binding protein FKBP12. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140990. [PMID: 38142946 PMCID: PMC10939819 DOI: 10.1016/j.bbapap.2023.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
FKBP12 is the archetype of the FK506 binding domains that define the family of FKBP proteins which participate in the regulation of various distinct physiological signaling processes. As the drugs FK506 and rapamycin inhibit many of these FKBP proteins, there is need to develop therapeutics which exhibit selectivity within this family. The long β4-β5 loop of the FKBP domain is known to regulate transcriptional activity for the steroid hormone receptors and appears to participate in regulating calcium channel activity for the cardiac and skeletal muscle ryanodine receptors. The β4-β5 loop of FKBP12 has been shown to undergo extensive conformational dynamics, and here we report hydrogen exchange measurements for a series of mutational variants in that loop which indicate deviations from a two-state kinetics for those dynamics. In addition to a previously characterized local transition near the tip of this loop, evidence is presented for a second site of conformational dynamics in the stem of this loop. These mutation-dependent hydrogen exchange effects extend beyond the β4-β5 loop, primarily by disrupting the hydrogen bond between the Gly 58 amide and the Tyr 80 carbonyl oxygen which links the two halves of the structural rim that surrounds the active site cleft. Mutationally-induced opening of the cleft between Gly 58 and Tyr 80 not only modulates the global stability of the protein, it promotes a conformational transition in the distant β2-β3a hairpin that modulates the binding affinity for a FKBP51-selective inhibitor previously designed to exploit a localized conformational transition at the homologous site.
Collapse
Affiliation(s)
- David M LeMaster
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America
| | - Qamar Bashir
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America
| | - Griselda Hernández
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America.
| |
Collapse
|
6
|
Guo J, Yao Q, Dong J, Hou J, Jia P, Chen X, Li G, Zhao Q, Wang J, Liu F, Wang Z, Shan Y, Zhang T, Fu A, Wang F. Immunophilin FKB20-2 participates in oligomerization of Photosystem I in Chlamydomonas. PLANT PHYSIOLOGY 2024; 194:1631-1645. [PMID: 38039102 DOI: 10.1093/plphys/kiad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PSI is a sophisticated photosynthesis protein complex that fuels the light reaction of photosynthesis in algae and vascular plants. While the structure and function of PSI have been studied extensively, the dynamic regulation on PSI oligomerization and high light response is less understood. In this work, we characterized a high light-responsive immunophilin gene FKB20-2 (FK506-binding protein 20-2) required for PSI oligomerization and high light tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Biochemical assays and 77-K fluorescence measurement showed that loss of FKB20-2 led to the reduced accumulation of PSI core subunits and abnormal oligomerization of PSI complexes and, particularly, reduced PSI intermediate complexes in fkb20-2. It is noteworthy that the abnormal PSI oligomerization was observed in fkb20-2 even under dark and dim light growth conditions. Coimmunoprecipitation, MS, and yeast 2-hybrid assay revealed that FKB20-2 directly interacted with the low molecular weight PSI subunit PsaG, which might be involved in the dynamic regulation of PSI-light-harvesting complex I supercomplexes. Moreover, abnormal PSI oligomerization caused accelerated photodamage to PSII in fkb20-2 under high light stress. Together, we demonstrated that immunophilin FKB20-2 affects PSI oligomerization probably by interacting with PsaG and plays pivotal roles during Chlamydomonas tolerance to high light.
Collapse
Affiliation(s)
- Jia Guo
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jie Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Pulian Jia
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xueying Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Guoyang Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fang Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Ziyu Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Yuying Shan
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Tengyue Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China
| |
Collapse
|
7
|
Anderson JS, LeMaster DM, Hernández G. Transient conformations in the unliganded FK506 binding domain of FKBP51 correspond to two distinct inhibitor-bound states. J Biol Chem 2023; 299:105159. [PMID: 37579948 PMCID: PMC10514456 DOI: 10.1016/j.jbc.2023.105159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Members of the FK506-binding protein (FKBP) family regulate a range of important physiological processes. Unfortunately, current therapeutics such as FK506 and rapamycin exhibit only modest selectivity among these functionally distinct proteins. Recent progress in developing selective inhibitors has been reported for FKBP51 and FKBP52, which act as mutual antagonists in the regulation of steroid hormone signaling. Two structurally similar inhibitors yield distinct protein conformations at the binding site. Localized conformational transition in the binding site of the unliganded FK1 domain of FKBP51 is suppressed by a K58T mutation that also suppresses the binding of these inhibitors. Here, it is shown that the changes in amide hydrogen exchange kinetics arising from this K58T substitution are largely localized to this structural region. Accurate determination of the hydroxide-catalyzed exchange rate constants in both the wildtype and K58T variant proteins impose strong constraints upon the pattern of amide exchange reactivities within either a single or a pair of transient conformations that could give rise to the differences between these two sets of measured rate constants. Poisson-Boltzmann continuum dielectric calculations provide moderately accurate predictions of the structure-dependent hydrogen exchange reactivity for solvent-exposed protein backbone amides. Applying such calculations to the local protein conformations observed in the two inhibitor-bound FKBP51 domains demonstrated that the experimentally determined exchange rate constants for the wildtype domain are robustly predicted by a population-weighted sum of the experimental hydrogen exchange reactivity of the K58T variant and the predicted exchange reactivities in model conformations derived from the two inhibitor-bound protein structures.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, New York, USA
| | - David M LeMaster
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Griselda Hernández
- New York State Department of Health, Wadsworth Center, Albany, New York, USA.
| |
Collapse
|
8
|
Walweel K, Beard N, van Helden DF, Laver DR. Dantrolene inhibition of ryanodine channels (RyR2) in artificial lipid bilayers depends on FKBP12.6. J Gen Physiol 2023; 155:e202213277. [PMID: 37279522 PMCID: PMC10244881 DOI: 10.1085/jgp.202213277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Dantrolene is a neutral hydantoin that is clinically used as a skeletal muscle relaxant to prevent overactivation of the skeletal muscle calcium release channel (RyR1) in response to volatile anesthetics. Dantrolene has aroused considerable recent interest as a lead compound for stabilizing calcium release due to overactive cardiac calcium release channels (RyR2) in heart failure. Previously, we found that dantrolene produces up to a 45% inhibition RyR2 with an IC50 of 160 nM, and that this inhibition requires the physiological association between RyR2 and CaM. In this study, we tested the hypothesis that dantrolene inhibition of RyR2 in the presence of CaM is modulated by RyR2 phosphorylation at S2808 and S2814. Phosphorylation was altered by incubations with either exogenous phosphatase (PP1) or kinases; PKA to phosphorylate S2808 or endogenous CaMKII to phosphorylate S2814. We found that PKA caused selective dissociation of FKBP12.6 from the RyR2 complex and a loss of dantrolene inhibition. Rapamycin-induced FKBP12.6 dissociation from RyR2 also resulted in the loss of dantrolene inhibition. Subsequent incubations of RyR2 with exogenous FKBP12.6 reinstated dantrolene inhibition. These findings indicate that the inhibitory action of dantrolene on RyR2 depends on RyR2 association with FKBP12.6 in addition to CaM as previously found.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| | - Nicole Beard
- Faculty of Science and Technology, University of Canberra, Bruce, Australia
| | - Dirk F. van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| | - Derek R. Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| |
Collapse
|
9
|
Astrof S, Arriagada C, Saijoh Y, Francou A, Kelly RG, Moon A. Aberrant differentiation of second heart field mesoderm prefigures cellular defects in the outflow tract in response to loss of FGF8. Dev Biol 2023; 499:10-21. [PMID: 37060937 PMCID: PMC10686765 DOI: 10.1016/j.ydbio.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Development of the outflow tract of the heart requires specification, proliferation and deployment of a progenitor cell population from the second heart field to generate the myocardium at the arterial pole of the heart. Disruption of these processes leads to lethal defects in rotation and septation of the outflow tract. We previously showed that Fibroblast Growth Factor 8 (FGF8) directs a signaling cascade in the second heart field that regulates critical aspects of OFT morphogenesis. Here we show that in addition to the survival and proliferation cues previously described, FGF8 provides instructive and patterning information to OFT myocardial cells and their progenitors that prevents their aberrant differentiation along a working myocardial program.
Collapse
Affiliation(s)
- Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Alexandre Francou
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Cho KW, Andrade M, Bae S, Kim S, Kim JE, Jang EY, Lee S, Husain A, Sutliff RL, Calvert JW, Park C, Yoon YS. Polycomb Group Protein CBX7 Represses Cardiomyocyte Proliferation Through Modulation of the TARDBP/RBM38 Axis. Circulation 2023; 147:1823-1842. [PMID: 37158107 PMCID: PMC10330362 DOI: 10.1161/circulationaha.122.061131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Shortly after birth, cardiomyocytes exit the cell cycle and cease proliferation. At present, the regulatory mechanisms for this loss of proliferative capacity are poorly understood. CBX7 (chromobox 7), a polycomb group (PcG) protein, regulates the cell cycle, but its role in cardiomyocyte proliferation is unknown. METHODS We profiled CBX7 expression in the mouse hearts through quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. We overexpressed CBX7 in neonatal mouse cardiomyocytes through adenoviral transduction. We knocked down CBX7 by using constitutive and inducible conditional knockout mice (Tnnt2-Cre;Cbx7fl/+ and Myh6-MCM;Cbx7fl/fl, respectively). We measured cardiomyocyte proliferation by immunostaining of proliferation markers such as Ki67, phospho-histone 3, and cyclin B1. To examine the role of CBX7 in cardiac regeneration, we used neonatal cardiac apical resection and adult myocardial infarction models. We examined the mechanism of CBX7-mediated repression of cardiomyocyte proliferation through coimmunoprecipitation, mass spectrometry, and other molecular techniques. RESULTS We explored Cbx7 expression in the heart and found that mRNA expression abruptly increased after birth and was sustained throughout adulthood. Overexpression of CBX7 through adenoviral transduction reduced proliferation of neonatal cardiomyocytes and promoted their multinucleation. On the other hand, genetic inactivation of Cbx7 increased proliferation of cardiomyocytes and impeded cardiac maturation during postnatal heart growth. Genetic ablation of Cbx7 promoted regeneration of neonatal and adult injured hearts. Mechanistically, CBX7 interacted with TARDBP (TAR DNA-binding protein 43) and positively regulated its downstream target, RBM38 (RNA Binding Motif Protein 38), in a TARDBP-dependent manner. Overexpression of RBM38 inhibited the proliferation of CBX7-depleted neonatal cardiomyocytes. CONCLUSIONS Our results demonstrate that CBX7 directs the cell cycle exit of cardiomyocytes during the postnatal period by regulating its downstream targets TARDBP and RBM38. This is the first study to demonstrate the role of CBX7 in regulation of cardiomyocyte proliferation, and CBX7 could be an important target for cardiac regeneration.
Collapse
Affiliation(s)
- Kyu-Won Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Andrade
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangsung Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jin Eyun Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Er Yearn Jang
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahsan Husain
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Roy L. Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John W. Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, USA
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Young-sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
P-glycoprotein, FK-binding Protein-12, and the Intracellular Tacrolimus Concentration in T-lymphocytes and Monocytes of Kidney Transplant Recipients. Transplantation 2023; 107:382-391. [PMID: 36070572 DOI: 10.1097/tp.0000000000004287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND . Transplant recipients may develop rejection despite having adequate tacrolimus whole blood predose concentrations (C 0 ). The intra-immune cellular concentration is potentially a better target than C 0 . However, little is known regarding intracellular tacrolimus concentration in T-lymphocytes and monocytes. We investigated the tacrolimus concentrations in both cell types and their relation with the expression and activity of FK-binding protein (FKBP)-12 and P-glycoprotein (P-gp). METHODS . T-lymphocytes and monocytes were isolated from kidney transplant recipients followed by intracellular tacrolimus concentration measurement. FKBP-12 and P-gp were quantified with Western blot, flow cytometry, and the Rhodamine-123 assay. Interleukin-2 and interferon-γ in T-lymphocytes were measured to quantify the effect of tacrolimus. RESULTS . Tacrolimus concentration in T-lymphocytes was lower than in monocytes (15.3 [8.5-33.4] versus 131.0 [73.5-225.1] pg/million cells; P < 0.001). The activity of P-gp (measured by Rhodamine-123 assay) was higher in T-lymphocytes than in monocytes. Flow cytometry demonstrated a higher expression of P-gp (normalized mean fluorescence intensity 1.5 [1.2-1.7] versus 1.2 [1.1-1.4]; P = 0.012) and a lower expression of FKBP-12 (normalized mean fluorescence intensity 1.3 [1.2-1.7] versus 1.5 [1.4-2.0]; P = 0.011) in T-lymphocytes than monocytes. Western blot confirmed these observations. The addition of verapamil, a P-gp inhibitor, resulted in a 2-fold higher intra-T-cell tacrolimus concentration. This was accompanied by a significantly fewer cytokine-producing cells. CONCLUSIONS . T-lymphocytes have a higher activity of P-gp and lower concentration of the FKBP-12 compared with monocytes. This explains the relatively lower tacrolimus concentration in T-lymphocytes. The addition of verapamil prevents loss of intracellular tacrolimus during the cell isolation process and is required to ensure adequate intracellular concentration measurement.
Collapse
|
12
|
Wang ZW, Niu L, Riaz S. Regulation of Ryanodine Receptor-Dependent Neurotransmitter Release by AIP, Calstabins, and Presenilins. ADVANCES IN NEUROBIOLOGY 2023; 33:287-304. [PMID: 37615871 DOI: 10.1007/978-3-031-34229-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels located in the endoplasmic reticulum membrane. Presynaptic RyRs play important roles in neurotransmitter release and synaptic plasticity. Recent studies suggest that the proper function of presynaptic RyRs relies on several regulatory proteins, including aryl hydrocarbon receptor-interacting protein, calstabins, and presenilins. Dysfunctions of these regulatory proteins can greatly impact neurotransmitter release and synaptic plasticity by altering the function or expression of RyRs. This chapter aims to describe the interaction between these proteins and RyRs, elucidating their crucial role in regulating synaptic function.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
13
|
The Prognostic Significance of FKBP1A and Its Related Immune Infiltration in Liver Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232112797. [PMID: 36361587 PMCID: PMC9659304 DOI: 10.3390/ijms232112797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan–Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.
Collapse
|
14
|
Sugiyama A, Hirashima M. Fetal nuchal edema and developmental anomalies caused by gene mutations in mice. Front Cell Dev Biol 2022; 10:949013. [PMID: 36111337 PMCID: PMC9468611 DOI: 10.3389/fcell.2022.949013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Fetal nuchal edema, a subcutaneous accumulation of extracellular fluid in the fetal neck, is detected as increased nuchal translucency (NT) by ultrasonography in the first trimester of pregnancy. It has been demonstrated that increased NT is associated with chromosomal anomalies and genetic syndromes accompanied with fetal malformations such as defective lymphatic vascular development, cardiac anomalies, anemia, and a wide range of other fetal anomalies. However, in many clinical cases of increased NT, causative genes, pathogenesis and prognosis have not been elucidated in humans. On the other hand, a large number of gene mutations have been reported to induce fetal nuchal edema in mouse models. Here, we review the relationship between the gene mutants causing fetal nuchal edema with defective lymphatic vascular development, cardiac anomalies, anemia and blood vascular endothelial barrier anomalies in mice. Moreover, we discuss how studies using gene mutant mouse models will be useful in developing diagnostic method and predicting prognosis.
Collapse
|
15
|
Lin Y, Huang J, Zhu Z, Zhang Z, Xian J, Yang Z, Qin T, Chen L, Huang J, Huang Y, Wu Q, Hu Z, Lin X, Xu G. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis 2021; 16:496. [PMID: 34819141 PMCID: PMC8611834 DOI: 10.1186/s13023-021-02112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background The left ventricular noncompaction cardiomyopathy (LVNC) is a rare subtype of cardiomyopathy associated with a high risk of heart failure (HF), thromboembolism, arrhythmia, and sudden cardiac death. Methods The proband with overlap phenotypes of LVNC and hypertrophic cardiomyopathy (HCM) complicates atrial fibrillation (AF), ventricular tachycardia (VT), and HF due to the diffuse myocardial lesion, which were diagnosed by electrocardiogram, echocardiogram and cardiac magnetic resonance imaging. Peripheral blood was collected from the proband and his relatives. DNA was extracted from the peripheral blood of proband for high-throughput target capture sequencing. The Sanger sequence verified the variants. The protein was extracted from the skin of the proband and healthy volunteer. The expression difference of desmocollin2 was detected by Western blot. Results The novel heterozygous truncated mutation (p.K47Rfs*2) of the DSC2 gene encoding an important component of desmosomes was detected by targeted capture sequencing. The western blots showed that the expressing level of functional desmocollin2 protein (~ 94kd) was lower in the proband than that in the healthy volunteer, indicating that DSC2 p.K47Rfs*2 obviously reduced the functional desmocollin2 protein expression in the proband. Conclusion The heterozygous DSC2 p.K47Rfs*2 remarkably and abnormally reduced the functional desmocollin2 expression, which may potentially induce the overlap phenotypes of LVNC and HCM, complicating AF, VT, and HF.
Collapse
Affiliation(s)
- Yubi Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jiana Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Reproductive Center, The Six Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhiling Zhu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zuoquan Zhang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianzhong Xian
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhe Yang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Tingfeng Qin
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Linxi Chen
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Jingmin Huang
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Yin Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Qiaoyun Wu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhenyu Hu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Xiufang Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Geyang Xu
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
16
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Makrozyklische FKBP51‐Liganden enthüllen einen transienten Bindungsmodus mit erhöhter Selektivität. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Christian Meyners
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Martha C. Taubert
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas Bajaj
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Tim Heymann
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Stephanie Merz
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Anna Charalampidou
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Jürgen Kolos
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Patrick L. Purder
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas M. Geiger
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Pablo Wessig
- Universität Potsdam Institut für Chemie Karl-Liebknecht-Straße 24–25 14476 Potsdam Deutschland
| | - Nils C. Gassen
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Andreas Bracher
- Max-Planck-Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Felix Hausch
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
17
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Macrocyclic FKBP51 Ligands Define a Transient Binding Mode with Enhanced Selectivity. Angew Chem Int Ed Engl 2021; 60:13257-13263. [PMID: 33843131 PMCID: PMC8252719 DOI: 10.1002/anie.202017352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/14/2021] [Indexed: 12/28/2022]
Abstract
Subtype selectivity represents a challenge in many drug discovery campaigns. A typical example is the FK506 binding protein 51 (FKBP51), which has emerged as an attractive drug target. The most advanced FKBP51 ligands of the SAFit class are highly selective vs. FKBP52 but poorly discriminate against the homologs and off-targets FKBP12 and FKBP12.6. During a macrocyclization pilot study, we observed that many of these macrocyclic analogs have unanticipated and unprecedented preference for FKBP51 over FKBP12 and FKBP12.6. Structural studies revealed that these macrocycles bind with a new binding mode featuring a transient conformation, which is disfavored for the small FKBPs. Using a conformation-sensitive assay we show that this binding mode occurs in solution and is characteristic for this new class of compounds. The discovered macrocycles are non-immunosuppressive, engage FKBP51 in cells, and block the cellular effect of FKBP51 on IKKα. Our findings provide a new chemical scaffold for improved FKBP51 ligands and the structural basis for enhanced selectivity.
Collapse
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Christian Meyners
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Martha C. Taubert
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas Bajaj
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Tim Heymann
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Stephanie Merz
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Anna Charalampidou
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Jürgen Kolos
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Patrick L. Purder
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas M. Geiger
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Pablo Wessig
- Universität PotsdamInstitut für ChemieKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Nils C. Gassen
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Andreas Bracher
- Max-Planck-Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Felix Hausch
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| |
Collapse
|
18
|
Chen S, Wu Y, Qin X, Wen P, Liu J, Yang M. Global gene expression analysis using RNA-seq reveals the new roles of Panax notoginseng Saponins in ischemic cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113639. [PMID: 33301914 DOI: 10.1016/j.jep.2020.113639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS), the main active ingredients of Panax notoginseng (Burkill) F.H.Chen, have been clinically used for cardiovascular diseases treatment in China as the Traditional Chinese Medicine (TCM) (Duan et al., 2017). Evidence demonstrated that PNS protected cardiomyocytes from myocardial ischemia, but the more underlying molecular mechanisms of the protective effect are still unclear. The aims of this study are to systematically know the function of PNS and discover new roles of PNS in ischemic cardiomyocytes. MATERIALS AND METHODS To confirm PNS function on ischemic cardiomyopathy, we established in vitro myocardial ischemia model on H9C2 cardiomyocyte line, which was induced by oxygen-glucose depletion (OGD). Then RNA-seq was carried out to systematically analyze global gene expression. This study was aimed to systematically investigate the protective effect and more potential molecular mechanisms of PNS on H9C2 cardiomyocytes in vitro through whole-transcriptome analysis with total RNA sequencing (RNA-Seq). RESULTS PNS exhibited anti-apoptotic effect in H9C2 cardiomyocytes in OGD-induced myocardial ischemia model. Through RNA-seq, we found that OGD affected expression profiling of many genes, including upregulated and downregulated genes. PNS inhibited cardiomyocyte apoptosis and death through rescuing cell cycle arrest, the DNA double-strand breakage repair process and chromosome segregation. Interestingly, for the canonical signaling pathways regulation, RNA-seq showed PNS could inhibit cardiac hypertrophy, MAPK signaling pathway, and re-activate PI3K/AKT and AMPK signaling pathways. Experimental data also confirmed the PNS could protect cardiomyocytes from OGD-induced apoptosis through activating PI3K/AKT and AMPK signaling pathways. Moreover, RNA-seq demonstrated that the expression levels of many non-coding RNAs, such as miRNAs and lncRNAs, were significantly affected after PNS treatment, suggesting that PNS could protect cardiomyocytes through regulating non-coding RNAs. CONCLUSION RNA-seq systematically revealed different novel roles of Panax Notoginseng Saponins (PNS) in protecting cardiomyocytes from apoptosis, induced by myocardial ischemia, through rescuing cell cycle arrest and cardiac hypertrophy, re-activating the DNA double-strand breakage repair process, chromosome segregation, PI3K/Akt and AMPK signaling pathways and regulating non-coding RNAs.
Collapse
Affiliation(s)
- Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xianyu Qin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Pengju Wen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, 46202, IN, USA.
| | - Min Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
19
|
Sørhus E, Donald CE, da Silva D, Thorsen A, Karlsen Ø, Meier S. Untangling mechanisms of crude oil toxicity: Linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143896. [PMID: 33316527 DOI: 10.1016/j.scitotenv.2020.143896] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Early life stages of fish are highly sensitive to crude oil exposure and thus, short term exposures during critical developmental periods could have detrimental consequences for juvenile survival. Here we administered crude oil to Atlantic haddock (Melanogrammus aeglefinus) in short term (3-day) exposures at two developmental time periods: before first heartbeat, from gastrulation to cardiac cone stage (early), and from first heartbeat to one day before hatching (late). A frequent sampling regime enabled us to determine immediate PAH uptake, metabolite formation and gene expression changes. In general, the embryotoxic consequences of an oil exposure were more severe in the early exposure animals. Oil droplets on the eggshell resulted in severe cardiac and craniofacial abnormalities in the highest treatments. Gene expression changes of Cytochrome 1 a, b, c and d (cyp1a, b, c, d), Bone morphogenetic protein 10 (bmp10), ABC transporter b1 (abcb1) and Rh-associated G-protein (rhag) were linked to PAH uptake, occurrence of metabolites of phenanthrene and developmental and functional abnormalities. We detected circulation-independent, oil-induced gene expression changes and separated phenotypes linked to proliferation, growth and disruption of formation events at early and late developmental stages. Changes in bmp10 expression suggest a direct oil-induced effect on calcium homeostasis. Localized expression of rhag propose an impact on osmoregulation. Severe eye abnormalities were linked to possible inappropriate overexpression of cyp1b in the eyes. This study gives an increased knowledge about developmentally dependent effects of crude oil toxicity. Thus, our findings provide more knowledge and detail to new and several existing adverse outcome pathways of crude oil toxicity.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway.
| | | | - Denis da Silva
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | | | | | | |
Collapse
|
20
|
You X, Ryu MJ, Cho E, Sang Y, Damnernsawad A, Zhou Y, Liu Y, Zhang J, Lee Y. Embryonic Expression of Nras G 12 D Leads to Embryonic Lethality and Cardiac Defects. Front Cell Dev Biol 2021; 9:633661. [PMID: 33681212 PMCID: PMC7928391 DOI: 10.3389/fcell.2021.633661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ras proteins control a complex intracellular signaling network. Gain-of-function mutations in RAS genes lead to RASopathy disorders in humans, including Noonan syndrome (NS). NS is the second most common syndromic cause of congenital heart disease. Although conditional expression of the NrasG12D/+ mutation in adult hematopoietic system is leukemogenic, its effects on embryonic development remain unclear. Here, we report that pan-embryonic expression of endogenous NrasG12D/+ by Mox2-Cre in mice caused embryonic lethality from embryonic day (E) 15.5 and developmental defects predominantly in the heart. At E13.5, NrasG12D/+; Mox2Cre/+ embryos displayed a moderate expansion of hematopoietic stem and progenitor cells without a significant impact on erythroid differentiation in the fetal liver. Importantly, the mutant embryos exhibited cardiac malformations resembling human congenital cardiac defects seen in NS patients, including ventricular septal defects, double outlet right ventricle, the hypertrabeculation/thin myocardium, and pulmonary valve stenosis. The mutant heart showed dysregulation of ERK, BMP, and Wnt pathways, crucial signaling pathways for cardiac development. Endothelial/endocardial-specific expression of NrasG12D/+ caused the cardiac morphological defects and embryonic lethality as observed in NrasG12D/+; Mox2Cre/+ mutants, but myocardial-specific expression of NrasG12D/+ did not. Thus, oncogenic NrasG12D mutation may not be compatible with embryonic survival.
Collapse
Affiliation(s)
- Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Myung-Jeom Ryu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanzhi Sang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Kang S, Jeon S, Kim S, Chang YK, Kim YC. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci Rep 2020; 10:22158. [PMID: 33335164 PMCID: PMC7747696 DOI: 10.1038/s41598-020-78968-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances related to the CRISPR/Cas9-based genome editing system have enabled sophisticated genome editing in microalgae. Although the demand for research on genome editing in microalgae has increased over time, methodological research has not been established to date for the delivery of a ribonucleoprotein (Cas9/sgRNA complex) using a cell penetrating peptide into microalgal cell lines. Here, we present a ribonucleoprotein delivery system for Chlamydomonas reinhardtii mediated by the cell penetrating peptide pVEC (LLIILRRRIRKQAHAHSK) which is in a non-covalent form. Using this technically simple method, the ribonucleoprotein was successfully delivered into C. reinhardtii. Gene Maa7 and FKB12 were disrupted, and their distinguishing patterns of Indel mutations were analyzed with the observation of several insertions of sequences not originating from the genome DNA, such as chloroplast DNA, into the expected loci. In addition, the cytotoxicity of Cas9 and the ribonucleoprotein was investigated according to the concentration and time in the algal cells. It was observed that Cas9 alone without the sgRNA induces a more severe cytotoxicity compared to the ribonucleoprotein. Our study will not only contribute to algal cell biology and its genetic engineering for further applications involving various organisms but will also provide a deeper understating of the basic science of the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Seongsu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungcheol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
22
|
Dolladille C, Ederhy S, Allouche S, Dupas Q, Gervais R, Madelaine J, Sassier M, Plane AF, Comoz F, Cohen AA, Thuny FR, Cautela J, Alexandre J. Late cardiac adverse events in patients with cancer treated with immune checkpoint inhibitors. J Immunother Cancer 2020; 8:jitc-2019-000261. [PMID: 31988143 PMCID: PMC7057417 DOI: 10.1136/jitc-2019-000261] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Immune checkpoint inhibitor (ICI)-associated early cardiac adverse events (CAEs), mostly acute and fulminant myocarditis, have been well characterized and mainly occur during the first 90 days after ICI therapy initiation. ICI-associated late CAEs (occurring after the first 90 days of treatment) have not yet been described. Methods First, we compared characteristics of a cohort involving early (defined as a CAE time to onset (TTO) of <90 days after ICI therapy initiation) and late (defined as a CAE TTO of ≥90 days after ICI therapy initiation) ICI-associated CAE consecutive cases who were referred to three French cardio-oncology units. Second, ICI-associated CAE cases were searched in VigiBase, the WHO global individual case safety report database, and early and late ICI-associated CAEs were compared. Results In the cohort study, compared with early CAE cases (n=19, median TTO of 14 days), late ICI-associated CAE cases (n=19, median TTO of 304 days) exhibited significantly more left ventricular systolic dysfunction (LVSD) and heart failure (HF) and less frequent supraventricular arrhythmias. In VigiBase, compared with early cases (n=437, 73.3%, median TTO 21 days), the late ICI-associated CAE reports (n=159, 26.7%, median TTO 178 days) had significantly more frequent HF (21.1% vs 31.4%, respectively, p=0.01). Early and late ICI-associated CAE cases had similarly high mortality rates (40.0% vs 44.4% in the cohort and 30.0% vs 27.0% in VigiBase, respectively). Conclusions Late CAEs could occur with ICI therapy and were mainly revealed to be HF with LVSD. Trial registration numbers NCT03678337, NCT03882580, and NCT03492528.
Collapse
Affiliation(s)
- Charles Dolladille
- CHU de Caen, PICARO Cardio-oncology Program, Department of Pharmacology, CHU de Caen, Caen, France .,CHU de Caen, Department of Cardiology, CHU de Caen, Caen F-14000, France
| | - Stephane Ederhy
- Department of Cardiology, Cardio-oncology Unit, Cardio-oncology Research G, INSERM U 856, Thrombose, Athérothrombose et Pharmacologie Appliquée, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Stéphane Allouche
- EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-reperfusion Myocardique, Université de Caen Normandie, Caen, Normandie, France
| | - Querntin Dupas
- EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-reperfusion Myocardique, Université de Caen Normandie, Caen, Normandie, France
| | - Radj Gervais
- Onco-pneumology, Centre François Baclesse Centre de Lutte Contre le Cancer, Caen, France
| | | | - Marion Sassier
- CHU de Caen, PICARO Cardio-oncology Program, Department of Pharmacology, CHU de Caen, Caen, France
| | - Anne-Flore Plane
- CHU de Caen, Department of Cardiology, CHU de Caen, Caen F-14000, France
| | | | - Ariel Aron Cohen
- Department of Cardiology, Cardio-oncology Unit, Cardio-oncology Research G, INSERM U 856, Thrombose, Athérothrombose et Pharmacologie Appliquée, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Franck Roland Thuny
- Mediterranean University Cardio-oncology Center (MEDI-CO Center), Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, Hôpital Nord, Marseille, APHM, Marseille, Provence-Alpes-Côte d'Azu, France
| | - Jennifer Cautela
- Mediterranean University Cardio-oncology Center (MEDI-CO Center), Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, Hôpital Nord, Marseille, APHM, Marseille, Provence-Alpes-Côte d'Azu, France
| | - Joachim Alexandre
- CHU de Caen, PICARO Cardio-oncology Program, Department of Pharmacology, CHU de Caen, Caen, France.,EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-reperfusion Myocardique, Université de Caen Normandie, Caen, Normandie, France
| |
Collapse
|
23
|
Vilcu M, Scurtu I, Ohad DG, Papuc I, Scurtu L, Tabaran F. Canine infantile left ventricular noncompaction. BMC Vet Res 2020; 16:255. [PMID: 32703195 PMCID: PMC7379346 DOI: 10.1186/s12917-020-02480-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Left ventricular noncompaction (LVNC) is a rare form of cardiomyopathy currently described in humans and cats. It consists of a spongy myocardium characterized by prominent trabeculation and deep recesses involving more than 50% of the ventricular thickness. We describe the clinical and pathological features of LVNC combined with tricuspid valve dysplasia, double-orifice tricuspid valve and severe pulmonary stenosis in a puppy. In addition, we briefly review the LVNC causes, pathogenesis, forms and current diagnostic criteria. Case presentation A seven-week-old intact German Shorthaired Pointer-cross male was presented with a poor body condition, exercise intolerance and dyspnea. Clinical exam identified a bilateral systolic murmur (grade IV/VI over the right heart base and grade III/VI over the left heart base). Echocardiography identified tricuspid valve dysplasia, mild mitral regurgitation, and severe pulmonic stenosis with a trans-valvar systolic pressure gradient of 106 mmHg. Left ventricular noncompaction was diagnosed by necropsy and further confirmed histopathologically by the presence of two distinct myocardial layers: an inner noncompacted zone covering more than 50% of ventricular thickness containing prominent trabeculation and deep recesses, and an outer zone of compact myocardium. Conclusions This is the first case describing LVNC in a canine patient, supporting the introduction of this form of heart disease as a differential diagnosis for cardiomyopathies in juvenile and adult dogs.
Collapse
Affiliation(s)
- Maria Vilcu
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania
| | - Iuliu Scurtu
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania.
| | - Dan G Ohad
- The Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Ionel Papuc
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania
| | - Laura Scurtu
- Modis Competence Center, Strada Muresului 9, 400598, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania
| |
Collapse
|
24
|
Hou H, Lyu Y, Jiang J, Wang M, Zhang R, Liew CC, Wang B, Cheng C. Peripheral blood transcriptome identifies high-risk benign and malignant breast lesions. PLoS One 2020; 15:e0233713. [PMID: 32497068 PMCID: PMC7272048 DOI: 10.1371/journal.pone.0233713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 01/22/2023] Open
Abstract
Background Peripheral blood transcriptome profiling is a potentially important tool for disease detection. We utilize this technique in a case-control study to identify candidate transcriptomic biomarkers able to differentiate women with breast lesions from normal controls. Methods Whole blood samples were collected from 50 women with high-risk breast lesions, 57 with breast cancers and 44 controls (151 samples). Blood gene expression profiling was carried out using microarray hybridization. We identified blood gene expression signatures using AdaBoost, and constructed a predictive model differentiating breast lesions from controls. Model performance was then characterized by AUC sensitivity, specificity and accuracy. Biomarker biological processes and functions were analyzed for clues to the pathogenesis of breast lesions. Results Ten gene biomarkers were identified (YWHAQ, BCLAF1, WSB1, PBX2, DDIT4, LUC7L3, FKBP1A, APP, HERC2P2, FAM126B). A ten-gene panel predictive model showed discriminatory power in the test set (sensitivity: 100%, specificity: 84.2%, accuracy: 93.5%, AUC: 0.99). These biomarkers were involved in apoptosis, TGF-beta signaling, adaptive immune system regulation, gene transcription and post-transcriptional protein modification. Conclusion A promising method for the detection of breast lesions is reported. This study also sheds light on breast cancer/immune system interactions, providing clues to new targets for breast cancer immune therapy.
Collapse
Affiliation(s)
- Hong Hou
- Qingdao Central Hospital/Qingdao Cancer Hospital, Qingdao, Shandong Province, People’s Republic of China
| | - Yali Lyu
- Huaxia Bangfu Technology Incorporated, Beijing, People’s Republic of China
| | - Jing Jiang
- Qingdao Lianchi Maternity and Infant Hospital, Qingdao, Shandong Province, People’s Republic of China
| | - Min Wang
- Huaxia Bangfu Technology Incorporated, Beijing, People’s Republic of China
| | - Ruirui Zhang
- Huaxia Bangfu Technology Incorporated, Beijing, People’s Republic of China
| | - Choong-Chin Liew
- Golden Health Diagnostics Incorporated, Jiangsu, People’s Republic of China
- Late of Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Canada
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Binggao Wang
- Qingdao Central Hospital/Qingdao Cancer Hospital, Qingdao, Shandong Province, People’s Republic of China
- * E-mail: (BW); (CC)
| | - Changming Cheng
- Huaxia Bangfu Technology Incorporated, Beijing, People’s Republic of China
- * E-mail: (BW); (CC)
| |
Collapse
|
25
|
Gozalo AS, Zerfas PM, Elkins WR, Gieseck RL. Retrospective Study of Intercalated Disk Defects Associated with Dilated Cardiomyopathy, Atrial Thrombosis, and Heart Failure in BALB/c Mice Deficient in IL4 Receptor α. Comp Med 2020; 70:266-276. [PMID: 32384942 PMCID: PMC7287387 DOI: 10.30802/aalas-cm-19-000059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/01/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
An increased incidence of dilated cardiomyopathy and atrial thrombosis was noted in a breeding colony of BALB/c mice deficient in IL4 receptor α. The condition affected mice of both sexes and of various ages, and extensive testing (microbiology, serology, histopathology) failed to ascertain the cause. Transmission electron microscopy of heart samples showed structural defects in the myocardial intercalated disks, characterized by unorganized and heavily convoluted arrangement with lower density and less prominent desmosomes and adherens junctions, widening of the intercellular space, myofibrillar lysis adjacent to intercalated disks, occasional sarcomere lysis with marked myofiber degeneration, vacuolation, accumulation of cell debris, and myelin figures. The intercalated disk contains cell adhesion molecules that form cell junctions, allowing contraction coupling of cardiomyocytes and the electrical and mechanical connection between cardiac fibers. Thus, defects at this level result in poor myocardial contraction, intracardiac blood stagnation, and consequently cardiac dilation with clinical signs of heart failure. The background strain or, potentially, the Cre-loxP-mediated recombination system used to create these mice may have contributed to the elevated incidence of cardiomyopathy and atrial thrombosis in this colony. Due to the backcrossing breeding scheme used, we cannot discount the emergence and colonywide dissemination of a spontaneous mutation that affects the intercalated disk. This report underscores the importance of carefully monitoring genetically modified mice colonies for unexpected phenotypes that may result from spontaneous or unintended mutations or enhanced strain background pathology.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Patricia M Zerfas
- Pathology Service, Office of Research Services, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard L Gieseck
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Ge M, Bai X, Liu A, Liu L, Tian J, Lu T. An eIF3a gene mutation dysregulates myocardium growth with left ventricular noncompaction via the p-ERK1/2 pathway. Genes Dis 2020; 8:545-554. [PMID: 34179316 PMCID: PMC8209309 DOI: 10.1016/j.gendis.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Left ventricular noncompaction (LVNC) is a heterogeneous disorder with unclear genetic causes and an unknown mechanism. eIF3a, an important member of the Eukaryotic translation initiation factor 3 (eIF3) family, is involved in multiple biological processes, including cell proliferation and migration during myocardial development, suggesting it could play a role in LVNC development. To investigate the association between a novel variant (c.1145 A- > G) in eIF3a and LVNC, and explore potential mechanisms that could lead to the development of LVNC. A novel eIF3a variant, c.1145 A- > G, was identified by whole-exome sequencing in a familial pedigree with LVNC. Adenovirus vectors containing wild-type eIF3a and the mutated version were constructed and co-infected into H9C2 cells. Cell proliferation, apoptosis, cell migration, and differentiation, as well as phosphorylation of ERK1/2 were studied and were measured by proliferation assays, flow cytometry, real-time PCR and Western blot, respectively. The eIF3a mutation inhibited the proliferation of H9C2 cells, induced apoptosis, promoted cell migration, and inhibited the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The effect of the eIF3a mutation may be attributed to a decrease in expression of p-ERK1/2. A novel eIF3a gene mutation disrupted the p-ERK1/2 pathway and caused decreased myocardium proliferation, differentiation, accelerated migration.This finding may provide some insight into the mechanism involved in LVNC development.
Collapse
Affiliation(s)
- Mei Ge
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Xuehan Bai
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Aoyi Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Tiewei Lu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| |
Collapse
|
27
|
Gratreak BDK, Swanson EA, Lazelle RA, Jelen SK, Hoenderop J, Bindels RJ, Yang C, Ellison DH. Tacrolimus-induced hypomagnesemia and hypercalciuria requires FKBP12 suggesting a role for calcineurin. Physiol Rep 2020; 8:e14316. [PMID: 31908154 PMCID: PMC6944708 DOI: 10.14814/phy2.14316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Calcineurin inhibitors (CNIs) are immunosuppressive drugs used to prevent graft rejection after organ transplant. Common side effects include renal magnesium wasting and hypomagnesemia, which may contribute to new-onset diabetes mellitus, and hypercalciuria, which may contribute to post-transplant osteoporosis. Previous work suggested that CNIs reduce the abundance of key divalent cation transport proteins, expressed along the distal convoluted tubule, causing renal magnesium and calcium wasting. It has not been clear, however, whether these effects are specific for the distal convoluted tubule, and whether these represent off-target toxic drug effects, or result from inhibition of calcineurin. The CNI tacrolimus can inhibit calcineurin only when it binds with the immunophilin, FKBP12; we previously generated mice in which FKBP12 could be deleted along the nephron, to test whether calcineurin inhibition is involved, these mice are normal at baseline. Here, we confirmed that tacrolimus-treated control mice developed hypomagnesemia and urinary calcium wasting, with decreased protein and mRNA abundance of key magnesium and calcium transport proteins (NCX-1 and Calbindin-D28k ). However, qPCR also showed decreased mRNA expression of NCX-1 and Calbindin-D28k , and TRPM6. In contrast, KS-FKBP12-/- mice treated with tacrolimus were completely protected from these effects. These results indicate that tacrolimus affects calcium and magnesium transport along the distal convoluted tubule and strongly suggests that inhibition of the phosphatase, calcineurin, is directly involved.
Collapse
Affiliation(s)
- Brittany D. K. Gratreak
- Division of Nephrology and HypertensionDepartment of MedicineOregon Health and Science UniversityPortlandORUSA
| | - Elizabeth A. Swanson
- Division of Nephrology and HypertensionDepartment of MedicineOregon Health and Science UniversityPortlandORUSA
| | - Rebecca A. Lazelle
- Division of Nephrology and HypertensionDepartment of MedicineOregon Health and Science UniversityPortlandORUSA
| | - Sabina K. Jelen
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenNetherlands
| | - Joost Hoenderop
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenNetherlands
| | - René J. Bindels
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenNetherlands
| | - Chao‐Ling Yang
- Division of Nephrology and HypertensionDepartment of MedicineOregon Health and Science UniversityPortlandORUSA
| | - David H. Ellison
- Division of Nephrology and HypertensionDepartment of MedicineOregon Health and Science UniversityPortlandORUSA
- Renal SectionVeterans Affairs Portland Health Care SystemPortlandORUSA
| |
Collapse
|
28
|
Ichida F. Left ventricular noncompaction - Risk stratification and genetic consideration. J Cardiol 2019; 75:1-9. [PMID: 31629663 DOI: 10.1016/j.jjcc.2019.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
Left ventricular noncompaction (LVNC) is a cardiomyopathy characterized by two layered structures composed of prominent trabecular meshwork and deep intertrabecular recesses. LVNC was thought to be rare; however, heightened awareness has resulted in an increased detection of the morphological features of LVNC in routine clinical practice especially in the adult population. Although LVNC was classified as an independent primary cardiomyopathy of genetic origin by the American Heart Association in 2006, its definition, diagnostic criteria and clinical implications are still being debated. Clinical manifestations are highly variable, even in the same family, ranging from no symptoms to disabling congestive heart failure, life-threatening arrhythmias, systemic thromboemboli, and sudden cardiac death. Among phenotypic subtypes of LVNC, children with isolated LVNC with normal cardiac function had the best outcomes: children with LVNC and dilated cardiomyopathy had the worst outcomes. Myocardial dysfunction or ventricular arrhythmias are predictors of mortality in adults with LVNC. LVNC, like other forms of inherited cardiomyopathy, is genetically heterogeneous and can be inherited as an autosomal dominant or X-linked recessive disorder. It has been linked to mutations in many genes, including ZASP, TAZ/G4.5, and those encoding sarcomeric, Z-disc, cytoskeleton proteins, and mitochondria. Disturbance of the NOTCH signaling pathway has been reported to be part of genetic pathway for LVNC as well. Although there are an increasing number of reports, genotype-phenotype correlations have been challenging and investigations are ongoing. Patients with mutations are more likely to have major adverse cardiovascular events, further, LV systolic dysfunction in mutation carriers makes them at high risk for cardiac events. Treatments focus on improvement in cardiac function and reduction of mechanical stress in patients with systolic dysfunction and on treatment of arrhythmia and implantation of an automatic implantable cardioverter-defibrillator for prevention of sudden death. Given that 20-40% of cases may be familial, family screening is recommended.
Collapse
Affiliation(s)
- Fukiko Ichida
- Department of Pediatrics, International University of Health and Welfare, Sanno Hospital, 8-10-16, Akasaka, Minato-ku, Tokyo 107-0052, Japan.
| |
Collapse
|
29
|
Assenza MR, Barbagallo F, Barrios F, Cornacchione M, Campolo F, Vivarelli E, Gianfrilli D, Auletta L, Soricelli A, Isidori AM, Lenzi A, Pellegrini M, Naro F. Critical role of phosphodiesterase 2A in mouse congenital heart defects. Cardiovasc Res 2019; 114:830-845. [PMID: 29409032 DOI: 10.1093/cvr/cvy030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Aims Phosphodiesterase 2 A (Pde2A), a cAMP-hydrolysing enzyme, is essential for mouse development; however, the cause of Pde2A knockout embryonic lethality is unknown. To understand whether Pde2A plays a role in cardiac development, hearts of Pde2A deficient embryos were analysed at different stage of development. Methods and results At the stage of four chambers, Pde2A deficient hearts were enlarged compared to the hearts of Pde2A heterozygous and wild-type. Pde2A knockout embryos revealed cardiac defects such as absence of atrial trabeculation, interventricular septum (IVS) defects, hypertrabeculation and thinning of the myocardial wall and in rare cases they had overriding aorta and valves defects. E14.5 Pde2A knockouts showed reduced cardiomyocyte proliferation and increased apoptosis in the IVS and increased proliferation in the ventricular trabeculae. Analyses of E9.5 Pde2A knockout embryos revealed defects in cardiac progenitor and neural crest markers, increase of Islet1 positive and AP2 positive apoptotic cells. The expression of early cTnI and late Mef2c cardiomyocyte differentiation markers was strongly reduced in Pde2A knockout hearts. The master transcription factors of cardiac development, Tbx, were down-regulated in E14.5 Pde2A knockout hearts. Absence of Pde2A caused an increase of intracellular cAMP level, followed by an up-regulation of the inducible cAMP early repressor, Icer in fetal hearts. In vitro experiments on wild-type fetal cardiomyocytes showed that Tbx gene expression is down-regulated by cAMP inducers. Furthermore, Pde2A inhibition in vivo recapitulated the heart defects observed in Pde2A knockout embryos, affecting cardiac progenitor cells. Interestingly, the expression of Pde2A itself was dramatically affected by Pde2A inhibition, suggesting a potential autoregulatory loop. Conclusions We demonstrated for the first time a direct relationship between Pde2A impairment and the onset of mouse congenital heart defects, highlighting a novel role for cAMP in cardiac development regulation.
Collapse
Affiliation(s)
- Maria Rita Assenza
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Florencia Barrios
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Vivarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Andrea Soricelli
- IRCCS SDN, 80143 Naples, Italy.,Department of Motor Science and Wellness, Parthenope University, 80133 Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.,Institute of Cell Biology and Neurobiology, IBCN-CNR, 00015 Monterotondo, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
30
|
Du H, Liu S, Li C, Wei Y. Comparative proteomics analysis of myocardium in left ventricular non-compaction cardiomyopathy. Acta Biochim Biophys Sin (Shanghai) 2019; 51:653-655. [PMID: 31056672 DOI: 10.1093/abbs/gmz039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haiwei Du
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov 2019; 5:10. [PMID: 30729032 PMCID: PMC6361926 DOI: 10.1038/s41421-018-0079-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Although conventional genetic modification approaches for protein knockdown work very successfully due to the increasing use of CRISPR/Cas9, effective techniques for achieving protein depletion in adult animals, especially in large animals such as non-human primates, are lacking. Here, we report a chemical approach based on PROTACs technology that efficiently and quickly knocks down FKBP12 (12-kDa FK506-binding) protein globally in vivo. Both intraperitoneal and oral administration led to rapid, robust, and reversible FKBP12 degradation in mice. The efficiency and practicality of this method were successfully demonstrated in both large and small animals (mice, rats, Bama pigs, and rhesus monkeys). Furthermore, we showed this approach can also be applied to effectively knockdown other target proteins such as Bruton's tyrosine kinase (BTK). This chemical protein knockdown strategy provides a powerful research tool for gene function studies in animals, particularly in large animals, for which gene-targeted knockout strategies may remain unfeasible.
Collapse
|
32
|
Pan Z, Ai T, Chang PC, Liu Y, Liu J, Maruyama M, Homsi M, Fishbein MC, Rubart M, Lin SF, Xiao D, Chen H, Chen PS, Shou W, Li BY. Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12. Am J Physiol Heart Circ Physiol 2019; 316:H371-H379. [PMID: 30499712 PMCID: PMC6397388 DOI: 10.1152/ajpheart.00486.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation.
Collapse
Affiliation(s)
- Zhenwei Pan
- Department of Pharmacology, Harbin Medical University, Heilonjiang, China
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Tomohiko Ai
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Po-Cheng Chang
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
- The Second Section of Cardiology, Departments of Medicine, Chang Gung Memorial Hospital and Chang Gung University School of Medicine , Taoyuan , Taiwan
| | - Ying Liu
- Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jijia Liu
- Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
- The Second Xiangya Hospital, South Central University School of Medicine , China
| | - Mitsunori Maruyama
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Mohamed Homsi
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, University of California , Los Angeles, California
| | - Michael Rubart
- Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Shien-Fong Lin
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Deyong Xiao
- Fountain Valley Biotechnology, Inc., Dalian Hi-Tech District, Dalian , China
| | - Hanying Chen
- Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Peng-Sheng Chen
- Krannert Institute for Cardiology and the Division of Cardiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Weinian Shou
- Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | - Bai-Yan Li
- Department of Pharmacology, Harbin Medical University, Heilonjiang, China
- Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
33
|
Steele TWE, Samsó M. The FKBP12 subunit modifies the long-range allosterism of the ryanodine receptor. J Struct Biol 2019; 205:180-188. [PMID: 30641143 DOI: 10.1016/j.jsb.2018.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Ryanodine receptors (RyRs) are large conductance intracellular channels controlling intracellular calcium homeostasis in myocytes, neurons, and other cell types. Loss of RyR's constitutive cytoplasmic partner FKBP results in channel sensitization, dominant subconductance states, and increased cytoplasmic Ca2+. FKBP12 binds to RyR1's cytoplasmic assembly 130 Å away from the ion gate at four equivalent sites in the RyR1 tetramer. To understand how FKBP12 binding alters RyR1's channel properties, we studied the 3D structure of RyR1 alone in the closed conformation in the context of the open and closed conformations of FKBP12-bound RyR1. We analyzed the metrics of conformational changes of existing structures, the structure of the ion gate, and carried out multivariate statistical analysis of thousands of individual cryoEM RyR1 particles. We find that under closed state conditions, in the presence of FKBP12, the cytoplasmic domain of RyR1 adopts an upward conformation, whereas absence of FKBP12 results in a relaxed conformation, while the ion gate remains closed. The relaxed conformation is intermediate between the RyR1-FKBP12 complex closed (upward) and open (downward) conformations. The closed-relaxed conformation of RyR1 appears to be consistent with a lower energy barrier separating the closed and open states of RyR1-FKBP12, and suggests that FKBP12 plays an important role by restricting conformations within RyR1's conformational landscape.
Collapse
Affiliation(s)
- Tyler W E Steele
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
34
|
Feng R, Zhou X, Zhang W, Pu T, Sun Y, Yang R, Wang D, Zhang X, Gao Y, Cai Z, Liang Y, Yu Q, Wu Y, Lei X, Liang Z, Jones O, Wang L, Xu M, Sun Y, Isaacs WB, Ma J, Xu X. Dynamics expression of DmFKBP12/Calstabin during embryonic early development of Drosophila melanogaster. Cell Biosci 2019; 9:8. [PMID: 30637096 PMCID: PMC6325743 DOI: 10.1186/s13578-019-0270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Calcium signaling are conserved from invertebrates to vertebrates and plays critical roles in many molecular mechanisms of embryogenesis and postnatal development. As a critical component of the signaling pathway, the RyR medicated calcium-induced calcium release signaling system, has been well studied along with their regulator FK506-binding protein 12 (FKBP12/Calstabin). Lack of FKBP12 is known to result in lethal cardiac dysfunction in mouse. However, precisely how FKBP12 is regulated and effects calcium signaling in Drosophila melanogaster remains largely unknown. Results In this study, we identified both temporal and localization changes in expression of DmFKBP12, a translational and transcriptional regulator of Drosophila RyR (DmRyR) and FKBP12, through embryonic development. DmFKBP12 is first expressed at the syncytial blastoderm stage and undergoes increased expression during the cellular blastoderm and early gastrulation stages. At late gastrulation, DmFKBP12 expression begins to decline until it reaches homeostasis, which it then maintains throughout the rest of development. Throughout these described changes in expression, DmFKBP12 mRNA remain stable, which indicates that protein dynamics are attributed to regulation at the mRNA to protein translation level. In addition to temporal changes in expression, dynamic expression profiles during Drosophila development also revealed DmFKBP12 localization. Although DmFKBP12 is distributed evenly between the anterior to posterior poles of the blastoderm egg, the protein is expressed more strongly in the cortex of the early Drosophila gastrula with the highest concentration found in the basement membrane of the cellular blastoderm. Fertilized egg, through the profile as under-membrane cortex distribution concentering onto basement at cellular blastoderm, to the profile as three-gem layer localization in primitive neuronal and digestion architecture of early Drosophila gastrula. By late gastrulation, DmFKBP12 is no longer identified in the yolk or lumen of duct structures and has relocated to the future brain (suboesophageal and supraesophageal ganglions), ventral nervous system, and muscular system. Throughout these changes in distribution, in situ DmFKBP12 mRNA monitoring detected equal distribution of DmFKBP12 mRNA, once again indicating that regulation of DmFKBP12 occurs at the translational level in Drosophila development. Conclusion As a critical regulator of the DmRyR-FKBP complex, DmFKBP12 expression in Drosophila fluctuates temporally and geographically with the formation of organ systems. These finding indicate that DmFKBP12 and RyR associated calcium signaling plays an essential role in the successful development of Drosophila melanogaster. Further study on the differences between mammalian RyR-FKBP12 and Drosophila DmRyR-FKBP12 can be exploited to develop safe pesticides. Electronic supplementary material The online version of this article (10.1186/s13578-019-0270-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Feng
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Xin Zhou
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China.,2Ohio State University School of Medicine, Columbus, OH 43210 USA
| | - Wei Zhang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Tao Pu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yuting Sun
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Rong Yang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Dan Wang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Xiaofei Zhang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yingfeng Gao
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Zhenlu Cai
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yu Liang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Qiuxia Yu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yajun Wu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Xinjuan Lei
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Zhijia Liang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Odell Jones
- 4University of Pennsylvania ULAR, Philadelphia, PA 19144 USA
| | - Liyang Wang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Mengmeng Xu
- 5Medical-Scientist Training Program, Department of Pharmacology, Duke University Medical Center, Durham, NC 27710 USA
| | - Yanping Sun
- 6College of Pharmacy, Xi'an Medical University, Xi'an, 710062 China
| | | | - Jianjie Ma
- 2Ohio State University School of Medicine, Columbus, OH 43210 USA
| | - Xuehong Xu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| |
Collapse
|
35
|
Peptidyl-Prolyl- cis/ trans-Isomerases Mip and PpiB of Legionella pneumophila Contribute to Surface Translocation, Growth at Suboptimal Temperature, and Infection. Infect Immun 2018; 87:IAI.00939-17. [PMID: 30323027 DOI: 10.1128/iai.00939-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
The gammaproteobacterium Legionella pneumophila is the causative agent of Legionnaires' disease, an atypical pneumonia that manifests itself with severe lung damage. L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. In L. pneumophila the surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness of L. pneumophila Furthermore, they contribute to infection of the natural host Acanthamoeba castellanii as well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators of L. pneumophila with compensatory action and pleiotropic effects.
Collapse
|
36
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
37
|
Wang Y, Lu P, Wu B, Morrow BE, Zhou B. NOTCH maintains developmental cardiac gene network through WNT5A. J Mol Cell Cardiol 2018; 125:98-105. [PMID: 30347193 DOI: 10.1016/j.yjmcc.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
NOTCH and WNT signaling pathways play critical roles in cardiac chamber formation. Here we explored the potential interactions between the two pathways in this developmental process by using genetically modified mouse models and whole embryo culture systems. By deletion of Notch1 to inactivate NOTCH1 signaling in the endocardium in vivo and ex vivo rescue experiments, we showed that myocardial WNT5A mediated endocardial NOTCH1 signaling to maintain the gene regulatory network essential for cardiac chamber formation. Furthermore, genetic deletion of β-catenin in the myocardium and inhibition of the WNT/Ca2+ signaling by FK506 resulted in a similar disruption of the gene regulatory network as inactivation of endocardial NOTCH1 signaling. Together, these findings identify WNT5A as a key myocardial factor that mediates the endocardial NOTCH signaling to maintain the gene regulatory network essential for cardiac chamber formation through WNT/β-catenin and WNT/Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Department of Genetics, Albert Einstein College of Medicine, New York 10461, USA.
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, New York 10461, USA
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, New York 10461, USA
| | - Bernice E Morrow
- Departments of Genetics, Obstetrics & Gynecology, and Pediatrics, Albert Einstein College of Medicine, Wilf Cardiovascular Research Institute, New York 10461, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Institute for Aging Research, Wilf Cardiovascular Research Institute, New York 10461, USA; Department of Cardiology of First Affiliated Hospital, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
39
|
Liu Y, Chen H, Shou W. Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC). Pediatr Cardiol 2018; 39:1099-1106. [PMID: 29766225 PMCID: PMC6093786 DOI: 10.1007/s00246-018-1882-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Ventricular trabeculation and compaction are two essential morphogenetic events for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with hypoplastic wall and ventricular compact zone deficiencies, which commonly leads to embryonic heart failure and early embryonic lethality. In contrast, the arrest of ventricular wall compaction (noncompaction) is believed to be causative to the left ventricular noncompaction (LVNC), a genetically heterogeneous disorder and the third most common cardiomyopathy among pediatric patients. After critically reviewing recent findings from genetically engineered mouse models, we suggest a model which proposes that defects in myofibrillogenesis and polarization in trabecular cardiomyocytes underly the common pathogenic mechanism for ventricular noncompaction.
Collapse
Affiliation(s)
- Ying Liu
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanying Chen
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weinian Shou
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
40
|
Christidi E, Huang HM, Brunham LR. CRISPR/Cas9-mediated genome editing in human stem cell-derived cardiomyocytes: Applications for cardiovascular disease modelling and cardiotoxicity screening. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:13-21. [PMID: 30205876 DOI: 10.1016/j.ddtec.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are leading causes of death worldwide, and drug-induced cardiotoxicity is among the most common cause of drug withdrawal from the market. Improved models of cardiac tissue are needed to study the mechanisms of CVDs and drug-induced cardiotoxicity. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) have provided a major advance to our ability to study these conditions. Combined with efficient genome editing technologies, such as CRISPR/Cas9, we now have the ability to study with greater resolution the genetic causes and underlying mechanisms of inherited and drug-induced cardiotoxicity, and to investigate new treatments. Here, we review recent advances in the use of hPSC-CMs and CRISPR/Cas9-mediated genome editing to study cardiotoxicity and model CVD.
Collapse
Affiliation(s)
- Effimia Christidi
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Haojun Margaret Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada; Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore; Department of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
41
|
Abstract
Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.
Collapse
Affiliation(s)
- Wen Lin
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Deqiang Li
- Division of Cardiac Surgery, School of Medicine, University of Maryland, 800 West Baltimore ST, Rm 314, Baltimore, MD, 21201, USA.
| |
Collapse
|
42
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
43
|
Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K. Phenotype and Functional Analyses in a Transgenic Mouse Model of Left Ventricular Noncompaction Caused by a DTNA Mutation. Int Heart J 2017; 58:939-947. [PMID: 29118297 DOI: 10.1536/ihj.16-019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DTNA encoding dystrobrevin-α (α-DB) is a putative causal gene associated with left ventricular noncompaction cardiomyopathy (LVNC). The aim of the study was to investigate the causal role of DTNA in LVNC using a transgenic mouse model.A missense mutation (c.146A > G, p.N49S) of DTNA was identified in a patient with LVNC by Sanger sequencing. Six independent lines of transgenic mice expressing the mutant DTNA under a myosin heavy chain 6 (Myh6) promoter were generated (Myh6:DtnaN49S). Phenotypic characteristics of DTNA-p.N49S mutations were evaluated by echocardiography, histological observation, and immunoblotting. Multiple trabeculation and a higher ratio of non-compacted to compact myocardial layer were found in the Myh6:DtnaN49S mice compared to the controls. The transgenic mice also showed left ventricular (LV) dilation and cardiac systolic dysfunction. In conclusion, overexpression of the DTNA-p.N49S mutation in a mouse heart can be responsible for the phenotype of deep trabeculation, dilated cardiomyopathy, and cardiac dysfunction, which resembles the phenotype of LVNC.
Collapse
Affiliation(s)
- Qing Cao
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University.,The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Yang Shen
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University
| | - Xin Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University
| | - Xin Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University
| | - Ping Yuan
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University
| | - Rong Wan
- The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Xiuxia Liu
- The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Xiaogang Peng
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University.,The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Wenfeng He
- The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Jielin Pu
- Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Kui Hong
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University.,The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
44
|
Liu L, Yang M, Wang N, Li L, Chen Z, Zhang C. New insights of subfertility among transplanted women: Immunosuppressive drug FK506 leads to calcium leak and oocyte activation before fertilization. J Cell Biochem 2017; 119:2964-2977. [DOI: 10.1002/jcb.26510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Linlin Liu
- Key Laboratory of Animal Resistance ResearchCollege of Life ScienceShandong Normal UniversityJi'nanShandongChina
- Key Laboratory of Medicinal Chemical BiologyDepartment of Cell Biology and GeneticsCollege of Life Sciences, Nankai UniversityTianjinChina
| | - Man Yang
- Key Laboratory of Animal Resistance ResearchCollege of Life ScienceShandong Normal UniversityJi'nanShandongChina
| | - Naiqiang Wang
- Key Laboratory of Animal Resistance ResearchCollege of Life ScienceShandong Normal UniversityJi'nanShandongChina
| | - Li Li
- The State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zi‐Jiang Chen
- Center for Reproductive MedicineRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| | - Cong Zhang
- Key Laboratory of Animal Resistance ResearchCollege of Life ScienceShandong Normal UniversityJi'nanShandongChina
- Center for Reproductive MedicineRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| |
Collapse
|
45
|
Chen B, Liu P, Hujber EJ, Li Y, Jorgensen EM, Wang ZW. AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor. Nat Commun 2017; 8:1380. [PMID: 29123133 PMCID: PMC5680226 DOI: 10.1038/s41467-017-01704-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
Pituitary tumors are frequently associated with mutations in the AIP gene and are sometimes associated with hypersecretion of growth hormone. It is unclear whether other factors besides an enlarged pituitary contribute to the hypersecretion. In a genetic screen for suppressors of reduced neurotransmitter release, we identified a mutation in Caenorhabditis elegans AIPR-1 (AIP-related-1), which causes profound increases in evoked and spontaneous neurotransmitter release, a high frequency of spontaneous calcium transients in motor neurons and an enlarged readily releasable pool of vesicles. Calcium bursts and hypersecretion are reversed by mutations in the ryanodine receptor but not in the voltage-gated calcium channel, indicating that these phenotypes are caused by a leaky ryanodine receptor. AIPR-1 is physically associated with the ryanodine receptor at synapses. Finally, the phenotypes in aipr-1 mutants can be rescued by presynaptic expression of mouse AIP, demonstrating that a conserved function of AIP proteins is to inhibit calcium release from ryanodine receptors.
Collapse
Affiliation(s)
- Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Edward J Hujber
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yan Li
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
46
|
Piccolo P, Attanasio S, Secco I, Sangermano R, Strisciuglio C, Limongelli G, Miele E, Mutarelli M, Banfi S, Nigro V, Pons T, Valencia A, Zentilin L, Campione S, Nardone G, Lynnes TC, Celestino-Soper PBS, Spoonamore KG, D'Armiento FP, Giacca M, Staiano A, Vatta M, Collesi C, Brunetti-Pierri N. MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrier-like gastropathy. Hum Mol Genet 2017; 26:33-43. [PMID: 28013292 DOI: 10.1093/hmg/ddw365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Sergio Attanasio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Ilaria Secco
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Riccardo Sangermano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Severo Campione
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University, Naples, Italy
| | - Ty C Lynnes
- Department of Medical and Molecular Genetics
| | | | - Katherine G Spoonamore
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annamaria Staiano
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Matteo Vatta
- Department of Medical and Molecular Genetics.,Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
47
|
Richardson SJ, Steele GA, Gallant EM, Lam A, Schwartz CE, Board PG, Casarotto MG, Beard NA, Dulhunty AF. Association of FK506 binding proteins with RyR channels - effect of CLIC2 binding on sub-conductance opening and FKBP binding. J Cell Sci 2017; 130:3588-3600. [PMID: 28851804 DOI: 10.1242/jcs.204461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptor (RyR) Ca2+ channels are central to striated muscle function and influence signalling in neurons and other cell types. Beneficially low RyR activity and maximum conductance opening may be stabilised when RyRs bind to FK506 binding proteins (FKBPs) and destabilised by FKBP dissociation, with submaximal opening during RyR hyperactivity associated with myopathies and neurological disorders. However, the correlation with submaximal opening is debated and quantitative evidence is lacking. Here, we have measured altered FKBP binding to RyRs and submaximal activity with addition of wild-type (WT) CLIC2, an inhibitory RyR ligand, or its H101Q mutant that hyperactivates RyRs, which probably causes cardiac and intellectual abnormalities. The proportion of sub-conductance opening increases with WT and H101Q CLIC2 and is correlated with reduced FKBP-RyR association. The sub-conductance opening reduces RyR currents in the presence of WT CLIC2. In contrast, sub-conductance openings contribute to excess RyR 'leak' with H101Q CLIC2. There are significant FKBP and RyR isoform-specific actions of CLIC2, rapamycin and FK506 on FKBP-RyR association. The results show that FKBPs do influence RyR gating and would contribute to excess Ca2+ release in this CLIC2 RyR channelopathy.
Collapse
Affiliation(s)
- Spencer J Richardson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Gregory A Steele
- Capital Pathology Laboratory, 70 Kent St, Deakin, ACT 2600, Australia
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Alexander Lam
- Neurosurgery, Royal Perth Hospital, 197 Wellington St, Perth, WA 6000, Australia
| | - Charles E Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Philip G Board
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Marco G Casarotto
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Nicole A Beard
- Cardiac Physiology Department, Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| |
Collapse
|
48
|
Gonano LA, Jones PP. FK506-binding proteins 12 and 12.6 (FKBPs) as regulators of cardiac Ryanodine Receptors: Insights from new functional and structural knowledge. Channels (Austin) 2017. [PMID: 28636428 DOI: 10.1080/19336950.2017.1344799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ryanodine Receptors (RyRs) are intracellular Ca2+ channels that mediate Ca2+ flux from the sarco(endo)plasmic reticulum in many cell types. The interaction of RyRs with FK506-binding proteins (FKBPs) has been proposed as an important regulatory mechanism, where the loss of this interaction leads to channel dysfunction. In the heart, phosphorylation of RyR has been suggested to disrupt the RyR-FKBP interaction promoting altered Ca2+ signaling, heart failure and arrhythmias. However, the functional result of FKBP interaction with RyR and how this interaction is regulated remains highly controversial. Recently, high resolution structures of RyR have provided novel aspects to the ongoing debate. This review will discuss the most recent functional data in light of these new structures.
Collapse
Affiliation(s)
- Luis A Gonano
- a Department of Physiology , School of Biomedical Sciences and HeartOtago, University of Otago , Dunedin, Otago , New Zealand
| | - Peter P Jones
- a Department of Physiology , School of Biomedical Sciences and HeartOtago, University of Otago , Dunedin, Otago , New Zealand
| |
Collapse
|
49
|
Maskell LJ, Qamar K, Babakr AA, Hawkins TA, Heads RJ, Budhram-Mahadeo VS. Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart. Cell Death Dis 2017; 8:e2861. [PMID: 28594399 PMCID: PMC5520879 DOI: 10.1038/cddis.2017.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023]
Abstract
Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.
Collapse
Affiliation(s)
- Lauren J Maskell
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Kashif Qamar
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Aram A Babakr
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Thomas A Hawkins
- Division of Biosciences, Cell and Developmental Biology, UCL, London, UK
| | - Richard J Heads
- Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| |
Collapse
|
50
|
Chebrolu LH, Mehta AM, Nanda NC. Noncompaction cardiomyopathy: The role of advanced multimodality imaging techniques in diagnosis and assessment. Echocardiography 2017; 34:279-289. [DOI: 10.1111/echo.13435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Lakshmi H. Chebrolu
- Department of Cardiology; Houston Methodist DeBakey Heart and Vascular Center; Houston TX USA
| | - Anjlee M. Mehta
- Division of Cardiology; University of Texas Health Science Center at San Antonio; San Antonio TX USA
| | - Navin C. Nanda
- Division of Cardiovascular Disease; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|