1
|
Quantal Ca 2+ release mediated by very few IP 3 receptors that rapidly inactivate allows graded responses to IP 3. Cell Rep 2021; 37:109932. [PMID: 34731613 PMCID: PMC8578705 DOI: 10.1016/j.celrep.2021.109932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.
Collapse
|
2
|
Oh YS, Shin S, Li HY, Park EY, Lee SM, Choi CS, Lim Y, Jung HS, Jun HS. Betacellulin ameliorates hyperglycemia in obese diabetic db/db mice. J Mol Med (Berl) 2015; 93:1235-45. [PMID: 26070436 DOI: 10.1007/s00109-015-1303-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED We found that administration of a recombinant adenovirus (rAd) expressing betacellulin (BTC) into obese diabetic db/db mice ameliorated hyperglycemia. Exogenous glucose clearance was significantly improved, and serum insulin levels were significantly higher in rAd-BTC-treated mice than rAd-β-gal-treated control mice. rAd-BTC treatment increased insulin/bromodeoxyuridine double-positive cells in the islets, and islets from rAd-BTC-treated mice exhibited a significant increase in the level of G1-S phase-related cyclins as compared with control mice. In addition, BTC treatment increased messenger RNA (mRNA) and protein levels of these cyclins and cyclin-dependent kinases in MIN-6 cells. BTC treatment induced intracellular Ca(2+) levels through phospholipase C-γ1 activation, and upregulated calcineurin B (CnB1) levels as well as calcineurin activity. Upregulation of CnB1 by BTC treatment was observed in isolated islet cells from db/db mice. When treated with CnB1 small interfering RNA (siRNA) in MIN-6 cells and isolated islets, induction of cell cycle regulators by BTC treatment was blocked and consequently reduced BTC-induced cell viability. As well as BTC's effects on cell survival and insulin secretion, our findings demonstrate a novel pathway by which BTC controls beta-cell regeneration in the obese diabetic condition by regulating G1-S phase cell cycle expression through Ca(2+) signaling pathways. KEY MESSAGES Administration of BTC to db/db mice results in amelioration of hyperglycemia. BTC stimulates beta-cell proliferation in db/db mice. Ca(2+) signaling was involved in BTC-induced beta-cell proliferation. BTC has an anti-apoptotic effect and potentiates glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| | | | - Hui Ying Li
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Korea.,College of Pharmacy, Gachon University, Incheon, Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam, Korea
| | - Song Mi Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Korea.,College of Pharmacy, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| | - Yong Lim
- Department of Microbiology, Chosun University College of Medicine, Chonnam, Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Korea. .,Gachon Medical Research Institute, Gil Hospital, Incheon, Korea. .,College of Pharmacy, Gachon University, Incheon, Korea.
| |
Collapse
|
3
|
Vais H, Foskett JK, Ullah G, Pearson JE, Mak DOD. Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating. ACTA ACUST UNITED AC 2012; 140:697-716. [PMID: 23148262 PMCID: PMC3514735 DOI: 10.1085/jgp.201210804] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) Ca(2+) release channel plays a central role in the generation and modulation of intracellular Ca(2+) signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP(3), free Ca(2+), free ATP(4-)) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP(3)R channel activity by free Ca(2+) in the ER lumen ([Ca(2+)](ER)) remains poorly understood because of limitations of Ca(2+) flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca(2+)](ER) on homotetrameric rat type 3 InsP(3)R channel activity. In optimal [Ca(2+)](i) and subsaturating [InsP(3)], jumps of [Ca(2+)](ER) from 70 nM to 300 µM reduced channel activity significantly. This inhibition was abrogated by saturating InsP(3) but restored when [Ca(2+)](ER) was raised to 1.1 mM. In suboptimal [Ca(2+)](i), jumps of [Ca(2+)](ER) (70 nM to 300 µM) enhanced channel activity. Thus, [Ca(2+)](ER) effects on channel activity exhibited a biphasic dependence on [Ca(2+)](i). In addition, the effect of high [Ca(2+)](ER) was attenuated when a voltage was applied to oppose Ca(2+) flux through the channel. These observations can be accounted for by Ca(2+) flux driven through the open InsP(3)R channel by [Ca(2+)](ER), raising local [Ca(2+)](i) around the channel to regulate its activity through its cytoplasmic regulatory Ca(2+)-binding sites. Importantly, [Ca(2+)](ER) regulation of InsP(3)R channel activity depended on cytoplasmic Ca(2+)-buffering conditions: it was more pronounced when [Ca(2+)](i) was weakly buffered but completely abolished in strong Ca(2+)-buffering conditions. With strong cytoplasmic buffering and Ca(2+) flux sufficiently reduced by applied voltage, both activation and inhibition of InsP(3)R channel gating by physiological levels of [Ca(2+)](ER) were completely abolished. Collectively, these results rule out Ca(2+) regulation of channel activity by direct binding to the luminal aspect of the channel.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Reviewed are new concepts and models of Ca(2+) signalling originating from work with various animal cells, as well as the applicability of these models to the signalling systems used by blood platelets. The following processes and mechanisms are discussed: Ca(2+) oscillations and waves; Ca(2+) -induced Ca(2+) release; involvement of InsP(3)-receptors and quanta1 release of Ca(2+); different pathways of phospholipase C activation; heterogeneity in the intracellular Ca(2+) stores; store-and receptor-regulated Ca(2+) entry. Additionally, some typical aspects of Ca(2+) signalling in platelets are reviewed: involvement of protein serine/threonine and tyrosine kinases in the regulation of signal transduction; possible functions of platelet glycoproteins; and the importance of Ca(2+) for the exocytotic and procoagulant responses.
Collapse
Affiliation(s)
- J W Heemskerk
- Departments of Human Biology/ Biochemistry, University of Limburg, P.O. 616, 6200, MD, Maastricht, The Netherlands
| | | |
Collapse
|
5
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
6
|
Abstract
Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius "Julie" Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the "high" that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes.
Collapse
Affiliation(s)
- Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
7
|
Vais H, Siebert AP, Ma Z, Fernández-Mongil M, Foskett JK, Mak DOD. Redox-regulated heterogeneous thresholds for ligand recruitment among InsP3R Ca2+-release channels. Biophys J 2010; 99:407-16. [PMID: 20643058 DOI: 10.1016/j.bpj.2010.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022] Open
Abstract
To clarify the molecular mechanisms behind quantal Ca2+ release, the graded Ca2+ release from intracellular stores through inositol 1,4,5-trisphosphate receptor (InsP3R) channels responding to incremental ligand stimulation, single-channel patch-clamp electrophysiology was used to continuously monitor the number and open probability of InsP3R channels in the same excised cytoplasmic-side-out nuclear membrane patches exposed alternately to optimal and suboptimal cytoplasmic ligand conditions. Progressively more channels were activated by more favorable conditions in patches from insect cells with only one InsP3R gene or from cells solely expressing one recombinant InsP3R isoform, demonstrating that channels with identical primary sequence have different ligand recruitment thresholds. Such heterogeneity was largely abrogated, in a fully reversible manner, by treatment of the channels with sulfhydryl reducing agents, suggesting that it was mostly regulated by different levels of posttranslational redox modifications of the channels. In contrast, sulfhydryl reduction had limited effects on channel open probability. Thus, sulfhydryl redox modification can regulate various aspects of intracellular Ca2+ signaling, including quantal Ca2+ release, by tuning ligand sensitivities of InsP3R channels. No intrinsic termination of channel activity with a timescale comparable to that for quantal Ca2+ release was observed under any steady ligand conditions, indicating that this process is unlikely to contribute.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
8
|
Taylor CW, Tovey SC. IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2010; 2:a004010. [PMID: 20980441 DOI: 10.1101/cshperspect.a004010] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
9
|
|
10
|
Syyong HT, Yang HHC, Trinh G, Cheung C, Kuo KH, van Breemen C. Mechanism of asynchronous Ca(2+) waves underlying agonist-induced contraction in the rat basilar artery. Br J Pharmacol 2009; 156:587-600. [PMID: 19154440 DOI: 10.1111/j.1476-5381.2008.00063.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Uridine 5'-triphosphate (UTP) is a potent vasoconstrictor of cerebral arteries and induces Ca(2+) waves in vascular smooth muscle cells (VSMCs). This study aimed to determine the mechanisms underlying UTP-induced Ca(2+) waves in VSMCs of the rat basilar artery. EXPERIMENTAL APPROACH Isometric force and intracellular Ca(2+) ([Ca(2+)](i)) were measured in endothelium-denuded rat basilar artery using wire myography and confocal microscopy respectively. KEY RESULTS Uridine 5'-triphosphate (0.1-1000 micromol.L(-1)) concentration-dependently induced tonic contraction (pEC(50) = 4.34 +/- 0.13), associated with sustained repetitive oscillations in [Ca(2+)](i) propagating along the length of the VSMCs as asynchronized Ca(2+) waves. Inhibition of Ca(2+) reuptake in sarcoplasmic reticulum (SR) by cyclopiazonic acid abolished the Ca(2+) waves and resulted in a dramatic drop in tonic contraction. Nifedipine reduced the frequency of Ca(2+) waves by 40% and tonic contraction by 52%, and the nifedipine-insensitive component was abolished by SKF-96365, an inhibitor of receptor- and store-operated channels, and KB-R7943, an inhibitor of reverse-mode Na(+)/Ca(2+) exchange. Ongoing Ca(2+) waves and tonic contraction were also abolished after blockade of inositol-1,4,5-triphosphate-sensitive receptors by 2-aminoethoxydiphenylborate, but not by high concentrations of ryanodine or tetracaine. However, depletion of ryanodine-sensitive SR Ca(2+) stores prior to UTP stimulation prevented Ca(2+) waves. CONCLUSIONS AND IMPLICATIONS Uridine 5'-triphosphate-induced Ca(2+) waves may underlie tonic contraction and appear to be produced by repetitive cycles of regenerative Ca(2+) release from the SR through inositol-1,4,5-triphosphate-sensitive receptors. Maintenance of Ca(2+) waves requires SR Ca(2+) reuptake from Ca(2+) entry across the plasma membrane via L-type Ca(2+) channels, receptor- and store-operated channels, and reverse-mode Na(+)/Ca(2+) exchange.
Collapse
Affiliation(s)
- H T Syyong
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
12
|
Yaroslavskiy BB, Sharrow AC, Wells A, Robinson LJ, Blair HC. Necessity of inositol (1,4,5)-trisphosphate receptor 1 and mu-calpain in NO-induced osteoclast motility. J Cell Sci 2007; 120:2884-94. [PMID: 17690304 PMCID: PMC2976040 DOI: 10.1242/jcs.004184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In skeletal remodeling, osteoclasts degrade bone, detach and move to new locations. Mechanical stretch and estrogen regulate osteoclast motility via nitric oxide (NO). We have found previously that NO stimulates guanylyl cyclase, activating the cGMP-dependent protein kinase 1 (PKG1), reversibly terminating osteoclast matrix degradation and attachment, and initiating motility. The PKG1 substrate vasodilator-stimulated protein (VASP), a membrane-attachment-related protein found in complexes with the integrin alphavbeta3 in adherent osteoclasts, was also required for motility. Here, we studied downstream mechanisms by which the NO-dependent pathway mediates osteoclast relocation. We found that NO-stimulated motility is dependent on activation of the Ca(2+)-activated proteinase mu-calpain. RNA interference (RNAi) showed that NO-dependent activation of mu-calpain also requires PKG1 and VASP. Inhibition of Src kinases, which are involved in the regulation of adhesion complexes, also abolished NO-stimulated calpain activity. Pharmacological inhibition and RNAi showed that calpain activation in this process is mediated by the inositol (1,4,5)-trisphosphate receptor 1 [Ins(1,4,5)P(3)R1] Ca(2+) channel. We conclude that NO-induced motility in osteoclasts requires regulated Ca(2+) release, which activates mu-calpain. This occurs via the Ins(1,4,5)P(3)R1.
Collapse
|
13
|
Thomas AP, Renard-Rooney DC, Hajnóczky G, Robb-Gaspers LD, Lin C, Rooney TA. Subcellular organization of calcium signalling in hepatocytes and the intact liver. CIBA FOUNDATION SYMPOSIUM 2007; 188:18-35; discussion 35-49. [PMID: 7587617 DOI: 10.1002/9780470514696.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatocytes respond to inositol 1,4,5-trisphosphate (InsP3)-linked agonists with frequency-modulated oscillations in the intracellular free calcium concentration ([Ca2+]i), that occur as waves propagating from a specific origin within each cell. The subcellular distribution and functional organization of InsP3-sensitive Ca2+ pools has been investigated, in both intact and permeabilized cells, by fluorescence imaging of dyes which can be used to monitor luminal Ca2+ content and InsP3-activated ion permeability in a spatially resolved manner. The Ca2+ stores behave as a luminally continuous system distributed throughout the cytoplasm. The structure of the stores, an important determinant of their function, is controlled by the cytoskeleton and can be modulated in a guanine nucleotide-dependent manner. The nuclear matrix is devoid of Ca2+ stores, but Ca2+ waves in the intact cell propagate through this compartment. The organization of [Ca2+]i signals has also been investigated in the perfused liver. Frequency-modulated [Ca2+]i oscillations are still observed at the single cell level, with similar properties to those in the isolated hepatocyte. The [Ca2+]i oscillations propagate between cells in the intact liver, leading to the synchronization of [Ca2+]i signals across part or all of each hepatic lobule.
Collapse
Affiliation(s)
- A P Thomas
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dakin K, Li WH. Cell membrane permeable esters of D-myo-inositol 1,4,5-trisphosphate. Cell Calcium 2007; 42:291-301. [PMID: 17307252 DOI: 10.1016/j.ceca.2006.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/30/2006] [Accepted: 12/14/2006] [Indexed: 11/17/2022]
Abstract
d-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3, or IP3) is a ubiquitous second messenger that regulates cytosolic Ca2+ activities ([Ca2+]i). To study this signaling branch in intact cells, we have synthesized a caged and cell permeable derivative of IP3, ci-IP3/PM, from myo-inositol in 9 steps. Ci-IP3/PM is a homologue of cm-IP3/PM, a caged and cell permeable IP3 ester developed earlier. In ci-IP3/PM, 2- and 3-hydroxyl groups of myo-inositiol are protected by an isopropylidene group; whereas in cm-IP3/PM, a methoxymethylene is used. Ci-IP3/PM can be loaded into cells non-invasively to high concentrations without activating IP3 receptors (IP3Rs). UV uncaging of loaded ci-IP3 released i-IP3, a potent agonist of IP3Rs, and evoked Ca2+ release from internal stores. Interestingly, elevations of [Ca2+]i by i-IP3 lasted longer than [Ca2+]i transients by m-IP3, the uncaging product of cm-IP3. To understand this difference, we measured the metabolic stability of i-IP3 and m-IP3. Like natural IP3 which is known to be rapidly metabolized in cells, m-IP3 could only be detected within several seconds after uncaging cm-IP3. In contrast, i-IP3 was metabolized at a much slower rate. By exploiting different metabolic rates of m-IP3 and i-IP3, we developed two procedures for activating IP3Rs in cells without UV uncaging. The first method involves photolyzing ci-IP3/PM in vitro to generate i-IP3/PM. Successive additions of low micromolar i-IP3/PM to NIH 3T3 cells caused graded Ca2+ releases, confirming that "quantal Ca2+ release" occurs in fully intact cells with normal ATP supplies and undisrupted endoplasmic reticulum. The second technique utilizes two photon uncaging. After locally illuminating cells loaded with cm-IP3 with femtosecond-pulsed near-infrared light (730 nm), we observed a burst of Ca2+ activity in the uncaging area. This local Ca2+ rise rapidly propagated across cells and could be repeated many times in different sub-cellular locations to produce artificial Ca2+ oscillations of defined amplitudes and frequencies. The complementary advantages of these IP3 prodrugs should provide new approaches for studying IP3-Ca2+ signaling in intact cell populations with high spatiotemporal resolutions.
Collapse
Affiliation(s)
- Kenneth Dakin
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blouvard, Dallas, TX 75390-9039, United States
| | | |
Collapse
|
15
|
Yamashita M. ‘Quantal’ Ca2+release reassessed - a clue to oscillation and synchronization. FEBS Lett 2006; 580:4979-83. [PMID: 16938295 DOI: 10.1016/j.febslet.2006.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Ca(2+) release from intracellular Ca(2+) stores, a pivotal event in Ca(2+) signaling, is a 'quantal' process; it terminates after a rapid release of a fraction of stored Ca(2+). To explain the 'quantal' nature, 'all-or-none' model and 'steady-state' model were proposed. This article shortly reviews these hypotheses and considers a recently proposed mechanism, 'luminal potential' model, in which the membrane potential of Ca(2+) store regulates Ca(2+) efflux. By reassessing the 'quantal' nature, other important features of Ca(2+) signaling, oscillation and synchronization, are highlighted. The mechanism for 'quantal' Ca(2+) release may underlie the temporal and spatial control of Ca(2+) signaling.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Department of Physiology I, Nara Medical University, Shijo-cho 840, Kashihara 634-8521, Japan.
| |
Collapse
|
16
|
Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. ACTA ACUST UNITED AC 2006; 173:755-65. [PMID: 16754959 PMCID: PMC2063891 DOI: 10.1083/jcb.200512141] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We developed genetically encoded fluorescent inositol 1,4,5-trisphosphate (IP3) sensors that do not severely interfere with intracellular Ca2+ dynamics and used them to monitor the spatiotemporal dynamics of both cytosolic IP3 and Ca2+ in single HeLa cells after stimulation of exogenously expressed metabotropic glutamate receptor 5a or endogenous histamine receptors. IP3 started to increase at a relatively constant rate before the pacemaker Ca2+ rise, and the subsequent abrupt Ca2+ rise was not accompanied by any acceleration in the rate of increase in IP3. Cytosolic [IP3] did not return to its basal level during the intervals between Ca2+ spikes, and IP3 gradually accumulated in the cytosol with a little or no fluctuations during cytosolic Ca2+ oscillations. These results indicate that the Ca2+-induced regenerative IP3 production is not a driving force of the upstroke of Ca2+ spikes and that the apparent IP3 sensitivity for Ca2+ spike generation progressively decreases during Ca2+ oscillations.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cell Membrane/metabolism
- Cytosol/metabolism
- HeLa Cells
- Humans
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Protein Binding
- Receptor, Metabotropic Glutamate 5
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Histamine/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Time Factors
Collapse
Affiliation(s)
- Toru Matsu-ura
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ionescu L, Cheung KH, Vais H, Mak DOD, White C, Foskett JK. Graded recruitment and inactivation of single InsP3 receptor Ca2+-release channels: implications for quantal [corrected] Ca2+release. J Physiol 2006; 573:645-62. [PMID: 16644799 PMCID: PMC1779751 DOI: 10.1113/jphysiol.2006.109504] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modulation of cytoplasmic free Ca2+ concentration ([Ca2+]i) by receptor-mediated generation of inositol 1,4,5-trisphosphate (InsP3) and activation of its receptor (InsP3R), a Ca2+-release channel in the endoplasmic reticulum, is a ubiquitous signalling mechanism. A fundamental aspect of InsP3-mediated signalling is the graded release of Ca2+ in response to incremental levels of stimuli. Ca2+ release has a transient fast phase, whose rate is proportional to [InsP3], followed by a much slower one even in constant [InsP3]. Many schemes have been proposed to account for quantal Ca2+ release, including the presence of heterogeneous channels and Ca2+ stores with various mechanisms of release termination. Here, we demonstrate that mechanisms intrinsic to the single InsP3R channel can account for quantal Ca2+ release. Patch-clamp electrophysiology of isolated insect Sf9 cell nuclei revealed a consistent and high probability of detecting functional endogenous InsP3R channels, enabling InsP3-induced channel inactivation to be identified as an inevitable consequence of activation, and allowing the average number of activated channels in the membrane patch (N(A)) to be accurately quantified. InsP3-activated channels invariably inactivated, with average duration of channel activity reduced by high [Ca2+]i and suboptimal [InsP3]. Unexpectedly, N(A) was found to be a graded function of both [Ca2+]i and [InsP3]. A qualitative model involving Ca2+-induced InsP3R sequestration and inactivation can account for these observations. These results suggest that apparent heterogeneous ligand sensitivity can be generated in a homogeneous population of InsP3R channels, providing a mechanism for graded Ca2+ release that is intrinsic to the InsP3R Ca2+ release channel itself.
Collapse
Affiliation(s)
- Lucian Ionescu
- Department of Physiology, B39 Anatomy-Chemistry Building, 414 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2005; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
19
|
Regan MR, Lin DDM, Emerick MC, Agnew WS. The effect of higher order RNA processes on changing patterns of protein domain selection: A developmentally regulated transcriptome of type 1 inositol 1,4,5-trisphosphate receptors. Proteins 2005; 59:312-31. [PMID: 15739177 DOI: 10.1002/prot.20225] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The domain structure of proteins synthesized from a single gene can be remodeled during tissue development by activities at the RNA level of gene expression. The impact of higher order RNA processing on changing patterns of protein domain selection may be explored by systematically profiling single-gene transcriptomes. itpr1 is one of three mammalian genes encoding receptors for the second messenger inositol 1,4,5-trisphosphate (InsP3). Some phenotypic variations of InsP3 receptors have been attributed to hetero-oligomers of subunit isoforms from itpr1, itpr2, and itpr3. However, itpr1 itself is subject to alternative RNA splicing, with 7 sites of transcript variation, 6 within the ORF. We have identified 17 itpr1 subunit species expressed in mammalian brain in ensembles that change with tissue differentiation. Statistical analyses of populations comprising >1,300 full-length clones suggest that subunit variation arises from a variably biased stochastic splicing mechanism. Surprisingly, the protein domains of this highly allosteric receptor appear to be assembled in a partially randomized way, yielding stochastic arrays of subunit species that form tetrameric complexes in single cells. Nevertheless, functional expression studies of selected subunits confirm that splicing regulation is connected to phenotypic variation. The potential for itpr1 subunits to form hetero-tetramers in single cells suggests the expression of a developmentally regulated continuum of molecular forms that could display diverse properties, including incremental sensitivities to agonist activation and varying patterns of Ca2+ mobilization. These studies illuminate the extent to which itpr1 molecular phenotype is induced by higher order RNA processing.
Collapse
Affiliation(s)
- Melissa R Regan
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
20
|
Galeotti N, Bartolini A, Calvani M, Nicolai R, Ghelardini C. Acetyl-L-carnitine requires phospholipase C-IP3 pathway activation to induce antinociception. Neuropharmacology 2004; 47:286-94. [PMID: 15223307 DOI: 10.1016/j.neuropharm.2004.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 03/19/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
The cellular events involved in acetyl-L-carnitine (ALCAR) analgesia were investigated in the mouse hot plate test. I.c.v. pretreatment with aODNs against the alpha subunit of G(q) and G(11) proteins prevented the analgesia induced by ALCAR (100 mg kg(-1) s.c. twice daily for 7 days). Administration of the phospholipase C (PLC) inhibitors U-73122 and neomycin, as well as the injection of an aODN complementary to the sequence of PLCbeta(1), antagonized the increase of the pain threshold induced by ALCAR. Pretreatment with U-73343, an analogue of U-73112 inactive on PLC, did not modify ALCAR analgesic effect. In mice undergoing treatment with LiCl, which impairs phosphatidylinositol synthesis, or pretreatment with TMB-8, a blocker of Ca(++) release from intracellular stores, the antinociception induced by ALCAR was dose-dependently antagonized. I.c.v. treatment with heparin, an IP(3) receptor antagonist, prevented the increase of pain threshold induced by the investigated compound, analgesia that was restored by co-administration of D-myo-inositol. On the other hand, i.c.v. pretreatment with the selective protein kinase C (PKC) inhibitors calphostin C and cheleritryne, resulted in a dose-dependent potentiation of ALCAR antinociception. The administration of PKC activators, such as PMA and PDBu, dose-dependently prevented the ALCAR-induced increase of pain threshold. Neither aODNs nor pharmacological treatments produced any behavioral impairment of mice as revealed by the rota-rod and hole board tests. These results indicate that central ALCAR analgesia in mice requires the activation of the PLC-IP(3) pathway. By contrast, the simultaneous activation of PKC may represent a pathway of negative modulation of ALCAR antinociception.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
21
|
Galeotti N, Malmberg-Aiello P, Bartolini A, Schunack W, Ghelardini C. H1-receptor stimulation induces hyperalgesia through activation of the phospholipase C-PKC pathway. Neuropharmacology 2004; 47:295-303. [PMID: 15223308 DOI: 10.1016/j.neuropharm.2004.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 02/24/2004] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
The supraspinal cellular events involved in H(1)-mediated hyperalgesia were investigated in a condition of acute thermal pain by means of the mouse hot-plate test. I.c.v. administration of the phospholipase C (PLC) inhibitors U-73122 and neomycin antagonized the hyperalgesia induced by the selective H(1) agonist FMPH. By contrast, U-73343, an analogue of U-73122 used as negative control, was unable to modify the reduction of the pain threshold induced by FMPH. In mice undergoing treatment with LiCl, which impairs phosphatidylinositol synthesis, or treatment with heparin, an IP(3)-receptor antagonist, the hyperalgesia induced by the H(1)-receptor agonist remained unchanged. Similarly, pretreatment with D-myo inositol did not alter the H(1)-induced hypernociceptive response. Neither i.c.v. pretreatment with TMB-8, a blocker of Ca(2+) release from intracellular stores, nor pretreatment with thapsigargin, a depletor of Ca(2+) intracellular stores, prevented the decrease of pain threshold induced by FMPH. On the other hand, i.c.v. pretreatment with the selective protein kinase C (PKC) inhibitors calphostin C and chelerytrine resulted in a dose-dependent prevention of the H(1)-receptor agonist-induced hyperalgesia. The administration of PKC activators, such as PMA and PDBu, did not produce any effect on FMPH effect. The pharmacological treatments employed did not produce any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate a role for the PLC-PKC pathway in central H(1)-induced hyperalgesia in mice. Furthermore, activation of PLC-IP(3) did not appear to play a major role in the modulation of pain perception by H(1)-receptor agonists.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
23
|
Snyder SH. Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology 2004; 47 Suppl 1:274-85. [PMID: 15464143 DOI: 10.1016/j.neuropharm.2004.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/19/2004] [Accepted: 06/01/2004] [Indexed: 11/30/2022]
Abstract
Identification of opiate receptors some 30 years ago provided tools that brought major new insights into how these drugs act and led to the discovery of a novel group of atypical neurotransmitters, the peptide enkephalins being the first. The ligand binding techniques that were used to identify opiate receptors were employed to characterize receptors for all of the major neurotransmitters in the brain leading to additional insights into the actions of many drugs, such as neuroleptics. These techniques also permitted characterization of intracellular signaling systems such as the IP3 receptor and immunophilins. Even more novel than the enkephalins have been the gaseous neurotransmitters NO and CO and D-serine.
Collapse
Affiliation(s)
- Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 813, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 2003; 5:1051-61. [PMID: 14608362 DOI: 10.1038/ncb1063] [Citation(s) in RCA: 504] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 10/20/2003] [Indexed: 01/08/2023]
Abstract
Mitochondrial cytochrome c release and inositol (1,4,5) trisphosphate receptor (InsP(3)R)-mediated calcium release from the endoplasmic reticulum mediate apoptosis in response to specific stimuli. Here we show that cytochrome c binds to the InsP(3)R during apoptosis. Addition of 1 nM cytochrome c blocks calcium-dependent inhibition of InsP(3)R function. Early in apoptosis, cytochrome c translocates to the endoplasmic reticulum where it selectively binds InsP(3)R, resulting in sustained, oscillatory cytosolic calcium increases. These calcium events are linked to the coordinate release of cytochrome c from all mitochondria. Our findings identify a feed-forward mechanism whereby early cytochrome c release increases InsP(3)R function, resulting in augmented cytochrome c release that amplifies the apoptotic signal.
Collapse
Affiliation(s)
- Darren Boehning
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
25
|
Caroppo R, Colella M, Colasuonno A, DeLuisi A, Debellis L, Curci S, Hofer AM. A reassessment of the effects of luminal [Ca2+] on inositol 1,4,5-trisphosphate-induced Ca2+ release from internal stores. J Biol Chem 2003; 278:39503-8. [PMID: 12888563 DOI: 10.1074/jbc.m305823200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rapid and reversible changes in free [Ca2+] in internal stores of living intact cells without altering cytoplasmic [Ca2+], InsP3 receptors, or sarcoendoplasmic reticulum Ca2+ ATPases (SERCAs). N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a membrane-permeant, low affinity Ca2+ chelator was used to manipulate [Ca2+] in intracellular stores, while [Ca2+] changes within the store were monitored directly with the low-affinity Ca2+ indicator, mag-fura-2, in intact BHK-21 cells. 200 microM TPEN caused a rapid drop in luminal free [Ca2+] and significantly reduced the extent of the response to stimulation with 100 nm bradykinin, a calcium-mobilizing agonist. The same effect was observed when intact cells were pretreated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(acetoxymethyl ester) (BAPTA-AM) to buffer cytoplasmic [Ca2+] changes. Although inhibition of Ca2+ uptake using the SERCA inhibitor tBHQ permitted significantly larger release of Ca2+ from stores, TPEN still attenuated the release in the presence of tBHQ in BAPTA-AM-loaded cells. These results demonstrate that the filling state of stores modulates the magnitude of InsP3-induced Ca2+release by additional mechanism(s) that are independent of regulation by cytoplasmic [Ca2+] or effects on SERCA pumps.
Collapse
Affiliation(s)
- Rosa Caroppo
- Dipartimento di Fisiologia Generale ed Ambientale, Università di Bari, Via Amendola 165/A 70126 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 2003; 278:16551-60. [PMID: 12621039 DOI: 10.1074/jbc.m300646200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the molecular mechanism of ligand-induced gating of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channel, we analyzed the channel properties of deletion mutants retaining both the IP(3)-binding and channel-forming domains of IP(3)R1. Using intrinsically IP(3)R-deficient cells as the host cells for receptor expression, we determined that six of the mutants, those lacking residues 1-223, 651-1130, 1267-2110, 1845-2042, 1845-2216, and 2610-2748, did not exhibit any measurable Ca(2+) release activity, whereas the mutants lacking residues 1131-1379 and 2736-2749 retained the activity. Limited trypsin digestion showed that not only the IP(3)-gated Ca(2+)-permeable mutants lacking residues 1131-1379 and 2736-2749, but also two nonfunctional mutants lacking residues 1-223 and 651-1130, retained the normal folding structure of at least the C-terminal channel-forming domain. These results indicate that two regions of IP(3)R1, viz. residues 1-223 and 651-1130, are critical for IP(3)-induced gating. We also identified a highly conserved cysteine residue at position 2613, which is located within the C-terminal tail, as being essential for channel opening. Based on these results, we propose a novel five-domain structure model in which both N-terminal and internal coupling domains transduce ligand-binding signals to the C-terminal tail, which acts as a gatekeeper that triggers opening of the activation gate of IP(3)R1 following IP(3) binding.
Collapse
Affiliation(s)
- Keiko Uchida
- Department of Basic Medical Science, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
27
|
Galeotti N, Bartolini A, Ghelardini C. The phospholipase C-IP3 pathway is involved in muscarinic antinociception. Neuropsychopharmacology 2003; 28:888-97. [PMID: 12736633 DOI: 10.1038/sj.npp.1300111] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular events involved in muscarinic analgesia were investigated in the mouse hot-plate test. Intracerebroventricular (i.c.v.) pretreatment with antisense oligonucleotides (aODNs) against the alpha subunit of G(q) and G(11) proteins prevented the analgesia induced by physostigmine and oxotremorine. Furthermore, administration of the phospholipase C (PLC) inhibitor U-73122, as well as the injection of an aODN complementary to the sequence of PLCbeta(1), antagonized the increase of the pain threshold induced by both cholinomimetic drugs. In mice undergoing treatment with LiCl, which impairs phosphatidylinositol synthesis, or treatment with heparin, an IP(3) receptor antagonist, the antinociception induced by physostigmine and oxotremorine was dose-dependently antagonized. I.c.v. pretreatment with TMB-8, a blocker of Ca(2+) release from intracellular stores, prevented the increase of pain threshold induced by the investigated cholinomimetic drugs. Coadministration of Ca(2+) restored the muscarinic analgesia in LiCl, heparin, and TMB-8-preatreated mice. On the other hand, i.c.v. pretreatment with the selective protein kinase C (PKC) inhibitor calphostin C, resulted in a dose-dependent enhancement of physostigmine- and oxotremorine-induced antinociception. The administration of PKC activators, such as PMA and PDBu, dose dependently prevented the cholinomimetic drug-induced increase of pain threshold. Neither aODNs nor pharmacological treatments employed produced any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate a role for the PLC-IP(3) pathway in central muscarinic analgesia in mice. Furthermore, activation of PKC by cholinomimetic drugs may represent a pathway of negative modulation of muscarinic antinociception.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-10539 Florence, Italy
| | | | | |
Collapse
|
28
|
Dawson AP, Lea EJA, Irvine RF. Kinetic model of the inositol trisphosphate receptor that shows both steady-state and quantal patterns of Ca2+ release from intracellular stores. Biochem J 2003; 370:621-9. [PMID: 12479792 PMCID: PMC1223205 DOI: 10.1042/bj20021289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 12/04/2002] [Accepted: 12/13/2002] [Indexed: 11/17/2022]
Abstract
The release of Ca(2+) from intracellular stores via InsP(3) receptors shows anomalous kinetics. Successive additions of low concentrations of InsP(3) cause successive rapid transients of Ca(2+) release. These quantal responses have been ascribed to all-or-none release from stores with differing sensitivities to InsP(3) or, alternatively, to a steady-state mechanism where complex kinetic properties of the InsP(3) receptor allow partial emptying of all the stores. We present here an adaptive model of the InsP(3) receptor that can show either pattern, depending on the imposed experimental conditions. The model proposes two interconvertible conformational states of the receptor: one state binds InsP(3) rapidly, but with low affinity, whereas the other state binds slowly, but with high affinity. The model shows repetitive increments of Ca(2+) release in the absence of a Ca(2+) gradient, but more pronounced incremental behaviour when released Ca(2+) builds up at the mouth of the channel. The sensitivity to Ins P (3) is critically dependent on the density of InsP(3) receptors, so that different stores can respond to different concentration ranges of Ins P (3). Since the model generates very high Hill coefficients (h approximately 7), it allows all-or-none release of Ca(2+) from stores of differing receptor density, but questions the validity of the use of h values as a guide to the number of InsP(3) molecules needed to open the channel. The model presents a mechanism for terminating Ca(2+) release in the presence of positive feedback from released Ca(2+), thereby providing an explanation of why elementary Ca(2+) signals ('blips' and 'puffs') do not inevitably turn into regenerative waves.
Collapse
Affiliation(s)
- Alan P Dawson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
29
|
Turner DJ, Segura BJ, Cowles RA, Zhang W, Mulholland MW. Functional overlap of IP(3)- and cADP-ribose-sensitive calcium stores in guinea pig myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2001; 281:G208-15. [PMID: 11408274 DOI: 10.1152/ajpgi.2001.281.1.g208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In myenteric neurons two different receptor subtypes govern the intracellular Ca(2+) stores: the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) and the ryanodine receptor (RyR). Their degree of functional overlap was determined by examining Ca(2+) release in these cells through both superfusion techniques and intracellular microinjection. Microinjection of IP(3) (50 microM) and cADP-ribose (cADPr, 50 microM), specific ligands for the IP(3)R and RyR, respectively, demonstrated mobilization of intracellular Ca(2+) stores. Perfusion with cinnarizine (50 microM) or dantrolene (10 microM), antagonists of the IP(3)R and RyR, respectively, eliminated the Ca(2+) response to microinjected IP(3) and cADPr. Superfusion of the neurons with 100 microM ATP, an IP(3)-mediated Ca(2+)-mobilizing agonist, caused intracellular Ca(2+) increments, which were antagonized by cinnarizine, and the RyR antagonists dantrolene, procaine (5 mM), and ryanodine (1 microM). Caffeine (10 mM) was applied repetitively in Ca(2+)-free conditions to deplete RyR-sensitive stores; subsequent perfusion with ATP demonstrated a Ca(2+) response. Conversely, caffeine caused a Ca(2+) response after repetitive ATP exposures. The internal Ca(2+) stores of myenteric neurons are governed by two receptor subtypes, IP(3)R and RyR, which share partial functional overlap.
Collapse
Affiliation(s)
- D J Turner
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
The rabbit inferior vena cava (IVC) is a large-capacitance vessel that displays typical contractile dose-response curves for caffeine and phenylephrine (PE). Using confocal microscopy on the endothelium-denuded IVC, we undertook experiments to correlate these whole-tissue contractile dose-response curves with changes in subcellular [Ca(2+)](i) signals in the in situ vascular smooth muscle cells (VSMCs). We observed that both caffeine and PE initially elicited Ca(2+) waves in individual VSMCs. The [Ca(2+)](i) in cells challenged with caffeine subsequently returned to baseline whereas the [Ca(2+)](i) in cells challenged with PE exhibited repetitive asynchronous Ca(2+) waves. These [Ca(2+)](i) oscillations were related to Ca(2+) release from the sarcoplasmic reticulum as they were inhibited by ryanodine and caffeine. The lack of synchronicity of the [Ca(2+)](i) oscillations between VSMCs can explain the observed tonic contraction at the whole-tissue level. The nature of these Ca(2+) waves was further characterized. For caffeine, the amplitude was all-or-none in nature, with individual cells differing in sensitivity, leading to their recruitment at different concentrations of the agonist. This concentration dependency of recruitment appears to form the basis for the concentration dependency of caffeine-induced contraction. Furthermore, the speed of the Ca(2+) waves correlated positively with the concentration of caffeine. In the case of PE, we observed the same characteristics with respect to wave speed, amplitude, and recruitment. Increasing concentrations of PE also enhance the frequency of the [Ca(2+)](i) oscillations. We therefore conclude that PE stimulates whole-tissue contractility through differential recruitment of VSMCs and enhancement of the frequency of asynchronous [Ca(2+)](i) oscillations once the cells are recruited.
Collapse
Affiliation(s)
- D O Ruehlmann
- Vancouver Vascular Biology Research Centre, University of British Columbia, St. Paul's Hospital, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
31
|
Oh SJ, Ahn SC, Kim SJ, Kim KW, Lee A, Kim KM, Choi H. Carbachol-induced sustained tonic contraction of rat detrusor muscle. BJU Int 1999; 84:343-9. [PMID: 10468734 DOI: 10.1046/j.1464-410x.1999.00122.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the underlying contractile mechanism of the sustained tonic contraction (SuTC) induced by repetitive carbachol application in rat detrusor muscles. MATERIALS AND METHODS Longitudinal muscle strips with no mucosa were obtained from the anterior wall of the urinary bladder in 12-week-old Sprague-Dawley rats. Carbachol (5 micromol/L) was applied repetitively to induce SuTC. The carbachol-induced SuTC was assessed in the presence of various Ca2+-channel blockers and drugs affecting intracellular Ca2+ concentration. RESULTS The first application of carbachol elicited a large phasic contraction followed by a tonic contraction (TC); the carbachol-induced contraction was completely reversed by washing out the solution. However, the initial phasic contraction was not reproduced after a second or further application of carbachol. There was consistently only a SuTC with no phasic contraction. The amplitude of the SuTC was 85% of the TC induced by the first carbachol application. The application of atropine (1 micromol/L) to the bath completely blocked SuTC. The carbachol-induced SuTC was insensitive to nicardipine (5 micromol/L) and extracellular polyvalent cations (1 mmol/L, La3+, Co2+, Cd2+, Ni2+ ). Moreover, a similar SuTC was induced even after the complete elimination of extracellular Ca2+ by adding 2 mmol/L EGTA to the Ca2+-free Tyrode solution. To exclude intracellular Ca2+ sources related to the sarcoplasmic reticulum (SR), the effects of SR Ca2+ pump inhibitors, cyclopiazonic acid (CPA, 10 micromol/L) and thapsigargin (0.5 micromol/L) were tested. The carbachol-induced SuTC was insensitive to pretreatment with CPA and/or thapsigargin. To deplete the ryanodine-sensitive Ca2+ pool, muscle strips were repetitively stimulated with caffeine (10 mmol/L) in the presence of 10 micromol/L ryanodine, which did not affect the carbachol-induced SuTC. CONCLUSIONS Although the characteristics of the carbachol-induced SuTC have not been defined, these results show that a significant proportion of the carbachol-induced contraction in rats is contributed by the SuTC, which is present even in the complete absence of external Ca2+. The SuTC was not affected by limiting the contributions of internal Ca2+ sources. This suggests that the SuTC in rat bladders is unrelated to known Ca2+ mobilization mechanisms.
Collapse
Affiliation(s)
- S J Oh
- Department of Urology, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Marín J, Encabo A, Briones A, García-Cohen EC, Alonso MJ. Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci 1999; 64:279-303. [PMID: 10072189 DOI: 10.1016/s0024-3205(98)00393-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of cytosolic Ca2+ homeostasis is essential for cells, and particularly for vascular smooth muscle cells. In this regulation, there is a participation of different factors and mechanisms situated at different levels in the cell, among them Ca2+ pumps play an important role. Thus, Ca2+ pump, to extrude Ca2+; Na+/Ca2+ exchanger; and different Ca2+ channels for Ca2+ entry are placed in the plasma membrane. In addition, the inner and outer surfaces of the plasmalemma possess the ability to bind Ca2+ that can be released by different agonists. The sarcoplasmic reticulum has an active role in this Ca2+ regulation; its membrane has a Ca2+ pump that facilitates luminal Ca2+ accumulation, thus reducing the cytosolic free Ca2+ concentration. This pump can be inhibited by different agents. Physiologically, its activity is regulated by the protein phospholamban; thus, when it is in its unphosphorylated state such a Ca2+ pump is inhibited. The sarcoplasmic reticulum membrane also possesses receptors for 1,4,5-inositol trisphosphate and ryanodine, which upon activation facilitates Ca2+ release from this store. The sarcoplasmic reticulum and the plasmalemma form the superficial buffer barrier that is considered as an effective barrier for Ca2+ influx. The cytosol possesses different proteins and several inorganic compounds with a Ca2+ buffering capacity. The hypothesis of capacitative Ca2+ entry into smooth muscle across the plasma membrane after intracellular store depletion and its mechanisms of inhibition and activation is also commented.
Collapse
Affiliation(s)
- J Marín
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| | | | | | | | | |
Collapse
|
33
|
Taylor CW. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:19-33. [PMID: 9838027 DOI: 10.1016/s0005-2760(98)00122-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The three subtypes of inositol trisphosphate (InsP3) receptor expressed in mammalian cells are each capable of forming intracellular Ca2+ channels that are regulated by both InsP3 and cytosolic Ca2+. The InsP3 receptors of many, though perhaps not all, tissues are biphasically regulated by cytosolic Ca2+: a rapid stimulation of the receptors by modest increases in Ca2+ concentration is followed by a slower inhibition at higher Ca2+ concentrations. Despite the widespread occurrence of this form of regulation and the belief that it is an important element of the mechanisms responsible for the complex Ca2+ signals evoked by physiological stimuli, the underlying mechanisms are not understood. Both accessory proteins and Ca2+-binding sites on InsP3 receptors themselves have been proposed to mediate the effects of cytosolic Ca2+ on InsP3 receptor function, but the evidence is equivocal. The effects of cytosolic Ca2+ on InsP3 binding and channel opening, and the possible means whereby the effects are mediated are discussed in this review.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| |
Collapse
|
34
|
Flores JA, Aguirre C, Sharma OP, Veldhuis JD. Luteinizing hormone (LH) stimulates both intracellular calcium ion ([Ca2+]i) mobilization and transmembrane cation influx in single ovarian (granulosa) cells: recruitment as a cellular mechanism of LH-[Ca2+]i dose response. Endocrinology 1998; 139:3606-12. [PMID: 9681514 DOI: 10.1210/endo.139.8.6162] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gonadotropic hormones, LH and FSH, activate adenylyl cyclase in their respective target cells and thereby initiate many biochemical responses. In addition to stimulating cAMP production, both LH and FSH promote agonist-specific increases in the cytoplasmic concentration of free calcium ions ([Ca2+]i) in gonadal cells. Here, we have applied single cell fluorescence video microscopy with the Ca2+-sensitive dye fura-2 to investigate the mechanism(s) by which LH induces a rise in the [Ca2+]i in individual (swine) granulosa cells collected from single Graafian follicles. Stimulation with LH induced a rapid onset, biphasic, spike- and plateau-like [Ca2+]i signal in responsive granulosa cells. The cellular mechanisms mediating this biphasic LH-stimulated increase in [Ca2+]i were examined by external Ca2+ removal and via the manganese (Mn2+) quench technique, which showed that LH triggers initial intracellular Ca2+ mobilization followed by delayed transmembrane Ca2+ influx. Single cell Ca2+ assessment of the LH dose-response mechanism(s) revealed that higher concentrations of LH progressively recruit a larger number of responding individual granulosa cells. Further analyses disclosed a marked [Ca2+]i response heterogeneity among individual granulosa cells harvested from the same Graafian follicle. In addition, the percentage of cells responding to LH [but not to an alternative putative agonist of the phospholipase C (PLC) pathway, viz. endothelin-1] with a biphasic [Ca2+]i rise increased with maturational development of the follicle. Pretreatment of granulosa cells with a specific PLC inhibitor, U-73122 (but not with its inactive congener U-73343), significantly reduced the percentage of cells responding to a LH challenge from 78% to 25% (P < 0.0001) and prolonged the time required to achieve a half-maximal value of the [Ca2+]i transient, viz. from 22 +/- 1.5 sec (n = 27 cells) to 39 +/- 7.2 sec (n = 12 cells; P = 0.002). In cell population studies, LH stimulated in a concentration- and time-dependent manner the accumulation of inositol phosphate in porcine granulosa cells. In summary, the present single cell investigations in mature granulosa cells demonstrate that LH drives initial intracellular Ca2+ mobilization followed by transmembrane divalent cation influx. The PLC inhibitor U-73122 antagonizes this action of LH. By analyzing [Ca2+]i responses in individual living granulosa cells, we further show that, despite within-follicle diversity, the LH dose biphasic [Ca2+]i response arises via the recruitment of a larger number of responding gonadal cells rather than by increased [Ca2+]i signal amplitude. Finally, the percentage of individual LH (but not endothelin-1)-responding granulosa cells increases with follicular maturation. Collectively, these data highlight the potential importance of the LH-stimulatable, PLC-transduced [Ca2+]i signaling mechanism in the later stages of granulosa cell differentiation.
Collapse
Affiliation(s)
- J A Flores
- Department of Internal Medicine, University of Virginia Health Sciences Center, and National Science Foundation Center for Biology Timing, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
35
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
36
|
Wilson BS, Pfeiffer JR, Smith AJ, Oliver JM, Oberdorf JA, Wojcikiewicz RJ. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell 1998; 9:1465-78. [PMID: 9614187 PMCID: PMC25370 DOI: 10.1091/mbc.9.6.1465] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/1997] [Accepted: 03/03/1998] [Indexed: 11/11/2022] Open
Abstract
Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcepsilonR1) leads to activation of phospholipase C gamma isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5-10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 microM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4-2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36(M3R) cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4-2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.
Collapse
Affiliation(s)
- B S Wilson
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Raeymaekers L. Modelling of some potential effects of lumenal Ca2+ binding on the kinetics of Ca2+ release from the endoplasmic reticulum. Cell Calcium 1998; 23:261-8. [PMID: 9681189 DOI: 10.1016/s0143-4160(98)90124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The time course of Ca2+ release from intracellular stores during a prolonged exposure to a constant concentration of inositol 1,4,5-trisphosphate does not follow a single exponential but presents a progressive slowing down of the relative rate of efflux. Among the many factors that may contribute to this phenomenon, the possible contribution of lumenal Ca2+ buffering has been largely neglected. However, since the efflux rate depends on the free Ca2+ concentration whereas the total Ca2+ content is mainly determined by bound Ca2+, simple Ca2+ efflux kinetics can be expected only if there is a linear relation between free Ca2+ and bound Ca2+. Although little is known on lumenal Ca2+ binding, reasonable assumptions predict that the ratio of (Ca2+ bound)/(Ca2+ free) may decrease with increasing free Ca2+ concentrations, implying a continuously decreasing rate coefficient, as is experimentally observed. Simulated Ca2+ release curves show significant deviations from a single exponential if high-affinity binding sites are present in addition to low-affinity sites. Although this simple model does not predict several of the experimentally observed properties, it is concluded that a full understanding of Ca2+ release kinetics requires more detailed information on lumenal Ca2+ buffering within Ca2+ stores.
Collapse
|
38
|
Abstract
Circular smooth muscle cells from the feline newborn antrum, unlike the adult, are unable to respond to myogenic agonists in the absence of extracellular calcium or to exogenous inositol 1,4,5-trisphosphate (IP3). This study examined the reasons behind the relative inaccessibility of intracellular calcium stores in the newborn period. IP3 binding was determined in antral smooth muscle homogenates from adult cats and newborns by evaluating the competitive binding of D-myo-[3H]IP3 and unlabeled IP3. Receptor density (Bmax) (fmol/mg of protein) and binding affinity (Kd) were determined. The Kd was similar in adults (31 +/- 4 nM) and newborns (28 +/- 7 nM); however, the Bmax was markedly decreased in the newborn (647 +/- 181.0 fmol/mg) compared with the adult (1755 +/- 275 fmol/mg). In adult and newborn antral cells, thapsigargin, which causes a net release of Ca2+ from intracellular stores by inhibiting Ca(2+)-ATPase-dependent reuptake activity, caused an early contraction at 30 s that was maintained for at least 20 min. We conclude that, in the newborn, dynamic intracellular calcium stores are present in the smooth muscle of the feline antrum and that differences in accessibility of intracellular calcium stores may be related to changes in the release of calcium from IP3-sensitive stores.
Collapse
Affiliation(s)
- D E Deutsch
- Division of Pediatric Gastroenterology, University of Michigan Medical Center, Ann Arbor 48109-0658, USA
| | | | | |
Collapse
|
39
|
Tertyshnikova S, Fein A. Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ release by cAMP-dependent protein kinase in a living cell. Proc Natl Acad Sci U S A 1998; 95:1613-7. [PMID: 9465064 PMCID: PMC19117 DOI: 10.1073/pnas.95.4.1613] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interaction of intracellular free calcium ([Ca2+]i) and cAMP signaling mechanisms was examined in intact single megakaryocytes by using a combination of single-cell fluorescence microscopy to measure [Ca2+]i and flash photolysis of caged Ca2+, inositol 1,4, 5-trisphosphate (IP3), or cAMP to elevate rapidly the concentration of these compounds inside the cell. Photolysis of caged IP3 stimulated Ca2+ release from an IP3-sensitive store. The cAMP-elevating agent carbacyclin inhibited this IP3-induced rise in [Ca2+]i but did not affect the rate of Ca2+ removal from the cytoplasm after photolysis of caged Ca2+. Photolysis of caged cAMP during ADP-induced [Ca2+]i oscillations caused the [Ca2+]i oscillation to transiently cease without affecting the rate of Ca2+ uptake and/or extrusion. We conclude that the principal mechanism of cAMP-dependent inhibition of Ca2+ mobilization in megakaryocytes appears to be by inhibition of IP3-induced Ca2+ release and not by stimulation of Ca2+ removal from the cytoplasm. Two inhibitors of cAMP-dependent protein kinase, a specific peptide inhibitor of the catalytic subunit of cAMP protein kinase and KT5720, blocked the inhibitory effect of carbacyclin, indicating that the inhibition of IP3-induced Ca2+-release by carbacyclin is mediated by cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- S Tertyshnikova
- Department of Physiology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3505, USA
| | | |
Collapse
|
40
|
Mészáros LG, Zahradnikova A, Volpe P. Kinetic basis of quantal calcium release from intracellular calcium stores. Cell Calcium 1998; 23:43-52. [PMID: 9570009 DOI: 10.1016/s0143-4160(98)90073-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kinetics of Ca2+ release from canine cerebellum and rabbit skeletal muscle microsomes, mediated by the inositol 1,4,5-trisphosphate (IP3) receptor (IRC) and the ryanodine receptor (RyRC), respectively, were analyzed by a model, which considers that Ca2+ release channels undergo spontaneous inactivation. We found that: (i) both the initial rate of release (Vo) and the rate of inactivation (Vi) were saturable functions of the activating ligand concentration (CL); and (ii) the ratio of Vi/Vo, termed the relative tendency for inactivation, decreased with increasing CL. Equilibrium [3H]-IP3 binding studies, on the other hand, revealed the presence of one single class of non-co-operative IP3 sites in cerebellum membranes (Kdeq = 47 nM and Hill coefficient = 1.1). Based on the above Vi-Vo relationship and the IP3-binding data, we propose that quantal Ca2+ release through IRCs might be a result of spontaneous channel inactivation, whose rate is controlled by the ratio of IP3-occupied/free monomers in the tetrameric release channel units. Furthermore, because of the kinetic similarities between the IRC- and RyRC-mediated Ca2+ release processes, as well as between quantal Ca2+ release and channel adaptation, the same mechanism is also proposed to apply to the RyRC-mediated Ca2+ release as well as to constitute the basis of release channel adaptation.
Collapse
Affiliation(s)
- L G Mészáros
- Department of Physiology and Endocrinology, Medical College of Georgia, Augusta, USA
| | | | | |
Collapse
|
41
|
Dettbarn C, Palade P. Ca2+ feedback on "quantal" Ca2+ release involving ryanodine receptors. Mol Pharmacol 1997; 52:1124-30. [PMID: 9396782 DOI: 10.1124/mol.52.6.1124] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The influence of luminal and cytoplasmic Ca2+ on the ability of ryanodine-sensitive stores to undergo multiple partial ("quantal") releases has been assessed. Increased luminal Ca2+ levels do indeed modulate sarcoplasmic reticulum Ca2+ release by lowering the threshold agonist concentration required to elicit release, but the decrease in luminal Ca2+ that accompanies a partial release is not sufficient by itself to terminate release. Similarly, an increase in cytoplasmic Ca2+ lowers the threshold agonist concentration required to elicit release; thus, the bulk cytoplasmic Ca2+ levels attained during a release would only stimulate further release, not terminate it before it reached completion. Very high cytoplasmic Ca2+ levels (1-3 mM) also triggered release but were unable to terminate release before reaching completion. Thus, even the high local cytoplasmic Ca2+ concentration that might accompany release would also not terminate release. It is concluded that Ca2+ feedback can modulate release through ryanodine receptors but that it does not account for the properties of quantal release. The low affinity inhibitor tetracaine induces a decrease in the extent of release that cannot be explained solely by heterogeneous caffeine sensitivity of the stores. The results are interpreted in terms of a scheme that includes (i) heterogeneous sensitivity of stores, conferred in part by differences in luminal Ca2+ content and (ii) adaptive behavior on the part of individual ryanodine receptors.
Collapse
Affiliation(s)
- C Dettbarn
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | |
Collapse
|
42
|
Moon C, Fraser SP, Djamgoz MB. G-protein activation, intracellular Ca2+ mobilization and phosphorylation studies of membrane currents induced by AlF4- in Xenopus oocytes. Cell Signal 1997; 9:497-504. [PMID: 9419813 DOI: 10.1016/s0898-6568(96)00092-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the electrophysiological responses induced by aluminium fluoride (AlF4-) and carbachol in Xenopus oocytes. Application of AlF4- induced Ca(2+)-dependent oscillatory and smooth Cl- currents. Pre-treatment of oocytes with microinjected guanosine 5'-O-(2-thiodiphosphate) diminished the currents, indicating that the effect of AlF4- occurred through G-protein activation. Confocal imaging of intracellular Ca2+ clearly demonstrated that AlF4- could increase the internal Ca2+ concentration in oocytes in the absence of external Ca2+. A protein kinase (PK) activator (4-beta-phorbol 12,13-dibutyrate) decreased the AlF4(-)-induced membrane currents, whereas a PK inhibitor (staurosporine) caused an increase. On the other hand, the protein phosphatase inhibitor (okadaic acid) showed little effect. Although the effects of the phosphorylating/dephosphorylating agents on the carbachol-induced currents were qualitatively similar to the case of AlF4-, some quantitative differences was noted. The results are discussed in terms of the signaling pathways involving muscarinic receptors and G-protein(s) in Xenopus oocytes.
Collapse
Affiliation(s)
- C Moon
- Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | |
Collapse
|
43
|
Beecroft MD, Taylor CW. Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+. Biochem J 1997; 326 ( Pt 1):215-20. [PMID: 9337871 PMCID: PMC1218657 DOI: 10.1042/bj3260215] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetics of Ins(1,4,5)P3 (InsP3)-stimulated Ca2+ release from intracellular stores are unusual in that submaximal concentrations of InsP3 rapidly release only a fraction of the InsP3-sensitive Ca2+ stores. By measuring unidirectional 45Ca2+ efflux from permeabilized rat hepatocytes, we demonstrate that such quantal responses to InsP3 occur at all temperatures between 2 and 37 degrees C, but at much lower rates at the lower temperatures. Preincubation with submaximal concentrations of InsP3, which themselves evoked quantal Ca2+ release, had no effect on the sensitivity of the stores to further additions of InsP3. The final Ca2+ content of the stores was the same whether they were stimulated with two submaximal doses of InsP3 or a single addition of the sum of these doses. Such incremental responses and the persistence of quantal behaviour at 2 degrees C indicate that InsP3-evoked receptor inactivation is unlikely to be the cause of quantal Ca2+ mobilization. Reducing the Ca2+ content of the intracellular stores by up to 45% did not affect their sensitivity to InsP3, but substantially reduced the time taken for each submaximal InsP3 concentration to exert its full effect. These results suggest that neither luminal nor cytosolic Ca2+ regulation of InsP3 receptors are the determinants of quantal behaviour. Our results are not therefore consistent with incremental responses to InsP3 depending on mechanisms involving attenuation of InsP3 receptor function by cytosolic or luminal Ca2+ or by InsP3 binding itself. We conclude that incremental activation of Ca2+ release results from all-or-nothing emptying of stores with heterogeneous sensitivities to InsP3. These characteristics allow rapid graded recruitment of InsP3-sensitive Ca2+ stores as the cytosolic InsP3 concentration increases.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/physiology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Cytosol/metabolism
- Cytosol/physiology
- Dose-Response Relationship, Drug
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Liver/cytology
- Liver/metabolism
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Temperature
- Time Factors
Collapse
Affiliation(s)
- M D Beecroft
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
44
|
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) is a ligand-gated Ca2+-release channel on intracellular Ca2+ store sites (such as the endoplasmic reticulum), and plays an important role in intracellular Ca2+ signaling in a wide variety of cell types. Recent studies have shown that binding of inositol 1,4,5-trisphosphate (InsP3) to InsP3R isoforms is differentially regulated by Ca2+, and that InsP3R functions are finely regulated by phosphorylation via tyrosine kinases and protein kinase C, by dephosphorylation via calcineurin, and by binding to FKBP (FK506-binding protein). In addition, transient receptor potential (TRP) and TRP-like proteins appear to couple conformationally with the InsP3R for capacitative Ca2+ entry. The importance of InsP3R signaling in neuronal function has been demonstrated by gene targeting in mice and by studies of T-cell receptor signaling, apoptosis, meiotic maturation, and cytokinesis.
Collapse
Affiliation(s)
- K Mikoshiba
- Department of Molecular Neurobiology, Institute of Medical Science University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108, Japan
| |
Collapse
|
45
|
Pizarro G, Shirokova N, Tsugorka A, Ríos E. 'Quantal' calcium release operated by membrane voltage in frog skeletal muscle. J Physiol 1997; 501 ( Pt 2):289-303. [PMID: 9192301 PMCID: PMC1159477 DOI: 10.1111/j.1469-7793.1997.289bn.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Ca2+ transients and Ca2+ release flux were determined optically in cut skeletal muscle fibres under voltage clamp. 'Decay' of release during a depolarizing pulse was defined as the difference between the peak value of release and the much lower steady level reached after about 100 ms of depolarization. Using a double-pulse protocol, the inactivating effect of release was measured by 'suppression', the difference between the peak values of release in the test pulse, in the absence and presence of a conditioning pulse that closely preceded the test pulse. 2. The relationship between decay and suppression was found to follow two simple arithmetic rules. Whenever the conditioning depolarization was less than or equal to the test depolarization, decay in the conditioning release was approximately equal to suppression of the test release. Whenever the conditioning depolarization was greater than that of the test, suppression was complete, i.e. test release was reduced to a function that increased monotonically to a steady level. The steady level was the same with or without conditioning. 3. These arithmetic rules suggest that inactivation of Ca2+ release channels is strictly and fatally linked to their activation. More than a strict linkage, however, is required to explain the arithmetic properties. 4. The arithmetic rules of inactivation result in three other properties that are inexplicable with classical models of channel gating: constant suppression, incremental inactivation and increment detection. These properties were first demonstrated for inositol trisphosphate (IP3)-sensitive channels and used to define IP3-induced release as quantal. In this sense, it can now be stated that skeletal muscle Ca2+ release is activated by membrane voltage in a quantal manner. 5. For both classes of intracellular Ca2+ channels, one explanation of the observations is the existence of subsets of channels with different sensitivities (to voltage or agonist dose). In an alternative explanation, channels are identical, but have a complex repertoire of voltage- or dose-dependent responses.
Collapse
Affiliation(s)
- G Pizarro
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
46
|
Kaimachnikov NP, Nazarenko VG. Quantal Ca2+ release and inactivation in a model of the inositol 1,4,5-trisphosphate receptor involving transformation of the ligand by the receptor. Biosci Rep 1996; 16:405-13. [PMID: 8913530 DOI: 10.1007/bf01207265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A model explaining quantal Ca2+ release as an intrinsic property of the inositol 1,4,5-triphosphate (IP3) receptor has been put forward. The model is based on the hypothesis that the IP3 receptor can catalyze a transformation of the IP3 molecule differing from its conventional metabolism. A simple kinetic mechanism is considered, in which IP3-induced Ca2+ channel opening is followed by the step of IP3 conversion and channel closure. Examination of the resulting mathematical model shows that it can reproduce well both partial release of stored Ca2+ and the same responsiveness to subsequent IP3 additions. On incorporation of an additional closed state of the channel, the model describes also a time-dependent channel inactivation at a high IP3 dose. Temperature sensitivity of the catalytic step accounts for the reported elimination of quantal responses and inactivation at low temperature. The transformation product is surmised to be a positional or stereo isomer of IP3.
Collapse
Affiliation(s)
- N P Kaimachnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
47
|
Wilcox RA, Strupish J, Nahorski SR. Quantal calcium release in electropermeabilized SH-SY5Y neuroblastoma cells perfused with myo-inositol 1,4,5-trisphosphate. Cell Calcium 1996; 20:243-55. [PMID: 8894271 DOI: 10.1016/s0143-4160(96)90030-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Continuous perfusion of immobilized electropermeabilized SH-SY5Y neuroblastoma cells was utilised as a novel approach to the assessment of incremental activation and inactivation of myo-inositol 1,4,5-trisphosphate (IP3)-induced calcium (Ca2+) mobilisation (IICM). SH-SY5Y cells when stimulated with sub-optimal IP3 exhibited a rapid concentration dependent activation of Ca2+ mobilization followed by a partial inactivation. Although this partial inactivation allowed net Ca2+ mobilized to be stringently returned to basal levels, a concentration-dependent depletion of the store was maintained while ever perfusion with the stimulating IP3 concentration was sustained. This partial inactivation of IP3-induced quantal Ca2+ release (QCR) was only compromised if cells, with replete Ca2+ stores, were perfused with supra-maximally effective concentrations of IP3 (5-10 microM). Thus, at supra-optimal IP3 concentrations, a reproducible plateau of Ca2+ release lying 50-150 nM above the basal Ca2+ concentration was observed. Feedback on IP3R sensitivity by gross cytosolic Ca2+ levels could be eliminated as the sustained and exclusive mediator of incremental activation/inactivation cycle of IICM in SH-SY5Y cells, since released Ca2+ was perfused away from the immobilized cells. Thus, while ever the cells were continuously perfused with IP3, impressive incremental inactivation was apparent. Additionally, IP3R partial agonists were found to exhibit lower intrinsic activity for both activation and inactivation of QCR, suggesting that ligand-induced inactivation of the IP3R was more important than inactivation mechanisms reliant on either Ca2+ flux through the channel and/or calcium store depletion. Therefore, we suggest that, in perfused SH-SY5Y cells, the most parsimonious explanation of our data is that IP3 binding probably activates and then partially inactivates its receptor in a concentration-dependent fashion to produce the QCR phenomenon.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Cell Physiology and Pharmacology, University of Leicester, UK.
| | | | | |
Collapse
|
48
|
Marín A, Ureña J, Tabares L. Intracellular calcium release mediated by noradrenaline and acetylcholine in mammalian pineal cells. J Pineal Res 1996; 21:15-28. [PMID: 8836960 DOI: 10.1111/j.1600-079x.1996.tb00266.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of noradrenergic and cholinergic receptor agonists on intracellular Ca2+ concentration ([Ca2+]i) in single dissociated rat pineal cells were investigated by microfluorimetric measurements in Fura-2 acetoxymethyl ester (Fura-2/AM) loaded cells. Noradrenaline (NA) evoked characteristic biphasic increments of intracellular Ca2+ consisting of one or more leading spikes followed by a plateau, resulting from the release of Ca2+ from intracellular stores and from the influx of Ca2+ from the external medium, respectively. This response was reproduced by the alpha 1-adrenoceptor agonist, phenylephrine (PE), in the presence of the beta-adrenoceptor antagonist, propranolol, and was abolished when NA or PE was applied in conjunction with the alpha 1-adrenoceptor antagonist, prazosin. The curve relating the peak amplitude of the Ca2+ increments to different PE concentrations (0.5-10 microM) showed a half-maximum response at 0.6 microM PE, and saturation at concentrations greater than 2 microM. Acetylcholine (ACh) also elicited transient Ca2+ increments consisting of an abrupt rise to a maximum value which decayed exponentially to the basal Ca2+ level. A half-maximum response was achieved at 59 microM ACh. The muscarinic cholinergic receptor agonist, carbachol (CCh), similarly activated Ca2+ increments while the muscarinic antagonist, atropine, abolished them. In the absence of extracellular Ca2+, repetitive stimuli with either alpha 1-adrenergic and muscarinic agonists produced a progressive decrement in the amplitude of the Ca2+ signals because of the depletion of intracellular stores. However, extinction of the response to muscarinic agonists did not preclude a response to adrenergic agonists, while the contrary was not true. These results suggest that these agonists liberate Ca2+ from two functionally distinct, caffeine-insensitive, Ca2+ intracellular stores.
Collapse
Affiliation(s)
- A Marín
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
49
|
Missiaen L, De Smedt H, Parys JB, Raeymaekers L, Droogmans G, Van Den Bosch L, Casteels R. Kinetics of the non-specific calcium leak from non-mitochondrial calcium stores in permeabilized A7r5 cells. Biochem J 1996; 317 ( Pt 3):849-53. [PMID: 8760372 PMCID: PMC1217562 DOI: 10.1042/bj3170849] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the detailed kinetics of the passive Ca2+ leak from non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. The decrease in the content of stored Ca2+ in the presence of 2 microM thapsigargin deviated from a single-exponential curve in the initial phase of the efflux. The deviation persisted after correcting this efflux for passively bound Ca2+. The non-single-exponential nature of the spontaneous release also occurred when the initial store Ca2+ content was reduced to 40% of its original value by pretreatment with 200 nM inositol 1,4,5-trisphosphate (InsP3). The passive Ca2+ leak could be modelled by two exponential curves with discrete rate constants of 0.06 min-1 and 0.98 min-1, and not by any other type of non-exponential decay. We concluded that individual store units are heterogeneous with respect to their passive Ca2+ permeability. This non-exponential nature of the passive Ca2+ release is unrelated to the non-single-exponential InsP3-induced Ca2+ release.
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Belgium
| | | | | | | | | | | | | |
Collapse
|
50
|
Oancea E, Meyer T. Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J Biol Chem 1996; 271:17253-60. [PMID: 8663416 DOI: 10.1074/jbc.271.29.17253] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Repetitive transient increases in cytosolic calcium concentration (calcium spikes or calcium oscillations) are a common mode of signal transduction in receptor-mediated cell activation. Repetitive calcium spikes are initiated by phospholipase C-mediated production of inositol 1,4,5-trisphosphate (InsP3) and are thought to be generated by a positive feedback mechanism in which calcium potentiates its own release, a negative feedback mechanism by which calcium release is terminated, and a slow recovery process that defines the time interval between calcium spikes. The molecular mechanisms that terminate each calcium spike and define the spike frequency are not yet known. Here we show, in intact rat basophilic leukemia cells, that calcium responses induced by InsP3 are diminished for a period of 30-60 s following an InsP3-induced calcium spike. The sensitivity of calcium release for InsP3 was probed by UV laser-mediated photorelease of InsP3, and calcium responses were monitored by fluorescence calcium imaging. A maximal loss in sensitivity (desensitization) was observed for InsP3 increases that resulted in a near maximal calcium spike and was expressed as an 80-100% reduction in the calcium response to an equal amount of InsP3, released 10 s after the first UV pulse. When the amount of released InsP3 in the second pulse was increased 2-3-fold, desensitization was overcome and a second calcium response of equal amplitude to the first was produced. A power dependence of 3.2 was measured between the amount of released InsP3 and the amplitude of the triggered calcium response, explaining how a small decrease in InsP3 sensitivity can lead to a nearly complete reduction in the calcium response. Desensitization was abolished by the addition of the calcium buffers BAPTA and EGTA and could be induced by microinjection of calcium, suggesting that it is a calcium-dependent process. Half-maximal desensitization was observed at a free calcium concentration of 290 nM and increased with a power of 3.7 with peak calcium concentration. These studies suggest that reversible desensitization of InsP3-induced calcium release serves as a "saw-tooth" parameter that controls the termination of each spike and the frequency of calcium spikes.
Collapse
Affiliation(s)
- E Oancea
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|