1
|
Ma MY, Deng G, Zhu WZ, Sun M, Jiang LY, Li WH, Liu YB, Guo L, Song BL, Zhao X. Defects in CYB5A and CYB5B impact sterol-C4 oxidation in cholesterol biosynthesis and demonstrate regulatory roles of dimethyl sterols. Cell Rep 2024; 43:114912. [PMID: 39489939 DOI: 10.1016/j.celrep.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Cytochrome b5 (CYB5) is a hemoprotein crucial for electron transfer to oxygenases. Although microsomal CYB5A is required for sterol C4-demethylation in vitro, cholesterol biosynthesis remains intact in Cyb5a knockout mice. Here, we show that knockout of mitochondrial CYB5B, rather than CYB5A, blocks cholesterol biosynthesis at the sterol-C4 oxidation step in HeLa cells, causing an accumulation of testis meiosis-activating sterol (T-MAS) and dihydro-T-MAS. Surprisingly, liver-specific Cyb5b knockout (L-Cyb5b-/-) mice exhibit normal cholesterol metabolism. Further knockdown of Cyb5a in L-Cyb5b-/- (L-Cyb5b-/-/short hairpin [sh]Cyb5a) mice leads to a marked accumulation of T-MAS and dihydro-T-MAS, indicating that either CYB5A or CYB5B is required for sterol C4-demethylation. The L-Cyb5b-/-/shCyb5a mice are largely normal, with lower sterol regulatory element-binding protein (SREBP)-target gene expression during refeeding and higher liver triglyceride levels while fasting, as T-MAS and dihydro-T-MAS inhibit the SREBP pathway and activate the PPARγ pathway. In summary, CYB5A and CYB5B compensate for sterol C4-demethylation, and T-MAS and dihydro-T-MAS can modulate the SREBP and PPARγ pathways.
Collapse
Affiliation(s)
- Mei-Yan Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Gang Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Zhuo Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Lu-Yi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wei-Hui Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Yuan-Bin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Lin Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Baldini GM, Lot D, Malvasi A, Laganà AS, Vimercati A, Dellino M, Cicinelli E, Baldini D, Trojano G. Abnormalities of Oocyte Maturation: Mechanisms and Implications. Int J Mol Sci 2024; 25:12197. [PMID: 39596263 PMCID: PMC11595025 DOI: 10.3390/ijms252212197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The elucidation of oocyte maturation mechanisms is paramount for advancing embryo development within the scope of assisted reproductive technologies (ART). Both cytoplasmic and nuclear maturation represent intricate processes governed by tightly regulated cellular pathways, which are essential for ensuring the oocyte's competence for fertilization and subsequent embryogenesis. A comprehensive grasp of these mechanisms is vital, as the maturation stage of the oocyte significantly influences chromosomal integrity, spindle formation, and its ability to support the initial stages of embryonic development. By leveraging this knowledge, we can enhance in vitro fertilization (IVF) protocols, refining ovarian stimulation regimens and culture conditions to improve oocyte quality. This, in turn, has the potential to boost pregnancy rates and outcomes. Further research in this area will contribute to the development of novel interventions that aim to increase the efficacy of preimplantation embryonic development, offering new opportunities for individuals undergoing fertility treatments.
Collapse
Affiliation(s)
- Giorgio Maria Baldini
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Dario Lot
- IVF Center, Momo Fertilife, 76011 Bisceglie, Italy;
| | - Antonio Malvasi
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology “Paolo Giacone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities (PROMISE), University of Palermo, 90135 Palermo, Italy;
| | - Antonella Vimercati
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Miriam Dellino
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | - Ettore Cicinelli
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.B.); (A.M.); (A.V.); (M.D.); (E.C.)
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, Madonna delle Grazie Hospital, 75010 Matera, Italy;
| |
Collapse
|
3
|
Matha AR, Xie X, Lin X. Ergosterol Is Critical for Sporogenesis in Cryptococcus neoformans. J Fungi (Basel) 2024; 10:106. [PMID: 38392778 PMCID: PMC10890046 DOI: 10.3390/jof10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Microbes, both bacteria and fungi, produce spores to survive stressful conditions. Spores produced by the environmental fungal pathogen Cryptococcus neoformans serve as both surviving and infectious propagules. Because of their importance in disease transmission and pathogenesis, factors necessary for cryptococcal spore germination are being actively investigated. However, little is known about nutrients critical for sporogenesis in this pathogen. Here, we found that ergosterol, the main sterol in fungal membranes, is enriched in spores relative to yeasts and hyphae. In C. neoformans, the ergosterol biosynthesis pathway (EBP) is upregulated by the transcription factor Sre1 in response to conditions that demand elevated ergosterol biosynthesis. Although the deletion of SRE1 enhances the production of mating hyphae, the sre1Δ strain is deficient at producing spores even when crossed with a wild-type partner. We found that the defect of the sre1Δ strain is specific to sporogenesis, not meiosis or basidium maturation preceding sporulation. Consistent with the idea that sporulation demands heightened ergosterol biosynthesis, EBP mutants are also defective in sporulation. We discovered that the overexpression of some EBP genes can largely rescue the sporulation defect of the sre1Δ strain. Collectively, we demonstrate that ergosterol is a critical component in cryptococcal preparation for sporulation.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Madan B, Wadia SR, Patnaik S, Harmston N, Tan E, Tan IBH, Nes WD, Petretto E, Virshup DM. The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/β-catenin to RTK/MAPK signaling. J Clin Invest 2024; 134:e171222. [PMID: 38488003 PMCID: PMC10940096 DOI: 10.1172/jci171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/β-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Shawn R. Wadia
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Siddhi Patnaik
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Science Division, Yale-NUS College, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Iain Bee Huat Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
| | - W. David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Nakano K, Okamoto M, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Chibana H. Evaluation of Antifungal Selective Toxicity Using Candida glabrata ERG25 and Human SC4MOL Knock-In Strains. J Fungi (Basel) 2023; 9:1035. [PMID: 37888291 PMCID: PMC10607794 DOI: 10.3390/jof9101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
With only four classes of antifungal drugs available for the treatment of invasive systemic fungal infections, the number of resistant fungi is increasing, highlighting the urgent need for novel antifungal drugs. Ergosterol, an essential component of cell membranes, and its synthetic pathway have been targeted for antifungal drug development. Sterol-C4-methyl monooxygenase (Erg25p), which is a greater essential target than that of existing drugs, represents a promising drug target. However, the development of antifungal drugs must consider potential side effects, emphasizing the importance of evaluating their selective toxicity against fungi. In this study, we knocked in ERG25 of Candida glabrata and its human ortholog, SC4MOL, in ERG25-deleted Saccharomyces cerevisiae. Utilizing these strains, we evaluated 1181-0519, an Erg25p inhibitor, that exhibited selective toxicity against the C. glabrata ERG25 knock-in strain. Furthermore, 1181-0519 demonstrated broad-spectrum antifungal activity against pathogenic Candida species, including Candida auris. The approach of utilizing a gene that is functionally conserved between yeast and humans and subsequently screening for molecular target drugs enables the identification of selective inhibitors for both species.
Collapse
Affiliation(s)
- Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- School of Medicine, Niigata University, Niigata 951-8510, Japan
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0125, Japan
| |
Collapse
|
6
|
Cadenas J, Poulsen LC, Nikiforov D, Grøndahl ML, Kumar A, Bahnu K, Englund ALM, Malm J, Marko-Varga G, Pla I, Sanchez A, Pors SE, Andersen CY. Regulation of human oocyte maturation in vivo during the final maturation of follicles. Hum Reprod 2023; 38:686-700. [PMID: 36762771 DOI: 10.1093/humrep/dead024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
STUDY QUESTION Which substances and signal transduction pathways are potentially active downstream to the effect of FSH and LH in the regulation of human oocyte maturation in vivo? SUMMARY ANSWER The regulation of human oocyte maturation appears to be a multifactorial process in which several different signal transduction pathways are active. WHAT IS KNOWN ALREADY Many studies in animal species have provided insight into the mechanisms that govern the final maturation of oocytes. Currently, these studies have identified several different mechanisms downstream to the effects of FSH and LH. Some of the identified mechanisms include the regulation of cAMP/cGMP levels in oocytes involving C-type natriuretic peptide (CNP), effects of epidermal growth factor (EGF)-related peptides such as amphiregulin (AREG) and/or epiregulin (EREG), effect of TGF-β family members including growth differentiation factor 9 (GDF9) and morphogenetic protein 15 (BMP15), activins/inhibins, follicular fluid meiosis activating sterol (FF-MAS), the growth factor midkine (MDK), and several others. However, to what extent these pathways and mechanisms are active in humans in vivo is unknown. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS We evaluated the substances and signalling pathways potentially affecting human oocyte maturation in follicular fluid (FF) and granulosa cells (GCs) collected at five time points during the final maturation of follicles. Using ELISA measurement and proteomic profiling of FF and whole genome gene expression in GC, the following substances and their signal transduction pathways were collectively evaluated: CNP, the EGF family, inhibin-A, inhibin-B, activins, FF-MAS, MDK, GDF9, and BMP15. MAIN RESULTS AND THE ROLE OF CHANCE All the evaluated substances and signal transduction pathways are potentially active in the regulation of human oocyte maturation in vivo except for GDF9/BMP15 signalling. In particular, AREG, inhibins, and MDK were significantly upregulated during the first 12-17 h after initiating the final maturation of follicles and were measured at significantly higher concentrations than previously reported. Additionally, the genes regulating FF-MAS synthesis and metabolism were significantly controlled in favour of accumulation during the first 12-17 h. In contrast, concentrations of CNP were low and did not change during the process of final maturation of follicles, and concentrations of GDF9 and BMP15 were much lower than reported in small antral follicles, suggesting a less pronounced influence from these substances. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION Although GC and cumulus cells have many similar features, it is a limitation of the current study that information for the corresponding cumulus cells is not available. However, we seldom recovered a cumulus-oocyte complex during the follicle aspiration from 0 to 32 h. WIDER IMPLICATIONS OF THE FINDINGS Delineating the mechanisms governing the regulation of human oocyte maturation in vivo advances the possibility of developing a platform for IVM that, as for most other mammalian species, results in healthy offspring with good efficacy. Mimicking the intrafollicular conditions during oocyte maturation in vivo in small culture droplets during IVM may enhance oocyte nuclear and cytoplasmic maturation. The primary outlook for such a method is, in the context of fertility preservation, to augment the chances of achieving biological children after a cancer treatment by subjecting oocytes from small antral follicles to IVM. Provided that aspiration of oocytes from small antral follicles in vivo can be developed with good efficacy, IVM may be applied to infertile patients on a larger scale and can provide a cheap alternative to conventional IVF treatment with ovarian stimulation. Successful IVM has the potential to change current established techniques for infertility treatment. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the University Hospital of Copenhagen, Rigshospitalet, the Independent Research Fund Denmark (grant number 0134-00448), and the Interregional EU-sponsored ReproUnion network. There are no conflicts of interest to be declared.
Collapse
Affiliation(s)
- J Cadenas
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - L C Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - D Nikiforov
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M L Grøndahl
- The Fertility Clinic, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - A Kumar
- Ansh Labs LLC, Webster, TX, USA
| | - K Bahnu
- Ansh Labs LLC, Webster, TX, USA
| | - A L M Englund
- Zealand Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - J Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - G Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - I Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - A Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - S E Pors
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark.,Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
8
|
Chian R, Li J, Lim J, Yoshida H. IVM of human immature oocytes for infertility treatment and fertility preservation. Reprod Med Biol 2023; 22:e12524. [PMID: 37441160 PMCID: PMC10335168 DOI: 10.1002/rmb2.12524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Background Thousands of healthy babies are born from in vitro maturation (IVM) procedures, but the rate of efficiency differs with the source of immature oocytes obtained. Recently, there are different IVM protocols proposed for infertility treatment and fertility preservation. Methods Based on the literature, the clinical application for IVM of immature oocytes was summarized. Main findings Results Immature oocytes may be retrieved from women after priming with or without the use of follicular stimulation hormone (FSH), human chorionic gonadotrophin (hCG) or a combination of both FSH and hCG. Successful pregnancy rates with IVM technology seem to be correlated with the number of immature oocytes obtained. With the source and culture course of immature oocytes, there are various IVM protocols. IVM of immature oocytes is profoundly affected by the culture conditions, but no breakthrough has been made by improving the IVM medium itself. Thus, the clinical application of IVM technology continues to evolve. Conclusion IVM technology is a useful technique for infertile women and fertility preservation. Mild stimulation IVF combined with IVM of immature oocytes is a viable alternative to the conventional stimulation IVF cycle treatment as it may prove to be an optimal first-line treatment approach.
Collapse
Affiliation(s)
- Ri‐Cheng Chian
- Center for Reproductive MedicineShanghai 10th People's Hospital of Tongji UniversityShanghaiChina
| | - Jian‐Hua Li
- Reproductive Medical Center, Senior Department of Obstetrics and GynecologyThe Seventh Medical Center of PLA General HospitalBeijingChina
| | | | | |
Collapse
|
9
|
Caprariello AV, Adams DJ. The landscape of targets and lead molecules for remyelination. Nat Chem Biol 2022; 18:925-933. [PMID: 35995862 PMCID: PMC9773298 DOI: 10.1038/s41589-022-01115-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Remyelination, or the restoration of myelin sheaths around axons in the central nervous system, is a multi-stage repair process that remains a major need for millions of patients with multiple sclerosis and other diseases of myelin. Even into adulthood, rodents and humans can generate new myelin-producing oligodendrocytes, leading to the therapeutic hypothesis that enhancing remyelination could lessen disease burden in multiple sclerosis. Multiple labs have used phenotypic screening to identify dozens of drugs that enhance oligodendrocyte formation, and several hit molecules have now advanced to clinical evaluation. Target identification studies have revealed that a large majority of these hits share the ability to inhibit a narrow range of cholesterol pathway enzymes and thereby induce cellular accumulation of specific sterol precursors to cholesterol. This Perspective surveys the recent fruitful intersection of chemical biology and remyelination and suggests multiple approaches toward new targets and lead molecules to promote remyelination.
Collapse
Affiliation(s)
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Li ZM, Li YY, Fei CF, Zhou LQ. Insm2 deficiency results in female infertility by disturbing steroid pathway and decreasing ovarian reserve in mice. Cell Cycle 2022; 21:2255-2267. [PMID: 35786158 DOI: 10.1080/15384101.2022.2092816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The number and quality of oocytes in the ovarian reserve are related to fertility and reproductive lifespan in mammals. Some transcription factors have been demonstrated to determine oogenesis. The insulinoma-associated 2 (Insm2) gene is a member of the Snail transcriptional repressor superfamily. Recent studies have demonstrated Insm2 plays an essential role for insulin secretion and glucose intolerance in mice, but the functions of Insm2 in reproduction remain elusive. Here, by examination of Insm2 knockout mice, we found Insm2 was essential for female fertility. Loss of Insm2 resulted in female infertility with major defects in primordial follicle pool, ovarian folliculogenesis and ovulation. Transcriptomic profiling of ovaries suggests that loss of Insm2 caused defects in oocyte meiosis and steroid synthesis. Both oocyte- and granulosa cell-expressed genes were dysregulated, including Foxo1 and other known genes involved in primary ovarian insufficiency. Together, these studies show that Insm2 is required for oocyte development and their communication with ovarian somatic cells.
Collapse
Affiliation(s)
- Zhi-Ming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Huang Z, Gao N, Zhang S, Xing J, Hou J. Investigating the toxically homogenous effects of three lanthanides on zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109251. [PMID: 34861418 DOI: 10.1016/j.cbpc.2021.109251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The adverse effects of rare earth elements (REEs) have been increasingly reported in the past decades and have raised concern about their environmental toxicities. However, the available data is insufficient to elucidate the toxic effects, mechanisms, and whether the toxicity across all REEs is uniform. In this study, zebrafish were exposed to 0, 0.8, 1.6, 3.2, 6.4, 12.8 and 25.6 mg/L Ln(NO3)3•6H2O to test the acute toxicity of La(III), Ce(III), and Nd(III). LC50 of the three lanthanides was compared to the extent of the impact on gene expression. We carried out the functionally grouped network-based transcriptome analysis using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the molecular mechanisms. The acute toxicity test showed that LC50 of La(III), Ce(III), and Nd(III) were 2.53, 2.03, and 2.76 mg/L, respectively. Consistent with acute toxicity, Ce(III) caused a little more DEGs than La(III) and Nd(III). Some biological processes such as metabolism of xenobiotics, oocyte meiosis, steroid biosynthesis, DNA replication, and p53 signaling pathway were affected following exposure of all the three lanthanides. Ce(III) also induced changes in the chemokine-mediated signaling pathway. The results indicated that the lethality is comparable, and the toxic patterns are similar across the three lanthanides. This study gives comparative research on the toxicities of three lanthanides to model organism zebrafish.
Collapse
Affiliation(s)
- Zhihui Huang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ning Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
12
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
13
|
Jia YY, Chi ML, Jiang WP, Liu SL, Cheng S, Zheng JB, Gu ZM. Identification of reproduction-related genes and pathways in the Culter alburnus H-P-G axis and characterization of their expression differences in malformed and normal gynogenetic ovaries. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1-20. [PMID: 33156507 DOI: 10.1007/s10695-020-00859-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
This study applied RNA-seq technology to discover reproduction-related genes and pathways in female topmouth culter brain (including pituitary) and ovarian tissues. In functional analysis, 2479 and 2605 unigenes in the brain and ovary tissue were assigned to the "reproductive process" subcategory in addition to the 2660 and 2845 unigenes assigned to the "reproduction" subcategory. Twenty-three complete cDNA sequences were identified through the different gene expression (DGE) approach from five reproduction-related pathways (MAPK signaling pathway, neuroactive ligand-receptor interaction pathway, gonadotropin-releasing hormone signaling pathway, oocyte meiosis pathway, and steroid biosynthesis pathway). The expression levels of 16 candidate genes using qPCR in this study were in accordance with the results of transcriptome analysis. In addition, the expression levels of the FSH, 3β-HSD, PGR, and NPYR genes in malformed gynogenetic ovaries were considerably low, which was consistent with the progress of oocytogenesis in the ovaries of topmouth culter. The high expression of these four genes in the ovaries of normal topmouth culter suggested they might involve in the preparation for the shift of oogenesis to ovulation. Hence, our work identified a set of annotated gene products that are candidate factors affecting reproduction in the topmouth culter H-P-G axis. These results could be essential for further research in functional genomics and genetic editing for topmouth culter reproduction.
Collapse
Affiliation(s)
- Yong Y Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Mei L Chi
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Wen P Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Shi L Liu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Shun Cheng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jian B Zheng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Zhi M Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China.
| |
Collapse
|
14
|
Tao LJ, Seo DE, Jackson B, Ivanova NB, Santori FR. Nuclear Hormone Receptors and Their Ligands: Metabolites in Control of Transcription. Cells 2020; 9:cells9122606. [PMID: 33291787 PMCID: PMC7762034 DOI: 10.3390/cells9122606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Nuclear hormone receptors are a family of transcription factors regulated by small molecules derived from the endogenous metabolism or diet. There are forty-eight nuclear hormone receptors in the human genome, twenty of which are still orphans. In this review, we make a brief historical journey from the first observations by Berthold in 1849 to the era of orphan receptors that began with the sequencing of the Caenorhabditis elegans genome in 1998. We discuss the evolution of nuclear hormone receptors and the putative ancestral ligands as well as how the ligand universe has expanded over time. This leads us to define four classes of metabolites-fatty acids, terpenoids, porphyrins and amino acid derivatives-that generate all known ligands for nuclear hormone receptors. We conclude by discussing the ongoing efforts to identify new classes of ligands for orphan receptors.
Collapse
Affiliation(s)
- Lian Jing Tao
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Jackson
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
15
|
Dang KN, Hashan MR, Minh LHN, Khalaf KM, Ibrahim HY, Dessi A, Azzam MA, Loc TTH, Hirayama K, Huy NT. Follicular Fluid Meiosis-Activating Sterol in Assisted Reproductive Techniques: A Systematic Review and Meta-analysis of Randomized Controlled Trials. FERTILITY & REPRODUCTION 2020. [DOI: 10.1142/s2661318220500176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Follicular fluid meiosis-activating sterol (FFMAS) is one of several molecular compounds that has been added into in vitro maturation (IVM) technique with contradictory results. Our study aimed to investigate the effects of FFMAS in assisted reproductive technology (ART). Methods: We searched systematically in PubMed, Web of Science, Scopus, Cochrane Registry of clinical trials, WHO registry of clinical trials, clinicaltrials.gov, Google Scholar until July 2017. Meta-analysis was used to investigate the efficacy and safety outcomes of FFMAS. Following the retrieval of potential articles, two independent reviewers screened and extracted included papers rigorously. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were computed for the individual outcome when data was available. Quality of included studies was assessed using Cochrane collaboration tool. Results: A total of seven randomized controlled trials involving 1198 participants with 3105 oocytes were explored in this study. Most of the studies were at low risk of bias. Our random effects model meta-analyses in maturation and abnormal embryo rate between FFMAS-exposed oocytes compared with controls revealed no significant differences (summary OR 1.00, 95% CI 0.46–2.16, [Formula: see text] value = 0.99 and summary OR was 1.31, 95% CI 0.84–2.04, [Formula: see text] value = 0.23, respectively). Beside, our study showed a significant increase in uniformly abnormal embryo rate in FFMAS group compared with vehicle control group (summary OR 1.98, 95% CI 1.09–3.61, [Formula: see text] value = 0.03). No significances were noted on meta-analyses of normal embryo rate, uniformly abnormal embryo rate, uniformly normal embryo rate, mosaic embryo rate, abnormal blastomere rate, normal blastomere rate, aneuploidy mosaic embryo rate, and chaotic mosaic embryo rate. Conclusions: FFMAS showed no efficacy in maturation process in human oocytes and there was some evidence for detrimental effects in comparison to vehicle controls. We discouraged any further trials due to safety concern.
Collapse
Affiliation(s)
- Kien Nguyen Dang
- Online Research Club , Nagasaki, Japan
- Department of Obstetrics and Gynecology, Thai Binh University of Medicine and Pharmacy, Thai Binh, 410000, Vietnam
| | - Mohammad Rashidul Hashan
- Online Research Club , Nagasaki, Japan
- Bangladesh Civil Service, Ministry of Health and Family Welfare, Government of Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Le Huu Nhat Minh
- Online Research Club , Nagasaki, Japan
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Khalid Muhammad Khalaf
- Online Research Club , Nagasaki, Japan
- Kasr Al Ainy, Faculty of Medicine, Cairo University, Egypt
| | | | - Alberto Dessi
- Online Research Club , Nagasaki, Japan
- Medicine and Surgery, Universita Degli Studi di Sassari (UNISS), Sassari, Italy
| | - Mohamed Abdalla Azzam
- Online Research Club , Nagasaki, Japan
- Faculty of Medicine, Zagazig University, Egypt
| | - Tran Thai Huu Loc
- Online Research Club , Nagasaki, Japan
- School of Medicine, Vietnam National University Ho Chi Minh City, Vietnam
| | - Kenji Hirayama
- Online Research Club , Nagasaki, Japan
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
16
|
Gatticchi L, Petricciuolo M, Scarpelli P, Macchioni L, Corazzi L, Roberti R. Tm7sf2 gene promotes adipocyte differentiation of mouse embryonic fibroblasts and improves insulin sensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118897. [PMID: 33121932 DOI: 10.1016/j.bbamcr.2020.118897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
Adipogenesis is a finely orchestrated program involving a transcriptional cascade coordinated by CEBP and PPAR family members and by hormonally induced signaling pathways. Alterations in any of these factors result into impaired formation of fully differentiated adipocytes. Tm7sf2 gene encodes for a Δ(14)-sterol reductase primarily involved in cholesterol biosynthesis. Furthermore, TM7SF2 modulates the expression of the master gene of adipogenesis PPARγ, suggesting a role in the regulation of adipose tissue homeostasis. We investigated the differentiation of Tm7sf2-/- MEFs into adipocytes, compared to Tm7sf2+/+ MEFs. Tm7sf2 expression was increased at late stage of differentiation in wild type cells, while Tm7sf2-/- MEFs exhibited a reduced capacity to differentiate into mature adipocytes. Indeed, Tm7sf2-/- MEFs had lower neutral lipid accumulation and reduced expression of adipogenic regulators. At early stage, the reduction in C/EBPβ expression impaired mitotic clonal expansion, which is needed by preadipocytes for adipogenesis induction. At late stage, the expression and activity of C/EBPα and PPARγ were inhibited in Tm7sf2-/- cells, leading to the reduced expression of adipocyte genes like Srebp-1c, Fasn, Scd-1, Adipoq, Fabp4, and Glut4. Loss of the acquisition of adipocyte phenotype was accompanied by a reduction in the levels of Irs1, and phosphorylated Akt and ERK1/2, indicating a blunted insulin signaling in differentiating Tm7sf2-/- cells. Moreover, throughout the differentiation process, increased expression of the antiadipogenic Mmp3 was observed in MEFs lacking Tm7sf2. These findings indicate Tm7sf2 as a novel factor influencing adipocyte differentiation that could be relevant to adipose tissue development and maintenance of metabolic health.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| | - Maya Petricciuolo
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy
| | - Paolo Scarpelli
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| | - Lanfranco Corazzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| | - Rita Roberti
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
17
|
Li C, Meng X, Liu S, Li W, Zhang X, Zhou J, Yao W, Dong C, Liu Z, Zhou J, Li J, Tao J, Wu W, Shen M, Liu H. Oocytes and hypoxanthine orchestrate the G2-M switch mechanism in ovarian granulosa cells. Development 2020; 147:147/13/dev184838. [PMID: 32620578 DOI: 10.1242/dev.184838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/02/2020] [Indexed: 01/29/2023]
Abstract
In mammalian growing follicles, oocytes are arrested at the diplotene stage (which resembles the G2/M boundary in mitosis), while the granulosa cells (GCs) continue to proliferate during follicular development, reflecting a cell cycle asynchrony between oocytes and GCs. Hypoxanthine (Hx), a purine present in the follicular fluid, has been shown to induce oocytes meiotic arrest, although its role in GC proliferation remains ill-defined. Here, we demonstrate that Hx indiscriminately prevents G2-to-M phase transition in porcine GCs. However, oocyte-derived paracrine factors (ODPFs), particularly GDF9 and BMP15, maintain the proliferation of GCs, partly by activating the ERK1/2 signaling and enabling the G2/M transition that is suppressed by Hx. Interestingly, GCs with lower expression of GDF9/BMP15 receptors appear to be more sensitive to Hx-induced G2/M arrest and become easily detached from the follicular wall. Importantly, Hx-mediated inhibition of G2/M progression instigates GC apoptosis, which is ameliorated in the presence of GDF9 and/or BMP15. Therefore, our data indicate that the counterbalance of intrafollicular factors, particularly Hx and oocyte-derived GDF9/BMP15, fine-tunes the development of porcine follicles by regulating the cell cycle progression of GCs.
Collapse
Affiliation(s)
- Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqin Meng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Guo R, Wang X, Li Q, Sun X, Zhang J, Hao R. Follicular fluid meiosis-activating sterol (FF-MAS) promotes meiotic resumption via the MAPK pathway in porcine oocytes. Theriogenology 2019; 148:186-193. [PMID: 31757483 DOI: 10.1016/j.theriogenology.2019.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
Abstract
Follicular fluid meiosis-activating sterol (FF-MAS) exerts beneficial effects on the meiotic resumption of mammalian oocytes and their subsequent early embryonic development, but the signaling pathway underlying these effects has not been elucidated. Therefore, the objective of the present study was to investigate whether the mitogen-activated protein kinase (MAPK) pathway is involved in the FF-MAS-induced in vitro resumption of meiosis in porcine oocytes. Porcine cumulus oocyte complexes (COCs) were allocated in several groups cultured in TCM-199 medium with different concentration of AY 9944-A-7 (20, 30, 40 μmol/L) or ketoconazole (20 μmol/L) to increase or decrease endogenous accumulation of FF-MAS. Each experimental condition was repeated at least six times. After maturation for 44 h, the resumption of meiosis was assessed by the frequency of germinal vesicle breakdown (GVBD) and the first polar body (PBI) extrusion, The relative expressions of related genes in MAPK pathway [c-mos, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase 1/2 (ERK1/2)] at both transcriptional and translational levels were detected to investigate the kinetic trend of expression throughout oocyte maturation in vitro in response to the addition of AY 9944-A-7 or ketoconazole to the maturation medium. Results indicated that AY 9944-A-7 promoted, while ketoconazole inhibited, the in vitro maturation (IVM) of porcine oocytes. Relative expression of meiosis related genes was upregulated by AY 9944-A-7 and downregulated by ketoconazole. With extended culturing time, c-mos mRNA expression levels reached their peak at 12 h of maturation and decreased gradually thereafter, while MEK, ERK1 and ERK2 expression increased after an initial decrease peaking at 44 h of culture in the AY 9944-A-7-group. And the trend of the protein expression of c-mos, MEK, ERK1/2 was basically consistent with the mRNA expression of these genes. These results imply that the endogenous accumulation of FF-MAS is beneficial to resumption of meiosis in porcine oocytes and that MAPK signaling is involved in FF-MAS-induced meiotic resumption.
Collapse
Affiliation(s)
- Ruijie Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaorong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Qinghong Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Shanxi Collaborative Innovation Center for High-Productive and Safe Livestock, Taigu, 030801, PR China
| | - Xiaojiang Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Junlan Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Ruirong Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Shanxi Collaborative Innovation Center for High-Productive and Safe Livestock, Taigu, 030801, PR China.
| |
Collapse
|
19
|
Liver X Receptors and Male (In)fertility. Int J Mol Sci 2019; 20:ijms20215379. [PMID: 31671745 PMCID: PMC6862486 DOI: 10.3390/ijms20215379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors acting as ‘cholesterol sensors’ to regulate lipid homeostasis in cells. The two isoforms, LXRα (NR1H3) and LXRβ (NR1H2), are differentially expressed, with the former expressed predominantly in metabolically active tissues and the latter more ubiquitously. Both are activated by oxidised cholesterol metabolites, endogenously produced oxysterols. LXRs have important roles in lipid metabolism and inflammation, plus a number of newly emerging roles. They are implicated in regulating lipid balance in normal male reproductive function and may provide a link between male infertility and lipid disorders and/or obesity. Studies from Lxr knockout mouse models provide compelling evidence to support this. More recently published data suggest distinct and overlapping roles of the LXR isoforms in the testis and recent evidence of a role for LXRs in human male fertility. This review summarises the current literature and explores the likely link between LXR, lipid metabolism and male fertility as part of a special issue on Liver X receptors in International Journal of Molecular Sciences.
Collapse
|
20
|
Andrade GM, del Collado M, Meirelles FV, da Silveira JC, Perecin F. Intrafollicular barriers and cellular interactions during ovarian follicle development. Anim Reprod 2019; 16:485-496. [PMID: 32435292 PMCID: PMC7234062 DOI: 10.21451/1984-3143-ar2019-0051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Follicles are composed of different interdependent cell types including oocytes, cumulus, granulosa, and theca cells. Follicular cells and oocytes exchange signaling molecules from the beginning of the development of the primordial follicles until the moment of ovulation. The follicular structure transforms during folliculogenesis; barriers form between the germ and the somatic follicular cells, and between the somatic follicular cells. As such, communication systems need to adapt to maintain the exchange of signaling molecules. Two critical barriers are established at different stages of development: the zona pellucida, separating the oocyte and the cumulus cells limiting the communication through specific connections, and the antrum, separating subpopulations of follicular cells. In both situations, communication is maintained either by the development of specialized connections as transzonal projections or by paracrine signaling and trafficking of extracellular vesicles through the follicular fluid. The bidirectional communication between the oocytes and the follicle cells is vital for driving folliculogenesis and oogenesis. These communication systems are associated with essential functions related to follicular development, oocyte competence, and embryonic quality. Here, we discuss the formation of the zona pellucida and antrum during folliculogenesis, and their importance in follicle and oocyte development. Moreover, this review discusses the current knowledge on the cellular mechanisms such as the movement of molecules via transzonal projections, and the exchange of extracellular vesicles by follicular cells to overcome these barriers to support female gamete development. Finally, we highlight the undiscovered aspects related to intrafollicular communication among the germ and somatic cells, and between the somatic follicular cells and give our perspective on manipulating the above-mentioned cellular communication to improve reproductive technologies.
Collapse
Affiliation(s)
- Gabriella Mamede Andrade
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Maite del Collado
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Flávio Vieira Meirelles
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Juliano Coelho da Silveira
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Felipe Perecin
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
21
|
Coates HW, Brown AJ. A wolf in sheep's clothing: unmasking the lanosterol-induced degradation of HMG-CoA reductase. J Lipid Res 2019; 60:1643-1645. [PMID: 31462514 DOI: 10.1194/jlr.c119000358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Tesh SA, Tesh JM, Fegert I, Buesen R, Schneider S, Mentzel T, van Ravenzwaay B, Stinchcombe S. Innovative selection approach for a new antifungal agent mefentrifluconazole (Revysol®) and the impact upon its toxicity profile. Regul Toxicol Pharmacol 2019; 106:152-168. [DOI: 10.1016/j.yrtph.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
|
23
|
A gas chromatography–mass spectrometry-based whole-cell screening assay for target identification in distal cholesterol biosynthesis. Nat Protoc 2019; 14:2546-2570. [DOI: 10.1038/s41596-019-0193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
|
24
|
Shehadeh A, Bruck-Haimson R, Saidemberg D, Zacharia A, Herzberg S, Ben-Meir A, Moussaieff A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J 2019; 33:10291-10299. [PMID: 31219705 DOI: 10.1096/fj.201900318rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Follicular fluid (FF) is a liquid that surrounds the ovum. Its metabolite and, specifically, its lipid content have been associated with oocyte development. To characterize possible association between the lipid composition of FF and the outcome of pregnancy, we carried out a lipidomics study and compared the abundance of lipids from FF of patients with positive and negative outcomes. We found a differential lipid network wiring in positive-outcome FF, with a significant decrease (∼2 fold; P < 0.001) in triacylglycerol levels and higher accumulation (10-50%; P < 0.001) of membrane lipids groups (phospholipids and sphingolipids). In addition to this major metabolic alteration, other lipid groups such as cholesteryl esters showed lower levels in positive-outcome patients, whereas derivatives of vitamin D were highly accumulated in positive-outcome FF, supporting previous studies that associate vitamin D levels in FF to pregnancy outcome. Our data also point to specific lipid species with a differential accumulation pattern in positive-outcome FF that predicted pregnancy in a receiver operating characteristic analysis. Altogether, our results suggest that FF lipid network is associated with the oocyte development, with possible implications in diagnostics and treatment.-Shehadeh, A., Bruck-Haimson, R., Saidemberg, D., Zacharia. A., Herzberg, S., Ben-Meir, A., Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome.
Collapse
Affiliation(s)
- Alaa Shehadeh
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anish Zacharia
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel Herzberg
- IVF Unit, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Assaf Ben-Meir
- IVF Unit, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules 2019; 24:molecules24030451. [PMID: 30691248 PMCID: PMC6385002 DOI: 10.3390/molecules24030451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
4,4-Dimethylsterols and 4-methylsterols are sterol biosynthetic intermediates (C4-SBIs) acting as precursors of cholesterol, ergosterol, and phytosterols. Their accumulation caused by genetic lesions or biochemical inhibition causes severe cellular and developmental phenotypes in all organisms. Functional evidence supports their role as meiosis activators or as signaling molecules in mammals or plants. Oxygenated C4-SBIs like 4-carboxysterols act in major biological processes like auxin signaling in plants and immune system development in mammals. It is the purpose of this article to point out important milestones and significant advances in the understanding of the biogenesis and biological activities of C4-SBIs.
Collapse
|
26
|
Mu X, Wen J, Chen Q, Wang Z, Wang Y, Guo M, Yang Y, Xu J, Wei Z, Xia G, Yang M, Wang C. Retinoic acid-induced CYP51 nuclear translocation promotes meiosis prophase I process and is correlated to the expression of REC8 and STAG3 in mice. Biol Open 2018; 7:bio.035626. [PMID: 30420384 PMCID: PMC6262859 DOI: 10.1242/bio.035626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lanosterol 14 α-demethylase (CYP51) plays a crucial role in cholesterol biosynthesis. In gamete development, CYP51 is involved in initiating meiosis resumption in oocytes through its product, meiosis activating sterol (MAS). In this study, CYP51 was observed to localize within the nucleus of germ cells undergoing meiotic prophase I. Following the addition of retinoic acid (RA) to induce meiosis or the RA receptor pan-antagonist AGN193109 to block meiosis in fetal ovaries, the translocation of CYP51 into the nucleus of oocytes was advanced or delayed, respectively. In addition, treatment with Cyp51-siRNA or RS21745, a specific CYP51 inhibitor, significantly delayed the meiotic progression of oocytes in the ovary, with most oocytes arresting at the zygotene stage, and likewise, significantly reduced perinatal primordial follicle formation. Furthermore, inhibition of CYP51 is correlated to significantly decreased expression of REC8 and STAG3, both of which are meiosis-specific cohesin subunits. To sum up, RA-induced CYP51 nuclear translocation is critical for oocytes meiotic progression, and consequently folliculogenesis, which might act through impacting the expression of meiosis-specific cohesins REC8 and STAG3. Summary: CYP51 displays cytoplasm-to-nucleus translocation in germ cells in mice. CYP51 participates in germ cell meiotic progression and folliculogenesis via regulating the expression of cohesin REC8 and STAG3.
Collapse
Affiliation(s)
- Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Jia Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengpin Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yijing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Guo
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - JinRui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Mengye Yang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Gholamitabar Tabari M, Jorsaraei SGA, Ghasemzadeh-Hasankolaei M, Ahmadi AA, Amirikia M. Evaluation of Novel Mouse-Specific Germ Cell Gene Expression in Embryonic Stem Cell-Derived Germ Cell-Like CellsIn Vitrowith Retinoic Acid Treatment. Cell Reprogram 2018; 20:245-255. [DOI: 10.1089/cell.2017.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Maryam Gholamitabar Tabari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Seyed Gholam Ali Jorsaraei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Ali Asghar Ahmadi
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Mehdi Amirikia
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
28
|
Machado-Neves M, Neto MJO, Miranda DC, Souza ACF, Castro MM, Sertorio MN, Carvalho TF, Matta SLP, Freitas MB. Dietary Exposure to Tebuconazole Affects Testicular and Epididymal Histomorphometry in Frugivorous Bats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:197-204. [PMID: 29881942 DOI: 10.1007/s00128-018-2377-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/05/2018] [Indexed: 05/22/2023]
Abstract
This study evaluated the effects of a commercially recommended concentration (1 mL/L) of a fungicide tebuconazole (TBZ) on testicular and epididymal histomorphometry of Artibeus lituratus, following 7 and 30-day oral exposure. TBZ30 bats showed a reduction in the percentage of tubules and seminiferous epithelium, as well as a decrease in tubule and epithelium somatic indexes, and tubular diameter. Inversely, these animals showed increased percentage of intertubular compartment, Leydig cells and blood vessels. The volume of Leydig cells and their number per gram of testis also increased in TBZ30 bats. Alterations in epididymal morphometry were observed in all regions of the organ, with increase of ductal diameter in both exposure times. These results indicate that exposure to low concentration of TBZ resulted in testicular and epididymal morphometric changes in fruit bats, mainly at 30-day exposure, suggesting that functional alterations might be occurring in these organs and impacting reproductive capacity.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Mário J O Neto
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Diane C Miranda
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ana Cláudia F Souza
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Mariana M Castro
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcela N Sertorio
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Túlio F Carvalho
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sérgio L P Matta
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
29
|
Yamauchi Y, Rogers MA. Sterol Metabolism and Transport in Atherosclerosis and Cancer. Front Endocrinol (Lausanne) 2018; 9:509. [PMID: 30283400 PMCID: PMC6157400 DOI: 10.3389/fendo.2018.00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yoshio Yamauchi
| | - Maximillian A. Rogers
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Gatticchi L, Cerra B, Scarpelli P, Macchioni L, Sebastiani B, Gioiello A, Roberti R. Selected cholesterol biosynthesis inhibitors produce accumulation of the intermediate FF-MAS that targets nucleus and activates LXRα in HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:842-852. [DOI: 10.1016/j.bbalip.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023]
|
31
|
Frisso G, Gelzo M, Procopio E, Sica C, Lenza MP, Dello Russo A, Donati MA, Salvatore F, Corso G. A rare case of sterol-C4-methyl oxidase deficiency in a young Italian male: Biochemical and molecular characterization. Mol Genet Metab 2017; 121:329-335. [PMID: 28673550 DOI: 10.1016/j.ymgme.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
Abstract
Inborn defects of cholesterol biosynthesis are metabolic disorders presenting with multi-organ and tissue anomalies. An autosomal recessive defect involving the demethylating enzyme C4-methyl sterol (SC4MOL) has been reported in only 4 patients so far. In infancy, all patients were affected by microcephaly, bilateral congenital cataracts, growth delay, psoriasiform dermatitis, immune dysfunction, and intellectual disability. Herein, we describe a new case of SC4MOL deficiency in which a 19-year-old Italian male was affected by bilateral congenital cataracts, growth delay and learning disabilities, behavioral disorders and small stature, but not microcephaly. Our patient had abundant scalp dandruff, without other skin manifestations. Analysis of the blood sterol profile showed accumulation of C4-monomethyl and C4-dimethyl sterols suggesting a deficiency of the SC4MOL enzyme. Sequencing of the MSMO1 gene (also known as the "SC4MOL" gene) confirmed mutations in each allele (c.731A>G, p.Y244C, which is already known, and c.605G>A, p.G202E, which is a novel variant). His father carried c.731A>G mutation, whereas his mother carried c.605G>A. Thus, the combination of multiple skills and methodologies, in particular, blood sterol profiling and genetic analysis, led to the diagnosis of a new case of a very rare defect of cholesterol biosynthesis. Consequently, we suggest that these two analyses should be performed as soon as possible in all undiagnosed patients affected by bilateral cataracts and developmental delay.
Collapse
Affiliation(s)
- Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate s.c.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Elena Procopio
- SOC Malattie Metaboliche e Muscolari Ereditarie, Centro di Eccellenza di Neuroscienze, Azienda Ospedaliero-Universitaria A. Meyer, Firenze, Italy
| | - Concetta Sica
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maria Pia Lenza
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Antonio Dello Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maria Alice Donati
- SOC Malattie Metaboliche e Muscolari Ereditarie, Centro di Eccellenza di Neuroscienze, Azienda Ospedaliero-Universitaria A. Meyer, Firenze, Italy
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate s.c.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Foggia, Viale L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
32
|
Singh AK, Naskar S, Saikia B, Vashi Y, Gupta S, Banik S, Tamuli MK, Pande V, Sarma DK, Dhara SK. Effect of testicular tissue lysate on developmental competence of porcine oocytes matured and fertilized in vitro. Reprod Domest Anim 2016; 52:183-188. [PMID: 27862454 DOI: 10.1111/rda.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the effect of testicular tissue lysate (TTL) on developmental competence of germinal vesicle (GV) stage porcine oocytes. Two types of TTL were prepared through repeated freeze-thaw in liquid nitrogen, one from whole testicular tissue (wTTL) and other from either of four different sections of testes, namely just beneath the tunica albuginea (TA), from the transitional area between the seminiferous cord/tubules and the mediastinum testis (TR) and from the intermediate area (parenchymal tissue origin) and CE (cauda epididymis origin). The whole or section-wise TTL treatments were given for 44 hr during in vitro maturation (IVM). Oocyte maturation was done in either of the two media, namely defined (high-performance basic medium for porcine oocyte maturation, commercially available) and serum containing (TCM199). After maturation, oocytes were co-incubated with fresh spermatozoa for 6 hr and then transferred to embryo culture media. Treatment of GV stage oocytes with wTTL (1 mg/ml) increased the cleavage and morula percentage rate (69.23 ± 6.23 and 48.15 ± 6.77, respectively) than that of their control (58.33 ± 8.08 and 32.54 ± 5.53, respectively) in defined media, and in serum-containing media, cleavage and morula percentage rate were almost equal in both treatment (54.56 ± 7.79 and 34.70 ± 6.78, respectively) and control (59.52 ± 8.21 and 38.52 ± 6.54, respectively). However, effect of wTTL was not significant. In case of section-wise TTL supplements, TR section significantly (p < .01) improved cleavage and morula rate (58.43 ± 7.98 and 36.14 ± 6.89, respectively) followed by TA. In conclusion, present study indicates that IVM, in vitro fertilization and in vitro culture of embryo are improved in the presence of TTL, particularly its TR section. Further study is expected to reveal the principal components of TTL which may prove useful for IVM.
Collapse
Affiliation(s)
- A K Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - S Naskar
- ICAR-National Research Centre on Pig, Guwahati, Assam, India.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - B Saikia
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Y Vashi
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - S Gupta
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S Banik
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - M K Tamuli
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - V Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - D K Sarma
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - S K Dhara
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
33
|
Bonamichi BDSF, Santiago SLM, Bertola DR, Kim CA, Alonso N, Mendonca BB, Bachega TASS, Gomes LG. Long-term follow-up of a female with congenital adrenal hyperplasia due to P450-oxidoreductase deficiency. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2016; 60:500-504. [PMID: 27737328 PMCID: PMC10118638 DOI: 10.1590/2359-3997000000213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
P450 oxidoreductase deficiency (PORD) is a variant of congenital adrenal hyperplasia that is caused by POR gene mutations. The POR gene encodes a flavor protein that transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 type II (including 21-hydroxylase, 17α-hydroxylase 17,20 lyase and aromatase), which is fundamental for their enzymatic activity. POR mutations cause variable impairments in steroidogenic enzyme activities that result in wide phenotypic variability ranging from 46,XX or 46,XY disorders of sexual differentiation, glucocorticoid deficiency, with or without skeletal malformations similar to Antley-Bixler syndrome to asymptomatic newborns diagnosed during neonatal screening test. Little is known about the PORD long-term evolution. We described a 46,XX patient with mild atypical genitalia associated with severe bone malformation, who was diagnosed after 13 years due to sexual infantilism. She developed large ovarian cysts and late onset adrenal insufficiency during follow-up, both of each regressed after hormone replacement therapies. We also described a late surgical approach for the correction of facial hypoplasia in a POR patient.
Collapse
Affiliation(s)
| | | | - Débora R. Bertola
- Faculdade de Medicina da Universidade de São Paulo, Brasil; Universidade de São Paulo, Brasil
| | - Chong A. Kim
- Faculdade de Medicina da Universidade de São Paulo, Brasil
| | - Nivaldo Alonso
- Faculdade de Medicina da Universidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
34
|
Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis. Sci Rep 2016; 6:28462. [PMID: 27334049 PMCID: PMC4917857 DOI: 10.1038/srep28462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/02/2016] [Indexed: 11/18/2022] Open
Abstract
Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.
Collapse
|
35
|
Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system. Mol Aspects Med 2016; 49:31-46. [DOI: 10.1016/j.mam.2016.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/08/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023]
|
36
|
Jung D, Kee K. Insights into female germ cell biology: from in vivo development to in vitro derivations. Asian J Androl 2016; 17:415-20. [PMID: 25652637 PMCID: PMC4430939 DOI: 10.4103/1008-682x.148077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Collapse
Affiliation(s)
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Rondini EA, Pant A, Kocarek TA. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Intermediates of the Cholesterol Biosynthetic Pathway in Primary Cultured Rat Hepatocytes. J Pharmacol Exp Ther 2015; 355:429-41. [PMID: 26427720 DOI: 10.1124/jpet.115.226365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/30/2015] [Indexed: 01/19/2023] Open
Abstract
Cytosolic sulfotransferase 1C2 (SULT1C2) is expressed in the kidney, stomach, and liver of rats; however, the mechanisms regulating expression of this enzyme are not known. We evaluated transcriptional regulation of SULT1C2 by mevalonate (MVA)-derived intermediates in primary cultured rat hepatocytes using several cholesterol synthesis inhibitors. Blocking production of mevalonate with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin (30 μM), reduced SULT1C2 mRNA content by ∼40% whereas the squalene synthase inhibitor squalestatin (SQ1, 0.1 μM), which causes accumulation of nonsterol isoprenoids, increased mRNA content by 4-fold. Treatment with MVA (10 mM) strongly induced SULT1C2 mRNA by 12-fold, and this effect was blocked by inhibiting squalene epoxidase but not by more distal cholesterol inhibitors, indicating the effects of MVA are mediated by postsqualene metabolites. Using rapid amplification of cDNA ends (RACE), we characterized the 5' end of SULT1C2 mRNA and used this information to generate constructs for promoter analysis. SQ1 and MVA increased reporter activity by ∼1.6- and 3-fold, respectively, from a construct beginning 49 base pairs (bp) upstream from the longest 5'-RACE product (-3140:-49). Sequence deletions from this construct revealed a hepatocyte nuclear factor 1 (HNF1) element (-2558), and mutation of this element reduced basal (75%) and MVA-induced (30%) reporter activity and attenuated promoter activation following overexpression of HNF1α or 1β. However, the effects of SQ1 were localized to a more proximal promoter region (-281:-49). Collectively, our findings demonstrate that cholesterol biosynthetic intermediates influence SULT1C2 expression in rat primary hepatocytes. Further, HNF1 appears to play an important role in mediating basal and MVA-induced SULT1C2 transcription.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Asmita Pant
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
38
|
Lee S, Jin JX, Khoirinaya C, Kim GA, Lee BC. Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos. Theriogenology 2015; 85:575-84. [PMID: 26494176 DOI: 10.1016/j.theriogenology.2015.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
Abstract
Lanosterol is a precursor of meiosis-activating sterols in the cholesterol biosynthetic pathway and induces a physiological signal that instructs the oocyte to reinitiate meiosis. In this study, we examined the effect of lanosterol on IVM of porcine oocytes, specifically on nuclear maturation, cytoplasmic maturation by investigating intracellular glutathione (GSH) levels and lipid content, embryonic development after parthenogenetic activation and somatic cell nuclear transfer (SCNT), and on gene expression in cumulus cells, oocytes, and SCNT-derived blastocysts. There was no significant difference in nuclear maturation rates between the control and treatment groups (10, 50, and 100 μM of lanosterol added to IVM culture medium). Supplementation with 50-μM lanosterol significantly increased lipid content and GSH levels and decreased reactive oxygen species levels compared with the control. In addition, oocytes treated with 50 μM of lanosterol exhibited significantly increased blastocyst formation rates and total cell numbers after parthenogenetic activation (30.3% and 63.9 vs. 21.6% and 36.5, respectively) and SCNT (18.2% and 53.7 vs. 12.6% and 37.5, respectively), when compared with the control group. Cumulus cells treated with 50 μM of lanosterol showed significantly increased 14α-demethylase, Δ14-reductase, and Δ7-reductase mRNA transcript levels. Significantly increased PPARγ, SREBF1, GPX1, and Bcl-2 and decreased Bax transcript levels were observed in mature oocytes treated with 50 μM of lanosterol compared with the control. SCNT blastocysts derived from 50-μM lanosterol-treated oocytes had significantly higher POU5F1, FGFR2, and Bcl-2 transcript levels than control SCNT-derived blastocysts. In conclusion, supplementation with 50 μM of lanosterol during IVM improves preimplantation development of SCNT embryos by elevating lipid content of oocytes, increasing GSH levels, decreasing reactive oxygen species levels, and regulating genes related to the cholesterol biosynthetic pathway in cumulus cells, to lipid metabolism and apoptosis in oocytes, and their developmental potential and apoptosis in blastocysts.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Candrani Khoirinaya
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwon do, Korea.
| |
Collapse
|
39
|
Gabitova L, Restifo D, Gorin A, Manocha K, Handorf E, Yang DH, Cai KQ, Klein-Szanto AJ, Cunningham D, Kratz LE, Herman GE, Golemis EA, Astsaturov I. Endogenous Sterol Metabolites Regulate Growth of EGFR/KRAS-Dependent Tumors via LXR. Cell Rep 2015; 12:1927-38. [PMID: 26344763 DOI: 10.1016/j.celrep.2015.08.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 02/04/2023] Open
Abstract
Meiosis-activating sterols (MAS) are substrates of SC4MOL and NSDHL in the cholesterol pathway and are important for normal organismal development. Oncogenic transformation by epidermal growth factor receptor (EGFR) or RAS increases the demand for cholesterol, suggesting a possibility for metabolic interference. To test this idea in vivo, we ablated Nsdhl in adult keratinocytes expressing KRAS(G12D). Strikingly, Nsdhl inactivation antagonized the growth of skin tumors while having little effect on normal skin. Loss of Nsdhl induced the expression of ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, reduced the expression of low-density lipoprotein receptor (LDLR), decreased intracellular cholesterol, and was dependent on the liver X receptor (LXR) α. Importantly, EGFR signaling opposed LXRα effects on cholesterol homeostasis, whereas an EGFR inhibitor synergized with LXRα agonists in killing cancer cells. Inhibition of SC4MOL or NSDHL, or activation of LXRα by sterol metabolites, can be an effective strategy against carcinomas with activated EGFR-KRAS signaling.
Collapse
Affiliation(s)
- Linara Gabitova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420000, Russia
| | - Diana Restifo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrey Gorin
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420000, Russia
| | - Kunal Manocha
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Elizabeth Handorf
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Dong-Hua Yang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andres J Klein-Szanto
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David Cunningham
- The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Lisa E Kratz
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gail E Herman
- The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Igor Astsaturov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420000, Russia.
| |
Collapse
|
40
|
Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. eLife 2015; 4:e07999. [PMID: 26114596 PMCID: PMC4501332 DOI: 10.7554/elife.07999] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/25/2015] [Indexed: 01/22/2023] Open
Abstract
Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K–R pathway. Rather, a hybrid pathway was identified that we call the modified K–R (MK–R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK–R pathway. Thus, relative use of the Bloch and MK–R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. DOI:http://dx.doi.org/10.7554/eLife.07999.001 Cholesterol is important for animals, both as an essential component of the membrane that surrounds cells and as a building block to make hormones and other biologically important molecules. However, cells limit how much cholesterol they make because an excess of this fatty molecule can cause serious health problems, including heart disease and stroke. Cholesterol is made via a complex process that involves more than 30 different steps, which can be organized into two biochemical pathways (named the Bloch pathway and the Kandutsch–Russell pathway). The enzymes that carry out the steps in these pathways have been characterized in detail. Less is known about which of the two pathways is actually used in different cells and tissues, or how much cholesterol each pathway produces. This is partly because it is difficult to distinguish between the closely related intermediate molecules that are formed in each pathway. Mitsche et al. have now used mass spectrometry and isotope labeling techniques to analyze the relative contributions of the two cholesterol-making pathways in both cells grown in the laboratory and in mice. The experiments show that many cells use the Bloch pathway. However, no cells were found to use the Kandutsch–Russell pathway as it was originally described. Rather, some of the cells used a hybrid pathway where the production of cholesterol was started using the Bloch pathway and then after a certain number of steps, the process switched to using part of the Kandutsch–Russell pathway. Mitsche et al. referred to this mixed system as the ‘modified Kandutsch–Russell pathway’. Mitsche et al. next examined the flow of molecules through these two pathways in different tissues and observed that the Bloch pathway is exclusively used in the testes and adrenal glands, which produce high levels of cholesterol. In contrast, the skin and brain use the modified Kandutsch–Russell pathway. In some tissues, a fraction of the building blocks that can be used to make cholesterol were instead diverted to make other products. This suggests that animals have maintained the two pathways over the course of evolution to enable them to generate a variety of products, which can be used to carry out different biological processes. One challenge following this work will be to use the newly developed methods to analyze other complex biochemical pathways. DOI:http://dx.doi.org/10.7554/eLife.07999.002
Collapse
Affiliation(s)
- Matthew A Mitsche
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan C Cohen
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
41
|
Santori FR, Huang P, van de Pavert SA, Douglass EF, Leaver DJ, Haubrich BA, Keber R, Lorbek G, Konijn T, Rosales BN, Rozman D, Horvat S, Rahier A, Mebius RE, Rastinejad F, Nes WD, Littman DR. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab 2015; 21:286-298. [PMID: 25651181 PMCID: PMC4317570 DOI: 10.1016/j.cmet.2015.01.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Mice deficient in the nuclear hormone receptor RORγt have defective development of thymocytes, lymphoid organs, Th17 cells, and type 3 innate lymphoid cells. RORγt binds to oxysterols derived from cholesterol catabolism, but it is not clear whether these are its natural ligands. Here, we show that sterol lipids are necessary and sufficient to drive RORγt-dependent transcription. We combined overexpression, RNAi, and genetic deletion of metabolic enzymes to study RORγ-dependent transcription. Our results are consistent with the RORγt ligand(s) being a cholesterol biosynthetic intermediate (CBI) downstream of lanosterol and upstream of zymosterol. Analysis of lipids bound to RORγ identified molecules with molecular weights consistent with CBIs. Furthermore, CBIs stabilized the RORγ ligand-binding domain and induced coactivator recruitment. Genetic deletion of metabolic enzymes upstream of the RORγt-ligand(s) affected the development of lymph nodes and Th17 cells. Our data suggest that CBIs play a role in lymphocyte development potentially through regulation of RORγt.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Pengxiang Huang
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Serge A van de Pavert
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, van der Boechorststraat 7, 1081BT Amsterdam, the Netherlands
| | - Eugene F Douglass
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Gregor Lorbek
- Institute of Biochemistry, Center for Functional Genomics and Bio-chips, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Tanja Konijn
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, van der Boechorststraat 7, 1081BT Amsterdam, the Netherlands
| | - Brittany N Rosales
- Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Damjana Rozman
- Institute of Biochemistry, Center for Functional Genomics and Bio-chips, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia; National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Alain Rahier
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS-UPR2357, 67083 Strasbourg, France
| | - Reina E Mebius
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, van der Boechorststraat 7, 1081BT Amsterdam, the Netherlands
| | - Fraydoon Rastinejad
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
42
|
Effects of AY9944 A-7 on gonadotropin-induced meiotic resumption of oocytes and development of parthenogenetic embryos in sheep. Theriogenology 2015; 83:30-7. [DOI: 10.1016/j.theriogenology.2014.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/23/2022]
|
43
|
|
44
|
Picco R, Tomasella A, Fogolari F, Brancolini C. Transcriptomic analysis unveils correlations between regulative apoptotic caspases and genes of cholesterol homeostasis in human brain. PLoS One 2014; 9:e110610. [PMID: 25330190 PMCID: PMC4199739 DOI: 10.1371/journal.pone.0110610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected. These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM (Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these correlations could be related to brain aging.
Collapse
Affiliation(s)
- Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Andrea Tomasella
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Federico Fogolari
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
45
|
Alonso F, Cirigliano AM, Dávola ME, Cabrera GM, García Liñares GE, Labriola C, Barquero AA, Ramírez JA. Multicomponent synthesis of 4,4-dimethyl sterol analogues and their effect on eukaryotic cells. Steroids 2014; 84:1-6. [PMID: 24632026 DOI: 10.1016/j.steroids.2014.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/31/2014] [Accepted: 03/03/2014] [Indexed: 11/19/2022]
Abstract
Most sterols, such as cholesterol and ergosterol, become functional only after the removal of the two methyl groups at C-4 from their biosynthetic precursors. Nevertheless, some findings suggest that 4,4-dimethyl sterols might be involved in specific physiological processes. In this paper we present the synthesis of a collection of analogues of 4,4-dimethyl sterols with a diamide side chain and a preliminary analysis of their in vitro activity on selected biological systems. The key step for the synthesis involves an Ugi condensation, a versatile multicomponent reaction. Some of the new compounds showed antifungal and cytotoxic activity.
Collapse
Affiliation(s)
- Fernando Alonso
- Departamento de Química Orgánica and UMYMFOR (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Adriana M Cirigliano
- Departamento de Química Orgánica and UMYMFOR (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Eugenia Dávola
- Departamento de Química Biológica and IQUIBICEN, (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 4, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Gabriela M Cabrera
- Departamento de Química Orgánica and UMYMFOR (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Guadalupe E García Liñares
- Departamento de Química Orgánica and UMYMFOR (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Carlos Labriola
- Laboratorio de Glicobilogía, Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Andrea A Barquero
- Departamento de Química Biológica and IQUIBICEN, (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 4, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Javier A Ramírez
- Departamento de Química Orgánica and UMYMFOR (CONICET - Facultad de Ciencias Exactas y Naturales), Universidad de Buenos Aires, Pabellón 2, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
46
|
Sharpe LJ, Burns V, Brown AJ. A Lipidomic Perspective on Intermediates in Cholesterol Synthesis as Indicators of Disease Status. J Genet Genomics 2014; 41:275-82. [DOI: 10.1016/j.jgg.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
|
47
|
Nakamura T, Iwase A, Bayasula B, Nagatomo Y, Kondo M, Nakahara T, Takikawa S, Goto M, Kotani T, Kiyono T, Kikkawa F. CYP51A1 induced by growth differentiation factor 9 and follicle-stimulating hormone in granulosa cells is a possible predictor for unfertilization. Reprod Sci 2014; 22:377-84. [PMID: 24711211 DOI: 10.1177/1933719114529375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Growth differentiation factor 9 (GDF9), an oocyte-secreted factor, whose receptors exist in granulosa cells, is involved in follicle progression. Therefore, GDF9 is considered to potentially mediate signals necessary for follicular growth. However, the effect of GDF9 on human granulosa cells is not fully understood. Human immortalized nonluteinized granulosa cell line (HGrC1) which we have previously reported was stimulated with GDF9 and/or follicle-stimulating hormone (FSH). Granulosa cells obtained from in vitro fertilization (IVF) patients were also evaluated with quantitative reverse transcription polymerase chain reaction (RT-PCR). Real-time RT-PCR showed that GDF9 increased messenger RNA (mRNA) levels of enzymes required for cholesterol biosynthesis, such as 3-hydroxy-3-methylglutanyl-CoA synthase 1 (HMGCS1), farnesyl-diphosphate farnesyltransferase 1, squalene epoxidase, lanosterol synthase, and cytochrome P450, family 51, subfamily A, polypeptide 1 (CYP51A1). A greater increase in mRNA levels of HMGCS1 and CYP51A1 was observed by combined treatment with GDF9 and FSH. Clinical samples showed a significant increase in CYP51A1 mRNA in the group of granulosa cells connected with unfertilized oocytes. Our results suggest that GDF9, possibly with FSH, may play significant roles in the regulation of cholesterol biosynthesis and the expression of CYP51A1 which might be a predictor for unfertilization.
Collapse
Affiliation(s)
- Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan Department of Maternal and Perinatal Medicine, Nagoya University Hospital, Showa-ku, Nagoya, Japan
| | - B Bayasula
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yoshinari Nagatomo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Mika Kondo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tatsuo Nakahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Sachiko Takikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan Department of Maternal and Perinatal Medicine, Nagoya University Hospital, Showa-ku, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, Tyuo-ku, Tokyo, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
48
|
Morrison AMS, Goldstone JV, Lamb DC, Kubota A, Lemaire B, Stegeman JJ. Identification, modeling and ligand affinity of early deuterostome CYP51s, and functional characterization of recombinant zebrafish sterol 14α-demethylase. Biochim Biophys Acta Gen Subj 2013; 1840:1825-36. [PMID: 24361620 DOI: 10.1016/j.bbagen.2013.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes. METHODS PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC-MS. RESULTS Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26μM for ketoconazole and 0.64μM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51s. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s. CONCLUSIONS Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. GENERAL SIGNIFICANCE The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications.
Collapse
Affiliation(s)
- Ann Michelle Stanley Morrison
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David C Lamb
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Akira Kubota
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Benjamin Lemaire
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
49
|
Mialoundama AS, Jadid N, Brunel J, Di Pascoli T, Heintz D, Erhardt M, Mutterer J, Bergdoll M, Ayoub D, Van Dorsselaer A, Rahier A, Nkeng P, Geoffroy P, Miesch M, Camara B, Bouvier F. Arabidopsis ERG28 tethers the sterol C4-demethylation complex to prevent accumulation of a biosynthetic intermediate that interferes with polar auxin transport. THE PLANT CELL 2013; 25:4879-93. [PMID: 24326590 PMCID: PMC3903993 DOI: 10.1105/tpc.113.115576] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 05/22/2023]
Abstract
Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development.
Collapse
Affiliation(s)
- Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Nurul Jadid
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
- Department of Biology Botanical and Plant Tissue Culture Laboratory, Sepuluh Nopember Institut of Technology, 60111 East-Java, Indonesia
| | - Julien Brunel
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Thomas Di Pascoli
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, 67087 Strasbourg cedex 2, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, 67087 Strasbourg cedex 2, France
| | - Alain Rahier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Paul Nkeng
- Laboratoire Interuniversitaire des Sciences de l'Education et de la Communication, 67000 Strasbourg, France
| | - Philippe Geoffroy
- Laboratoire de Chimie Organique Synthétique, Université de Strasbourg-Institut de Chimie, 67008 Strasbourg cedex, France
| | - Michel Miesch
- Laboratoire de Chimie Organique Synthétique, Université de Strasbourg-Institut de Chimie, 67008 Strasbourg cedex, France
| | - Bilal Camara
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Florence Bouvier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
- Address correspondence to
| |
Collapse
|
50
|
Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling in cancer. Clin Cancer Res 2013; 20:28-34. [PMID: 24158702 DOI: 10.1158/1078-0432.ccr-13-0122] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accelerated cholesterol and lipid metabolism are the hallmarks of cancer and contribute to malignant transformation due to the obligatory requirement for cholesterol for the function of eukaryotic membranes. To build new membranes and maintain active signaling, cancer cells depend on high intensity of endogenous cholesterol biosynthesis and uptake of lipid particles. This metabolic dependency of cancer cells on cholesterol and other lipids is tightly regulated by the cholesterol homeostasis network, including (i) sterol response element-binding proteins (SREBP), master transcriptional regulators of cholesterol and fatty acid pathway genes; (ii) nuclear sterol receptors (liver X receptors, LXR), which coordinate growth with the availability of cholesterol; and (iii) lipid particle receptors, such as low-density lipid particle (LDL) receptor, providing exogenous sterol and lipids to cancer cells. In addition, activity of oncogenic receptors, such as MUC1 or EGFR, accelerates sterol uptake and biosynthesis. Therefore, a general strategy of reducing the cholesterol pool in cancer cells is challenged by the highly efficient feedback loops compensating for a blockade at a single point in the cholesterol homeostatic network. Besides the well-established structural role of cholesterol in membranes, recent studies have uncovered potent biologic activities of certain cholesterol metabolic precursors and its oxidized derivatives, oxysterols. The former, meiosis-activating sterols, exert effects on trafficking and signaling of oncogenic EGF receptor (EGFR). Cholesterol epoxides, the highly active products of cholesterol oxidation, are being neutralized by the distal sterol pathway enzymes, emopamyl-binding protein (EBP) and dehydrocholesterol-7 reductase (DHCR7). These recently discovered "moonlighting" activities of the cholesterol pathway genes and metabolites expand our understanding of the uniquely conserved roles these sterol molecules play in the regulation of cellular proliferation and in cancer.
Collapse
Affiliation(s)
- Linara Gabitova
- Authors' Affiliations: Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Kazan Federal University, Republic of Tatarstan, Russia
| | | | | |
Collapse
|