1
|
Drexel VEM, Göbel TW, Früh SP. Characterization of a novel chicken γδ TCR-specific marker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105250. [PMID: 39159844 DOI: 10.1016/j.dci.2024.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Chickens are a species with a high number of γδ T cells in various tissues. Despite their abundance, γδ T cells are poorly characterized in chickens, partially due to a lack of specific reagents to characterize these cells. Up until now, the TCR1 clone has been the only γδ T cell-specific monoclonal antibody (mAb) in chickens and additional reagents for γδ T cell subsets are needed. In order to address this issue, new mAb were generated in our laboratory by immunizing mice with in vitro cultured γδ T cells. In an initial flow cytometric screen a new mAb, clone "8D2", displayed an interesting staining pattern that mirrored γδ TCR up- and downregulation in the γδ T cell line D4 over time, prompting us to characterize this antibody further. We compared the expression of the unknown 8D2 epitope in combination with TCR1 staining across various primary cells. In splenocytes, peripheral blood lymphocytes and intestinal epithelial cells, 8D2 consistently labeled a subset of TCR1+ cells. To determine, whether specific γδ T cell receptors were recognized by 8D2, we sorted γδ T cells according to their 8D2 and TCR1 expression and analyzed their TCR V(D)J gene usage by TCR profiling. Strikingly, sorted 8D2+ cells preferentially expressed Vγ3 genes, whereas the TCR Vγ genes used by TCR1+ 8D2- cells were more variable. γδ TCR in 8D2+ cells were most frequently comprised of gamma chain VJ genes TRGV3-8 and TRGJ3, and delta chain VDJ genes TRDV1-2, TRDD2, TRDJ1. To confirm binding of 8D2 to specific γδ TCR, the preferentially utilized combination of TRG and TRD was expressed in HEK293 cells in combination with CD3, demonstrating surface binding of the 8D2 mAb to this Vγ3 γδ TCR-expressing cell line. Conversely, HEK293 cells expressing either Vγ1 or Vγ2 TCR did not react with 8D2. In conclusion, 8D2 is a novel tool for identifying specific Vγ3 bearing γδ T cells.
Collapse
Affiliation(s)
- Veronika E M Drexel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany
| | - Thomas W Göbel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany.
| | - Simon P Früh
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany; Department of Veterinary Medicine, Institute of Virology, FU Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| |
Collapse
|
2
|
Michielon E, King L, Waaijman T, Veth M, Spiekstra S, van der Vliet H, Gibbs S, de Gruijl T. An organotypic human melanoma-in-skin model as an in vitro tool for testing Vγ9Vδ2-T cell-based immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100724. [PMID: 39220726 PMCID: PMC11363583 DOI: 10.1016/j.iotech.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Despite considerable advancements in cancer immunotherapy, advanced melanoma still presents a substantial clinical challenge. In an effort to explore treatment options, we examined the immunotherapeutic potential of effector Vγ9Vδ2-T cells in vitro in a three-dimensional (3D) human organotypic melanoma-in-skin (Mel-RhS) model. Materials and methods Vγ9Vδ2-T cells were introduced into Mel-RhS via intradermal injection and cultured within the tissue microenvironment for up to 3 days. Results Vγ9Vδ2-T cells remained viable for up to 3 days and were in close proximity to or within tumor nests. Upon Mel-RhS dissociation, a fraction was shown to be decorated by melanoma-associated chondroitin sulfate proteoglycan (MCSP), demonstrating their ability to actively navigate the tumor microenvironment and trogocytose cancer cells. Investigation into the apparent trogocytosis revealed an enhanced activated state of MCSP-decorated Vγ9Vδ2-T cells, evidenced by increased expression levels of 4-1BB, NKp44, programmed cell death protein-1 (PD-1), and programmed death-ligand 1 (PD-L1), compared with their MCSP- counterpart. These findings suggest that Vγ9Vδ2-T cells, upon successfully contacting melanoma cells, actively recognize and acquire MCSP from these malignant cells. Evidence of actual tumor cell elimination, although not significant, was only obtained after preincubation of Mel-RhS with pamidronate, a phosphoantigen-inducing agent, indicating the need for additional T cell receptor-mediated signaling for Vγ9Vδ2-T cells to reach their full oncolytic potential. Conclusions This study highlights the viability and persistence of Vγ9Vδ2-T cells within the 3D microenvironment, their migratory and antitumor functionality, and the suitability of the model for testing T cell-based therapies, contributing both to the understanding of Vγ9Vδ2-T cell biology and their application in cancer immunotherapy.
Collapse
Affiliation(s)
- E. Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
| | - L.A. King
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Department of Medical Oncology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
| | - T. Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
| | - M. Veth
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Department of Medical Oncology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
| | - S.W. Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
| | - H.J. van der Vliet
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Department of Medical Oncology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
- Lava Therapeutics NV, Utrecht
| | - S. Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - T.D. de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam
- Department of Medical Oncology, Amsterdam University Medical Center Location Vrije Universiteit Amsterdam, Amsterdam
| |
Collapse
|
3
|
Ravens S, Tolosa E. Expansion of human γδ T cells in periphery: Lessons learned from development, infections, and compromised thymic function. Eur J Immunol 2024; 54:e2451073. [PMID: 39194409 DOI: 10.1002/eji.202451073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
γδ T cells predominantly develop in the fetal period. Post birth they respond swiftly to environmental insults, pathogens and tumors, especially when other immune effector cells are less ready to function. Most of our understanding of γδ T-cell development, peripheral adaptation, and function derives from murine studies. The recent advancement of immunological methods allows now to decipher human γδ T-cell biology in patient cohorts and tissue samples, and to manipulate them using in vitro systems. In this review, we summarize γδ T-cell development in the human thymus, their functional adaptation to the microbial environment from birth until old age, and their capacity to expand and fill up the peripheral niche under conditions of perturbations of conventional T-cell development.
Collapse
Affiliation(s)
- Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eva Tolosa
- Institute of Immunology, UKE Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Bridge J, Johnson MJ, Kim J, Wenthe S, Krueger J, Wick B, Kluesner M, Crane AT, Bell J, Skeate JG, Moriarity BS, Webber BR. Efficient multiplex non-viral engineering and expansion of polyclonal γδ CAR-T cells for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611042. [PMID: 39464114 PMCID: PMC11507710 DOI: 10.1101/2024.09.03.611042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gamma delta (γδ) T cells are defined by their unique ability to recognize a limited repertoire of non-peptide, non-MHC-associated antigens on transformed and pathogen-infected cells. In addition to their lack of alloreactivity, γδ T cells exhibit properties distinct from other lymphocyte subsets, prompting significant interest in their development as an off-the-shelf cellular immunotherapeutic. However, their low abundance in circulation, heterogeneity, limited methods for ex vivo expansion, and under-developed methodologies for genetic modification have hindered basic study and clinical application of γδ T cells. Here, we implement a feeder-free, scalable approach for ex vivo manufacture of polyclonal, non-virally modified, gene edited chimeric antigen receptor (CAR)-γδ T cells in support of therapeutic application. Engineered CAR-γδ T cells demonstrate high function in vitro and and in vivo. Longitudinal in vivo pharmacokinetic profiling of adoptively transferred polyclonal CAR-γδ T cells uncover subset-specific responses to IL-15 cytokine armoring and multiplex base editing. Our results present a robust platform for genetic modification of polyclonal CAR-γδ T cells and present unique opportunities to further define synergy and the contribution of discrete, engineered CAR-γδ T cell subsets to therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Jacob Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Wenthe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell Kluesner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Crane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Singh U, Pawge G, Rani S, Hsiao CHC, Wiemer DF, Wiemer AJ. Enhanced Plasma Stability and Potency of Aryl/Acyloxy Prodrugs of a BTN3A1 Ligand. ACS Med Chem Lett 2024; 15:1771-1777. [PMID: 39411535 PMCID: PMC11472817 DOI: 10.1021/acsmedchemlett.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
While ester-based phosphonate prodrugs excel at delivering payloads into cells, their instability in plasma is a hurdle for their advancement. Here, we synthesized new aryl/acyloxy prodrugs of a phosphonate BTN3A1 ligand. We evaluated their phosphoantigen potency by flow cytometry and ELISA and their plasma and cellular metabolism by LC-MS. These compounds displayed low nanomolar to high picomolar potency. Addition of a p-isopropyl group to the phenyl substituent and use of cyclohexyl or p-methoxybenzyl groups as the acyloxy substituent significantly increased human, but not mouse or rat, plasma stability without negatively impacting potency. Combinations of these prodrug moieties further improved stability, with the best combination achieving a half-life of over 12 h in human plasma, a marked improvement on prior compounds. In contrast, oxane analogs improved water solubility and cellular payload delivery but remained unstable in human plasma. The studies suggest that certain ester-based phosphonate prodrugs quickly deliver active payloads inside cells and show substantial stability in human plasma.
Collapse
Affiliation(s)
- Umed Singh
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Girija Pawge
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Sarita Rani
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United
States
| |
Collapse
|
6
|
Singh R, Rani S, Jin Y, Hsiao CHC, Wiemer AJ. Synthesis and evaluation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate analogs as competitive partial agonists of butyrophilin 3A1. Eur J Med Chem 2024; 276:116673. [PMID: 39029338 PMCID: PMC11323222 DOI: 10.1016/j.ejmech.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Phosphoantigens (pAgs) induce conformational changes after binding to the intracellular region of BTN3A1 which result in its clustering with BTN2A1, forming an activating ligand for the Vγ9Vδ2 T cell receptor. Here, we designed a small panel of bulky analogs of the prototypical pAg (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) that contain an aromatic ring attached to the C-3 position in place of methyl group. These compounds bind with high affinity to BTN3A1 but fail to fully support its interaction with BTN2A1 and only partially trigger T cell activation relative to HMBPP. Furthermore, they can compete with HMBPP for cellular binding to BTN3A1 and reduce the cellular response to HMBPP, a classic partial agonist phenotype. Trifluoromethyl analog 6e was the weakest agonist but the strongest inhibitor of HMBPP ELISA response. Our study provides a rationale for the mode of action of pAg-induced γδ T cell activation and provides insights into other naturally occurring BTN proteins and their respective ligands.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States; Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT-World Peace University, Pune, 411038, India
| | - Sarita Rani
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States; Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, 06269-3092, United States.
| |
Collapse
|
7
|
Taira CL, Dos Santos Dias L, Lichtenberger S, Whitehead AJ, Kischkel B, Netea MG, Klein BS, Wüthrich M. Vaccination with O-linked Mannans Protects against Systemic Candidiasis through Innate Lymphocyte Populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:843-852. [PMID: 39109925 PMCID: PMC11426167 DOI: 10.4049/jimmunol.2400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Candida spp. are the fourth leading cause of bloodstream infections in hospitalized patients and the most common cause of invasive fungal infection. No vaccine against Candida spp. or other fungal pathogens of humans is available. We recently discovered the Blastomyces Dectin-2 ligand endoglucanase 2 that harbors antigenic and adjuvant functions and can function as a protective vaccine against that fungus. We also reported that the adjuvant activity, which is mediated by O-mannans decorating the C terminus of Blastomyces Dectin-2 ligand endoglucanase 2, can augment peptide Ag-induced vaccine immunity against heterologous agents, including Cryptococcus, Candida, and influenza. In this article, we report that the O-linked mannans alone, in the absence of any antigenic peptide, can also protect against systemic candidiasis, reducing kidney fungal load and increasing survival in a Dectin-2-dependent manner. We found that this long-term glycan-induced protection is mediated by innate lymphocyte populations including TCR-γδ+ T cells, innate lymphoid cells, and NK cells that subsequently activate and release reactive oxygen species from neutrophils and monocytes. Our findings suggest that Blastomyces O-mannan displayed by Eng2 induces a form of protective trained immunity mediated by innate lymphocyte populations.
Collapse
Affiliation(s)
- Cleison Ledesma Taira
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sarah Lichtenberger
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Alexander J Whitehead
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
8
|
Le Floch AC, Orlanducci F, Béné MC, Ben Amara A, Rouviere MS, Salem N, Le Roy A, Cordier C, Demerlé C, Granjeaud S, Hamel JF, Ifrah N, Cornillet-Lefebvre P, Delaunay J, Récher C, Delabesse E, Pigneux A, Vey N, Chretien AS, Olive D. Low frequency of Vγ9Vδ2 T cells predicts poor survival in newly diagnosed acute myeloid leukemia. Blood Adv 2024; 8:4262-4275. [PMID: 38788176 PMCID: PMC11372596 DOI: 10.1182/bloodadvances.2023011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
ABSTRACT In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to have the highest prognostic value compared with other immune subsets. In acute myeloid leukemia (AML), similar findings have been based solely on the inference of transcriptomic data and have not been assessed with respect to confounding factors. This study aimed at determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This was adjusted for potential confounders (age at diagnosis, disease status, European LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell transplantation as a time-dependent covariate). The cohort was composed of 198 patients with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval (CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T cells among lymphocytes in patients with ND AML. These results provide a strong rationale to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Middle Aged
- Female
- Male
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Aged
- Prognosis
- Immunophenotyping
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
- Aged, 80 and over
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | | | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Marie-Sarah Rouviere
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Aude Le Roy
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Cordier
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Demerlé
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Marseille, France
| | - Jean-François Hamel
- Département de Biostatistiques, Centre Hospitalier Universitaire d'Angers, Université d'Angers, Angers, France
| | - Norbert Ifrah
- Département d'Hématologie, Centre Hospitalier Universitaire d'Angers, Université d'Angers, INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | | | - Jacques Delaunay
- Département d'Hématologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christian Récher
- Département d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Pigneux
- Département d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Norbert Vey
- Département d’hématologie, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
9
|
Ibraheem Y, Bayarsaikhan G, Macalinao ML, Kimura K, Yui K, Aoshi T, Inoue SI. γδ T cell-mediated activation of cDC1 orchestrates CD4 + Th1 cell priming in malaria. Front Immunol 2024; 15:1426316. [PMID: 39211036 PMCID: PMC11357926 DOI: 10.3389/fimmu.2024.1426316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
γδ T cells facilitate the CD4+ T helper 1 (Th1) cell response against Plasmodium infection by activating conventional dendritic cells (cDCs), although the underlying mechanism remains elusive. Our study revealed that γδ T cells promote the complete maturation and production of interleukin-12 and CXCR3-ligands specifically in type 1 cDCs (cDC1), with minimal impact on cDC2 and monocyte derived DCs (Mo-DCs). During the initial infection phase, γδ T cell activation and temporal accumulation in the splenic white pulp, alongside cDC1, occur via CCR7-signaling. Furthermore, cDC1/γδ T cell interactions in the white pulp are amplified through CXCR3 signaling in γδ T cells, optimizing Th1 cell priming by cDC1. We also demonstrated how transitional Th1 cells arise in the white pulp before establishing their presence in the red pulp as fully differentiated Th1 cells. Additionally, we elucidate the reciprocal activation between γδ T cells and cDC1s. These findings suggest that Th1 cell priming is orchestrated by this reciprocal activation in the splenic white pulp during the early phase of blood-stage Plasmodium infection.
Collapse
MESH Headings
- Th1 Cells/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Animals
- Mice
- Lymphocyte Activation/immunology
- Malaria/immunology
- Malaria/parasitology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, CCR7/metabolism
- Receptors, CCR7/immunology
- Signal Transduction
- Spleen/immunology
- Cell Differentiation/immunology
- Female
Collapse
Affiliation(s)
- Yarob Ibraheem
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Kazumi Kimura
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Taiki Aoshi
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Fulford TS, Soliman C, Castle RG, Rigau M, Ruan Z, Dolezal O, Seneviratna R, Brown HG, Hanssen E, Hammet A, Li S, Redmond SJ, Chung A, Gorman MA, Parker MW, Patel O, Peat TS, Newman J, Behren A, Gherardin NA, Godfrey DI, Uldrich AP. Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers. Nat Immunol 2024; 25:1355-1366. [PMID: 39014161 DOI: 10.1038/s41590-024-01892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.
Collapse
MESH Headings
- Butyrophilins/metabolism
- Butyrophilins/immunology
- Butyrophilins/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Humans
- Protein Binding
- Protein Multimerization
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, CD/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Lymphocyte Activation/immunology
- Models, Molecular
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Thomas S Fulford
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Caroline Soliman
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca G Castle
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Marc Rigau
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrichs-Wilhelms University of Bonn, Bonn, Germany
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olan Dolezal
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Rebecca Seneviratna
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Hamish G Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Eric Hanssen
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Hammet
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Shihan Li
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Chung
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Gorman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas S Peat
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Janet Newman
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| | - Adam P Uldrich
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Paniagua-Herranz L, Díaz-Tejeiro C, Sanvicente A, Bartolomé J, Nieto-Jiménez C, Ocana A. Overcoming limitations for antibody-based therapies targeting γδ T (Vg9Vd2) cells. Front Immunol 2024; 15:1432015. [PMID: 39144149 PMCID: PMC11321970 DOI: 10.3389/fimmu.2024.1432015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Therapeutic strategies targeting non-adaptive immune cells are currently in clinical development. γδT cells are a small subtype of T cells (1-10% of total T cells) that mediate their effector function without the necessity of the antigen presenting machinery, and also share functional properties with innate cells. Among the different γδT subtypes, antibodies against Vγ9Vδ2T have reported signs of clinical efficacy in early clinical studies. In this review we describe the biology of this subtype of non-conventional T cells and provide insights into the mechanism of action of novel antibodies that activate these cells. We will focus on antibodies targeting the BTN3A ligand and bi-specific γδT cell engagers. We will review in detail the advantages of these strategies including the potential for overcoming mechanisms of resistance to check point inhibitors, or the much more adequate safety profile compared with agents activating classical T cells. Limitations identified during the first studies in humans and strategies to overcome them will be revised and discussed. Finally, clinical options for future clinical development will be suggested.
Collapse
Affiliation(s)
- Lucía Paniagua-Herranz
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Díaz-Tejeiro
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Adrián Sanvicente
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Jorge Bartolomé
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Alberto Ocana
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
12
|
Xu Q, Sharif M, James E, Dismorr JO, Tucker JHR, Willcox BE, Mehellou Y. Phosphonodiamidate prodrugs of phosphoantigens (ProPAgens) exhibit potent Vγ9/Vδ2 T cell activation and eradication of cancer cells. RSC Med Chem 2024; 15:2462-2473. [PMID: 39026632 PMCID: PMC11253855 DOI: 10.1039/d4md00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) is an established activator of Vγ9/Vδ2 T cells and stimulates downstream effector functions including cytotoxicity and cytokine production. In order to improve its drug-like properties, we herein report the design, synthesis, serum stability, in vitro metabolism, and biological evaluation of a new class of symmetrical phosphonodiamidate prodrugs of methylene and difluoromethylene monophosphonate derivatives of HMBPP. These prodrugs, termed phosphonodiamidate ProPAgens, were synthesized in good yields, exhibited excellent serum stability (>7 h), and their in vitro metabolism was shown to be initiated by carboxypeptidase Y. These phosphonodiamidate ProPAgens triggered potent activation of Vγ9/Vδ2 T cells, which translated into efficient Vγ9/Vδ2 T cell-mediated eradication of bladder cancer cells in vitro. Together, these findings showcase the potential of these phosphonodiamidate ProPAgens as Vγ9/Vδ2 T cell modulators that could be further developed as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Maria Sharif
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Edward James
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Jack O Dismorr
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
- Medicines Discovery Institute, Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
13
|
Brunschwiler F, Nakka S, Guerra J, Guarda G. A Ménage à trois: NLRC5, immunity, and metabolism. Front Immunol 2024; 15:1426620. [PMID: 39035010 PMCID: PMC11257985 DOI: 10.3389/fimmu.2024.1426620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.
Collapse
Affiliation(s)
| | | | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
14
|
Wu J. Emerging Innate Immune Cells in Cancer Immunotherapy: Promises and Challenges. BioDrugs 2024; 38:499-509. [PMID: 38700835 PMCID: PMC11246812 DOI: 10.1007/s40259-024-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Immune checkpoint inhibitor (ICI)-based therapy has made an unprecedented impact on survival benefit for a subset of cancer patients; however, only a subset of cancer patients is benefiting from ICI therapy if all cancer types are considered. With the advanced understanding of interactions of immune effector cell types and tumors, cell-based therapies are emerging as alternatives to patients who could not benefit from ICI therapy. Pioneering work of chimeric antigen receptor T (CAR-T) therapy for hematological malignancies has brought encouragement to a broad range of development for cellular-based cancer immunotherapy, both innate immune cell-based therapies and T-cell-based therapies. Innate immune cells are important cell types due to their rapid response, versatile function, superior safety profiles being demonstrated in early clinical development, and being able to utilize multiple allogeneic cell sources. Efforts on engineering innate immune cells and exploring their therapeutic potential are rapidly emerging. Some of the therapies, such as CD19 CAR natural killer (CAR-NK) cell-based therapy, have demonstrated comparable early efficacy with CD19 CAR-T cells. These studies underscore the significance of developing innate immune cells for cancer therapy. In this review, we focus on the current development of emerging NK cells, γδ T cells, and macrophages. We also present our views on potential challenges and perspectives to overcome these challenges.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Urology, Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
15
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
16
|
Xin W, Huang B, Chi X, Liu Y, Xu M, Zhang Y, Li X, Su Q, Zhou Q. Structures of human γδ T cell receptor-CD3 complex. Nature 2024; 630:222-229. [PMID: 38657677 PMCID: PMC11153141 DOI: 10.1038/s41586-024-07439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Gamma delta (γδ) T cells, a unique T cell subgroup, are crucial in various immune responses and immunopathology1-3. The γδ T cell receptor (TCR), which is generated by γδ T cells, recognizes a diverse range of antigens independently of the major histocompatibility complex2. The γδ TCR associates with CD3 subunits, initiating T cell activation and holding great potential in immunotherapy4. Here we report the structures of two prototypical human Vγ9Vδ2 and Vγ5Vδ1 TCR-CD3 complexes5,6, revealing two distinct assembly mechanisms that depend on Vγ usage. The Vγ9Vδ2 TCR-CD3 complex is monomeric, with considerable conformational flexibility in the TCRγ-TCRδ extracellular domain and connecting peptides. The length of the connecting peptides regulates the ligand association and T cell activation. A cholesterol-like molecule wedges into the transmembrane region, exerting an inhibitory role in TCR signalling. The Vγ5Vδ1 TCR-CD3 complex displays a dimeric architecture, whereby two protomers nestle back to back through the Vγ5 domains of the TCR extracellular domains. Our biochemical and biophysical assays further corroborate the dimeric structure. Importantly, the dimeric form of the Vγ5Vδ1 TCR is essential for T cell activation. These findings reveal organizing principles of the γδ TCR-CD3 complex, providing insights into the unique properties of γδ TCR and facilitating immunotherapeutic interventions.
Collapse
MESH Headings
- Humans
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD3 Complex/ultrastructure
- Cholesterol/metabolism
- Cholesterol/chemistry
- Cryoelectron Microscopy
- Ligands
- Lymphocyte Activation/immunology
- Models, Molecular
- Protein Domains
- Protein Multimerization
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/ultrastructure
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Signal Transduction
- Cell Membrane/chemistry
- Cell Membrane/metabolism
Collapse
Affiliation(s)
- Weizhi Xin
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bangdong Huang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ximin Chi
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Science, Xiamen University, Xiamen, China
| | - Yuehua Liu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Mengjiao Xu
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanyuan Zhang
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xu Li
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qiang Su
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Qiang Zhou
- Research Center for Industries of the Future, Center for Infectious Disease Research, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
17
|
Wei J, Guo F, Song Y, Feng T, Wang Y, Xu K, Song J, Kaysar E, Abdukayyum R, Lin F, Li K, Li B, Qian Z, Wang X, Wang H, Xu T. Analysis of the components of Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) and its regulation of γδ T-cell function. Cell Mol Biol Lett 2024; 29:70. [PMID: 38741147 PMCID: PMC11089708 DOI: 10.1186/s11658-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αβ T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.
Collapse
MESH Headings
- Humans
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/genetics
- Cell Proliferation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
Collapse
Affiliation(s)
- Jing Wei
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Fangzheng Guo
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Yamin Song
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Tong Feng
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Ying Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Kun Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Jianhan Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Eldana Kaysar
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China
| | - Reyima Abdukayyum
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China
| | - Feiyang Lin
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Kangsheng Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Baiqing Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Zhongqing Qian
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical University, Bengbu, 233000, China
| | - Hongtao Wang
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China.
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China.
| | - Tao Xu
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
18
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Krawic JR, Ladd NA, Cansler M, McMurtrey C, Devereaux J, Worley A, Ahmed T, Froyd C, Kulicke CA, Swarbrick G, Nilsen A, Lewinsohn DM, Adams EJ, Hildebrand W. Multiple Isomers of Photolumazine V Bind MR1 and Differentially Activate MAIT Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:933-940. [PMID: 38275935 PMCID: PMC10909690 DOI: 10.4049/jimmunol.2300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
In response to microbial infection, the nonclassical Ag-presenting molecule MHC class I-related protein 1 (MR1) presents secondary microbial metabolites to mucosal-associated invariant T (MAIT) cells. In this study, we further characterize the repertoire of ligands captured by MR1 produced in Hi5 (Trichoplusia ni) cells from Mycobacterium smegmatis via mass spectrometry. We describe the (to our knowledge) novel MR1 ligand photolumazine (PL)V, a hydroxyindolyl-ribityllumazine with four isomers differing in the positioning of a hydroxyl group. We show that all four isomers are produced by M. smegmatis in culture and that at least three can induce MR1 surface translocation. Furthermore, human MAIT cell clones expressing distinct TCR β-chains differentially responded to the PLV isomers, demonstrating that the subtle positioning of a single hydroxyl group modulates TCR recognition. This study emphasizes structural microheterogeneity within the MR1 Ag repertoire and the remarkable selectivity of MAIT cell TCRs.
Collapse
Affiliation(s)
- Jason R. Krawic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nicole A. Ladd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Meghan Cansler
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | | | - Jordan Devereaux
- Oregon Health and Sciences University Medicinal Chemistry Core, Portland, OR
| | - Aneta Worley
- Research and Development, VA Portland Health Care System, Portland, OR
| | - Tania Ahmed
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | - Cara Froyd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Corinna A. Kulicke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Por
| | - Gwendolyn Swarbrick
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | - Aaron Nilsen
- Oregon Health and Sciences University Medicinal Chemistry Core, Portland, OR
| | - David M. Lewinsohn
- Research and Development, VA Portland Health Care System, Portland, OR
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Por
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
20
|
Linti AE, Göbel TW, Früh SP. Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture. Front Immunol 2024; 15:1325024. [PMID: 38420118 PMCID: PMC10900522 DOI: 10.3389/fimmu.2024.1325024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8-, and TCR1lowCD8- subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8- subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function.
Collapse
Affiliation(s)
- Antonia E. Linti
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas W. Göbel
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon P. Früh
- Department of Veterinary Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
21
|
Lien SC, Ly D, Yang SYC, Wang BX, Clouthier DL, St Paul M, Gadalla R, Noamani B, Garcia-Batres CR, Boross-Harmer S, Bedard PL, Pugh TJ, Spreafico A, Hirano N, Razak ARA, Ohashi PS. Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. Nat Commun 2024; 15:1094. [PMID: 38321065 PMCID: PMC10848161 DOI: 10.1038/s41467-024-45449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Immunotherapies targeting PD-1/PD-L1 are now widely used in the clinic to treat a variety of malignancies. While most of the research on T cell exhaustion and PD-1 blockade has been focused on conventional αβ T cells, the contribution of innate-like T cells such as γδ T cells to anti-PD-1/PD-L1 mediated therapy is limited. Here we show that tumor reactive γδ T cells respond to PD-1 blockade in a Merkel cell carcinoma (MCC) patient experiencing a complete response to therapy. We find clonally expanded γδ T cells in the blood and tumor after pembrolizumab treatment, and this Vγ2Vδ1 clonotype recognizes Merkel cancer cells in a TCR-dependent manner. Notably, the intra-tumoral γδ T cells in the MCC patient are characterized by higher expression of PD-1 and TIGIT, relative to conventional CD4 and CD8 T cells. Our results demonstrate that innate-like T cells could also contribute to an anti-tumor response after PD-1 blockade.
Collapse
Affiliation(s)
- Scott C Lien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dalam Ly
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramy Gadalla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Babak Noamani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Sarah Boross-Harmer
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Albiruni R A Razak
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Mohamed AA, al-Ramadi BK, Fernandez-Cabezudo MJ. Interplay between Microbiota and γδ T Cells: Insights into Immune Homeostasis and Neuro-Immune Interactions. Int J Mol Sci 2024; 25:1747. [PMID: 38339023 PMCID: PMC10855551 DOI: 10.3390/ijms25031747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host-microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain.
Collapse
Affiliation(s)
- Alaa A. Mohamed
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
23
|
Nakashima M, Tanaka Y, Okamura H, Kato T, Imaizumi Y, Nagai K, Miyazaki Y, Murota H. Development of Innate-Immune-Cell-Based Immunotherapy for Adult T-Cell Leukemia-Lymphoma. Cells 2024; 13:128. [PMID: 38247820 PMCID: PMC10814776 DOI: 10.3390/cells13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
γδ T cells and natural killer (NK) cells have attracted much attention as promising effector cell subsets for adoptive transfer for use in the treatment of malignant and infectious diseases, because they exhibit potent cytotoxic activity against a variety of malignant tumors, as well as virus-infected cells, in a major histocompatibility complex (MHC)-unrestricted manner. In addition, γδ T cells and NK cells express a high level of CD16, a receptor required for antibody-dependent cellular cytotoxicity. Adult T-cell leukemia-lymphoma (ATL) is caused by human T-lymphotropic virus type I (HTLV-1) and is characterized by the proliferation of malignant peripheral CD4+ T cells. Although several treatments, such as chemotherapy, monoclonal antibodies, and allogeneic hematopoietic stem cell transplantation, are currently available, their efficacy is limited. In order to develop alternative therapeutic modalities, we considered the possibility of infusion therapy harnessing γδ T cells and NK cells expanded using a novel nitrogen-containing bisphosphonate prodrug (PTA) and interleukin (IL)-2/IL-18, and we examined the efficacy of the cell-based therapy for ATL in vitro. Peripheral blood samples were collected from 55 patients with ATL and peripheral blood mononuclear cells (PBMCs) were stimulated with PTA and IL-2/IL-18 for 11 days to expand γδ T cells and NK cells. To expand NK cells alone, CD3+ T-cell-depleted PBMCs were cultured with IL-2/IL-18 for 10 days. Subsequently, the expanded cells were examined for cytotoxicity against ATL cell lines in vitro. The proportion of γδ T cells in PBMCs was markedly low in elderly ATL patients. The median expansion rate of the γδ T cells was 1998-fold, and it was 12-fold for the NK cells, indicating that γδ T cells derived from ATL patients were efficiently expanded ex vivo, irrespective of aging and HTLV-1 infection status. Anti-CCR4 antibodies enhanced the cytotoxic activity of the γδ T cells and NK cells against HTLV-1-infected CCR4-expressing CD4+ T cells in an antibody concentration-dependent manner. Taken together, the adoptive transfer of γδ T cells and NK cells expanded with PTA/IL-2/IL-18 is a promising alternative therapy for ATL.
Collapse
Affiliation(s)
- Maho Nakashima
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Tumor Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura 856-8562, Japan
| | - Kazuhiro Nagai
- Department of Clinical Laboratory, National Hospital Organization Nagasaki Medical Center, Omura 856-8562, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Leading Medical Research Core Unit, Life Science Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| |
Collapse
|
24
|
Hsu H, Zanettini C, Coker M, Boudova S, Rach D, Mvula G, Divala TH, Mungwira RG, Boldrin F, Degiacomi G, Mazzabò LC, Manganelli R, Laufer MK, Zhang Y, Marchionni L, Cairo C. Concomitant assessment of PD-1 and CD56 expression identifies subsets of resting cord blood Vδ2 T cells with disparate cytotoxic potential. Cell Immunol 2024; 395-396:104797. [PMID: 38157646 DOI: 10.1016/j.cellimm.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Vγ9Vδ2 T lymphocytes are programmed for broad antimicrobial responses with rapid production of Th1 cytokines even before birth, and thus thought to play key roles against pathogens in infants. The process regulating Vδ2 cell acquisition of cytotoxic potential shortly after birth remains understudied. We observed that perforin production in cord blood Vδ2 cells correlates with phenotypes defined by the concomitant assessment of PD-1 and CD56. Bulk RNA sequencing of sorted Vδ2 cell fractions indicated that transcripts related to cytotoxic activity and NK function are enriched in the subset with the highest proportion of perforin+ cells. Among differentially expressed transcripts, IRF8, previously linked to CD8 T cell effector differentiation and NK maturation, has the potential to mediate Vδ2 cell differentiation towards cytotoxic effectors. Our current and past results support the hypothesis that distinct mechanisms regulate Vδ2 cell cytotoxic function before and after birth, possibly linked to different levels of microbial exposure.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Claudio Zanettini
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Modupe Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers State University of New Jersey, Newark, NJ, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Randy G Mungwira
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenbaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
25
|
Ahmedna T, Khela H, Weber-Levine C, Azad TD, Jackson CM, Gabrielson K, Bettegowda C, Rincon-Torroella J. The Role of γδ T-Lymphocytes in Glioblastoma: Current Trends and Future Directions. Cancers (Basel) 2023; 15:5784. [PMID: 38136330 PMCID: PMC10741533 DOI: 10.3390/cancers15245784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.
Collapse
Affiliation(s)
- Taha Ahmedna
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harmon Khela
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Public Health Studies, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tej D. Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
26
|
Bernal-Alferes B, Gómez-Mosqueira R, Ortega-Tapia GT, Burgos-Vargas R, García-Latorre E, Domínguez-López ML, Romero-López JP. The role of γδ T cells in the immunopathogenesis of inflammatory diseases: from basic biology to therapeutic targeting. J Leukoc Biol 2023; 114:557-570. [PMID: 37040589 DOI: 10.1093/jleuko/qiad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
The γδ T cells are lymphocytes with an innate-like phenotype that can distribute to different tissues to reside and participate in homeostatic functions such as pathogen defense, tissue modeling, and response to stress. These cells originate during fetal development and migrate to the tissues in a TCR chain-dependent manner. Their unique manner to respond to danger signals facilitates the initiation of cytokine-mediated diseases such as spondyloarthritis and psoriasis, which are immune-mediated diseases with a very strong link with mucosal disturbances, either in the skin or the gut. In spondyloarthritis, γδ T cells are one of the main sources of IL-17 and, therefore, the main drivers of inflammation and probably new bone formation. Remarkably, this population can be the bridge between gut and joint inflammation.
Collapse
Affiliation(s)
- Brian Bernal-Alferes
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rafael Gómez-Mosqueira
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Graciela Teresa Ortega-Tapia
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rubén Burgos-Vargas
- Departamento de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis No. 148 Col. Doctores C.P. 06720, Alcaldía Cuauhtémoc Ciudad de México, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - José Pablo Romero-López
- Laboratorio de Patogénesis Molecular, Edificio A4, Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Número 1, Colonia Los Reyes Ixtacala, C.P. 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
27
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
28
|
Fischer K, Bradlerova M, Decker T, Supper V. Vγ9+Vδ2+ T cell control of Listeria monocytogenes growth in infected epithelial cells requires butyrophilin 3A genes. Sci Rep 2023; 13:18651. [PMID: 37903831 PMCID: PMC10616279 DOI: 10.1038/s41598-023-45587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Intracellular bacteria produce antigens, which serve as potent activators of γδ T cells. Phosphoantigens are presented via a complex of butyrophilins (BTN) to signal infection to human Vγ9+Vδ2+ T cells. Here, we established an in vitro system allowing for studies of Vγ9+Vδ2+ T cell activity in coculture with epithelial cells infected with the intracellular bacterial pathogen Listeria monocytogenes. We report that the Vγ9+Vδ2+ T cells efficiently control L. monocytogenes growth in such cultures. This effector function requires the expression of members of the BTN3A family on epithelial cells. Specifically, we observed a BTN3A1-independent BTN3A3 activity to present antigen to Vγ9+Vδ2+ T cells. Since BTN3A1 is the only BTN3A associated with phosphoantigen presentation, our study suggests that BTN3A3 may present different classes of antigens to mediate Vγ9+Vδ2+ T cell effector function against L. monocytogenes-infected epithelia.
Collapse
Affiliation(s)
- Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Michaela Bradlerova
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
29
|
Schaft N, Dörrie J, Schuler G, Schuler-Thurner B, Sallam H, Klein S, Eisenberg G, Frankenburg S, Lotem M, Khatib A. The future of affordable cancer immunotherapy. Front Immunol 2023; 14:1248867. [PMID: 37736099 PMCID: PMC10509759 DOI: 10.3389/fimmu.2023.1248867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of "cold tumors" with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the "sequence everything" approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Husam Sallam
- Molecular Genetics and Genetic Toxicology, Health Science Department, American Arab University, Ramallah, Palestine
| | - Shiri Klein
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shoshana Frankenburg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Areej Khatib
- Women's Health Research Unit, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
30
|
Sanz M, Weideman AMK, Ward AR, Clohosey ML, Garcia-Recio S, Selitsky SR, Mann BT, Iannone MA, Whitworth CP, Chitrakar A, Garrido C, Kirchherr J, Coffey AR, Tsai YH, Samir S, Xu Y, Copertino D, Bosque A, Jones BR, Parker JS, Hudgens MG, Goonetilleke N, Soriano-Sarabia N. Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1. Front Immunol 2023; 14:1219250. [PMID: 37744358 PMCID: PMC10516574 DOI: 10.3389/fimmu.2023.1219250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Ann Marie K. Weideman
- Biostatistics Core, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adam R. Ward
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
- Department of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Matthew L. Clohosey
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sara R. Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brendan T. Mann
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Marie Anne Iannone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chloe P. Whitworth
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alisha Chitrakar
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Carolina Garrido
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alisha R. Coffey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yi- Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shahryar Samir
- Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yinyan Xu
- Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dennis Copertino
- Department of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Brad R. Jones
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
- Department of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael G. Hudgens
- Biostatistics Core, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natalia Soriano-Sarabia
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| |
Collapse
|
31
|
Yuan L, Ma X, Yang Y, Qu Y, Li X, Zhu X, Ma W, Duan J, Xue J, Yang H, Huang JW, Yi S, Zhang M, Cai N, Zhang L, Ding Q, Lai K, Liu C, Zhang L, Liu X, Yao Y, Zhou S, Li X, Shen P, Chang Q, Malwal SR, He Y, Li W, Chen C, Chen CC, Oldfield E, Guo RT, Zhang Y. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 2023; 621:840-848. [PMID: 37674084 PMCID: PMC10533412 DOI: 10.1038/s41586-023-06525-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.
Collapse
MESH Headings
- Animals
- Humans
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Butyrophilins/immunology
- Butyrophilins/metabolism
- Camelids, New World/immunology
- Lymphocyte Activation
- Molecular Dynamics Simulation
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Nuclear Magnetic Resonance, Biomolecular
- Thermodynamics
Collapse
Affiliation(s)
- Linjie Yuan
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunyun Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yingying Qu
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Li
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | | | - Jing Xue
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haoyu Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Simin Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengting Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ningning Cai
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lin Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingyang Ding
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kecheng Lai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinyi Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yirong Yao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuqi Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Chang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Wenqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Hajdara A, Çakır U, Érsek B, Silló P, Széky B, Barna G, Faqi S, Gyöngy M, Kárpáti S, Németh K, Mayer B. Targeting Melanoma-Associated Fibroblasts (MAFs) with Activated γδ (Vδ2) T Cells: An In Vitro Cytotoxicity Model. Int J Mol Sci 2023; 24:12893. [PMID: 37629075 PMCID: PMC10454423 DOI: 10.3390/ijms241612893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor microenvironment (TME) has gained considerable scientific attention by playing a role in immunosuppression and tumorigenesis. Besides tumor cells, TME is composed of various other cell types, including cancer-associated fibroblasts (CAFs or MAFs when referring to melanoma-derived CAFs) and tumor-infiltrating lymphocytes (TILs), a subpopulation of which is labeled as γδ T cells. Since the current anti-cancer therapies using γδ T cells in various cancers have exhibited mixed treatment responses, to better understand the γδ T cell biology in melanoma, our research group aimed to investigate whether activated γδ T cells are capable of killing MAFs. To answer this question, we set up an in vitro platform using freshly isolated Vδ2-type γδ T cells and cultured MAFs that were biobanked from our melanoma patients. This study proved that the addition of zoledronic acid (1-2.5 µM) to the γδ T cells was necessary to drive MAFs into apoptosis. The MAF cytotoxicity of γδ T cells was further enhanced by using the stimulatory clone 20.1 of anti-BTN3A1 antibody but was reduced when anti-TCR γδ or anti-BTN2A1 antibodies were used. Since the administration of zoledronic acid is safe and tolerable in humans, our results provide further data for future clinical studies on the treatment of melanoma.
Collapse
Affiliation(s)
- Anna Hajdara
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Uğur Çakır
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary;
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Balázs Széky
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Shaaban Faqi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós Gyöngy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary;
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Krisztián Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| |
Collapse
|
33
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Meringa AD, Hernández-López P, Cleven A, de Witte M, Straetemans T, Kuball J, Beringer DX, Sebestyen Z. Strategies to improve γδTCRs engineered T-cell therapies for the treatment of solid malignancies. Front Immunol 2023; 14:1159337. [PMID: 37441064 PMCID: PMC10333927 DOI: 10.3389/fimmu.2023.1159337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- A. D. Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - P. Hernández-López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - A. Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. de Witte
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - T. Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J. Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - D. X. Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Z. Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
35
|
Oyong DA, Duffy FJ, Neal ML, Du Y, Carnes J, Schwedhelm KV, Hertoghs N, Jun SH, Miller H, Aitchison JD, De Rosa SC, Newell EW, McElrath MJ, McDermott SM, Stuart KD. Distinct immune responses associated with vaccination status and protection outcomes after malaria challenge. PLoS Pathog 2023; 19:e1011051. [PMID: 37195999 PMCID: PMC10228810 DOI: 10.1371/journal.ppat.1011051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/30/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Damian A. Oyong
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Fergal J. Duffy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ying Du
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nina Hertoghs
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Seong-Hwan Jun
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - John D. Aitchison
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Suzanne M. McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Roato I, Mauceri R, Notaro V, Genova T, Fusco V, Mussano F. Immune Dysfunction in Medication-Related Osteonecrosis of the Jaw. Int J Mol Sci 2023; 24:ijms24097948. [PMID: 37175652 PMCID: PMC10177780 DOI: 10.3390/ijms24097948] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) is multifactorial and there is a substantial consensus on the role of antiresorptive drugs (ARDs), including bisphosphonates (BPs) and denosumab (Dmab), as one of the main determinants. The time exposure, cumulative dose and administration intensity of these drugs are critical parameters to be considered in the treatment of patients, as cancer patients show the highest incidence of MRONJ. BPs and Dmab have distinct mechanisms of action on bone, but they also exert different effects on immune subsets which interact with bone cells, thus contributing to the onset of MRONJ. Here, we summarized the main effects of ARDs on the different immune cell subsets, which consequently affect bone cells, particularly osteoclasts and osteoblasts. Data from animal models and MRONJ patients showed a deep interference of ARDs in modulating immune cells, even though a large part of the literature concerns the effects of BPs and there is a lack of data on Dmab, demonstrating the need to further studies.
Collapse
Affiliation(s)
- Ilaria Roato
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Vincenzo Notaro
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Vittorio Fusco
- Medical Oncology Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
- Department of Integrated Research Activity and Innovation (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Federico Mussano
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
37
|
Diamond B. Not Dead Yet. Annu Rev Immunol 2023; 41:1-15. [PMID: 37126416 DOI: 10.1146/annurev-immunol-101721-065214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
I have been a scientific grasshopper throughout my career, moving from question to question within the domain of lupus. This has proven to be immensely gratifying. Scientific exploration is endlessly fascinating, and succeeding in studies you care about with colleagues and trainees leads to strong and lasting bonds. Science isn't easy; being a woman in science presents challenges, but the drive to understand a disease remains strong.
Collapse
Affiliation(s)
- Betty Diamond
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA;
| |
Collapse
|
38
|
Abstract
Current cancer immunotherapies are primarily predicated on αβ T cells, with a stringent dependence on MHC-mediated presentation of tumour-enriched peptides or unique neoantigens that can limit their efficacy and applicability in various contexts. After two decades of preclinical research and preliminary clinical studies involving very small numbers of patients, γδ T cells are now being explored as a viable and promising approach for cancer immunotherapy. The unique features of γδ T cells, including their tissue tropisms, antitumour activity that is independent of neoantigen burden and conventional MHC-dependent antigen presentation, and combination of typical properties of T cells and natural killer cells, make them very appealing effectors in multiple cancer settings. Herein, we review the main functions of γδ T cells in antitumour immunity, focusing on human γδ T cell subsets, with a particular emphasis on the differences between Vδ1+ and Vδ2+ γδ T cells, to discuss their prognostic value in patients with cancer and the key therapeutic strategies that are being developed in an attempt to improve the outcomes of these patients.
Collapse
|
39
|
Sanz M, Weideman AMK, Ward AR, Clohosey ML, Garcia-Recio S, Selitsky SR, Mann BT, Iannone MA, Whitworth CP, Chitrakar A, Garrido C, Kirchherr J, Coffey AR, Tsai YH, Samir S, Xu Y, Copertino D, Bosque A, Jones BR, Parker JS, Hudgens MG, Goonetilleke N, Soriano-Sarabia N. Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527421. [PMID: 36798291 PMCID: PMC9934553 DOI: 10.1101/2023.02.07.527421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Ann Marie K. Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Adam R. Ward
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Matthew L. Clohosey
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Sara R. Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brendan T. Mann
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Marie Anne Iannone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Chloe P. Whitworth
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alisha Chitrakar
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Carolina Garrido
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alisha R. Coffey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Shahryar Samir
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Dennis Copertino
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Brad R. Jones
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Natalia Soriano-Sarabia
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| |
Collapse
|
40
|
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules 2023; 28:molecules28031403. [PMID: 36771066 PMCID: PMC9919496 DOI: 10.3390/molecules28031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.
Collapse
|
41
|
Chen Y, Du J, Liu Y, Luo Z, Guo L, Xu J, Jia L, Liu Y. γδT cells in oral tissue immune surveillance and pathology. Front Immunol 2023; 13:1050030. [PMID: 36703983 PMCID: PMC9871479 DOI: 10.3389/fimmu.2022.1050030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
The oral mucosa's immune system is composed of tissue-resident and specifically recruited leukocytes that could effectively tolerate a wide range of microbial and mechanical assaults. Shortly after CD4+ helper T cells (TH17 cells) that produce interleukin 17 (IL-17) were identified, it was discovered that γδT cells could also induce substantial levels of this pro-inflammatory cytokine. In the past decades, it has become clear that due to a complicated thymic program of development, γδT cells frequently serve as the primary sources of IL-17 in numerous models of inflammatory diseases while also assisting in the maintenance of tissue homeostasis in the skin and intestine. But it wasn't until recently that we took thorough insight into the complex features of γδT cells in the oral mucosa. Most gingival intraepithelial γδT cells reside in the junctional epithelium adjacent to the dental biofilm, suggesting their potential role in regulating oral microbiota. However, inconsistent results have been published in this regard. Similarly, recent findings showed contradictory data about the role of γδT lymphocytes in experimental periodontitis based on different models. In addition, conflicting findings were presented in terms of alveolar bone physiology and pathology underlying the oral mucosa. This review provided an overview of current knowledge and viewpoints regarding the complex roles played by oral-resident γδT cells in host-microbiota interactions, gingivitis and periodontitis, bone physiology and pathology.
Collapse
Affiliation(s)
- Yilong Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Lu Jia, ; Yi Liu,
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Lu Jia, ; Yi Liu,
| |
Collapse
|
42
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
43
|
Amajala KC, Gudivada IP, Malla RR. Gamma Delta T Cells: Role in Immunotherapy of Hepatocellular Carcinoma. Crit Rev Oncog 2023; 28:41-50. [PMID: 38050980 DOI: 10.1615/critrevoncog.2023049893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The most typical type of liver cancer or hepatocellular carcinoma (HCC) develops from hepatocyte loss. Non-alcoholic fatty liver disease (NAFLD), viral hepatitis C and cirrhosis are the leading causes of HCC. With the Hepatitis B vaccine and medicines, there are several treatments for HCC, including liver resection, ablation, transplantation, immunotherapy, gene therapy, radiation embolization, and targeted therapy. Currently, a wide range of studies are carried out on gene therapy to identify biomarkers and pathways, which help us identify the exact stage of the disorder and reduce its effects. γδT cells have recently received much interest as a potential cancer treatment method in adaptive immunotherapy. γδT cells can quickly form connections between receptor and ligand activation. They can clonally expand and are a significant source of cytokines and chemokines. The present review provides a comprehensive understanding on the function of γδT cells in immunotherapies and how they are used to treat HCC.
Collapse
Affiliation(s)
- Krishna Chaitanya Amajala
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Indu Priya Gudivada
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
44
|
Chartrand NA, Lau CK, Parsons MT, Handlon JJ, Ronquillo YC, Hoopes PC, Moshirfar M. Ocular Side Effects of Bisphosphonates: A Review of Literature. J Ocul Pharmacol Ther 2023; 39:3-16. [PMID: 36409537 DOI: 10.1089/jop.2022.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In rare cases, bisphosphonates are well established to cause ocular inflammation, presenting as uveitis, episcleritis, scleritis, orbital inflammation, and/or conjunctivitis. Some reports of bisphosphonate-associated neuro-ophthalmic complications also exist. We identified 101 reports in the literature relating to bisphosphonate-associated ocular complications. In a great majority of cases, symptoms resolve after discontinuation of the drug and anti-inflammatory treatment. Many cases recur if rechallenged with the same bisphosphonate. First-generation nonamino bisphosphonates, including clodronate and etidronate, are not associated with ocular inflammation. Only 2nd- and 3rd-generation amino bisphosphonates, including pamidronate, alendronate, risedronate, ibandronate, and zoledronate are associated with these complications. The mechanism of bisphosphonate-induced ocular inflammation may be related to activation of γ/δ T cells or M1 macrophages. Intravenous forms, such as pamidronate and zoledronate, tend to have higher rates and faster onset of ocular inflammation, generally presenting within days of infusion. In oral bisphosphonates, such as alendronate and risedronate, these complications present with more sporadic timing. Rates of complications are also higher when bisphosphonates are used for malignancy, as doses tend to be higher compared with doses for osteoporosis.
Collapse
Affiliation(s)
| | - Chap-Kay Lau
- College of Medicine Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Mark T Parsons
- College of Medicine Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | | | | | - Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, Utah, USA.,Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Utah Lions Eye Bank, Murray, Utah, USA
| |
Collapse
|
45
|
Vidovic D, Helyer LK, Pasternak S, Giacomantonio CA. Abscopal responses in patients with metastatic melanoma involving skin and subcutaneous tissues treated with intralesional IL2 plus BCG. Front Oncol 2023; 13:1160269. [PMID: 37182189 PMCID: PMC10172468 DOI: 10.3389/fonc.2023.1160269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Cutaneous melanoma is relatively common with increasing incidence and significant mortality. While the mainstay of therapy is surgical, patients with stage III and IV disease fare poorer than those with early-stage disease and often benefit from adjuvant therapies. While systemic immunotherapy has changed the landscape of melanoma treatment, for some patients systemic toxicities related to these treatments prohibit successful administration or completion of therapy. Moreover, it is becoming increasingly evident that nodal, regional, and in-transit disease appears to be resistant to systemic immunotherapy relative to responses observed in distant metastatic disease sites. In this scenario, intralesional immunotherapies may offer benefit. In this case series, we describe the use of intralesional IL-2 and BCG at our institution in ten patients with in-transit plus or minus distant cutaneous metastatic melanoma over the last twelve years. All patients received intralesional IL2 and BCG. Both treatments were very well tolerated with only grade 1/2 adverse events. In our cohort, complete clinical response was 60% (6/10), progressive disease in 20% (2/10), and no response in 20% (2/10) of patients. The overall response rate (ORR) was 70%. The median overall survival was 35.5 months and mean overall survival 43 months in this cohort. Herein we further highlight the clinical, histopathological, and radiological course of two complete responders, showing evidence of an abscopal effect with resolution of distant untreated metastasis. Together, this limited data supports the safe and effective use of intralesional IL2 and BCG for the treatment of metastatic or in-transit melanoma in this challenging patient cohort. To our knowledge, this is the first formal study to report on this combination therapy for the treatment of melanoma.
Collapse
Affiliation(s)
- Dejan Vidovic
- Division of General and Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lucy Kathryn Helyer
- Division of General and Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sylvia Pasternak
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Carman Anthony Giacomantonio
- Division of General and Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Carman Anthony Giacomantonio,
| |
Collapse
|
46
|
Qin Y, Xu G. Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Front Immunol 2022; 13:1053120. [PMID: 36569859 PMCID: PMC9773088 DOI: 10.3389/fimmu.2022.1053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, belonging to adoptive immune cells therapy, utilizes engineered immunoreceptors to enhance tumor-specific killing. By now new generations of CAR T-cell therapies dramatically promote the effectiveness and robustness in leukemia cases. However, only a few CAR T-cell therapies gain FDA approval till now, which are applied to hematologic cancers. Targeting solid tumors through CAR T-cell therapies still faces many problems, such as tumor heterogeneity, antigen loss, infiltration inability and immunosuppressive micro-environment. Recent advances provide new insights about the mechanisms of CAR T-cell therapy resistance and give rise to potential reversal therapies. In this review, we mainly introduce existing barriers when treating solid tumors with CAR T-cells and discuss the methods to overcome these challenges.
Collapse
Affiliation(s)
- Yue Qin
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Guotai Xu
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China,*Correspondence: Guotai Xu,
| |
Collapse
|
47
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
48
|
Lou W, Gong C, Ye Z, Hu Y, Zhu M, Fang Z, Xu H. Lipid metabolic features of T cells in the Tumor Microenvironment. Lipids Health Dis 2022; 21:94. [PMID: 36203151 PMCID: PMC9535888 DOI: 10.1186/s12944-022-01705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
The tumor microenvironment (TME) is characterized by discrete changes in metabolic features of cancer and immune cells, with various implications. Cancer cells take up most of the available glucose to support their growth, thereby leaving immune cells with insufficient nutrients to expand. In the relative absence of glucose, T cells switch the metabolic program to lipid-based sources, which is pivotal to T-cell differentiation and activation in nutrient-stressed TME. Although consumption of lipids should provide an alternative energy source to starving T cells, a literature survey has revealed that it may not necessarily lead to antitumor responses. Different subtypes of T cells behave differently in various lipid overload states, which widely depends upon the kind of free fatty acids (FFA) engulfed. Key lipid metabolic genes provide cytotoxic T cells with necessary nutrients for proliferation in the absence of glucose, thereby favoring antitumor immunity, but the same genes cause immune evasion in Tmem and Treg. This review aims to detail the complexity of differential lipid metabolism in distinct subtypes of T cells that drive the antitumor or pro-tumor immunity in specific TME states. We have identified key drug targets related to lipid metabolic rewiring in TME.
Collapse
Affiliation(s)
- Wanshuang Lou
- Department of Integrated Traditional & Western Medicine, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China.,Department of Integrated Traditional & Western Medicine, Sanmen Hospital of Chinese Medicine, 317100, Sanmen, Zhejiang, China
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 221100, Xuzhou, Jiangsu, China
| | - Zhuoni Ye
- Second College of Clinical Medical, Wenzhou Medical University, 325000, Wenzhou Zhejiang, China
| | - Ynayan Hu
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China
| | - Minjing Zhu
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China.
| | - Huihui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, 317000, Linhai, Zhejiang, China.
| |
Collapse
|
49
|
Cherry ABC, Gherardin NA, Sikder HI. Intracellular radar: Understanding γδ T cell immune surveillance and implications for clinical strategies in oncology. Front Oncol 2022; 12:1011081. [PMID: 36212425 PMCID: PMC9539555 DOI: 10.3389/fonc.2022.1011081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
T cells play a key role in anticancer immunity, with responses mediated through a diversity of αβ or γδ T cell receptors. Although αβ and γδ T cells stem from common thymic precursors, the development and subsequent biological roles of these two subsets differ considerably. γδ T cells are an unconventional T cell subset, uniquely poised between the adaptive and innate immune systems, that possess the ability to recognize intracellular disturbances and non-peptide-based antigens to eliminate tumors. These distinctive features of γδ T cells have led to recent interest in developing γδ-inspired therapies for treating cancer patients. In this minireview, we explore the biology of γδ T cells, including how the γδ T cell immune surveillance system can detect intracellular disturbances, and propose a framework to understand the γδ T cell-inspired therapeutic strategies entering the clinic today.
Collapse
Affiliation(s)
- Anne B. C. Cherry
- Axiom Healthcare Strategies, Princeton, NJ, United States
- *Correspondence: Anne B. C. Cherry,
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
50
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|