1
|
Deng Z, Lee A, Lin T, Taneja S, Kowdley D, Leung JH, Hill M, Tao T, Fitzgerald J, Yu L, Blakeslee JJ, Townsend K, Weil ZM, Parquette JR, Ziouzenkova O. Amino Acid Compound 2 (AAC2) Treatment Counteracts Insulin-Induced Synaptic Gene Expression and Seizure-Related Mortality in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11689. [PMID: 39519239 PMCID: PMC11546384 DOI: 10.3390/ijms252111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD). Amino acid compound 2 (AAC2) improves glycemic and cognitive functions in diabetic mouse models through mechanisms distinct from insulin. Our goal was to compare the effects of AAC2, insulin, and their nanofiber-forming combination on early asymptomatic AD pathogenesis in APP/PS1 mice. Insulin, but not AAC2 or the combination treatment (administered intraperitoneally every 48 h for 120 days), increased seizure-related mortality, altered the brain fat-to-lean mass ratio, and improved specific cognitive functions in APP/PS1 mice. NanoString and pathway analysis of cerebral gene expression revealed dysregulated synaptic mechanisms, with upregulation of Bdnf and downregulation of Slc1a6 in insulin-treated mice, correlating with insulin-induced seizures. In contrast, AAC2 promoted the expression of Syn2 and Syp synaptic genes, preserved brain composition, and improved survival. The combination of AAC2 and insulin counteracted free insulin's effects. None of the treatments influenced canonical amyloidogenic pathways. This study highlights AAC2's potential in regulating synaptic gene expression in AD and insulin-induced contexts related to seizure activity.
Collapse
Affiliation(s)
- Zhijie Deng
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
- Department of Food and Nutrition, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Sagarika Taneja
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Marykate Hill
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Tianyi Tao
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.T.); (K.T.)
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (Z.M.W.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Columbus, OH 43210, USA;
| | - Kristy Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.T.); (K.T.)
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (Z.M.W.)
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, Biomedical Research Center (BMRC), Morgantown, WV 26506, USA
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| |
Collapse
|
2
|
Schwarz L, Križanac AM, Schneider H, Falker-Gieske C, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Genetic and genomic analysis of reproduction traits in holstein cattle using SNP chip data and imputed sequence level genotypes. BMC Genomics 2024; 25:880. [PMID: 39300329 DOI: 10.1186/s12864-024-10782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Reproductive performance plays an important role in animal welfare, health and profitability in animal husbandry and breeding. It is well established that there is a negative correlation between performance and reproduction in dairy cattle. This relationship is being increasingly considered in breeding programs. By elucidating the genetic architecture of underlying reproduction traits, it will be possible to make a more detailed contribution to this. Our study followed two approaches to elucidate this area; in a first part, variance components were estimated for 14 different calving and fertility traits, and then genome-wide association studies were performed for 13 reproduction traits on imputed sequence-level genotypes with subsequent enrichment analyses. RESULTS Variance components analyses showed a low to moderate heritability (h2) for the traits analysed, ranging from 0.014 for endometritis up to 0.271 for stillbirth, indicating variable degrees of variation within the reproduction traits. For genome-wide association studies, we were able to detect genome-wide significant association signals for nine out of 13 analysed traits after Bonferroni correction on chromosome 6, 18 and the X chromosome. In total, we detected over 2700 associated SNPs encircling more than 90 different genes using the imputed whole-genome sequence data. Functional associations were reviewed so far known and potential candidate regions in the proximity of reproduction events were hypothesised. CONCLUSION Our results confirm previous findings of other authors in a comprehensive cohort including 13 different traits at the same time. Additionally, we identified new candidate genes involved in dairy cattle reproduction and made initial suggestions regarding their potential impact, with special regard to the X chromosome as a putative information source for further research. This work can make a contribution to reveal the genetic architecture of reproduction traits in context of trait specific interactions.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Ana-Marija Križanac
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| | - Helen Schneider
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | | | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Zhang S, Zhou Y, Shen J, Wang Y, Xia J, Li C, Liu W, Hayat K, Qian M. Early-Life Exposure to 4-Hydroxy-4'-Isopropoxydiphenylsulfone Induces Behavioral Deficits Associated with Autism Spectrum Disorders in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15984-15996. [PMID: 39194383 DOI: 10.1021/acs.est.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exposure to bisphenol A (BPA) during gestation and lactation is considered to be a potential risk factor for autism spectrum disorder (ASD) in both humans and animals. As a novel alternative to BPA, 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP) is frequently detected in breast milk and placental barrier systems, suggesting potential transmission from the mother to offspring and increased risk of exposure. Gestation and lactation are critical periods for central nervous system development, which are vulnerable to certain environmental pollutants. Herein, we investigated the behavioral impacts and neurobiological effects of early-life exposure to BPSIP (0.02, 0.1, and 0.5 mg/kg body weight/day) in mice offspring. Behavioral studies indicated that BPSIP exposure induced ASD-like behaviors, including elevated anxiety-related behavior and decreased spatial memory, in both male and female pups. A distinct pattern of reduced social novelty was observed only in female offspring, accompanied by significant alterations in antioxidant levels. Transcriptome analysis demonstrated that differentially expressed genes (DEGs) were mainly enriched in pathways related to behaviors and neurodevelopment, which were consistent with the observed phenotype. Besides, a decrease in the protein levels of complex IV (COX IV) across all tested populations suggests a profound impact on mitochondrial function, potentially leading to abnormal energy metabolism in individuals with autism. Additionally, changes in synaptic proteins, evidenced by alterations in synapsin 1 (SYN1) and postsynaptic density protein-95 (PSD95) levels in the cerebellum and hippocampus, support the notion of synaptic involvement. These findings suggest that BPSIP may induce sex-specific neurotoxic effects that involve oxidative stress, energy generation, and synaptic plasticity.
Collapse
Affiliation(s)
- Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yitong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiatong Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yumeng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenghan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
4
|
Akshita C, Christian H, Aleksandr KA, Jakob R, Linda K, Luka G, Cristina RV, Emma JC, Jaqulin WN, Branislava R, Eleonora P, Sarah K, Silvio RO, Helge E, Jennifer MR, Dragomir M. Condensates of synaptic vesicles and synapsin are molecular beacons for actin sequestering and polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604346. [PMID: 39071264 PMCID: PMC11275919 DOI: 10.1101/2024.07.19.604346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuronal communication relies on precisely maintained synaptic vesicle (SV) clusters, which assemble via liquid-liquid phase separation (LLPS). This process requires synapsins, the major synaptic phosphoproteins, which are known to bind actin. The reorganization of SVs, synapsins and actin is a hallmark of synaptic activity, but their interplay is still unclear. Here we combined the reconstitution approaches and super-resolution imaging to dissect the roles of synapsin-SV condensates in the organization of the presynaptic actin cytoskeleton. Our data indicate that LLPS of synapsin initiates actin polymerization, allowing for SV:synapsin:actin assemblies to facilitate the mesoscale organization of SV clusters along axons mimicking the native presynaptic organization in both lamprey and mammalian synapses. Understanding the relationship between the actin network and synapsin-SVs condensates is an essential building block on a roadmap to unravel how coordinated neurotransmission along the axon enables circuit function and behavior.
Collapse
Affiliation(s)
- Chhabra Akshita
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Hoffmann Christian
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Korobeinikov A. Aleksandr
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Rentsch Jakob
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kokwaro Linda
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Gnidovec Luka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Román-Vendrell Cristina
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Johnson C. Emma
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Wallace N. Jaqulin
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Rankovic Branislava
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Perego Eleonora
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Köster Sarah
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Rizzoli O. Silvio
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Ewers Helge
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Morgan R. Jennifer
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Milovanovic Dragomir
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
5
|
Bruentgens F, Moreno Velasquez L, Stumpf A, Parthier D, Breustedt J, Benfenati F, Milovanovic D, Schmitz D, Orlando M. The Lack of Synapsin Alters Presynaptic Plasticity at Hippocampal Mossy Fibers in Male Mice. eNeuro 2024; 11:ENEURO.0330-23.2024. [PMID: 38866497 PMCID: PMC11223178 DOI: 10.1523/eneuro.0330-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.
Collapse
Affiliation(s)
- Felicitas Bruentgens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Laura Moreno Velasquez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Alexander Stumpf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Daniel Parthier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Jörg Breustedt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Dragomir Milovanovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Marta Orlando
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
6
|
Qiu H, Wu X, Ma X, Li S, Cai Q, Ganzella M, Ge L, Zhang H, Zhang M. Short-distance vesicle transport via phase separation. Cell 2024; 187:2175-2193.e21. [PMID: 38552623 DOI: 10.1016/j.cell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/28/2024]
Abstract
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Collapse
Affiliation(s)
- Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qixu Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Ren B, Wu X, Zhou Y, Chen L, Jiang J. SYN1 variant causes X-linked neurodevelopmental disorders: a case report of variable clinical phenotypes in siblings. Front Neurol 2024; 15:1359287. [PMID: 38576531 PMCID: PMC10991737 DOI: 10.3389/fneur.2024.1359287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
The SYN1 gene encodes synapsin I, variants within the SYN1 gene are linked to X-linked neurodevelopmental disorders with high clinical heterogeneity, with reflex epilepsies (REs) being a representative clinical manifestation. This report analyzes a Chinese pedigree affected by seizures associated with SYN1 variants and explores the genotype-phenotype correlation. The proband, a 9-year-old boy, experienced seizures triggered by bathing at the age of 3, followed by recurrent absence seizures, behavioral issues, and learning difficulties. His elder brother exhibited a distinct clinical phenotype, experiencing sudden seizures during sleep at the age of 16, accompanied by hippocampal sclerosis. Whole exome sequencing (WES) confirmed a pathogenic SYN1 variant, c.1647_1650dup (p. Ser551Argfs*134), inherited in an X-linked manner from their mother. Notably, this variant displayed diverse clinical phenotypes in the two brothers and one previously reported case in the literature. Retrospective examination of SYN1 variants revealed an association between truncating variants and the pathogenicity of REs, and non-truncating variants are more related to developmental delay/intellectual disability (DD/ID). In summary, this study contributes to understanding complex neurodevelopmental disorders associated with SYN1, highlighting the clinical heterogeneity of gene variants and emphasizing the necessity for comprehensive genetic analysis in elucidating the pathogenic mechanisms of such diseases.
Collapse
Affiliation(s)
- Bin Ren
- Shanghai Nyuen Biotechnology Co., Ltd., Shanghai, China
| | - Xiaoyan Wu
- Shanghai Nyuen Biotechnology Co., Ltd., Shanghai, China
| | - Yuqiang Zhou
- Shanghai Nyuen Biotechnology Co., Ltd., Shanghai, China
| | - Lijuan Chen
- Shanghai Nyuen Biotechnology Co., Ltd., Shanghai, China
| | - Jingzi Jiang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
8
|
Lépine S, Nauleau-Javaudin A, Deneault E, Chen CXQ, Abdian N, Franco-Flores AK, Haghi G, Castellanos-Montiel MJ, Maussion G, Chaineau M, Durcan TM. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons. iScience 2024; 27:109166. [PMID: 38433895 PMCID: PMC10905001 DOI: 10.1016/j.isci.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.
Collapse
Affiliation(s)
- Sarah Lépine
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Angela Nauleau-Javaudin
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Deneault
- Centre for Oncology, Radiopharmaceuticals and Research; Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carol X.-Q. Chen
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Anna Krystina Franco-Flores
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ghazal Haghi
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - María José Castellanos-Montiel
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gilles Maussion
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Thomas Martin Durcan
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
9
|
Forte N, Nicois A, Marfella B, Mavaro I, D'Angelo L, Piscitelli F, Scandurra A, De Girolamo P, Baldelli P, Benfenati F, Di Marzo V, Cristino L. Early endocannabinoid-mediated depolarization-induced suppression of excitation delays the appearance of the epileptic phenotype in synapsin II knockout mice. Cell Mol Life Sci 2024; 81:37. [PMID: 38214769 PMCID: PMC11072294 DOI: 10.1007/s00018-023-05029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024]
Abstract
The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Alessandro Nicois
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Isabella Mavaro
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Anna Scandurra
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paolo De Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy.
- Faculty of Medicine and Faculty of Agricultural and Food Sciences, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada.
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada.
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy.
| |
Collapse
|
10
|
Hoffmann C, Murastov G, Tromm JV, Moog JB, Aslam MA, Matkovic A, Milovanovic D. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene. NANO LETTERS 2023; 23:10796-10801. [PMID: 37862690 PMCID: PMC10722609 DOI: 10.1021/acs.nanolett.3c02915] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Gennadiy Murastov
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Johannes Vincent Tromm
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Jean-Baptiste Moog
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Muhammad Awais Aslam
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Aleksandar Matkovic
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Dragomir Milovanovic
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| |
Collapse
|
11
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
12
|
Sigrist SJ, Haucke V. Orchestrating vesicular and nonvesicular membrane dynamics by intrinsically disordered proteins. EMBO Rep 2023; 24:e57758. [PMID: 37680133 PMCID: PMC10626433 DOI: 10.15252/embr.202357758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.
Collapse
Affiliation(s)
- Stephan J Sigrist
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| | - Volker Haucke
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- Department of Molecular Pharmacology and Cell BiologyLeibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|
13
|
Bünger I, Talucci I, Kreye J, Höltje M, Makridis KL, Foverskov Rasmussen H, van Hoof S, Cordero-Gomez C, Ullrich T, Sedlin E, Kreissner KO, Hoffmann C, Milovanovic D, Turko P, Paul F, Meckies J, Verlohren S, Henrich W, Chaoui R, Maric HM, Kaindl AM, Prüss H. Synapsin autoantibodies during pregnancy are associated with fetal abnormalities. Brain Behav Immun Health 2023; 33:100678. [PMID: 37692096 PMCID: PMC10483408 DOI: 10.1016/j.bbih.2023.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.
Collapse
Affiliation(s)
- Isabel Bünger
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Ivan Talucci
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Konstantin L. Makridis
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Helle Foverskov Rasmussen
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Scott van Hoof
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - César Cordero-Gomez
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Tim Ullrich
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Eva Sedlin
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Department of Neonatology, Helios Klinikum, Berlin-Buch, Germany
| | - Kai Oliver Kreissner
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Christian Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Dragomir Milovanovic
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Jessica Meckies
- Gynecology Practice Frauenärztinnen am Schloß, 12163, Berlin, Germany
| | - Stefan Verlohren
- Department of Obstetrics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis and Human Genetics, 10719, Berlin, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| |
Collapse
|
14
|
Hoffmann C, Rentsch J, Tsunoyama TA, Chhabra A, Aguilar Perez G, Chowdhury R, Trnka F, Korobeinikov AA, Shaib AH, Ganzella M, Giannone G, Rizzoli SO, Kusumi A, Ewers H, Milovanovic D. Synapsin condensation controls synaptic vesicle sequestering and dynamics. Nat Commun 2023; 14:6730. [PMID: 37872159 PMCID: PMC10593750 DOI: 10.1038/s41467-023-42372-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Gerard Aguilar Perez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Rajdeep Chowdhury
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Aleksandr A Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Ali H Shaib
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany.
| |
Collapse
|
15
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
16
|
Chang S, Li L, Hong B, Liu J, Xu Y, Pang K, Zhang L, Han H, Chen X. An intelligent workflow for sub-nanoscale 3D reconstruction of intact synapses from serial section electron tomography. BMC Biol 2023; 21:198. [PMID: 37743470 PMCID: PMC10519085 DOI: 10.1186/s12915-023-01696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND As an extension of electron tomography (ET), serial section electron tomography (serial section ET) aims to align the tomographic images of multiple thick tissue sections together, to break through the volume limitation of the single section and preserve the sub-nanoscale voxel size. It could be applied to reconstruct the intact synapse, which expands about one micrometer and contains nanoscale vesicles. However, there are several drawbacks of the existing serial section ET methods. First, locating and imaging regions of interest (ROIs) in serial sections during the shooting process is time-consuming. Second, the alignment of ET volumes is difficult due to the missing information caused by section cutting and imaging. Here we report a workflow to simplify the acquisition of ROIs in serial sections, automatically align the volume of serial section ET, and semi-automatically reconstruct the target synaptic structure. RESULTS We propose an intelligent workflow to reconstruct the intact synapse with sub-nanometer voxel size. Our workflow includes rapid localization of ROIs in serial sections, automatic alignment, restoration, assembly of serial ET volumes, and semi-automatic target structure segmentation. For the localization and acquisition of ROIs in serial sections, we use affine transformations to calculate their approximate position based on their relative location in orderly placed sections. For the alignment of consecutive ET volumes with significantly distinct appearances, we use multi-scale image feature matching and the elastic with belief propagation (BP-Elastic) algorithm to align them from coarse to fine. For the restoration of the missing information in ET, we first estimate the number of lost images based on the pixel changes of adjacent volumes after alignment. Then, we present a missing information generation network that is appropriate for small-sample of ET volume using pre-training interpolation network and distillation learning. And we use it to generate the missing information to achieve the whole volume reconstruction. For the reconstruction of synaptic ultrastructures, we use a 3D neural network to obtain them quickly. In summary, our workflow can quickly locate and acquire ROIs in serial sections, automatically align, restore, assemble serial sections, and obtain the complete segmentation result of the target structure with minimal manual manipulation. Multiple intact synapses in wild-type rat were reconstructed at a voxel size of 0.664 nm/voxel to demonstrate the effectiveness of our workflow. CONCLUSIONS Our workflow contributes to obtaining intact synaptic structures at the sub-nanometer scale through serial section ET, which contains rapid ROI locating, automatic alignment, volume reconstruction, and semi-automatic synapse reconstruction. We have open-sourced the relevant code in our workflow, so it is easy to apply it to other labs and obtain complete 3D ultrastructures which size is similar to intact synapses with sub-nanometer voxel size.
Collapse
Affiliation(s)
- Sheng Chang
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100190, Beijing, China
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Linlin Li
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Bei Hong
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jing Liu
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuxuan Xu
- School of Software and Microelectronics, Peking University, 100871, Beijing, China
| | - Keliang Pang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Lina Zhang
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Hua Han
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Xi Chen
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
17
|
Wasser CR, Werthmann GC, Hall EM, Kuhbandner K, Wong CH, Durakoglugil MS, Herz J. Regulation of the hippocampal translatome by Apoer2-ICD release. Mol Neurodegener 2023; 18:62. [PMID: 37726747 PMCID: PMC10510282 DOI: 10.1186/s13024-023-00652-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND ApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described. Alternative splicing of the Apoer2 intracellular domain (Apoer2-ICD) regulates Apoer2 signaling. Splicing of juxtamembraneous exon 16 alters the γ-secretase mediated release of the Apoer2-ICD as well as synapse number and LTP, and inclusion of exon 19 ameliorates behavioral deficits in an AD mouse model. The Apoer2-ICD has also been shown to alter transcription of synaptic genes. However, the role of Apoer2-ICD release upon transcriptional regulation and its role in AD pathogenesis is unknown. METHODS To assess in vivo mRNA-primed ribosomes specifically in hippocampi transduced with Apoer2-ICD splice variants, we crossed wild-type, cKO, and Apoer2 cleavage-resistant mice to a Cre-inducible translating ribosome affinity purification (TRAP) model. This allowed us to perform RNA-Seq on ribosome-loaded mRNA harvested specifically from hippocampal cells transduced with Apoer2-ICDs. RESULTS Across all conditions, we observed ~4,700 altered translating transcripts, several of which comprise key synaptic components such as extracellular matrix and focal adhesions with concomitant perturbation of critical signaling cascades, energy metabolism, translation, and apoptosis. We further demonstrated the ability of the Apoer2-ICD to rescue many of these altered transcripts, underscoring the importance of Apoer2 splicing in synaptic homeostasis. A variety of these altered genes have been implicated in AD, demonstrating how dysregulated Apoer2 splicing may contribute to neurodegeneration. CONCLUSIONS Our findings demonstrate how alternative splicing of the APOE and Reelin receptor Apoer2 and release of the Apoer2-ICD regulates numerous translating transcripts in mouse hippocampi in vivo. These transcripts comprise a wide range of functions, and alterations in these transcripts suggest a mechanistic basis for the synaptic deficits seen in Apoer2 mutant mice and AD patients. Our findings, together with the recently reported AD-protective effects of a Reelin gain-of-function mutation in the presence of an early-onset AD mutation in Presenilin-1, implicate the Reelin/Apoer2 pathway as a target for AD therapeutics.
Collapse
Affiliation(s)
- Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Eric M Hall
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Kristina Kuhbandner
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Connie H Wong
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Murat S Durakoglugil
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA.
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern, Dallas, TX, USA.
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Wasser C, Werthmann GC, Hall EM, Kuhbandner K, Wong CH, Durakoglugil MS, Herz J. Apoer2-ICD-dependent regulation of hippocampal ribosome mRNA loading. RESEARCH SQUARE 2023:rs.3.rs-3040567. [PMID: 37461529 PMCID: PMC10350194 DOI: 10.21203/rs.3.rs-3040567/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background ApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described. Alternative splicing of the Apoer2 intracellular domain (Apoer2-ICD) regulates Apoer2 signaling. Splicing of juxtamembraneous exon 16 alters the g-secretase mediated release of the Apoer2-ICD as well as synapse number and LTP, and inclusion of exon 19 ameliorates behavioral deficits in an AD mouse model. The Apoer2-ICD has also been shown to alter transcription of synaptic genes. However, the role of Apoer2 splicing for transcriptional regulation and its role in AD pathogenesis is unknown. Methods To assess in vivo mRNA-primed ribosomes specifically in hippocampi transduced with Apoer2-ICD splice variants, we crossed wild-type, cKO, and Apoer2 cleavage-resistant mice to a Cre-inducible translating ribosome affinity purification (TRAP) model. This allowed us to perform RNA-Seq on ribosome-loaded mRNA harvested specifically from hippocampal cells transduced with Apoer2-ICDs. Results Across all conditions, we observed ~ 4,700 altered ribosome-associated transcripts, several of which comprise key synaptic components such as extracellular matrix and focal adhesions with concomitant perturbation of critical signaling cascades, energy metabolism, translation, and apoptosis. We further demonstrated the ability of the Apoer2-ICD to rescue many of these altered transcripts, underscoring the importance of Apoer2 splicing in synaptic homeostasis. A variety of these altered genes have been implicated in AD, demonstrating how dysregulated Apoer2 splicing may contribute to neurodegeneration. Conclusions Our findings demonstrate how alternative splicing of the APOE and Reelin receptor Apoer2 and release of the Apoer2-ICD regulates numerous ribosome-associated transcripts in mouse hippocampi in vivo . These transcripts comprise a wide range of functions, and alterations in these transcripts suggest a mechanistic basis for the synaptic deficits seen in Apoer2 mutant mice and AD patients. Our findings, together with the recently reported AD-protective effects of a Reelin gain-of-function mutation in the presence of an early-onset AD mutation in Presenilin-1, implicate the Reelin/Apoer2 pathway as a target for AD therapeutics.
Collapse
Affiliation(s)
- Catherine Wasser
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Eric M Hall
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Connie H Wong
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Joachim Herz
- UT Southwestern: The University of Texas Southwestern Medical Center
| |
Collapse
|
19
|
Speidell A, Walton S, Campbell LA, Tomassoni-Ardori F, Tessarollo L, Corbo C, Taraballi F, Mocchetti I. Mice deficient for G-protein-coupled receptor 75 display altered presynaptic structural protein expression and disrupted fear conditioning recall. J Neurochem 2023; 165:827-841. [PMID: 36978267 PMCID: PMC10330141 DOI: 10.1111/jnc.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity. However, little is known about the function of this receptor in the brain. To study the function of GPR75, we have generated a knockout (KO) mouse model of this receptor and we evaluated the role that this receptor plays in the adult hippocampus by an array of histological, proteomic, and behavioral endpoints. Using RNAscope® technology, we identified GPR75 puncta in several Rbfox3-/NeuN-positive cells in the hippocampus, suggesting that this receptor has a neuronal expression. Proteomic analysis of the hippocampus in 3-month-old GPR75 KO animals revealed that several markers of synapses, including synapsin I and II are downregulated compared with wild type (WT). To examine the functional consequence of this down-regulation, WT and GPR75 KO mice were tested on a hippocampal-dependent behavioral task. Both contextual memory and anxiety-like behaviors were significantly altered in GPR75 KO, suggesting that GPR75 plays a role in hippocampal activity.
Collapse
Affiliation(s)
- Andrew Speidell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Sofia Walton
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
| | - Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
| | | | | | - Claudia Corbo
- School of Medicine and Surgery Nanomedicine Center, University of Milano-Bicocca, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
20
|
Sansevrino R, Hoffmann C, Milovanovic D. Condensate biology of synaptic vesicle clusters. Trends Neurosci 2023; 46:293-306. [PMID: 36725404 DOI: 10.1016/j.tins.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.
Collapse
Affiliation(s)
- Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
21
|
Wang W, Zhao F, Lu Y, Siedlak SL, Fujioka H, Feng H, Perry G, Zhu X. Damaged mitochondria coincide with presynaptic vesicle loss and abnormalities in alzheimer's disease brain. Acta Neuropathol Commun 2023; 11:54. [PMID: 37004141 PMCID: PMC10067183 DOI: 10.1186/s40478-023-01552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Loss of synapses is the most robust pathological correlate of Alzheimer's disease (AD)-associated cognitive deficits, although the underlying mechanism remains incompletely understood. Synaptic terminals have abundant mitochondria which play an indispensable role in synaptic function through ATP provision and calcium buffering. Mitochondrial dysfunction is an early and prominent feature in AD which could contribute to synaptic deficits. Here, using electron microscopy, we examined synapses with a focus on mitochondrial deficits in presynaptic axonal terminals and dendritic spines in cortical biopsy samples from clinically diagnosed AD and age-matched non-AD control patients. Synaptic vesicle density within the presynaptic axon terminals was significantly decreased in AD cases which appeared largely due to significantly decreased reserve pool, but there were significantly more presynaptic axons containing enlarged synaptic vesicles or dense core vesicles in AD. Importantly, there was reduced number of mitochondria along with significantly increased damaged mitochondria in the presynapse of AD which correlated with changes in SV density. Mitochondria in the post-synaptic dendritic spines were also enlarged and damaged in the AD biopsy samples. This study provided evidence of presynaptic vesicle loss as synaptic deficits in AD and suggested that mitochondrial dysfunction in both pre- and post-synaptic compartments contribute to synaptic deficits in AD.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Yubing Lu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Hisashi Fujioka
- Cryo-EM Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas, San Antonio, TX, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
22
|
Polishchuk A, Cilleros-Mañé V, Just-Borràs L, Balanyà-Segura M, Vandellòs Pont G, Silvera Simón C, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Synaptic retrograde regulation of the PKA-induced SNAP-25 and Synapsin-1 phosphorylation. Cell Mol Biol Lett 2023; 28:17. [PMID: 36869288 PMCID: PMC9985302 DOI: 10.1186/s11658-023-00431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied. At the neuromuscular junction (NMJ), protein kinase A (PKA) enhances neurotransmitter release, and the phosphorylation of the molecules of the release machinery including synaptosomal associated protein of 25 kDa (SNAP-25) and Synapsin-1 could be involved. METHODS Accordingly, to study the effect of synaptic retrograde regulation of the PKA subunits and its activity, we stimulated the rat phrenic nerve (1 Hz, 30 min) resulting or not in contraction (abolished by µ-conotoxin GIIIB). Changes in protein levels and phosphorylation were detected by western blotting and cytosol/membrane translocation by subcellular fractionation. Synapsin-1 was localized in the levator auris longus (LAL) muscle by immunohistochemistry. RESULTS Here we show that synaptic PKA Cβ subunit regulated by RIIβ or RIIα subunits controls activity-dependent phosphorylation of SNAP-25 and Synapsin-1, respectively. Muscle contraction retrogradely downregulates presynaptic activity-induced pSynapsin-1 S9 while that enhances pSNAP-25 T138. Both actions could coordinately contribute to decreasing the neurotransmitter release at the NMJ. CONCLUSION This provides a molecular mechanism of the bidirectional communication between nerve terminals and muscle cells to balance the accurate process of ACh release, which could be important to characterize molecules as a therapy for neuromuscular diseases in which neuromuscular crosstalk is impaired.
Collapse
Affiliation(s)
- Aleksandra Polishchuk
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Balanyà-Segura
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Genís Vandellòs Pont
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Carolina Silvera Simón
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain.
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
23
|
Garner CC, Ackermann F. Synaptic logistics: The presynaptic scaffold protein Piccolo a nodal point tuning synaptic vesicle recycling, maintenance and integrity. Mol Cell Neurosci 2023; 124:103795. [PMID: 36436725 DOI: 10.1016/j.mcn.2022.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Properly working synapses are one important guarantor for a functional and healthy brain. They are small, densely packed structures, where information is transmitted through the release of neurotransmitters from synaptic vesicles (SVs). The latter cycle within the presynaptic terminal as they first fuse with the plasma membrane to deliver their neurotransmitter, and afterwards become recycled and prepared for a new release event. The synapse is an autonomous structure functioning mostly independent of the neuronal soma. Dysfunction in synaptic processes associated with local insults or genetic abnormalities can directly compromise synapse function and integrity and subsequently lead to the onset of neurodegenerative diseases. Therefore, measures need to be in place counteracting these threats for instance through the continuous replacement of old and damaged SV proteins. Interestingly recent studies show that the presynaptic scaffolding protein Piccolo contributes to health, function and integrity of synapses, as it mediates the delivery of synaptic proteins from the trans-Golgi network (TGN) towards synapses, as well as the local recycling and turnover of SV proteins within synaptic terminals. It can fulfill these various tasks through its multi-domain structure and ability to interact with numerous binding partners. In addition, Piccolo has recently been linked with the early onset neurodegenerative disease Pontocerebellar Hypoplasia Type 3 (PCH3) further underlying its importance for neuronal health. In this review, we will focus on Piccolo's contributions to synapse function, health and integrity and make a connection how those may contribute to the disease pattern of PCH3.
Collapse
Affiliation(s)
- Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Germany
| | - Frauke Ackermann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
24
|
Wu Q, Wang H, Liu X, Zhao Y, Su P. Microglial activation and over pruning involved in developmental epilepsy. J Neuropathol Exp Neurol 2023; 82:150-159. [PMID: 36453895 DOI: 10.1093/jnen/nlac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To understand the potential role of microglia in synaptic pruning following status epilepticus (SE), we examined the time course of expression of Iba-1, and immune and neuroinflammatory regulators, including CD86, CD206, and CX3CR1, and TLR4/NF-κB after SE induced by pilocarpine in rats. Behavioral tests, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, immunohistochemical staining, Western blotting, PCR, and fluorescence double staining assessments were performed. The expression of Iba-1 protein was lowest in the control group, and peaked after 2 days (p < 0.001). CD86 and CD206 mRNA levels increased gradually in the microglia of the epilepsy group after 12 hours, 1 day, 2 days, and 3 days; peak expression was on the second day. The expression of the chemokine receptor CX3CR1 in microglia increased to varying degrees after SE, and expression of the presynaptic protein synapsin decreased. The expression of TLR4/NF-κB in microglia positively correlated with Iba-1 protein expression. These findings indicate that the TLR4/NF-κB signaling pathway may be involved in the activation and polarization of microglia in epilepsy and in excess synaptic pruning, which could lead to an increase in brain injury.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajuan Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Experimental Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Bünger I, Makridis KL, Kreye J, Nikolaus M, Sedlin E, Ullrich T, Hoffmann C, Tromm JV, Rasmussen HF, Milovanovic D, Höltje M, Prüss H, Kaindl AM. Maternal synapsin autoantibodies are associated with neurodevelopmental delay. Front Immunol 2023; 14:1101087. [PMID: 36742338 PMCID: PMC9893770 DOI: 10.3389/fimmu.2023.1101087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Maternal autoantibodies can be transmitted diaplacentally, with potentially deleterious effects on neurodevelopment. Synapsin 1 (SYN1) is a neuronal protein that is important for synaptic communication and neuronal plasticity. While monoallelic loss of function (LoF) variants in the SYN1 gene result in X-linked intellectual disability (ID), learning disabilities, epilepsy, behavioral problems, and macrocephaly, the effect of SYN1 autoantibodies on neurodevelopment remains unclear. We recruited a clinical cohort of 208 mothers and their children with neurologic abnormalities and analyzed the role of maternal SYN1 autoantibodies. We identified seropositivity in 9.6% of mothers, and seropositivity was associated with an increased risk for ID and behavioral problems. Furthermore, children more frequently had epilepsy, macrocephaly, and developmental delay, in line with the SYN1 LoF phenotype. Whether SYN1 autoantibodies have a direct pathogenic effect on neurodevelopment or serve as biomarkers requires functional experiments.
Collapse
Affiliation(s)
- Isabel Bünger
- Charité – Universitätsmedizin Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Konstantin L. Makridis
- Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany
- Charité – Universitätsmedizin Berlin, German Epilepsy Center for Children and Adolescents, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Berlin, Germany
| | - Jakob Kreye
- Charité – Universitätsmedizin Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany
- Charité – Universitätsmedizin Berlin, German Epilepsy Center for Children and Adolescents, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marc Nikolaus
- Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany
- Charité – Universitätsmedizin Berlin, German Epilepsy Center for Children and Adolescents, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eva Sedlin
- Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany
| | - Tim Ullrich
- Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany
| | - Christian Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | | | - Helle Foverskov Rasmussen
- Charité – Universitätsmedizin Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | | | - Markus Höltje
- Charité - Universitätsmedizin Berlin, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Harald Prüss
- Charité – Universitätsmedizin Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Angela M. Kaindl
- Charité – Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Center for Chronically Sick Children, Berlin, Germany
- Charité – Universitätsmedizin Berlin, German Epilepsy Center for Children and Adolescents, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Berlin, Germany
| |
Collapse
|
26
|
Liquid-liquid Phase Separation of α-Synuclein: A New Mechanistic Insight for α-Synuclein Aggregation Associated with Parkinson's Disease Pathogenesis. J Mol Biol 2023; 435:167713. [PMID: 35787838 DOI: 10.1016/j.jmb.2022.167713] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Aberrant aggregation of the misfolded presynaptic protein, α-Synuclein (α-Syn) into Lewy body (LB) and Lewy neuritis (LN) is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Numerous studies have suggested that prefibrillar and fibrillar species of the misfolded α-Syn aggregates are responsible for cell death in PD pathogenesis. However, the precise molecular events during α-Syn aggregation, especially in the early stages, remain elusive. Emerging evidence has demonstrated that liquid-liquid phase separation (LLPS) of α-Syn occurs in the nucleation step of α-Syn aggregation, which offers an alternate non-canonical aggregation pathway in the crowded microenvironment. The liquid-like α-Syn droplets gradually undergo an irreversible liquid-to-solid phase transition into amyloid-like hydrogel entrapping oligomers and fibrils. This new mechanism of α-Syn LLPS and gel formation might represent the molecular basis of cellular toxicity associated with PD. This review aims to demonstrate the recent development of α-Syn LLPS, the underlying mechanism along with the microscopic events of aberrant phase transition. This review further discusses how several intrinsic and extrinsic factors regulate the thermodynamics and kinetics of α-Syn LLPS and co-LLPS with other proteins, which might explain the pathophysiology of α-Syn in various neurodegenerative diseases.
Collapse
|
27
|
Wu X, Qiu H, Zhang M. Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. J Mol Biol 2023; 435:167629. [PMID: 35595170 DOI: 10.1016/j.jmb.2022.167629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Action potential-induced neurotransmitter release in presynaptic boutons involves coordinated actions of a large list of proteins that are associated directly or indirectly with membrane structures including synaptic vesicles and plasma membranes. These proteins are often highly abundant in different synaptic bouton sub-compartments, and they rarely act alone. Instead, these proteins interact with each other forming intricate and distinct molecular complexes. Many of these complexes form condensed clusters on membrane surfaces. This review summarizes findings in recent years showing that many of presynaptic protein complex assemblies are formed via phase separation. These protein condensates extensively interact with lipid membranes via distinct modes, forming various mesoscale structures by different mode of organizations between membraneless condensates and membranous organelles. We discuss that such mesoscale interactions could have deep implications on mobilization, exocytosis, and retrieval of synaptic vesicles.
Collapse
Affiliation(s)
- Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Parenti I, Leitão E, Kuechler A, Villard L, Goizet C, Courdier C, Bayat A, Rossi A, Julia S, Bruel AL, Tran Mau-Them F, Nambot S, Lehalle D, Willems M, Lespinasse J, Ghoumid J, Caumes R, Smol T, El Chehadeh S, Schaefer E, Abi-Warde MT, Keren B, Afenjar A, Tabet AC, Levy J, Maruani A, Aledo-Serrano Á, Garming W, Milleret-Pignot C, Chassevent A, Koopmans M, Verbeek NE, Person R, Belles R, Bellus G, Salbert BA, Kaiser FJ, Mazzola L, Convers P, Perrin L, Piton A, Wiegand G, Accogli A, Brancati F, Benfenati F, Chatron N, Lewis-Smith D, Thomas RH, Zara F, Striano P, Lesca G, Depienne C. The different clinical facets of SYN1-related neurodevelopmental disorders. Front Cell Dev Biol 2022; 10:1019715. [PMID: 36568968 PMCID: PMC9773998 DOI: 10.3389/fcell.2022.1019715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
Synapsin-I (SYN1) is a presynaptic phosphoprotein crucial for synaptogenesis and synaptic plasticity. Pathogenic SYN1 variants are associated with variable X-linked neurodevelopmental disorders mainly affecting males. In this study, we expand on the clinical and molecular spectrum of the SYN1-related neurodevelopmental disorders by describing 31 novel individuals harboring 22 different SYN1 variants. We analyzed newly identified as well as previously reported individuals in order to define the frequency of key features associated with these disorders. Specifically, behavioral disturbances such as autism spectrum disorder or attention deficit hyperactivity disorder are observed in 91% of the individuals, epilepsy in 82%, intellectual disability in 77%, and developmental delay in 70%. Seizure types mainly include tonic-clonic or focal seizures with impaired awareness. The presence of reflex seizures is one of the most representative clinical manifestations related to SYN1. In more than half of the cases, seizures are triggered by contact with water, but other triggers are also frequently reported, including rubbing with a towel, fever, toothbrushing, fingernail clipping, falling asleep, and watching others showering or bathing. We additionally describe hyperpnea, emotion, lighting, using a stroboscope, digestive troubles, and defecation as possible triggers in individuals with SYN1 variants. The molecular spectrum of SYN1 variants is broad and encompasses truncating variants (frameshift, nonsense, splicing and start-loss variants) as well as non-truncating variants (missense substitutions and in-frame duplications). Genotype-phenotype correlation revealed that epileptic phenotypes are enriched in individuals with truncating variants. Furthermore, we could show for the first time that individuals with early seizures onset tend to present with severe-to-profound intellectual disability, hence highlighting the existence of an association between early seizure onset and more severe impairment of cognitive functions. Altogether, we present a detailed clinical description of the largest series of individuals with SYN1 variants reported so far and provide the first genotype-phenotype correlations for this gene. A timely molecular diagnosis and genetic counseling are cardinal for appropriate patient management and treatment.
Collapse
Affiliation(s)
- Ilaria Parenti
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Laurent Villard
- INSERM, MMG, Faculté de Médecine, Aix-Marseille University, Marseille, France
- Département de Génétique Médicale, APHM, Hôpital d'Enfants de La Timone, Marseille, France
| | - Cyril Goizet
- Service de Génétique Médicale, Bordeaux, France
- Centre de Référence Maladies Rares Neurogénétique, Service de Génétique Médicale, Bordeaux, France
- NRGEN Team, INCIA, CNRS UMR 5287, University of Bordeaux, Bordeaux, France
| | - Cécile Courdier
- Service de Génétique Médicale, Bordeaux, France
- Centre de Référence Maladies Rares Neurogénétique, Service de Génétique Médicale, Bordeaux, France
- NRGEN Team, INCIA, CNRS UMR 5287, University of Bordeaux, Bordeaux, France
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra Rossi
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Sophie Julia
- Service de Génétique Médicale, Pôle de Biologie, CHU de Toulouse - Hôpital Purpan, Toulouse, France
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Sophie Nambot
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Daphné Lehalle
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | - Marjolaine Willems
- Department of Medical Genetics, Rare diseases and Personalized Medicine, CHU Montpellier, University of Montpellier, Montpellier, France
- Inserm U1298, INM, CHU Montpellier, University of Montpellier, Montpellier, France
| | - James Lespinasse
- Service de Cytogenetique, Centre Hospitalier de Chambéry, Chambéry, France
| | - Jamal Ghoumid
- Univ. Lille, ULR7364 RADEME, Lille, France
- CHU Lille, Clinique de Génétique, Guy Fontaine, Lille, France
| | - Roseline Caumes
- Univ. Lille, ULR7364 RADEME, Lille, France
- CHU Lille, Clinique de Génétique, Guy Fontaine, Lille, France
| | - Thomas Smol
- Univ. Lille, ULR7364 RADEME, Lille, France
- CHU Lille, Institut de Génétique Médicale, Lille, France
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | | | - Boris Keren
- APHP, Département de Génétique, UF de Génomique du Développement, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Alexandra Afenjar
- Département de Génétique, Centre de Référence déficiences Intellectuelles de Causes Rares, APHP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | | | - Jonathan Levy
- APHP, Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Ángel Aledo-Serrano
- Epilepsy and Neurogenetics Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain
| | - Waltraud Garming
- Sozialpädiatrisches Zentrum, Kinder-und Jugendklinik Gelsenkirchen, Gelsenkirchen, Germany
| | | | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Marije Koopmans
- Department of Genetics, Utrecht University Medical Center, Utrecht, Netherlands
| | - Nienke E. Verbeek
- Department of Genetics, Utrecht University Medical Center, Utrecht, Netherlands
| | | | - Rebecca Belles
- Medical Genetics, Geisinger Medical Center, Danville, PA, United States
| | - Gary Bellus
- Medical Genetics, Geisinger Medical Center, Danville, PA, United States
| | - Bonnie A. Salbert
- Medical Genetics, Geisinger Medical Center, Danville, PA, United States
| | - Frank J. Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsklinikum Essen, Essen, Germany
| | - Laure Mazzola
- Department of Neurology, University Hospital, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France
- Department of Neurology, University Hospital, Saint-Etienne, France
| | - Philippe Convers
- Department of Neurology, University Hospital, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France
- Department of Neurology, University Hospital, Saint-Etienne, France
| | - Laurine Perrin
- Department of Paediatric Physical Medicine and Rehabilitation, CHU Saint-Étienne, Hôpital Bellevue, Rhône-Alpes Reference Centre for Neuromuscular Diseases, Saint-Étienne, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Gert Wiegand
- Division of Pediatric Neurology, Department of Pediatrics, Asklepios Klinik Nord-Heidberg, Hamburg, Germany
- Department of Pediatric and Adolescent Medicine II (Neuropediatrics, Social Pediatrics), University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Qc, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Qc, Canada
| | - Francesco Brancati
- Department of Life, Human Genetics, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Geneva, Italy
- IRCCS Ospedale Policlinico San Martino, Geneva, Italy
| | - Nicolas Chatron
- Service de Genetique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261 -INSERM U1315, Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Clinical Neurosciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Rhys H. Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Clinical Neurosciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Federico Zara
- IRCCS G. Gaslini, Genova, Italy
- Department of Neurology, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- IRCCS G. Gaslini, Genova, Italy
- Department of Neurology, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261 -INSERM U1315, Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
29
|
Bernardin AA, Colombani S, Rousselot A, Andry V, Goumon Y, Delanoë-Ayari H, Pasqualin C, Brugg B, Jacotot ED, Pasquié JL, Lacampagne A, Meli AC. Impact of Neurons on Patient-Derived Cardiomyocytes Using Organ-On-A-Chip and iPSC Biotechnologies. Cells 2022; 11:cells11233764. [PMID: 36497024 PMCID: PMC9737466 DOI: 10.3390/cells11233764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In the heart, cardiac function is regulated by the autonomic nervous system (ANS) that extends through the myocardium and establishes junctions at the sinus node and ventricular levels. Thus, an increase or decrease in neuronal activity acutely affects myocardial function and chronically affects its structure through remodeling processes. The neuro-cardiac junction (NCJ), which is the major structure of this system, is poorly understood and only a few cell models allow us to study it. Here, we present an innovant neuro-cardiac organ-on-chip model to study this structure to better understand the mechanisms involved in the establishment of NCJ. To create such a system, we used microfluidic devices composed of two separate cell culture compartments interconnected by asymmetric microchannels. Rat PC12 cells were differentiated to recapitulate the characteristics of sympathetic neurons, and cultivated with cardiomyocytes derived from human induced pluripotent stem cells (hiPSC). We confirmed the presence of a specialized structure between the two cell types that allows neuromodulation and observed that the neuronal stimulation impacts the excitation-contraction coupling properties including the intracellular calcium handling. Finally, we also co-cultivated human neurons (hiPSC-NRs) with human cardiomyocytes (hiPSC-CMs), both obtained from the same hiPSC line. Hence, we have developed a neuro-cardiac compartmentalized in vitro model system that allows us to recapitulate the structural and functional properties of the neuro-cardiac junction and that can also be used to better understand the interaction between the heart and brain in humans, as well as to evaluate the impact of drugs on a reconstructed human neuro-cardiac system.
Collapse
Affiliation(s)
- Albin A. Bernardin
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
- MicroBrain Biotech S.A.S., 78160 Marly Le-Roi, France
| | - Sarah Colombani
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
| | - Antoine Rousselot
- MicroBrain Biotech S.A.S., 78160 Marly Le-Roi, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Virginie Andry
- SMPMS-INCI, Mass Spectrometry Facilities of the CNRS UPR3212, CNRS UPR3212, Institut des Neu-Rosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, 68009 Strasbourg, France
| | - Yannick Goumon
- SMPMS-INCI, Mass Spectrometry Facilities of the CNRS UPR3212, CNRS UPR3212, Institut des Neu-Rosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, 68009 Strasbourg, France
| | - Hélène Delanoë-Ayari
- Claude Bernard University, Université de Lyon, Institut lumière matière, 69000 Lyon, France
| | - Côme Pasqualin
- Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, 37000 Tours, France
| | - Bernard Brugg
- Sorbonne Université, Campus Pierre et Marie Curie, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM U1164, F-75005 Paris, France
| | - Etienne D. Jacotot
- Sorbonne Université, Campus Pierre et Marie Curie, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM U1164, F-75005 Paris, France
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jean-Luc Pasquié
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
- Department of Cardiology, Montpellier University Hospital, 34295 Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
- Correspondence: (A.L.); (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
- Correspondence: (A.L.); (A.C.M.)
| |
Collapse
|
30
|
Active forgetting requires Sickie function in a dedicated dopamine circuit in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2204229119. [PMID: 36095217 PMCID: PMC9499536 DOI: 10.1073/pnas.2204229119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forgetting is an essential component of the brain's memory management system, providing a balance to memory formation processes by removing unused or unwanted memories, or by suppressing their expression. However, the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the memory suppressor gene, sickie, functions in a single dopamine neuron (DAn) by supporting the process of active forgetting in Drosophila. RNAi knockdown (KD) of sickie impairs forgetting by reducing the Ca2+ influx and DA release from the DAn that promotes forgetting. Coimmunoprecipitation/mass spectrometry analyses identified cytoskeletal and presynaptic active zone (AZ) proteins as candidates that physically interact with Sickie, and a focused RNAi screen of the candidates showed that Bruchpilot (Brp)-a presynaptic AZ protein that regulates calcium channel clustering and neurotransmitter release-impairs active forgetting like sickie KD. In addition, overexpression of brp rescued the impaired forgetting of sickie KD, providing evidence that they function in the same process. Moreover, we show that sickie KD in the DAn reduces the abundance and size of AZ markers but increases their number, suggesting that Sickie controls DAn activity for forgetting by modulating the presynaptic AZ structure. Our results identify a molecular and circuit mechanism for normal levels of active forgetting and reveal a surprising role of Sickie in maintaining presynaptic AZ structure for neurotransmitter release.
Collapse
|
31
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
32
|
Yan P, Liu H, Zhou T, Sun P, Wang Y, Wang X, Zhang L, Wang T, Dong J, Zhu J, Lv L, Li W, Qi S, Liang Y, Kong E. Crosstalk of Synapsin1 palmitoylation and phosphorylation controls the dynamicity of synaptic vesicles in neurons. Cell Death Dis 2022; 13:786. [PMID: 36097267 PMCID: PMC9468182 DOI: 10.1038/s41419-022-05235-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
The dynamics of synaptic vesicles (SVs) within presynaptic domains are tightly controlled by synapsin1 phosphorylation; however, the mechanism underlying the anchoring of synapsin1 with F-actin or SVs is not yet fully understood. Here, we found that Syn1 is modified with protein palmitoylation, and examining the roles of Syn1 palmitoylation in neurons led us to uncover that Syn1 palmitoylation is negatively regulated by its phosphorylation; together, they manipulate the clustering and redistribution of SVs. Using the combined approaches of electron microscopy and genetics, we revealed that Syn1 palmitoylation is vital for its binding with F-actin but not SVs. Inhibition of Syn1 palmitoylation causes defects in SVs clustering and a reduced number of total SVs in vivo. We propose a model in which SVs redistribution is triggered by upregulated Syn1 phosphorylation and downregulated Syn1 palmitoylation, and they reversibly promote SVs clustering. The crosstalk of Syn1 palmitoylation and phosphorylation thereby bidirectionally manipulates SVs dynamics in neurons.
Collapse
Affiliation(s)
- Peipei Yan
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tao Zhou
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Pu Sun
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Yilin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Xibin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tian Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jing Dong
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Yinming Liang
- grid.412990.70000 0004 1808 322XLaboratory of Genetic Regulators in the Immune System, Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
33
|
Bauer CS, Cohen RN, Sironi F, Livesey MR, Gillingwater TH, Highley JR, Fillingham DJ, Coldicott I, Smith EF, Gibson YB, Webster CP, Grierson AJ, Bendotti C, De Vos KJ. An interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in ALS/FTD. Acta Neuropathol 2022; 144:437-464. [PMID: 35876881 PMCID: PMC9381633 DOI: 10.1007/s00401-022-02470-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Dysfunction and degeneration of synapses is a common feature of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene is the main genetic cause of ALS/FTD (C9ALS/FTD). The repeat expansion leads to reduced expression of the C9orf72 protein. How C9orf72 haploinsufficiency contributes to disease has not been resolved. Here we identify the synapsin family of synaptic vesicle proteins, the most abundant group of synaptic phosphoproteins, as novel interactors of C9orf72 at synapses and show that C9orf72 plays a cell-autonomous role in the regulation of excitatory synapses. We mapped the interaction of C9orf72 and synapsin to the N-terminal longin domain of C9orf72 and the conserved C domain of synapsin, and show interaction of the endogenous proteins in synapses. Functionally, C9orf72 deficiency reduced the number of excitatory synapses and decreased synapsin levels at remaining synapses in vitro in hippocampal neuron cultures and in vivo in the hippocampal mossy fibre system of C9orf72 knockout mice. Consistent with synaptic dysfunction, electrophysiological recordings identified impaired excitatory neurotransmission and network function in hippocampal neuron cultures with reduced C9orf72 expression, which correlated with a severe depletion of synaptic vesicles from excitatory synapses in the hippocampus of C9orf72 knockout mice. Finally, neuropathological analysis of post-mortem sections of C9ALS/FTD patient hippocampus with C9orf72 haploinsufficiency revealed a marked reduction in synapsin, indicating that disruption of the interaction between C9orf72 and synapsin may contribute to ALS/FTD pathobiology. Thus, our data show that C9orf72 plays a cell-autonomous role in the regulation of neurotransmission at excitatory synapses by interaction with synapsin and modulation of synaptic vesicle pools, and identify a novel role for C9orf72 haploinsufficiency in synaptic dysfunction in C9ALS/FTD.
Collapse
Affiliation(s)
- Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Rebecca N Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Daniel J Fillingham
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Yolanda B Gibson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
34
|
Qu X, Wang S, Lin G, Li M, Shen J, Wang D. The Synergistic Effect of Thiamethoxam and Synapsin dsRNA Targets Neurotransmission to Induce Mortality in Aphis gossypii. Int J Mol Sci 2022; 23:ijms23169388. [PMID: 36012653 PMCID: PMC9408958 DOI: 10.3390/ijms23169388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.
Collapse
|
35
|
Hanuscheck N, Thalman C, Domingues M, Schmaul S, Muthuraman M, Hetsch F, Ecker M, Endle H, Oshaghi M, Martino G, Kuhlmann T, Bozek K, van Beers T, Bittner S, von Engelhardt J, Vogt J, Vogelaar CF, Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med 2022; 219:213227. [PMID: 35587822 PMCID: PMC9123307 DOI: 10.1084/jem.20211887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα–deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα–deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα–deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Ecker
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mohammadsaleh Oshaghi
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne; University of Cologne, Cologne, Germany
| | - Tim van Beers
- Molecular Cell Biology, Institute I of Anatomy, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jakob von Engelhardt
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Brodin L, Milovanovic D, Rizzoli SO, Shupliakov O. α-Synuclein in the Synaptic Vesicle Liquid Phase: Active Player or Passive Bystander? Front Mol Biosci 2022; 9:891508. [PMID: 35664678 PMCID: PMC9159372 DOI: 10.3389/fmolb.2022.891508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
The protein α-synuclein, which is well-known for its links to Parkinson’s Disease, is associated with synaptic vesicles (SVs) in nerve terminals. Despite intensive studies, its precise physiological function remains elusive. Accumulating evidence indicates that liquid-liquid phase separation takes part in the assembly and/or maintenance of different synaptic compartments. The current review discusses recent data suggesting α-synuclein as a component of the SV liquid phase. We also consider possible implications of these data for disease.
Collapse
Affiliation(s)
- Lennart Brodin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Lennart Brodin, ; Oleg Shupliakov,
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Silvio O. Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
- *Correspondence: Lennart Brodin, ; Oleg Shupliakov,
| |
Collapse
|
37
|
Schwark R, Andrade R, Bykhovskaia M. Synapsin II Directly Suppresses Epileptic Seizures In Vivo. Brain Sci 2022; 12:brainsci12030325. [PMID: 35326282 PMCID: PMC8946686 DOI: 10.3390/brainsci12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The synapsin family offers a strong linkage between synaptic mechanisms and the epileptic phenotype. Synapsins are phosphoproteins reversibly associated with synaptic vesicles. Synapsin deficiency can cause epilepsy in humans, and synapsin II (SynII) in knockout (KO) mice causes generalized epileptic seizures. To differentiate between the direct effect of SynII versus its secondary adaptations, we used neonatal intracerebroventricular injections of the adeno-associated virus (AAV) expressing SynII. We found that SynII reintroduction diminished the enhanced synaptic activity in Syn2 KO hippocampal slices. Next, we employed the epileptogenic agent 4-aminopyridine (4-AP) and found that SynII reintroduction completely rescued the epileptiform activity observed in Syn2 KO slices upon 4-AP application. Finally, we developed a protocol to provoke behavioral seizures in young Syn2 KO animals and found that SynII reintroduction balances the behavioral seizures. To elucidate the mechanisms through which SynII suppresses hyperexcitability, we injected the phospho-incompetent version of Syn2 that had the mutated protein kinase A (PKA) phosphorylation site. The introduction of the phospho-incompetent SynII mutant suppressed the epileptiform and seizure activity in Syn2 KO mice, but not to the extent observed upon the reintroduction of native SynII. These findings show that SynII can directly suppress seizure activity and that PKA phosphorylation contributes to this function.
Collapse
Affiliation(s)
- Ryan Schwark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- The Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- Correspondence:
| |
Collapse
|
38
|
Luo W, Yang Z, Zhang W, Zhou D, Guo X, Wang S, He F, Wang Y. Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury. Front Mol Neurosci 2022; 14:785938. [PMID: 35145378 PMCID: PMC8821658 DOI: 10.3389/fnmol.2021.785938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. Methods Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein–protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). Results In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. Conclusion Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Zhou
- Periodical Office, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohang Guo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shunshun Wang
- Postpartum Health Care Department, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Feng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
39
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
40
|
Moschetta M, Ravasenga T, De Fusco A, Maragliano L, Aprile D, Orlando M, Sacchetti S, Casagrande S, Lignani G, Fassio A, Baldelli P, Benfenati F. Ca 2+ binding to synapsin I regulates resting Ca 2+ and recovery from synaptic depression in nerve terminals. Cell Mol Life Sci 2022; 79:600. [PMID: 36409372 PMCID: PMC9678998 DOI: 10.1007/s00018-022-04631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Tiziana Ravasenga
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Antonio De Fusco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,Present Address: High-Definition Disease Modelling Lab, Campus IFOM-IEO, Milan, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Charitè Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Silvio Sacchetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Queens Square Institute of Neurology, University College London, London, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
41
|
Patzke C, Dai J, Brockmann MM, Sun Z, Fenske P, Rosenmund C, Südhof TC. Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Mol Psychiatry 2021; 26:6253-6268. [PMID: 33931733 DOI: 10.1038/s41380-021-01095-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.
Collapse
Affiliation(s)
- Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA. .,Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, 109A Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - Jinye Dai
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Zijun Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Pascal Fenske
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| |
Collapse
|
42
|
Kruyer A, Parrilla-Carrero J, Powell C, Brandt L, Gutwinski S, Angelis A, Chalhoub RM, Jhou TC, Kalivas PW, Amato D. Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity. Mol Psychiatry 2021; 26:6159-6169. [PMID: 34349226 PMCID: PMC8760070 DOI: 10.1038/s41380-021-01235-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Antipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | | | - Courtney Powell
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Lasse Brandt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ariana Angelis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Reda M Chalhoub
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Bodin R, Paillé V, Oullier T, Durand T, Aubert P, Le Berre-Scoul C, Hulin P, Neunlist M, Cissé M. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. J Biol Chem 2021; 297:101300. [PMID: 34648765 PMCID: PMC8569587 DOI: 10.1016/j.jbc.2021.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.
Collapse
Affiliation(s)
- Raphael Bodin
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Tony Durand
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Philippe Aubert
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | | | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Moustapha Cissé
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.
| |
Collapse
|
44
|
Wang CC, Weyrer C, Fioravante D, Kaeser PS, Regehr WG. Presynaptic Short-Term Plasticity Persists in the Absence of PKC Phosphorylation of Munc18-1. J Neurosci 2021; 41:7329-7339. [PMID: 34290081 PMCID: PMC8412997 DOI: 10.1523/jneurosci.0347-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022] Open
Abstract
Post-tetanic potentiation (PTP) is a form of short-term plasticity that lasts for tens of seconds following a burst of presynaptic activity. It has been proposed that PTP arises from protein kinase C (PKC) phosphorylation of Munc18-1, an SM (Sec1/Munc-18 like) family protein that is essential for release. To test this model, we made a knock-in mouse in which all Munc18-1 PKC phosphorylation sites were eliminated through serine-to-alanine point mutations (Munc18-1SA mice), and we studied mice of either sex. The expression of Munc18-1 was not altered in Munc18-1SA mice, and there were no obvious behavioral phenotypes. At the hippocampal CA3-to-CA1 synapse and the granule cell parallel fiber (PF)-to-Purkinje cell (PC) synapse, basal transmission was largely normal except for small decreases in paired-pulse facilitation that are consistent with a slight elevation in release probability. Phorbol esters that mimic the activation of PKC by diacylglycerol still increased synaptic transmission in Munc18-1SA mice. In Munc18-1SA mice, 70% of PTP remained at CA3-to-CA1 synapses, and the amplitude of PTP was not reduced at PF-to-PC synapses. These findings indicate that at both CA3-to-CA1 and PF-to-PC synapses, phorbol esters and PTP enhance synaptic transmission primarily by mechanisms that are independent of PKC phosphorylation of Munc18-1.SIGNIFICANCE STATEMENT A leading mechanism for a prevalent form of short-term plasticity, post-tetanic potentiation (PTP), involves protein kinase C (PKC) phosphorylation of Munc18-1. This study tests this mechanism by creating a knock-in mouse in which Munc18-1 is replaced by a mutated form of Munc18-1 that cannot be phosphorylated. The main finding is that most PTP at hippocampal CA3-to-CA1 synapses or at cerebellar granule cell-to-Purkinje cell synapses does not rely on PKC phosphorylation of Munc18-1. Thus, mechanisms independent of PKC phosphorylation of Munc18-1 are important mediators of PTP.
Collapse
Affiliation(s)
- Chih-Chieh Wang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher Weyrer
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Diasynou Fioravante
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
45
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
46
|
GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells 2021; 10:cells10082092. [PMID: 34440861 PMCID: PMC8393567 DOI: 10.3390/cells10082092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3–cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.
Collapse
|
47
|
Abstract
Cells are biochemically and morphologically polarized, which allows them to produce different cell shapes for various functions. Remarkably, some polarity protein complexes are asymmetrically recruited and concentrated on limited membrane regions, which is essential for the establishment and maintenance of diverse cell polarity. Though the components and mutual interactions within these protein complexes have been extensively investigated, how these proteins autonomously concentrate at local membranes and whether they have the same organization mechanism in the condensed assembly as that in aqueous solution remain elusive. A number of recent studies suggest that these highly concentrated polarity protein assemblies are membraneless biomolecular condensates which form through liquid-liquid phase separation (LLPS) of specific proteins. In this perspective, we summarize the LLPS-driven condensed protein assemblies found in asymmetric cell division, epithelial cell polarity, and neuronal synapse formation and function. These findings suggest that LLPS may be a general strategy for cells to achieve local condensation of specific proteins, thus establishing cell polarity.
Collapse
Affiliation(s)
- Heyang Wei
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Hoffmann C, Sansevrino R, Morabito G, Logan C, Vabulas RM, Ulusoy A, Ganzella M, Milovanovic D. Synapsin Condensates Recruit alpha-Synuclein. J Mol Biol 2021; 433:166961. [PMID: 33774037 DOI: 10.1016/j.jmb.2021.166961] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
Neurotransmission relies on the tight spatial and temporal regulation of the synaptic vesicle (SV) cycle. Nerve terminals contain hundreds of SVs that form tight clusters. These clusters represent a distinct liquid phase in which one component of the phase are SVs and the other synapsin 1, a highly abundant synaptic protein. Another major family of disordered proteins at the presynapse includes synucleins, most notably α-synuclein. The precise physiological role of α-synuclein in synaptic physiology remains elusive, albeit its role has been implicated in nearly all steps of the SV cycle. To determine the effect of α-synuclein on the synapsin phase, we employ the reconstitution approach using natively purified SVs from rat brains and the heterologous cell system to generate synapsin condensates. We demonstrate that synapsin condensates recruit α-synuclein, and while enriched into these synapsin condensates, α-synuclein still maintains its high mobility. The presence of SVs enhances the rate of synapsin/α-synuclein condensation, suggesting that SVs act as catalyzers for the formation of synapsin condensates. Notably, at physiological salt and protein concentrations, α-synuclein alone is not able to cluster isolated SVs. Excess of α-synuclein disrupts the kinetics of synapsin/SV condensate formation, indicating that the molar ratio between synapsin and α-synuclein is important in assembling the functional condensates of SVs. Understanding the molecular mechanism of α-synuclein interactions at the nerve terminals is crucial for clarifying the pathogenesis of synucleinopathies, where α-synuclein, synaptic proteins and lipid organelles all accumulate as insoluble intracellular inclusions.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Giuseppe Morabito
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Chinyere Logan
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - R Martin Vabulas
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, 10117 Berlin, Germany
| | - Ayse Ulusoy
- Laboratory of Neuroprotective Mechanisms, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
49
|
Feng Z, Wu X, Zhang M. Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation. Neuropharmacology 2021; 193:108622. [PMID: 34051266 DOI: 10.1016/j.neuropharm.2021.108622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Neuronal synapses encompass three compartments: presynaptic axon terminal, synaptic cleft, and postsynaptic dendrite. Each compartment contains densely packed molecular machineries that are involved in synaptic transmission. In recent years, emerging evidence indicates that the assembly of these membraneless substructures or assemblies that are not enclosed by membranes are driven by liquid-liquid phase separation. We review here recent studies that suggest the phase separation-mediated organization of these synaptic compartments. We discuss how synaptic function may be linked to its organization as biomolecular condensates. We conclude with a discussion of areas of future interest in the field for better understanding of the structural architecture of neuronal synapses and its contribution to synaptic functions.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
50
|
Zhang M, Augustine GJ. Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors? Cells 2021; 10:cells10030658. [PMID: 33809712 PMCID: PMC8002314 DOI: 10.3390/cells10030658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
In presynaptic terminals, synaptic vesicles (SVs) are found in a discrete cluster that includes a reserve pool that is mobilized during synaptic activity. Synapsins serve as a key protein for maintaining SVs within this reserve pool, but the mechanism that allows synapsins to do this is unclear. This mechanism is likely to involve synapsins either cross-linking SVs, thereby anchoring SVs to each other, or creating a liquid phase that allows SVs to float within a synapsin droplet. Here, we summarize what is known about the role of synapsins in clustering of SVs and evaluate experimental evidence supporting these two models.
Collapse
|