1
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
2
|
Jäger R, Geyer SH, Kavirayani A, Kiss MG, Waltenberger E, Rülicke T, Binder CJ, Weninger WJ, Kralovics R. Effects of Tulp4 deficiency on murine embryonic development and adult phenotype. Microsc Res Tech 2024; 87:854-866. [PMID: 38115643 DOI: 10.1002/jemt.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Genetically engineered mouse models have the potential to unravel fundamental biological processes and provide mechanistic insights into the pathogenesis of human diseases. We have previously observed that germline genetic variation at the TULP4 locus influences clinical characteristics in patients with myeloproliferative neoplasms. To elucidate the role of TULP4 in pathological and physiological processes in vivo, we generated a Tulp4 knockout mouse model. Systemic Tulp4 deficiency exerted a strong impact on embryonic development in both Tulp4 homozygous null (Tulp4-/-) and heterozygous (Tulp4+/-) knockout mice, the former exhibiting perinatal lethality. High-resolution episcopic microscopy (HREM) of day 14.5 embryos allowed for the identification of multiple developmental defects in Tulp4-/- mice, including severe heart defects. Moreover, in Tulp4+/- embryos HREM revealed abnormalities of several organ systems, which per se do not affect prenatal or postnatal survival. In adult Tulp4+/- mice, extensive examinations of hematopoietic and cardiovascular features, involving histopathological surveys of multiple tissues as well as blood counts and immunophenotyping, did not provide evidence for anomalies as observed in corresponding embryos. Finally, evaluating a potential obesity-related phenotype as reported for other TULP family members revealed a trend for increased body weight of Tulp4+/- mice. RESEARCH HIGHLIGHTS: To study the role of the TULP4 gene in vivo, we generated a Tulp4 knockout mouse model. Correlative analyses involving HREM revealed a strong impact of Tulp4 deficiency on murine embryonic development.
Collapse
Affiliation(s)
- Roland Jäger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| | - Anoop Kavirayani
- Vienna BioCenter Core Facilities GmbH, Austrian BioImaging/CMI, Vienna, Austria
| | - Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Waltenberger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Mejia S, Santos JLB, Noutsos C. Comprehensive Genome-Wide Natural Variation and Expression Analysis of Tubby-like Proteins Gene Family in Brachypodium distachyon. PLANTS (BASEL, SWITZERLAND) 2024; 13:987. [PMID: 38611516 PMCID: PMC11013449 DOI: 10.3390/plants13070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
The Tubby-like proteins (TLPs) gene family is a group of transcription factors found in both animals and plants. In this study, we identified twelve B. distachyon TLPs, divided into six groups based on conserved domains and evolutionary relationships. We predicted cis-regulatory elements involved in light, hormone, and biotic and abiotic stresses. The expression patterns in response to light and hormones revealed that BdTLP3, 4, 7, and 14 are involved in light responses, and BdTLP1 is involved in ABA responses. Furthermore, BdTLP2, 7, 9, and 13 are expressed throughout vegetative and reproductive stages, whereas BdTLP1, 3, 5, and 14 are expressed at germinating grains and early vegetative development, and BdTLP4, 6, 8, and 10 are expressed at the early reproduction stage. The natural variation in the eleven most diverged B. distachyon lines revealed high conservation levels of BdTLP1-6 to high variation in BdTLP7-14 proteins. Based on diversifying selection, we identified amino acids in BdTLP1, 3, 8, and 13, potentially substantially affecting protein functions. This analysis provided valuable information for further functional studies to understand the regulation, pathways involved, and mechanism of BdTLPs.
Collapse
Affiliation(s)
- Sendi Mejia
- Biological Sciences Department, Suny Old Westbury, Old Westbury, NY 11568, USA
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA
| | | | - Christos Noutsos
- Biological Sciences Department, Suny Old Westbury, Old Westbury, NY 11568, USA
| |
Collapse
|
4
|
Frederick CE, Zenisek D. Ribbon Synapses and Retinal Disease: Review. Int J Mol Sci 2023; 24:5090. [PMID: 36982165 PMCID: PMC10049380 DOI: 10.3390/ijms24065090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Synaptic ribbons are presynaptic protein complexes that are believed to be important for the transmission of sensory information in the visual system. Ribbons are selectively associated with those synapses where graded changes in membrane potential drive continuous neurotransmitter release. Defective synaptic transmission can arise as a result of the mutagenesis of a single ribbon component. Visual diseases that stem from malfunctions in the presynaptic molecular machinery of ribbon synapses in the retina are rare. In this review, we provide an overview of synaptopathies that give rise to retinal malfunction and our present understanding of the mechanisms that underlie their pathogenesis and discuss muscular dystrophies that exhibit ribbon synapse involvement in the pathology.
Collapse
Affiliation(s)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Xu W, Xu M, Yin Q, Liu C, Cao Q, Deng Y, Liu S, He G. A novel homozygous TUB mutation associated with autosomal recessive retinitis pigmentosa in a consanguineous Chinese family. BMC Med Genomics 2023; 16:9. [PMID: 36650547 PMCID: PMC9847046 DOI: 10.1186/s12920-023-01430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is the most common type of inherited retinopathy. At least 69 genes for RP have been identified. A significant proportion of RP, however, remains genetically unsolved. In this study, the genetic basis of a Chinese consanguineous family with presumed autosomal recessive retinitis pigmentosa (arRP) was investigated. METHODS Overall ophthalmic examinations, including funduscopy, decimal best-corrected visual acuity, axial length and electroretinography (ERG) were performed for the family. Genomic DNA from peripheral blood of the proband was subjected to whole exome sequencing. In silico predictions, structural modelling, and minigene assays were conducted to evaluate the pathogenicity of the variant. RESULTS A novel homozygous variant (NM_003320.4: c.1379A > G) in the TUB gene was identified as a candidate pathogenic variant in this parental consanguineous pedigree. This variant co-segregated with the disease in this pedigree and was absent in 118 ethnically matched healthy controls. It's an extremely rare variant that is neither deposited in population databases (1000 Genomes, ExAC, GnomAD, or Exome Variant Server) nor reported in the literature. Phylogenetic analysis indicated that the Asn residue at codon 460 of TUB is highly conserved across diverse species from tropicalis to humans. It was also completely conserved among the TUB, TULP1, TULP2, and TULP3 family proteins. Multiple bioinformatic algorithms predicted that this variant was deleterious. CONCLUSIONS A novel missense variant in TUB was identified, which was probably the pathogenic basis for arRP in this consanguineous family. This is the first report of a homozygous missense variant in TUB for RP.
Collapse
Affiliation(s)
- Wei Xu
- grid.477407.70000 0004 1806 9292Central Laboratory, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Ming Xu
- grid.464229.f0000 0004 1765 8757School of Medicine, Changsha Medical University, Changsha, 410219 China
| | - Qinqin Yin
- grid.477407.70000 0004 1806 9292Department of Ophthalmology, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Chuangyi Liu
- grid.477407.70000 0004 1806 9292Department of Ophthalmology, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Qiuxiang Cao
- grid.411427.50000 0001 0089 3695School of Life Sciences, Hunan Normal University, Changsha, 410081 China
| | - Yun Deng
- grid.411427.50000 0001 0089 3695School of Life Sciences, Hunan Normal University, Changsha, 410081 China
| | - Sulai Liu
- grid.477407.70000 0004 1806 9292Central Laboratory, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000, China.
| |
Collapse
|
6
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
7
|
Bano N, Aalam S, Bag SK. Tubby-like proteins (TLPs) transcription factor in different regulatory mechanism in plants: a review. PLANT MOLECULAR BIOLOGY 2022; 110:455-468. [PMID: 36255595 DOI: 10.1007/s11103-022-01301-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Tubby-like proteins (TLPs) transcription factors are found in single-celled to multi-cellular eukaryotes in the form of large multigene families. TLPs are identified through a specific signature of carboxyl terminal tubby domain, required for plasma membrane tethering and amino terminal F-box domain communicate as functional SCF-type E3 ligases. The comprehensive distribution of TLP gene family members in diverse species indicates some conserved functions of TLPs in multicellular organisms. Plant TLPs have higher gene members than animals and these members reported important role in multiple physiological and developmental processes and various environmental stress responses. Although the TLPs are suggested to be a putative transcription factors but their functional mechanism is not much clear. This review provides significant recent updates on TLP-mediated regulation with an insight into its functional roles, origin and evolution and also phytohormones related regulation to combat with various stresses and its involvement in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahre Aalam
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
de Oliveira Micheletti T, Cassia dos Santos A, Rocha GZ, Silva VRR, Quaresma PGF, Assalin HB, Junqueira FS, Ropelle ER, Oliveira AG, Saad MJA, Prada PDO. Acute exercise reduces feeding by activating IL-6/Tubby axis in the mouse hypothalamus. Front Physiol 2022; 13:956116. [PMID: 36452038 PMCID: PMC9702993 DOI: 10.3389/fphys.2022.956116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2025] Open
Abstract
Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.
Collapse
Affiliation(s)
- Thayana de Oliveira Micheletti
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa Cassia dos Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Zweig Rocha
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Silva Junqueira
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Physical Education, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia de Oliveira Prada
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Youn SY, Min H, Jeong SR, Lee J, Moon SJ, Bok J, Kim CH. Microtubule-associated protein 1 A and tubby act independently in regulating the localization of stereocilin to the tips of inner ear hair cell stereocilia. Mol Brain 2022; 15:80. [PMID: 36104704 PMCID: PMC9472429 DOI: 10.1186/s13041-022-00966-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTubby mice exhibit hearing impairment due to the loss of stereocilin from the tip regions that connect the tallest stereocilia of the outer hair cells (OHCs) to the tectorial membrane. Stereocilin is an essential stereociliary protein in the OHCs, the mutation of which in humans causes autosomal recessive non-syndromic deafness. Map1a is a modifier of tubby hearing (moth1), and its wild-type allele, rather than the moth1 allele from the C57BL/6 J strain, restores stereocilin localization to the stereocilia and rescues the hearing impairment of tubby mice. The mechanism by which MAP1A accomplishes this is unclear, partly due to ambiguity regarding whether the tubby mutation is a true null. We therefore generated Tub-null (Tub−/−) mice by deleting exon 3 and found that they exhibit hearing impairment like that of tubby mice, suggesting the tubby mutation is a loss-of-function mutation with regard to hearing. When we crossed Tub−/− mice with AKR mice that have wild-type Map1a alleles, we found that wild-type MAP1A restores stereocilin localization to the tips of stereocilia and rescues hearing impairment. These data suggest MAP1A does not require interaction with tubby protein in maintaining stereocilin at the tips of stereocilia and that OHCs use two independent molecules—MAP1A and tubby—to doubly ensure proper stereocilin localization.
Collapse
|
10
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
11
|
Oyama Y, Miyata H, Shimada K, Larasati T, Fujihara Y, Ikawa M. TULP2 deletion mice exhibit abnormal outer dense fiber structure and male infertility. Reprod Med Biol 2022; 21:e12467. [PMID: 35619658 PMCID: PMC9126596 DOI: 10.1002/rmb2.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Tulp2 (tubby-like protein 2) is a member of the tubby protein family and expressed predominantly in mouse testis. Recently, it was reported that Tulp2 knockout (KO) mice exhibited disrupted sperm tail morphology; however, it remains to be determined how TULP2 deletion causes abnormal tail formation. Methods The authors analyzed male fertility, sperm morphology, and motility of two Tulp2 KO mouse lines that were generated using the conventional method that utilizes homologous recombination in embryonic stem (ES) cells as well as the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. Furthermore, the authors observed the spermatogenesis of Tulp2 KO mice in more detail using scanning and transmission electron microscopy (SEM and TEM). Results Both mouse lines of Tulp2 KO exhibited male infertility, abnormal tail morphology, and impaired sperm motility. No overt abnormalities were found in the formation of the mitochondrial sheath in Tulp2 KO mice using the freeze-fracture method with SEM. In contrast, abnormal outer dense fiber (ODF) structure was observed in Tulp2 KO testis with TEM. Conclusions TULP2 may play roles in the correct formation and/or maintenance of ODF, which may lead to abnormal tail morphology, impaired sperm motility, and male infertility.
Collapse
Affiliation(s)
- Yuki Oyama
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan,Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Haruhiko Miyata
- Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Keisuke Shimada
- Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Tamara Larasati
- Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan,Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Yoshitaka Fujihara
- Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan,Department of Bioscience and GeneticsNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Masahito Ikawa
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan,Department of Experimental Genome ResearchResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan,The Institute of Medical ScienceThe University of TokyoTokyoJapan,Center for Infectious Disease Education and ResearchOsaka UniversityOsakaJapan
| |
Collapse
|
12
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
13
|
Xu HR, Liu Y, Yu TF, Hou ZH, Zheng JC, Chen J, Zhou YB, Chen M, Fu JD, Ma YZ, Wei WL, Xu ZS. Comprehensive Profiling of Tubby-Like Proteins in Soybean and Roles of the GmTLP8 Gene in Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:844545. [PMID: 35548296 PMCID: PMC9083326 DOI: 10.3389/fpls.2022.844545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 05/24/2023]
Abstract
Tubby-like proteins (TLPs) are transcription factors that are widely present in eukaryotes and generally participate in growth and developmental processes. Using genome databases, a total of 22 putative TLP genes were identified in the soybean genome, and unevenly distributed across 13 chromosomes. Phylogenetic analysis demonstrated that the predicted GmTLP proteins were divided into five groups (I-V). Gene structure, protein motifs, and conserved domains were analyzed to identify differences and common features among the GmTLPs. A three-dimensional protein model was built to show the typical structure of TLPs. Analysis of publicly available gene expression data showed that GmTLP genes were differentially expressed in response to abiotic stresses. Based on those data, GmTLP8 was selected to further explore the role of TLPs in soybean drought and salt stress responses. GmTLP8 overexpressors had improved tolerance to drought and salt stresses, whereas the opposite was true of GmTLP8-RNAi lines. 3,3-diaminobenzidine and nitro blue tetrazolium staining and physiological indexes also showed that overexpression of GmTLP8 enhanced the tolerance of soybean to drought and salt stresses; in addition, downstream stress-responsive genes were upregulated in response to drought and salt stresses. This study provides new insights into the function of GmTLPs in response to abiotic stresses.
Collapse
Affiliation(s)
- Hong-Ru Xu
- College of Agriculture, Yangtze University/Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ying Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ze-Hao Hou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University/Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
14
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Hong JJ, Kim KE, Park SY, Bok J, Seo JT, Moon SJ. Differential Roles of Tubby Family Proteins in Ciliary Formation and Trafficking. Mol Cells 2021; 44:591-601. [PMID: 34462398 PMCID: PMC8424140 DOI: 10.14348/molcells.2021.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are highly specialized organelles that extend from the cell membrane and function as cellular signaling hubs. Thus, cilia formation and the trafficking of signaling molecules into cilia are essential cellular processes. TULP3 and Tubby (TUB) are members of the tubby-like protein (TULP) family that regulate the ciliary trafficking of G-protein coupled receptors, but the functions of the remaining TULPs (i.e., TULP1 and TULP2) remain unclear. Herein, we explore whether these four structurally similar TULPs share a molecular function in ciliary protein trafficking. We found that TULP3 and TUB, but not TULP1 or TULP2, can rescue the defective cilia formation observed in TULP3-knockout (KO) hTERT RPE-1 cells. TULP3 and TUB also fully rescue the defective ciliary localization of ARL13B, INPP5E, and GPR161 in TULP3 KO RPE-1 cells, while TULP1 and TULP2 only mediate partial rescues. Furthermore, loss of TULP3 results in abnormal IFT140 localization, which can be fully rescued by TUB and partially rescued by TULP1 and TULP2. TUB's capacity for binding IFT-A is essential for its role in cilia formation and ciliary protein trafficking in RPE-1 cells, whereas its capacity for PIP2 binding is required for proper cilia length and IFT140 localization. Finally, chimeric TULP1 containing the IFT-A binding domain of TULP3 fully rescues ciliary protein trafficking, but not cilia formation. Together, these two TULP domains play distinct roles in ciliary protein trafficking but are insufficient for cilia formation in RPE-1 cells. In addition, TULP1 and TULP2 play other unknown molecular roles that should be addressed in the future.
Collapse
Affiliation(s)
- Julie J. Hong
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kyung Eun Kim
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - So Young Park
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
16
|
Wang Y, Wang F, Wang L, Qiu S, Yao Y, Yan C, Xiong X, Chen X, Ji Q, Cao J, Gao G, Li D, Zhang L, Guo Z, Wang R, Wang H, Fan G. NAD + supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell Rep 2021; 36:109516. [PMID: 34380043 DOI: 10.1016/j.celrep.2021.109516] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023] Open
Abstract
Although tumor-infiltrating lymphocytes (TILs) maintain their ability to proliferate, persist, and eradicate tumors, they are frequently dysfunctional in situ. By performing both whole-genome CRISPR and metabolic inhibitor screens, we identify that nicotinamide phosphoribosyltransferase (NAMPT) is required for T cell activation. NAMPT is low in TILs, and its expression is controlled by the transcriptional factor Tubby (TUB), whose activity depends on the T cell receptor-phospholipase C gamma (TCR-PLCγ) signaling axis. The intracellular level of NAD+, whose synthesis is dependent on the NAMPT-mediated salvage pathway, is also decreased in TILs. Liquid chromatography-mass spectrometry (LC-MS) and isotopic labeling studies confirm that NAD+ depletion led to suppressed glycolysis, disrupted mitochondrial function, and dampened ATP synthesis. Excitingly, both adoptive CAR-T and anti-PD1 immune checkpoint blockade mouse models demonstrate that NAD+ supplementation enhanced the tumor-killing efficacy of T cells. Collectively, this study reveals that an impaired TCR-TUB-NAMPT-NAD+ axis leads to T cell dysfunction in the tumor microenvironment, and an over-the-counter nutrient supplement of NAD+ could boost T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Yuetong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lihua Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shizhen Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yufeng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Quanquan Ji
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ganglong Gao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
17
|
Bano N, Fakhrah S, Mohanty CS, Bag SK. Genome-Wide Identification and Evolutionary Analysis of Gossypium Tubby-Like Protein (TLP) Gene Family and Expression Analyses During Salt and Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:667929. [PMID: 34367198 PMCID: PMC8335595 DOI: 10.3389/fpls.2021.667929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 06/02/2023]
Abstract
Tubby-like proteins (TLPs) possess a highly conserved closed β barrel tubby domain at C-terminal and N-terminal F-box. The role of TLP gene family members has been widely discussed in numerous organisms; however, the detailed genome-wide study of this gene family in Gossypium species has not been reported till date. Here, we systematically identified 105 TLP gene family members in cotton (Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense) genomes and classified them into eight phylogenetic groups. Cotton TLP12 gene family members clustered into two groups, 4 and 8. They experienced higher evolutionary pressure in comparison to others, indicating the faster evolution in both diploid as well as in tetraploid cotton. Cotton TLP gene family members expanded mainly due to segmental duplication, while only one pair of tandem duplication was found in cotton TLPs paralogous gene pairs. Subsequent qRT-PCR validation of seven putative key candidate genes of GhTLPs indicated that GhTLP11A and GhTLP12A.1 genes were highly sensitive to salt and drought stress. The co-expression network, pathways, and cis-regulatory elements of GhTLP11A and GhTLP12A.1 genes confirmed their functional importance in salt and drought stress responses. This study proposes the significance of GhTLP11A and GhTLP12A.1 genes in exerting control over salt and drought stress responses in G. hirsutum and also provides a reference for future research, elaborating the biological roles of G. hirsutum TLPs in both stress responses.
Collapse
Affiliation(s)
- Nasreen Bano
- Council of Scientific & Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- Council of Scientific & Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Chandra Sekhar Mohanty
- Council of Scientific & Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- Council of Scientific & Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Li S, Wang Z, Wang F, Lv H, Cao M, Zhang N, Li F, Wang H, Li X, Yuan X, Zhao B, Guo YD. A tubby-like protein CsTLP8 acts in the ABA signaling pathway and negatively regulates osmotic stresses tolerance during seed germination. BMC PLANT BIOLOGY 2021; 21:340. [PMID: 34273968 PMCID: PMC8286588 DOI: 10.1186/s12870-021-03126-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND TLPs (Tubby-like proteins) are widespread in eukaryotes and highly conserved in plants and animals. TLP is involved in many biological processes, such as growth, development, biotic and abiotic stress responses, while the underlying molecular mechanism remains largely unknown. In this paper we characterized the biological function of cucumber (Cucumis sativus L.) Tubby-like protein 8 (CsTLP8) in Arabidopsis. RESULTS In cucumber, the expression of the tubby-like protein CsTLP8 was induced by NaCl treatment, but reduced by PEG (Polyethylene Glycol) and ABA (Abscisic Acid) treatment. Subcellular localization and transcriptional activation activity analysis revealed that CsTLP8 possessed two characteristics of classical transcription factors: nuclear localization and trans-activation activity. Yeast two-hybrid assay revealed interactions of CsTLP8 with CsSKP1a and CsSKP1c, suggesting that CsTLP8 might function as a subunit of E3 ubiquitin ligase. The growth activity of yeast with ectopically expressed CsTLP8 was lower than the control under NaCl and mannitol treatments. Under osmotic and salt stresses, overexpression of CsTLP8 inhibited seed germination and the growth of Arabidopsis seedlings, increased the content of MDA (Malondialdehyde), and decreased the activities of SOD (Superoxide Dismutase), POD (Peroxidase) and CAT (Catalase) in Arabidopsis seedlings. Overexpression of CsTLP8 also increased the sensitivity to ABA during seed germination and ABA-mediated stomatal closure. CONCLUSION Under osmotic stress, CsTLP8 might inhibit seed germination and seedling growth by affecting antioxidant enzymes activities. CsTLP8 acts as a negative regulator in osmotic stress and its effects may be related to ABA.
Collapse
Affiliation(s)
- Shuangtao Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Zhirong Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Cao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fengju Li
- Tianjin Academy of Agricultural Sciences, 300192, Tianjin, China
| | - Hao Wang
- Tianjin Academy of Agricultural Sciences, 300192, Tianjin, China
| | - Xingsheng Li
- Shandong Provincial Key Laboratory of Cucurbitaceae Vegetable Biological Breeding, Shandong Huasheng Agriculture Co. Ltd, Qingzhou, 262500, Shandong, China
| | - Xiaowei Yuan
- Shandong Provincial Key Laboratory of Cucurbitaceae Vegetable Biological Breeding, Shandong Huasheng Agriculture Co. Ltd, Qingzhou, 262500, Shandong, China
| | - Bing Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yang-Dong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Wang K, Cheng Y, Yi L, He H, Zhan S, Yang P. Genome-wide identification of the Tubby-Like Protein (TLPs) family in medicinal model plant Salvia miltiorrhiza. PeerJ 2021; 9:e11403. [PMID: 34026360 PMCID: PMC8123234 DOI: 10.7717/peerj.11403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Tubby-Like Proteins (TLPs) are important transcription factors with many functions and are found in both animals and plants. In plants, TLPs are thought to be involved in the abiotic stress response. To reveal the potential function of TLPs in the medicinal model plant Salvia miltiorrhiza, we identified 12 S. miltiorrhiza TLPs (SmTLPs) and conducted a comprehensive analysis. We examined SmTLP gene structure, protein structure, phylogenetics, and expression analysis. Our results show that all SmTLPs, except SmTLP11, have a complete typical Tub domain. Promoter analysis revealed that most SmTLPs are involved in hormone and abiotic stress responses. Expression analysis revealed that the 12 SmTLPs could be divided into three categories: those specifically expressed in roots, those specifically expressed in stems, and those specifically expressed in leaves. Additional studies have shown that SmTLP10 may play an important role in the plant cold resistance, while SmTLP12 may be involved in the S. miltiorrhiza ABA metabolic pathway. Our study represents the first comprehensive investigation of TLPs in S. miltiorrhiza. These data may provide useful clues for future studies and may support the hypotheses regarding the role of TLPs in plant abiotic stress process. All in all, we may provide a reference for improving S. miltiorrhiza quality using genetic engineering technology.
Collapse
Affiliation(s)
- Kai Wang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yating Cheng
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Li Yi
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Hailang He
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shaofeng Zhan
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Yang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
20
|
Kerek EM, Yoon KH, Luo SY, Chen J, Valencia R, Julien O, Waskiewicz AJ, Hubbard BP. A conserved acetylation switch enables pharmacological control of tubby-like protein stability. J Biol Chem 2020; 296:100073. [PMID: 33187986 PMCID: PMC7948452 DOI: 10.1074/jbc.ra120.015839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Tubby-like proteins (TULPs) are characterized by a conserved C-terminal domain that binds phosphoinositides. Collectively, mammalian TULP1-4 proteins play essential roles in intracellular transport, cell differentiation, signaling, and motility. Yet, little is known about how the function of these proteins is regulated in cells. Here, we present the protein–protein interaction network of TULP3, a protein that is responsible for the trafficking of G-protein-coupled receptors to cilia and whose aberrant expression is associated with severe developmental disorders and polycystic kidney disease. We identify several protein interaction nodes linked to TULP3 that include enzymes involved in acetylation and ubiquitination. We show that acetylation of two key lysine residues on TULP3 by p300 increases TULP3 protein abundance and that deacetylation of these sites by HDAC1 decreases protein levels. Furthermore, we show that one of these sites is ubiquitinated in the absence of acetylation and that acetylation inversely correlates with ubiquitination of TULP3. This mechanism is evidently conserved across species and is active in zebrafish during development. Finally, we identify this same regulatory module in TULP1, TULP2, and TULP4 and demonstrate that the stability of these proteins is similarly modulated by an acetylation switch. This study unveils a signaling pathway that links nuclear enzymes to ciliary membrane receptors via TULP3, describes a dynamic mechanism for the regulation of all tubby-like proteins, and explores how to exploit it pharmacologically using drugs.
Collapse
Affiliation(s)
- Evan M Kerek
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shu Y Luo
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jerry Chen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Valencia
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Li Z, Wang X, Cao X, Chen B, Ma C, Lv J, Sun Z, Qiao K, Zhu L, Zhang C, Fan S, Ma Q. GhTULP34, a member of tubby-like proteins, interacts with GhSKP1A to negatively regulate plant osmotic stress. Genomics 2020; 113:462-474. [PMID: 33022357 DOI: 10.1016/j.ygeno.2020.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Tubby-like protein genes (TULPs), present in the form of large multigene families, play important roles in environmental stress. However, little is known regarding the TULP family genes in cotton. In this study, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of TULPs in four species of cotton. Transcriptome analysis indicated that GhTULPs participate in environmental stress and cotton tissue development. At the same time, we also predicted and analyzed the potential molecular regulatory mechanisms and functions of TULPs. GhTULP34, as a candidate gene, significantly reduced the germination rate of transgenic Arabidopsis plants under salt stress, and inhibited root development and stomatal closure under mannitol stress. The yeast two-hybrid and luciferase (LUC) systems showed that GhTULP34 can interact with GhSKP1A, a subunit of the SCF-type (Skp1-Cullin-1-F-box) complex. This study will provide a basis and reference for future research on their roles in stress tolerance.
Collapse
Affiliation(s)
- Zhanshuai Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Xiaoyan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiaocong Cao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Zhimao Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| |
Collapse
|
22
|
Distinct roles of stereociliary links in the nonlinear sound processing and noise resistance of cochlear outer hair cells. Proc Natl Acad Sci U S A 2020; 117:11109-11117. [PMID: 32358189 DOI: 10.1073/pnas.1920229117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Outer hair cells (OHCs) play an essential role in hearing by acting as a nonlinear amplifier which helps the cochlea detect sounds with high sensitivity and accuracy. This nonlinear sound processing generates distortion products, which can be measured as distortion-product otoacoustic emissions (DPOAEs). The OHC stereocilia that respond to sound vibrations are connected by three kinds of extracellular links: tip links that connect the taller stereocilia to shorter ones and convey force to the mechanoelectrical transduction channels, tectorial membrane-attachment crowns (TM-ACs) that connect the tallest stereocilia to one another and to the overlying TM, and horizontal top connectors (HTCs) that link adjacent stereocilia. While the tip links have been extensively studied, the roles that the other two types of links play in hearing are much less clear, largely because of a lack of suitable animal models. Here, while analyzing genetic combinations of tubby mice, we encountered models missing both HTCs and TM-ACs or HTCs alone. We found that the tubby mutation causes loss of both HTCs and TM-ACs due to a mislocalization of stereocilin, which results in OHC dysfunction leading to severe hearing loss. Intriguingly, the addition of the modifier allele modifier of tubby hearing 1 in tubby mice selectively rescues the TM-ACs but not the HTCs. Hearing is significantly rescued in these mice with robust DPOAE production, indicating an essential role of the TM-ACs but not the HTCs in normal OHC function. In contrast, the HTCs are required for the resistance of hearing to damage caused by noise stress.
Collapse
|
23
|
Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato ( Solanum lycopersicum). Int J Mol Sci 2020; 21:ijms21031000. [PMID: 32028643 PMCID: PMC7037718 DOI: 10.3390/ijms21031000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/02/2022] Open
Abstract
Tubby-like proteins (TLPs), which were firstly identified in obese mice, play important roles in male gametophyte development, biotic stress response, and abiotic stress responses in plants. To date, the role of TLP genes in fruit ripening is largely unknown. Here, through a bioinformatics analysis, we identified 11 TLPs which can be divided into three subgroups in tomato (Solanum lycopersicum), a model plant for studying fruit development and ripening. It was shown that all SlTLPs except SlTLP11 contain both the Tub domain and F-box domain. An expression profiling analysis in different tomato tissues and developmental stages showed that 7 TLP genes are mainly expressed in vegetative tissues, flower, and early fruit developmental stages. Interestingly, other 4 TLP members (SlTLP1, SlTLP2, SlTLP4, and SlTLP5) were found to be highly expressed after breaker stage, suggesting a potential role of these genes in fruit ripening. Moreover, the induced expression of SlTLP1 and SlTLP2 by exogenous ethylene treatment and the down expression of the two genes in ripening mutants, further support their putative role in the ripening process. Overall, our study provides a basis for further investigation of the function of TLPs in plant development and fruit ripening.
Collapse
|
24
|
Dong MY, Fan XW, Pang XY, Li YZ. Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava. AOB PLANTS 2019; 11:plz075. [PMID: 31871614 PMCID: PMC6920310 DOI: 10.1093/aobpla/plz075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/24/2019] [Indexed: 05/23/2023]
Abstract
Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (Manihot esculenta Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes, MeTLPs, and further analysed structure, duplication, chromosome localization and collinearity, cis-acting elements in the promoter regions and expression patterns of MeTLPs, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a MeTLP family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of MeTLPs that show the duplication which took place between 10.11 and 126.69 million years ago. Two MeTLPs 6 and 9 likely originate from one gene in an ancestral species, may be common ancestors for other MeTLPs and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus. MeTLPs feature differences in the number from TLPs in wheat, apple, Arabidopsis, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato StTLPs. MeTLPs are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among MeTLPs are predictable partly because of their differential expression profiles, which are coupled with various cis‑acting elements existing in the promoter regions depending on genes.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiang-Yu Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Han S, Miyoshi K, Shikada S, Amano G, Wang Y, Yoshimura T, Katayama T. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun 2019; 509:227-234. [PMID: 30583862 DOI: 10.1016/j.bbrc.2018.12.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
The primary cilia are known as biosensors that transduce signals through the ciliary membrane proteins in vertebrate cells. The ciliary membrane contains transmembrane proteins and membrane-associated proteins. Tubby-like protein 3 (TULP3), a member of the tubby family, has been shown to interact with the intraflagellar transport-A complex (IFT-A) and to be involved in the ciliary localization of transmembrane proteins, although its role in the ciliary entry of membrane-associated proteins has remained unclear. Here, to determine whether TULP3 is required for the localization of ciliary membrane-associated proteins, we generated and analyzed TULP3-knockout (KO) hTERT RPE-1 (RPE1) cells. Immunofluorescence analysis demonstrated that ciliary formation was downregulated in TULP3-KO cells and that membrane-associated proteins, ADP-ribosylation factor-like 13B (ARL13B) and inositol polyphosphate-5-phosphatase E (INPP5E), failed to localize to primary cilia in TULP3-KO cells. These defects in the localization of ARL13B and INPP5E in TULP3-KO cells were rescued by the exogenous expression of wild-type TULP3, but not that of mutant TULP3 lacking the ability to bind IFT-A. In addition, the expression of TUB protein, another member of the tubby family whose endogenous expression is absent in RPE1 cells, also rescued the defective ciliary localization of ARL13B and INPP5E in TULP3-KO cells, suggesting that there is functional redundancy between TULP3 and TUB. Our findings indicate that TULP3 participates in ciliogenesis, and targets membrane-associated proteins to primary cilia via binding to IFT-A.
Collapse
Affiliation(s)
- Sarina Han
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ko Miyoshi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.
| | - Sho Shikada
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Genki Amano
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yinshengzhuoma Wang
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
26
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J Mol Med (Berl) 2018; 97:1-17. [PMID: 30421101 PMCID: PMC6327082 DOI: 10.1007/s00109-018-1714-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis. Elucidating the function of the mutated gene, ALMS1, is critical for the development of specific treatments and may uncover pathways relevant to a range of other disorders including common forms of obesity and type 2 diabetes. Interest in ALMS1 is heightened by the recent discovery of its involvement in neonatal cardiomyocyte cell cycle arrest, a process with potential relevance to regenerative medicine. ALMS1 encodes a ~ 0.5 megadalton protein that localises to the base of centrioles. Some studies have suggested a role for this protein in maintaining centriole-nucleated sensory organelles termed primary cilia, and AS is now considered to belong to the growing class of human genetic disorders linked to ciliary dysfunction (ciliopathies). However, mechanistic details are lacking, and recent studies have implicated ALMS1 in several processes including endosomal trafficking, actin organisation, maintenance of centrosome cohesion and transcription. In line with a more complex picture, multiple isoforms of the protein likely exist and non-centrosomal sites of localisation have been reported. This review outlines the evidence for both ciliary and extra-ciliary functions of ALMS1.
Collapse
Affiliation(s)
- Tom Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
28
|
Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR. Burly1 is a mouse QTL for lean body mass that maps to a 0.8-Mb region of chromosome 2. Mamm Genome 2018; 29:325-343. [PMID: 29737391 DOI: 10.1007/s00335-018-9746-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
Abstract
To fine map a mouse QTL for lean body mass (Burly1), we used information from intercross, backcross, consomic, and congenic mice derived from the C57BL/6ByJ (host) and 129P3/J (donor) strains. The results from these mapping populations were concordant and showed that Burly1 is located between 151.9 and 152.7 Mb (rs33197365 to rs3700604) on mouse chromosome 2. The congenic region harboring Burly1 contains 26 protein-coding genes, 11 noncoding RNA elements (e.g., lncRNA), and 4 pseudogenes, with 1949 predicted functional variants. Of the protein-coding genes, 7 have missense variants, including genes that may contribute to lean body weight, such as Angpt41, Slc52c3, and Rem1. Lean body mass was increased by the B6-derived variant relative to the 129-derived allele. Burly1 influenced lean body weight at all ages but not food intake or locomotor activity. However, congenic mice with the B6 allele produced more heat per kilogram of lean body weight than did controls, pointing to a genotype effect on lean mass metabolism. These results show the value of integrating information from several mapping populations to refine the map location of body composition QTLs and to identify a short list of candidate genes.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Brad D Fesi
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Michael Marquis
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Natalia P Bosak
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Anna Lysenko
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Fujiko F Duke
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Theodore M Nelson
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Amanda H McDaniel
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Mauricio Avigdor
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Charles J Arayata
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Lauren Shaw
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Garcia G, Raleigh DR, Reiter JF. How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol 2018; 28:R421-R434. [PMID: 29689227 PMCID: PMC6434934 DOI: 10.1016/j.cub.2018.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - David R Raleigh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Molecular pathogenesis of interstitial cystitis based on microRNA expression signature: miR-320 family-regulated molecular pathways and targets. J Hum Genet 2018. [PMID: 29531336 DOI: 10.1038/s10038-018-0419-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interstitial cystitis (IC), also known as bladder pain syndrome, is a chronic inflammatory disease that affects the bladder. The symptoms of IC vary, including feeling an urgent need for immediate urination and of needing to urinate often, as well as bladder or pelvic pain. Despite its high incidence, no molecular diagnostic methods are available for IC, and the molecular pathogenesis is unknown. microRNAs (miRNA) can regulate expression of RNA transcripts in cells and aberrant expression of miRNAs is associated with several human diseases. Here, we investigated the molecular pathogenesis of IC based on miRNA expression signatures. RNA sequencing of miRNA levels in IC tissues and comparison with levels in normal bladder tissue and bladder cancer revealed dysregulated expression of 366 miRNAs (203 and 163 down- and upregulated miRNAs, respectively). In particular, miR-320 family miRNAs(miR-320a, miR-320b, miR-320c, miR-320d and miR-320e) had downregulated expression in IC tissues. Genome-wide gene expression analyses and in silico database analyses showed that three transcription factors, E2F-1, E2F-2 and TUB, are regulated by miR-320 family miRNAs. Immunostaining of IC tissues confirmed that these transcription factors are overexpressed in IC tissues. Novel approaches that identify aberrantly expressed miRNA regulatory networks in IC could provide new prognostic markers and therapeutic targets for this disease.
Collapse
|
31
|
Wang M, Xu Z, Kong Y. The tubby-like proteins kingdom in animals and plants. Gene 2018; 642:16-25. [PMID: 29109004 DOI: 10.1016/j.gene.2017.10.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
32
|
Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR. Adiposity QTL Adip20 decomposes into at least four loci when dissected using congenic strains. PLoS One 2017; 12:e0188972. [PMID: 29194435 PMCID: PMC5711020 DOI: 10.1371/journal.pone.0188972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023] Open
Abstract
An average mouse in midlife weighs between 25 and 30 g, with about a gram of tissue in the largest adipose depot (gonadal), and the weight of this depot differs between inbred strains. Specifically, C57BL/6ByJ mice have heavier gonadal depots on average than do 129P3/J mice. To understand the genetic contributions to this trait, we mapped several quantitative trait loci (QTLs) for gonadal depot weight in an F2 intercross population. Our goal here was to fine-map one of these QTLs, Adip20 (formerly Adip5), on mouse chromosome 9. To that end, we analyzed the weight of the gonadal adipose depot from newly created congenic strains. Results from the sequential comparison method indicated at least four rather than one QTL; two of the QTLs were less than 0.5 Mb apart, with opposing directions of allelic effect. Different types of evidence (missense and regulatory genetic variation, human adiposity/body mass index orthologues, and differential gene expression) implicated numerous candidate genes from the four QTL regions. These results highlight the value of mouse congenic strains and the value of this sequential method to dissect challenging genetic architecture.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Brad D. Fesi
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Michael Marquis
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Natalia P. Bosak
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Anna Lysenko
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | | | - Fujiko F. Duke
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Maria L. Theodorides
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Theodore M. Nelson
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Amanda H. McDaniel
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Mauricio Avigdor
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Charles J. Arayata
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Lauren Shaw
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | | | - Danielle R. Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Nies VJM, Struik D, Wolfs MGM, Rensen SS, Szalowska E, Unmehopa UA, Fluiter K, van der Meer TP, Hajmousa G, Buurman WA, Greve JW, Rezaee F, Shiri-Sverdlov R, Vonk RJ, Swaab DF, Wolffenbuttel BHR, Jonker JW, van Vliet-Ostaptchouk JV. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int J Obes (Lond) 2017; 42:376-383. [PMID: 28852204 DOI: 10.1038/ijo.2017.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity. Aside from the function in central nervous system, TUB has also been implicated in energy metabolism in adipose tissue in rodents. We aimed to determine the expression and distribution patterns of TUB in man as well as its potential association with obesity. SUBJECTS/METHODS In situ hybridization was used to localize the hypothalamic regions and cells expressing TUB mRNA. Using RT-PCR, we determined the mRNA expression level of the two TUB gene alternative splicing isoforms, the short and the long transcript variants, in the hypothalami of 12 obese and 12 normal-weight subjects, and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissues from 53 severely obese and 24 non-obese control subjects, and correlated TUB expression with parameters of obesity and metabolic health. RESULTS Expression of both TUB transcripts was detected in the hypothalamus, whereas only the short TUB isoform was found in both VAT and SAT. TUB mRNA was detected in several hypothalamic regions involved in body weight regulation, including the nucleus basalis of Meynert and the paraventricular, supraoptic and tuberomammillary nuclei. We found no difference in the hypothalamic TUB expression between obese and control groups, whereas the level of TUB mRNA was significantly lower in adipose tissue of obese subjects as compared to controls. Also, TUB expression was negatively correlated with indices of body weight and obesity in a fat-depot-specific manner. CONCLUSIONS Our results indicate high expression of TUB in the hypothalamus, especially in areas involved in body weight regulation, and the correlation between TUB expression in adipose tissue and obesity. These findings suggest a role for TUB in human obesity.
Collapse
Affiliation(s)
- V J M Nies
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M G M Wolfs
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S S Rensen
- Department of General Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - E Szalowska
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - U A Unmehopa
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - K Fluiter
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - T P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Hajmousa
- Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W A Buurman
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J W Greve
- Department of Surgery, Zuyderland Medical Center Heerlen; Dutch Obesity Clinic South, Heerlen, The Netherlands
| | - F Rezaee
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Shiri-Sverdlov
- Departments of Molecular Genetics, School of Nutrition & Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - R J Vonk
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - B H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
35
|
Kim S, Sung HJ, Lee JW, Kim YH, Oh YS, Yoon KA, Heo K, Suh PG. C-terminally mutated tubby protein accumulates in aggresomes. BMB Rep 2017; 50:37-42. [PMID: 27697107 PMCID: PMC5319663 DOI: 10.5483/bmbrep.2017.50.1.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/24/2022] Open
Abstract
The tubby protein (Tub), a putative transcription factor, plays important roles in the maintenance and function of neuronal cells. A splicing defect-causing mutation in the 3′-end of the tubby gene, which is predicted to disrupt the carboxy-terminal region of the Tub protein, causes maturity-onset obesity, blindness, and deafness in mice. Although this pathological Tub mutation leads to a loss of function, the precise mechanism has not yet been investigated. Here, we found that the mutant Tub proteins were mostly localized to puncta found in the perinuclear region and that the C-terminus was important for its solubility. Immunocytochemical analysis revealed that puncta of mutant Tub co-localized with the aggresome. Moreover, whereas wild-type Tub was translocated to the nucleus by extracellular signaling, the mutant forms failed to undergo such translocation. Taken together, our results suggest that the malfunctions of the Tub mutant are caused by its misfolding and subsequent localization to aggresomes.
Collapse
Affiliation(s)
- Sunshin Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ho Jin Sung
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ji Won Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yun Hee Kim
- Research Institute and Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Pann-Ghill Suh
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
36
|
Wardhan V, Pandey A, Chakraborty S, Chakraborty N. Chickpea transcription factor CaTLP1 interacts with protein kinases, modulates ROS accumulation and promotes ABA-mediated stomatal closure. Sci Rep 2016; 6:38121. [PMID: 27934866 PMCID: PMC5146945 DOI: 10.1038/srep38121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/07/2016] [Indexed: 11/23/2022] Open
Abstract
Tubby and Tubby-like proteins (TLPs), in mammals, play critical roles in neural development, while its function in plants is largely unknown. We previously demonstrated that the chickpea TLP, CaTLP1, participates in osmotic stress response and might be associated with ABA-dependent network. However, how CaTLP1 is connected to ABA signaling remains unclear. The CaTLP1 was found to be engaged in ABA-mediated gene expression and stomatal closure. Complementation of the yeast yap1 mutant with CaTLP1 revealed its role in ROS scavenging. Furthermore, complementation of Arabidopsis attlp2 mutant displayed enhanced stress tolerance, indicating the functional conservation of TLPs across the species. The presence of ABA-responsive element along with other motifs in the proximal promoter regions of TLPs firmly established their involvement in stress signalling pathways. The CaTLP1 promoter driven GUS expression was restricted to the vegetative organs, especially stem and rosette leaves. Global protein expression profiling of wild-type, attlp2 and complemented Arabidopsis plants revealed 95 differentially expressed proteins, presumably involved in maintaining physiological and biological processes under dehydration. Immunoprecipitation assay revealed that protein kinases are most likely to interact with CaTLP1. This study provides the first demonstration that the TLPs act as module for ABA-mediated stomatal closure possibly via interaction with protein kinase.
Collapse
Affiliation(s)
- Vijay Wardhan
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Aarti Pandey
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
37
|
Yoon EJ, Jeong YT, Lee JE, Moon SJ, Kim CH. Tubby domain superfamily protein is required for the formation of the 7S SNARE complex in Drosophila. Biochem Biophys Res Commun 2016; 482:814-820. [PMID: 27888110 DOI: 10.1016/j.bbrc.2016.11.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Tubby domain superfamily protein (TUSP) is a distant member of the Tubby-like protein (TULP) family. Although other TULPs play important roles in sensation, metabolism, and development, the molecular functions of TUSP are completely unknown. Here, we explore the function of TUSP in the Drosophila nervous system where it is expressed in all neurons. Tusp mutant flies exhibit a temperature-sensitive paralysis. This paralysis can be rescued by tissue-specific expression of Tusp in the giant fibers and peripherally synapsing interneurons of the giant fiber system, a well-characterized neuronal circuit that mediates rapid escape behavior in flies. Consistent with this paralytic phenotype, we observed a profound reduction in the assembly of the ternary 7S SNARE complex that is required for neurotransmitter release despite seeing no changes in the expression of each individual SNARE complex component. Together, these data suggest TUSP is a novel regulator of SNARE assembly and, therefore, of neurotransmitter release.
Collapse
Affiliation(s)
- Eun Jang Yoon
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong Taek Jeong
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, #81 Ilwon-dong, Gangnam-gu, Seoul, 06351, South Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
38
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
39
|
Xu JN, Xing SS, Zhang ZR, Chen XS, Wang XY. Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1693. [PMID: 27895653 PMCID: PMC5107566 DOI: 10.3389/fpls.2016.01693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 05/09/2023]
Abstract
Tubby-like proteins (TLPs), which have a highly conserved β barrel tubby domain, have been found to be associated with some animal-specific characteristics. In the plant kingdom, more than 10 TLP family members were identified in Arabidopsis, rice and maize, and they were found to be involved in responses to stress. The publication of the apple genome makes it feasible to systematically study the TLP family in apple. In this investigation, nine TLP encoding genes (TLPs for short) were identified. When combined with the TLPs from other plant species, the TLPs were divided into three groups (group A, B, and C). Most plant TLP members in group A contained an additional F-box domain at the N-terminus. However, no common domain was identified other than tubby domain either in group B or in group C. An analysis of the tubby domains of MdTLPs identified three types of conserved motifs. Motif 1 and 2, the signature motifs in the confirmed TLPs, were always present in MdTLPs, while motif 3 was absent from group B. Homology modeling indicated that the tubby domain of most MdTLPs had a closed β barrel, as in animal tubby domains. Expression profiling revealed that the MdTLP genes were expressed in multiple organs and were abundant in roots, stems, and leaves but low in flowers. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of MdTLPs. Expression profiling by qRT-PCR indicated that almost all MdTLPs were up-regulated at some extent under abiotic stress, exogenous ABA and H2O2 treatments in leaves and roots, though different MdTLP members exhibited differently in leaves and roots. The results and information above may provide a basis for further investigation of TLP function in plants.
Collapse
|
40
|
Genome-wide identification and comparative analysis of the TUBBY-like protein gene family in maize. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0338-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Hong MJ, Kim DY, Seo YW. Interactions between wheat Tubby-like and SKP1-like proteins. Genes Genet Syst 2015; 90:293-304. [DOI: 10.1266/ggs.14-00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute
| | | | | |
Collapse
|
42
|
Bao Y, Song WM, Jin YL, Jiang CM, Yang Y, Li B, Huang WJ, Liu H, Zhang HX. Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress. PLANT MOLECULAR BIOLOGY 2014; 86:471-83. [PMID: 25168737 DOI: 10.1007/s11103-014-0241-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/15/2014] [Indexed: 05/08/2023]
Abstract
Tubby and Tubby-like proteins (TLPs) play essential roles in the development and function of mammal neuronal cells. In addition to the conserved carboxyl (C)-terminal Tubby domain, which is required for their plasma membrane (PM) tethering, plant TLPs also possess an amino (N)-terminal F-box domain to interact with specific Arabidopsis Skp1-like (ASK) proteins as functional SCF-type E3 ligases. Here, we report the molecular characterization of Arabidopsis TLPs (AtTLPs). β-Glucuronidase staining showed overlapped but distinct expression patterns of AtTLPs in Arabidopsis. Yeast two-hybrid assays further revealed that AtTLP1, AtTLP3, AtTLP6, AtTLP7, AtTLP9, AtTLP10 and AtTLP11 all interacted with specific ASKs, but AtTLP2, AtTLP5 and AtTLP8 did not. Subcellular localization observations in both Arabidopsis protoplasts and tobacco pollen tubes indicated that all GFP-AtTLP fusion proteins, except GFP-AtTLP8 which lacks the conserved phosphatidylinositol 4,5-bisphosphate binding sites, were targeted to the PM. Detailed studies on AtTLP3 demonstrated that AtTLP3 is a PM-tethered PIP2 binding protein which functions redundantly with AtTLP9 in abscisic acid (ABA)- and osmotic stress-mediated seed germination. Our results suggest that AtTLPs possibly work in multiple physiological and developmental processes in Arabidopsis, and AtTLP3 is also involved in ABA signaling pathway like AtTLP9 during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Yan Bao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
An obesity-like gene MdTLP7 from apple (Malus×domestica) enhances abiotic stress tolerance. Biochem Biophys Res Commun 2014; 445:394-7. [DOI: 10.1016/j.bbrc.2014.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/04/2014] [Indexed: 11/23/2022]
|
44
|
Borman AD, Pearce LR, Mackay DS, Nagel-Wolfrum K, Davidson AE, Henderson R, Garg S, Waseem NH, Webster AR, Plagnol V, Wolfrum U, Farooqi IS, Moore AT. A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum Mutat 2013; 35:289-93. [PMID: 24375934 PMCID: PMC4284018 DOI: 10.1002/humu.22482] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/04/2013] [Indexed: 01/30/2023]
Abstract
Inherited retinal dystrophies are a major cause of childhood blindness. Here, we describe the identification of a homozygous frameshift mutation (c.1194_1195delAG, p.Arg398Serfs*9) in TUB in a child from a consanguineous UK Caucasian family investigated using autozygosity mapping and whole-exome sequencing. The proband presented with obesity, night blindness, decreased visual acuity, and electrophysiological features of a rod cone dystrophy. The mutation was also found in two of the proband's siblings with retinal dystrophy and resulted in mislocalization of the truncated protein. In contrast to known forms of retinal dystrophy, including those caused by mutations in the tubby-like protein TULP-1, loss of function of TUB in the proband and two affected family members was associated with early-onset obesity, consistent with an additional role for TUB in energy homeostasis.
Collapse
Affiliation(s)
- Arundhati Dev Borman
- Moorfield's Eye Hospital, London, EC1C 2PD, UK; Institute of Ophthalmology, London, EC1V 9EL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev 2013; 12:1005-12. [PMID: 23748186 DOI: 10.1016/j.arr.2013.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration.
Collapse
|
46
|
Reitz MU, Pai S, Imani J, Schäfer P. New insights into the subcellular localization of Tubby-like proteins and their participation in the Arabidopsis-Piriformospora indica interaction. PLANT SIGNALING & BEHAVIOR 2013; 8:25198. [PMID: 23733076 PMCID: PMC3999060 DOI: 10.4161/psb.25198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tubby-like proteins (TLPs) have been associated with hormone signaling and responses to abiotic and biotic stress in plants. Recently, Arabidopsis thaliana TLP3 was found to translocate from the plasma membrane of cells in response to distinct abiotic stresses, thereby activating cellular signaling. In addition, several AtTLPs were demonstrated to be necessary for normal colonization of roots by the mutualistic fungus Piriformospora indica. Here, we present evidence for the involvement of another two AtTLPs in this interaction. Furthermore, we show that plasma membrane targeting of TLPs might be conserved in other plant species, although we did not find it for all members of the protein family. Finally, the position of a GFP-tag influences the localization of AtTLP3, which needs to be considered when working with TLPs.
Collapse
Affiliation(s)
- Marco U. Reitz
- The School of Life Sciences; University of Warwick; Gibbet Hill Campus; Coventry, UK
| | - Subhash Pai
- Institute of Phytopathology and Applied Zoology; Research Centre for Biosystems; Land Use
| | - Jafargholi Imani
- Institute of Phytopathology and Applied Zoology; Research Centre for Biosystems; Land Use
| | - Patrick Schäfer
- The School of Life Sciences; University of Warwick; Gibbet Hill Campus; Coventry, UK
- Correspondence to: Patrick Schäfer,
| |
Collapse
|
47
|
The FLS (fatty liver Shionogi) mouse reveals local expressions of lipocalin-2, CXCL1 and CXCL9 in the liver with non-alcoholic steatohepatitis. BMC Gastroenterol 2013; 13:120. [PMID: 23875831 PMCID: PMC3729543 DOI: 10.1186/1471-230x-13-120] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which carries a significant risk of progression to cirrhosis and hepatocellular carcinoma. Since NASH is a progressive but reversible condition, it is desirable to distinguish NASH from simple steatosis, and to treat NASH patients at an early stage. To establish appropriate diagnosis and therapy, the pathological mechanisms of the disease should be elucidated; however, these have not been fully clarified for both NASH and simple steatosis. This study aims to reveal the differences between simple steatosis and NASH. METHODS This study used fatty liver Shionogi (FLS) mice as a NASH model, for comparison with dd Shionogi (DS) mice as a model of simple steatosis. Genome-wide gene expression analysis was performed using Affymetrix GeneChip Mouse Genome 430 2.0 Array, which contains 45101 probe sets for known and predicted genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to investigate gene expression changes and protein localizations. RESULTS DNA microarray analysis of the liver transcriptomes and qRT-PCR of both types of mice revealed that LCN2, CXCL1 and CXCL9 mRNAs were overexpressed in FLS mouse livers. Immunohistochemistry showed that CXCL1 protein was mainly localized to steatotic hepatocytes. CXCL9 protein-expressing hepatocytes and sinusoidal endothelium were localized in some areas of inflammatory cell infiltration. Most interestingly, hepatocytes expressing LCN2, a kind of adipokine, were localized around almost all inflammatory cell clusters. Furthermore, there was a positive correlation between the number of LCN2-positive hepatocytes in the specimen and the number of inflammatory foci. CONCLUSIONS Overexpression and distinct localization of LCN2, CXCL1 and CXCL9 in the liver of fatty liver Shionogi mice suggest significant roles of these proteins in the pathogenesis of NASH.
Collapse
|
48
|
Mukhopadhyay S, Jackson PK. Cilia, tubby mice, and obesity. Cilia 2013; 2:1. [PMID: 23351214 PMCID: PMC3626941 DOI: 10.1186/2046-2530-2-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022] Open
Abstract
Primary cilia have been previously linked to the central regulation of satiety. The tubby mouse is characterized by maturity-onset obesity and blindness. A recent paper demonstrates molecular defects in trafficking of ciliary GPCRs in the central neurons of tubby mice, underscoring the role of ciliary signaling in the pathogenesis of this monogenic obesity syndrome. Please see related Research article by Li et al., http://www.ciliajournal.com/content/1/1/21
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Research Oncology, Genentech Inc, South San Francisco, CA, 94080, USA ; Department of Cell Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Peter K Jackson
- Department of Research Oncology, Genentech Inc, South San Francisco, CA, 94080, USA
| |
Collapse
|
49
|
Prada PO, Quaresma PG, Caricilli AM, Santos AC, Guadagnini D, Morari J, Weissmann L, Ropelle ER, Carvalheira JBC, Velloso LA, Saad MJ. Tub has a key role in insulin and leptin signaling and action in vivo in hypothalamic nuclei. Diabetes 2013; 62:137-48. [PMID: 22966070 PMCID: PMC3526052 DOI: 10.2337/db11-1388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutation of tub gene in mice induces obesity, suggesting that tub could be an important regulator of energy balance. In the current study, we investigated whether insulin, leptin, and obesity can modulate Tub in vivo in hypothalamic nuclei, and we investigated possible consequences on energy balance, neuropeptide expression, and hepatic glucose metabolism. Food intake, metabolic characteristics, signaling proteins, and neuropeptide expression were measured in response to fasting and refeeding, intracerebroventricular insulin and leptin, and Tub antisense oligonucleotide (ASO). Tub tyrosine phosphorylation (Tub-p-tyr) is modulated by nutritional status. Tub is a substrate of insulin receptor tyrosine kinase (IRTK) and leptin receptor (LEPR)-Janus kinase 2 (JAK2) in hypothalamic nuclei. After leptin or insulin stimulation, Tub translocates to the nucleus. Inhibition of Tub expression in hypothalamus by ASO increased food intake, fasting blood glucose, and hepatic glucose output, decreased O(2) consumption, and blunted the effect of insulin or leptin on proopiomelanocortin, thyroid-releasing hormone, melanin-concentrating hormone, and orexin expression. In hypothalamus of mice administered a high-fat diet, there is a reduction in leptin and insulin-induced Tub-p-tyr and nuclear translocation, which is reversed by reducing protein tyrosine phosphatase 1B expression. These results indicate that Tub has a key role in the control of insulin and leptin effects on food intake, and the modulation of Tub may contribute to insulin and leptin resistance in DIO mice.
Collapse
|
50
|
Chen SF, Tsai YC, Fan SS. Drosophila king tubby (ktub) mediates light-induced rhodopsin endocytosis and retinal degeneration. J Biomed Sci 2012; 19:101. [PMID: 23228091 PMCID: PMC3541268 DOI: 10.1186/1423-0127-19-101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background The tubby (tub) and tubby-like protein (tulp) genes encode a small family of proteins found in many organisms. Previous studies have shown that TUB and TULP genes in mammalian involve in obesity, neural development, and retinal degeneration. The purpose of this study was to investigate the role of Drosophila king tubby (ktub) in rhodopsin 1 (Rh1) endocytosis and retinal degeneration upon light stimulation. Results Drosophila ktub mutants were generated using imprecise excision. Wild type and mutant flies were raised in dark or constant light conditions. After a period of light stimulation, retinas were dissected, fixed and stained with anti-Rh1 antibody to reveal Rh1 endocytosis. Confocal and transmission electron microscope were used to examine the retinal degeneration. Immunocytochemical analysis shows that Ktub is expressed in the rhabdomere domain under dark conditions. When flies receive light stimulation, the Ktub translocates from the rhabdomere to the cytoplasm and the nucleus of the photoreceptor cells. Wild type photoreceptors form Rh1-immunopositive large vesicles (RLVs) shortly after light stimulation. In light-induced ktub mutants, the majority of Rh1 remains at the rhabdomere, and only a few RLVs appear in the cytoplasm of photoreceptor cells. Mutation of norpA allele causes massive Rh1 endocytosis in light stimulation. In ktub and norpA double mutants, however, Rh1 endocytosis is blocked under light stimulation. This study also shows that ktub and norpA double mutants rescue the light-induced norpA retinal degeneration. Deletion constructs further demonstrate that the Tubby domain of the Ktub protein participates in an important role in Rh1 endocytosis. Conclusions The results in this study delimit the novel function of Ktub in Rh1 endocytosis and retinal degeneration.
Collapse
Affiliation(s)
- Shu-Fen Chen
- Department of Life Science, Tunghai University, R,O,C 407, Taiwan
| | | | | |
Collapse
|