1
|
Sarott RC, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman C Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Basel Karim
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sabin Nettles
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Yvon R, Woo CM. Small molecules help misplaced proteins hitchhike around cells. Nature 2024; 633:773-774. [PMID: 39294281 DOI: 10.1038/d41586-024-02802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
|
3
|
Inobe T, Sakaguchi R, Obita T, Mukaiyama A, Koike S, Yokoyama T, Mizuguchi M, Akiyama S. Structural insights into rapamycin-induced oligomerization of a FRB-FKBP fusion protein. FEBS Lett 2024; 598:2292-2305. [PMID: 39031920 DOI: 10.1002/1873-3468.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Inducible dimerization systems, such as rapamycin-induced dimerization of FK506 binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain, are widely employed chemical biology tools to manipulate cellular functions. We previously advanced an inducible dimerization system into an inducible oligomerization system by developing a bivalent fusion protein, FRB-FKBP, which forms large oligomers upon rapamycin addition and can be used to manipulate cells. However, the oligomeric structure of FRB-FKBP remains unclear. Here, we report that FRB-FKBP forms a rotationally symmetric trimer in crystals, but a larger oligomer in solution, primarily tetramers and pentamers, which maintain similar inter-subunit contacts as in the crystal trimer. These findings expand the applications of the FRB-FKBP oligomerization system in diverse biological events.
Collapse
Affiliation(s)
- Tomonao Inobe
- Graduate School of Science and Engineering, University of Toyama, Japan
| | - Runa Sakaguchi
- Graduate School of Science and Engineering, University of Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Atushi Mukaiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Seiichi Koike
- Graduate School of Science and Engineering, University of Toyama, Japan
| | | | | | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
4
|
Zhu B, Yin H, Zhang D, Zhang M, Chao X, Scimeca L, Wu MR. Synthetic biology approaches for improving the specificity and efficacy of cancer immunotherapy. Cell Mol Immunol 2024; 21:436-447. [PMID: 38605087 PMCID: PMC11061174 DOI: 10.1038/s41423-024-01153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Immunotherapy has shown robust efficacy in treating a broad spectrum of hematological and solid cancers. Despite the transformative impact of immunotherapy on cancer treatment, several outstanding challenges remain. These challenges include on-target off-tumor toxicity, systemic toxicity, and the complexity of achieving potent and sustainable therapeutic efficacy. Synthetic biology has emerged as a promising approach to overcome these obstacles, offering innovative tools for engineering living cells with customized functions. This review provides an overview of the current landscape and future prospects of cancer immunotherapy, particularly emphasizing the role of synthetic biology in augmenting its specificity, controllability, and efficacy. We delineate and discuss two principal synthetic biology strategies: those targeting tumor surface antigens with engineered immune cells and those detecting intratumoral disease signatures with engineered gene circuits. This review concludes with a forward-looking perspective on the enduring challenges in cancer immunotherapy and the potential breakthroughs that synthetic biology may contribute to the field.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hang Yin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Di Zhang
- Drug Safety Research & Evaluation, Takeda Pharmaceuticals International Company, Cambridge, MA, 02139, USA
| | - Meiling Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Xiaojuan Chao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Luca Scimeca
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ming-Ru Wu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building Synthetic Biosensors Using Red Blood Cell Proteins. ACS Synth Biol 2024; 13:1273-1289. [PMID: 38536408 PMCID: PMC11536268 DOI: 10.1021/acssynbio.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Toward addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC-protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including noninvasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
6
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
7
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
8
|
Knodel F, Pinter S, Kroll C, Rathert P. Fluorescent Reporter Systems to Investigate Chromatin Effector Proteins in Living Cells. Methods Mol Biol 2024; 2842:225-252. [PMID: 39012599 DOI: 10.1007/978-1-0716-4051-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
9
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building synthetic biosensors using red blood cell proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571988. [PMID: 38168174 PMCID: PMC10760168 DOI: 10.1101/2023.12.16.571988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Towards addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including non-invasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
10
|
Seo KW, Kleiner RE. Profiling dynamic RNA-protein interactions using small-molecule-induced RNA editing. Nat Chem Biol 2023; 19:1361-1371. [PMID: 37349582 PMCID: PMC11048738 DOI: 10.1038/s41589-023-01372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in biology, and characterizing dynamic RNA-protein interactions is essential for understanding RBP function. In this study, we developed targets of RBPs identified by editing induced through dimerization (TRIBE-ID), a facile strategy for quantifying state-specific RNA-protein interactions upon rapamycin-mediated chemically induced dimerization and RNA editing. We performed TRIBE-ID with G3BP1 and YBX1 to study RNA-protein interactions during normal conditions and upon oxidative stress-induced biomolecular condensate formation. We quantified editing kinetics to infer interaction persistence and show that stress granule formation strengthens pre-existing RNA-protein interactions and induces new RNA-protein binding events. Furthermore, we demonstrate that G3BP1 stabilizes its targets under normal and oxidative stress conditions independent of stress granule formation. Finally, we apply our method to characterize small-molecule modulators of G3BP1-RNA binding. Taken together, our work provides a general approach to profile dynamic RNA-protein interactions in cellular contexts with temporal control.
Collapse
Affiliation(s)
- Kyung W Seo
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Bottone S, Joliot O, Cakil ZV, El Hajji L, Rakotoarison LM, Boncompain G, Perez F, Gautier A. A fluorogenic chemically induced dimerization technology for controlling, imaging and sensing protein proximity. Nat Methods 2023; 20:1553-1562. [PMID: 37640938 DOI: 10.1038/s41592-023-01988-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Molecular tools enabling the control and observation of the proximity of proteins are essential for studying the functional role of physical distance between two proteins. Here we present CATCHFIRE (chemically assisted tethering of chimera by fluorogenic-induced recognition), a chemically induced proximity technology with intrinsic fluorescence imaging and sensing capabilities. CATCHFIRE relies on genetic fusion to small dimerizing domains that interact upon addition of fluorogenic inducers of proximity that fluoresce upon formation of the ternary assembly, allowing real-time monitoring of the chemically induced proximity. CATCHFIRE is rapid and fully reversible and allows the control and tracking of protein localization, protein trafficking, organelle transport and cellular processes, opening new avenues for studying or controlling biological processes with high spatiotemporal resolution. Its fluorogenic nature allows the design of a new class of biosensors for the study of processes such as signal transduction and apoptosis.
Collapse
Affiliation(s)
- Sara Bottone
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | | | - Zeyneb Vildan Cakil
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Louise-Marie Rakotoarison
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | | | | | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
12
|
Shui S, Buckley S, Scheller L, Correia BE. Rational design of small-molecule responsive protein switches. Protein Sci 2023; 32:e4774. [PMID: 37656809 PMCID: PMC10510469 DOI: 10.1002/pro.4774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Small-molecule responsive protein switches are powerful tools for controlling cellular processes. These switches are designed to respond rapidly and specifically to their inducer. They have been used in numerous applications, including the regulation of gene expression, post-translational protein modification, and signal transduction. Typically, small-molecule responsive protein switches consist of two proteins that interact with each other in the presence or absence of a small molecule. Recent advances in computational protein design already contributed to the development of protein switches with an expanded range of small-molecule inducers and increasingly sophisticated switch mechanisms. Further progress in the engineering of small-molecule responsive switches is fueled by cutting-edge computational design approaches, which will enable more complex and precise control over cellular processes and advance synthetic biology applications in biotechnology and medicine. Here, we discuss recent milestones and how technological advances are impacting the development of chemical switches.
Collapse
Affiliation(s)
- Sailan Shui
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Stephen Buckley
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Leo Scheller
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Bruno E. Correia
- Laboratory of Protein Design and Immunoengineering (LPDI)STI, EPFLLausanneSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| |
Collapse
|
13
|
Gourisankar S, Krokhotin A, Ji W, Liu X, Chang CY, Kim SH, Li Z, Wenderski W, Simanauskaite JM, Yang H, Vogel H, Zhang T, Green MR, Gray NS, Crabtree GR. Rewiring cancer drivers to activate apoptosis. Nature 2023; 620:417-425. [PMID: 37495688 DOI: 10.1038/s41586-023-06348-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Genes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1-4. Independent studies have identified cell death pathways that eliminate cells for the good of the organism5,6. The coexistence of cell death pathways with driver mutations suggests that the cancer driver could be rewired to activate cell death using chemical inducers of proximity (CIPs). Here we describe a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes, thereby activating their expression. We focused on diffuse large B cell lymphoma, in which the transcription factor B cell lymphoma 6 (BCL6) is deregulated7. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression8. We produced TCIPs by covalently linking small molecules that bind BCL6 to those that bind to transcriptional activators that contribute to the oncogenic program, such as BRD4. The most potent molecule, TCIP1, increases binding of BRD4 by 50% over genomic BCL6-binding sites to produce transcriptional elongation at pro-apoptotic target genes within 15 min, while reducing binding of BRD4 over enhancers by only 10%, reflecting a gain-of-function mechanism. TCIP1 kills diffuse large B cell lymphoma cell lines, including chemotherapy-resistant, TP53-mutant lines, at EC50 of 1-10 nM in 72 h and exhibits cell-specific and tissue-specific effects, capturing the combinatorial specificity inherent to transcription. The TCIP concept also has therapeutic applications in regulating the expression of genes for regenerative medicine and developmental disorders.
Collapse
MESH Headings
- Humans
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Transcription Factors/metabolism
- Epigenesis, Genetic/drug effects
- Promoter Regions, Genetic
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Wenzhi Ji
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Xiaofan Liu
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Samuel H Kim
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA.
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Liu X, Ciulli A. Proximity-Based Modalities for Biology and Medicine. ACS CENTRAL SCIENCE 2023; 9:1269-1284. [PMID: 37521793 PMCID: PMC10375889 DOI: 10.1021/acscentsci.3c00395] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Indexed: 08/01/2023]
Abstract
Molecular proximity orchestrates biological function, and blocking existing proximities is an established therapeutic strategy. By contrast, strengthening or creating neoproximity with chemistry enables modulation of biological processes with high selectivity and has the potential to substantially expand the target space. A plethora of proximity-based modalities to target proteins via diverse approaches have recently emerged, opening opportunities for biopharmaceutical innovation. This Outlook outlines the diverse mechanisms and molecules based on induced proximity, including protein degraders, blockers, and stabilizers, inducers of protein post-translational modifications, and agents for cell therapy, and discusses opportunities and challenges that the field must address to mature and unlock translation in biology and medicine.
Collapse
Affiliation(s)
- Xingui Liu
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| |
Collapse
|
15
|
Badu-Nkansah KA, Sernas D, Natwick DE, Collins SR. Modeling Subcellular Protein Recruitment Dynamics for Synthetic Biology. Methods Mol Biol 2023; 2553:189-207. [PMID: 36227545 DOI: 10.1007/978-1-0716-2617-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Compartmentalized protein recruitment is a fundamental feature of signal transduction. Accordingly, the cell cortex is a primary site of signaling supported by the recruitment of protein regulators to the plasma membrane. Recent emergence of optogenetic strategies designed to control localized protein recruitment has offered valuable toolsets for investigating spatiotemporal dynamics of associated signaling mechanisms. However, determining proper recruitment parameters is important for optimizing synthetic control. In this chapter, we describe a stepwise process for building linear differential equation models that characterize the kinetics and spatial distribution of optogenetic protein recruitment to the plasma membrane. Specifically, we outline how to construct (1) ordinary differential equations that capture the kinetics, efficiency, and magnitude of recruitment and (2) partial differential equations that model spatial recruitment dynamics and diffusion. Additionally, we explore how these models can be used to evaluate the overall system performance and determine how component parameters can be tuned to optimize synthetic recruitment.
Collapse
Affiliation(s)
- Kwabena A Badu-Nkansah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Diana Sernas
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Dean E Natwick
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
16
|
Stevens DA, Beierschmitt C, Mahesula S, Corley MR, Salogiannis J, Tsu BV, Cao B, Ryan AP, Hakozawki H, Reck-Peterson SL, Daugherty MD. Antiviral function and viral antagonism of the rapidly evolving dynein activating adaptor NINL. eLife 2022; 11:e81606. [PMID: 36222652 PMCID: PMC9651953 DOI: 10.7554/elife.81606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses interact with the intracellular transport machinery to promote viral replication. Such host-virus interactions can drive host gene adaptation, leaving signatures of pathogen-driven evolution in host genomes. Here, we leverage these genetic signatures to identify the dynein activating adaptor, ninein-like (NINL), as a critical component in the antiviral innate immune response and as a target of viral antagonism. Unique among genes encoding components of active dynein complexes, NINL has evolved under recurrent positive (diversifying) selection, particularly in its carboxy-terminal cargo-binding region. Consistent with a role for NINL in host immunity, we demonstrate that NINL knockout cells exhibit an impaired response to interferon, resulting in increased permissiveness to viral replication. Moreover, we show that proteases encoded by diverse picornaviruses and coronaviruses cleave and disrupt NINL function in a host- and virus-specific manner. Our work reveals the importance of NINL in the antiviral response and the utility of using signatures of host-virus genetic conflicts to uncover new components of antiviral immunity and targets of viral antagonism.
Collapse
Affiliation(s)
- Donté Alexander Stevens
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
| | | | - Swetha Mahesula
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Miles R Corley
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - John Salogiannis
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
| | - Brian V Tsu
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Bryant Cao
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Andrew P Ryan
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Hiroyuki Hakozawki
- Nikon Imaging Center at UC San Diego, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cell and Developmental Biology, University of California, San DiegoLa JollaUnited States
| | - Matthew D Daugherty
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
17
|
Kwon NY, Mishra NK, Park JS, Woo SK, Ghosh P, Kim IS. KO tBu-promoted C3-homocoupling of quinoxalinones through single electron transfer from an sp 2 carbanion intermediate. Chem Commun (Camb) 2022; 58:7078-7081. [PMID: 35662294 DOI: 10.1039/d2cc02636h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C3-selective homodimerization of quinoxalinones is described. A C3-sp2 carbanion species generated through deprotonation of quinoxalinone using potassium tert-butoxide (KOtBu) transfers an electron (single electron transfer mechanism) to a second quinoxalinone, affording a radical-anion intermediate. The radical scavenging and electron paramagnetic resonance (EPR) experiments support the plausible radical reaction pathway. A mild reaction temperature and a short reaction time were attained under cost-effective conditions, which reveal the amenability of this protocol to pharmaceutical and chemical industries.
Collapse
Affiliation(s)
- Na Yeon Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Neeraj Kumar Mishra
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jung Su Park
- Department of Chemistry, Sookmyung Women's University, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Sang Kook Woo
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Singh AK, Saharan K, Baral S, Luan S, Vasudevan D. Crystal packing reveals rapamycin-mediated homodimerization of an FK506-binding domain. Int J Biol Macromol 2022; 206:670-680. [PMID: 35218805 DOI: 10.1016/j.ijbiomac.2022.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Chemically induced dimerization (CID) is used to induce proximity and result in artificial complex formation between a pair of proteins involved in biological processes in cells to investigate and regulate these processes. The induced heterodimerization of FKBP fusion proteins by rapamycin and FK506 has been extensively exploited as a chemically induced dimerization system to regulate and understand highly dynamic cellular processes. Here, we report the crystal structure of the AtFKBP53 FKBD in complex with rapamycin. The crystal packing reveals an unusual feature whereby two rapamycin molecules appear to mediate homodimerization of the FKBD. The triene arm of rapamycin appears to play a significant role in forming this dimer. This forms the first structural report of rapamycin-mediated homodimerization of an FKBP. The structural information on the rapamycin-mediated FKBD dimerization may be employed to design and synthesize covalently linked dimeric rapamycin, which may subsequently serve as a chemically induced dimerization system for the regulation and characterization of cellular processes.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Ketul Saharan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Somanath Baral
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Dileep Vasudevan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India.
| |
Collapse
|
19
|
Dang DT. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Front Chem 2022; 10:829312. [PMID: 35211456 PMCID: PMC8861298 DOI: 10.3389/fchem.2022.829312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Protein dimerization plays a key role in many biological processes. Most cellular events such as enzyme activation, transcriptional cofactor recruitment, signal transduction, and even pathogenic pathways are significantly regulated via protein-protein interactions. Understanding and controlling the molecular mechanisms that regulate protein dimerization is crucial for biomedical applications. The limitations of engineered protein dimerization provide an opportunity for molecular chemistry to induce dimerization of protein in biological events. In this review, molecular control over dimerization of protein and activation in this respect are discussed. The well known molecule glue-based approaches to induced protein dimerization provide powerful tools to modulate the functionality of dimerized proteins and are shortly highlighted. Subsequently metal ion, nucleic acid and host-guest chemistry are brought forward as novel approaches for orthogonal control over dimerization of protein. The specific focus of the review will be on host-guest systems as novel, robust and versatile supramolecular approaches to modulate the dimerization of proteins, using functional proteins as model systems.
Collapse
Affiliation(s)
- Dung Thanh Dang
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
21
|
Bourke AM, Kennedy MJ. Spatial and Temporal Control of Protein Secretion with Light. Methods Mol Biol 2022; 2473:29-45. [PMID: 35819757 PMCID: PMC10907983 DOI: 10.1007/978-1-0716-2209-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How newly synthesized integral membrane proteins and secreted factors are sorted and trafficked to the appropriate location in different cell types remains an important problem in cell biology. One powerful approach for elucidating the trafficking route of a specific protein is to sequester it following synthesis in the endoplasmic reticulum and trigger its release with an externally applied cue. Combined with fluorescent probes, this approach can be used to directly visualize each trafficking step as cargo molecules progress through the different organelles of the secretory network. Here, we discuss design strategies and practical implementation of an inducible protein secretion system we recently developed (zapalog mediated ER trap: zapERtrap) that allows one to use light to initiate secretory trafficking from targeted cells or subcellular domains. We provide detailed protocols for experiments using this approach to visualize protein trafficking from the endoplasmic reticulum to the plasma membrane in fibroblast cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Ashley M Bourke
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
22
|
Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II. Acta Naturae 2021; 13:17-32. [PMID: 35127143 PMCID: PMC8807539 DOI: 10.32607/actanaturae.11415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
In modern life sciences, the issue of a specific, exogenously directed manipulation of a cell's biochemistry is a highly topical one. In the case of electrically excitable cells, the aim of the manipulation is to control the cells' electrical activity, with the result being either excitation with subsequent generation of an action potential or inhibition and suppression of the excitatory currents. The techniques of electrical activity stimulation are of particular significance in tackling the most challenging basic problem: figuring out how the nervous system of higher multicellular organisms functions. At this juncture, when neuroscience is gradually abandoning the reductionist approach in favor of the direct investigation of complex neuronal systems, minimally invasive methods for brain tissue stimulation are becoming the basic element in the toolbox of those involved in the field. In this review, we describe three approaches that are based on the delivery of exogenous, genetically encoded molecules sensitive to external stimuli into the nervous tissue. These approaches include optogenetics (overviewed in Part I), as well as chemogenetics and thermogenetics (described here, in Part II), which is significantly different not only in the nature of the stimuli and structure of the appropriate effector proteins, but also in the details of experimental applications. The latter circumstance is an indication that these are rather complementary than competing techniques.
Collapse
Affiliation(s)
- D. V. Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - E. L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - K. A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| |
Collapse
|
23
|
Xiao JY, Hafner A, Boettiger AN. How subtle changes in 3D structure can create large changes in transcription. eLife 2021; 10:e64320. [PMID: 34240703 PMCID: PMC8352591 DOI: 10.7554/elife.64320] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.
Collapse
Affiliation(s)
| | - Antonina Hafner
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| | - Alistair N Boettiger
- Program in Biophysics, Stanford UniversityStanfordUnited States
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
24
|
Pearce S, Tucker CL. Dual Systems for Enhancing Control of Protein Activity through Induced Dimerization Approaches. Adv Biol (Weinh) 2021; 5:e2000234. [PMID: 34028215 PMCID: PMC8144547 DOI: 10.1002/adbi.202000234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/29/2020] [Indexed: 12/25/2022]
Abstract
To reveal the underpinnings of complex biological systems, a variety of approaches have been developed that allow switchable control of protein function. One powerful approach for switchable control is the use of inducible dimerization systems, which can be configured to control activity of a target protein upon induced dimerization triggered by chemicals or light. Individually, many inducible dimerization systems suffer from pre-defined dynamic ranges and overwhelming sensitivity to expression level and cellular context. Such systems often require extensive engineering efforts to overcome issues of background leakiness and restricted dynamic range. To address these limitations, recent tool development efforts have explored overlaying dimerizer systems with a second layer of regulation. Albeit more complex, the resulting layered systems have enhanced functionality, such as tighter control that can improve portability of these tools across platforms.
Collapse
Affiliation(s)
- Sarah Pearce
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, 80045, Colorado, USA
| | - Chandra L. Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, 80045, Colorado, USA
| |
Collapse
|
25
|
Jaeger MG, Winter GE. Fast-acting chemical tools to delineate causality in transcriptional control. Mol Cell 2021; 81:1617-1630. [PMID: 33689749 DOI: 10.1016/j.molcel.2021.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.
Collapse
Affiliation(s)
- Martin G Jaeger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
26
|
Casey GR, Zhou X, Lesiak L, Xu B, Fang Y, Becker DF, Stains CI. An Evolutionary Strategy for Identification of Higher Order, Green Fluorescent Host-Guest Pairs Compatible with Living Systems. Chemistry 2020; 26:16721-16726. [PMID: 32725914 DOI: 10.1002/chem.202002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/26/2020] [Indexed: 11/09/2022]
Abstract
Engineered miniprotein host-small-molecule guest pairs could be utilized to design new processes within cells as well as investigate fundamental aspects of cell signaling mechanisms. However, the development of host-guest pairs capable of functioning in living systems has proven challenging. Moreover, few examples of host-guest pairs with stoichiometries other than 2:1 exist, significantly hindering the ability to study the influence of oligomerization state on signaling fidelity. Herein, we present an approach to identify host-guest systems for relatively small green fluorescent guests by incorporation into cyclic peptides. The optimal host-guest pair produced a 10-fold increase in green fluorescence signal upon binding. Biophysical characterization clearly demonstrated higher order supramolecular assembly, which could be visualized on the surface of living yeast cells using a turn-on fluorescence readout. This work further defines evolutionary design principles to afford host-guest pairs with stoichiometries other than 2:1 and enables the identification of spectrally orthogonal host-guest pairs.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO, 63701, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lauren Lesiak
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bi Xu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
27
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
28
|
Gomez-Castillo L, Watanabe K, Jiang H, Kang S, Gu L. Creating Highly Specific Chemically Induced Protein Dimerization Systems by Stepwise Phage Selection of a Combinatorial Single-Domain Antibody Library. J Vis Exp 2020. [PMID: 32009651 DOI: 10.3791/60738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Protein dimerization events that occur only in the presence of a small-molecule ligand enable the development of small-molecule biosensors for the dissection and manipulation of biological pathways. Currently, only a limited number of chemically induced dimerization (CID) systems exist and engineering new ones with desired sensitivity and selectivity for specific small-molecule ligands remains a challenge in the field of protein engineering. We here describe a high throughput screening method, combinatorial binders-enabled selection of CID (COMBINES-CID), for the de novo engineering of CID systems applicable to a large variety of ligands. This method uses the two-step selection of a phage-displayed combinatorial nanobody library to obtain 1) "anchor binders" that first bind to a ligand of interest and then 2) "dimerization binders" that only bind to anchor binder-ligand complexes. To select anchor binders, a combinatorial library of over 109 complementarity-determining region (CDR)-randomized nanobodies is screened with a biotinylated ligand and hits are validated with the unlabeled ligand by bio-layer interferometry (BLI). To obtain dimerization binders, the nanobody library is screened with anchor binder-ligand complexes as targets for positive screening and the unbound anchor binders for negative screening. COMBINES-CID is broadly applicable to select CID binders with other immunoglobulin, non-immunoglobulin, or computationally designed scaffolds to create biosensors for in vitro and in vivo detection of drugs, metabolites, signaling molecules, etc.
Collapse
Affiliation(s)
- Luis Gomez-Castillo
- Department of Biochemistry and Institute for Protein Design, University of Washington
| | - Kurumi Watanabe
- Department of Biochemistry and Institute for Protein Design, University of Washington
| | - Huayi Jiang
- Department of Biochemistry and Institute for Protein Design, University of Washington
| | - Shoukai Kang
- Department of Biochemistry and Institute for Protein Design, University of Washington
| | - Liangcai Gu
- Department of Biochemistry and Institute for Protein Design, University of Washington;
| |
Collapse
|
29
|
Martino Adami PV, Nichtová Z, Weaver DB, Bartok A, Wisniewski T, Jones DR, Do Carmo S, Castaño EM, Cuello AC, Hajnóczky G, Morelli L. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer's disease. J Cell Sci 2019; 132:jcs.229906. [PMID: 31515277 DOI: 10.1242/jcs.229906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/02/2019] [Indexed: 01/05/2023] Open
Abstract
The use of fixed fibroblasts from familial and sporadic Alzheimer's disease patients has previously indicated an upregulation of mitochondria-ER contacts (MERCs) as a hallmark of Alzheimer's disease. Despite its potential significance, the relevance of these results is limited because they were not extended to live neurons. Here we performed a dynamic in vivo analysis of MERCs in hippocampal neurons from McGill-R-Thy1-APP transgenic rats, a model of Alzheimer's disease-like amyloid pathology. Live FRET imaging of neurons from transgenic rats revealed perturbed 'lipid-MERCs' (gap width <10 nm), while 'Ca2+-MERCs' (10-20 nm gap width) were unchanged. In situ TEM showed no significant differences in the lipid-MERCs:total MERCs or lipid-MERCs:mitochondria ratios; however, the average length of lipid-MERCs was significantly decreased in neurons from transgenic rats as compared to controls. In accordance with FRET results, untargeted lipidomics showed significant decreases in levels of 12 lipids and bioenergetic analysis revealed respiratory dysfunction of mitochondria from transgenic rats. Thus, our results reveal changes in MERC structures coupled with impaired mitochondrial functions in Alzheimer's disease-related neurons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Pamela V Martino Adami
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Zuzana Nichtová
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David B Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam Bartok
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY 10016, USA
| | - Drew R Jones
- NYU School of Medicine, Metabolomics Core Resource Laboratory at NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Eduardo M Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
30
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
31
|
Kang S, Davidsen K, Gomez-Castillo L, Jiang H, Fu X, Li Z, Liang Y, Jahn M, Moussa M, DiMaio F, Gu L. COMBINES-CID: An Efficient Method for De Novo Engineering of Highly Specific Chemically Induced Protein Dimerization Systems. J Am Chem Soc 2019; 141:10948-10952. [PMID: 31260282 DOI: 10.1021/jacs.9b03522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemically induced dimerization (CID) systems, in which two proteins dimerize only in the presence of a small molecule ligand, offer versatile tools for small molecule sensing and actuation. However, only a handful of CID systems exist and creating one with the desired sensitivity and specificity for any given ligand is an unsolved problem. Here, we developed a combinatorial binders-enabled selection of CID (COMBINES-CID) method broadly applicable to different ligands. We demonstrated a proof-of-principle by generating nanobody-based heterodimerization systems induced by cannabidiol with high ligand selectivity. We applied the CID system to a sensitive sandwich enzyme-linked immunosorbent assay-like assay of cannabidiol in body fluids with a detection limit of ∼0.25 ng/mL. COMBINES-CID provides an efficient, cost-effective solution for expanding the biosensor toolkit for small molecule detection.
Collapse
Affiliation(s)
- Shoukai Kang
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Kristian Davidsen
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Luis Gomez-Castillo
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Huayi Jiang
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Xiaonan Fu
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Zengpeng Li
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Yu Liang
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Molly Jahn
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Mahmoud Moussa
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Liangcai Gu
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
32
|
Affiliation(s)
- Peter B. Dervan
- Division of Chemistry & Chemical EngineeringCalifornia Institute of Technology 1200 E. California Blvd. Pasadena, CA 91125 USA
| |
Collapse
|
33
|
Duong MT, Collinson-Pautz MR, Morschl E, Lu A, Szymanski SP, Zhang M, Brandt ME, Chang WC, Sharp KL, Toler SM, Slawin KM, Foster AE, Spencer DM, Bayle JH. Two-Dimensional Regulation of CAR-T Cell Therapy with Orthogonal Switches. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:124-137. [PMID: 30740516 PMCID: PMC6357218 DOI: 10.1016/j.omto.2018.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
Use of chimeric antigen receptors (CARs) as the basis of targeted adoptive T cell therapies has enabled dramatic efficacy against multiple hematopoietic malignancies, but potency against bulky and solid tumors has lagged, potentially due to insufficient CAR-T cell expansion and persistence. To improve CAR-T cell efficacy, we utilized a potent activation switch based on rimiducid-inducible MyD88 and CD40 (iMC)-signaling elements. To offset potential toxicity risks by this enhanced CAR, an orthogonally regulated, rapamycin-induced, caspase-9-based safety switch (iRC9) was developed to allow in vivo elimination of CAR-T cells. iMC costimulation induced by systemic rimiducid administration enhanced CAR-T cell proliferation, cytokine secretion, and antitumor efficacy in both in vitro assays and xenograft tumor models. Conversely, rapamycin-mediated iRC9 dimerization rapidly induced apoptosis in a dose-dependent fashion as an approach to mitigate therapy-related toxicity. This novel, regulatable dual-switch system may promote greater CAR-T cell expansion and prolonged persistence in a drug-dependent manner while providing a safety switch to mitigate toxicity concerns.
Collapse
Affiliation(s)
- MyLinh T Duong
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | | | - Eva Morschl
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - An Lu
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Slawomir P Szymanski
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Ming Zhang
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Mary E Brandt
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Wei-Chun Chang
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Kelly L Sharp
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Steven M Toler
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Kevin M Slawin
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - Aaron E Foster
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - David M Spencer
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| | - J Henri Bayle
- Bellicum Pharmaceuticals, 2130 W. Holcombe Blvd., Suite 800, Houston, TX 77030, USA
| |
Collapse
|
34
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
35
|
Nomura W, Matsumoto D, Sugii T, Kobayakawa T, Tamamura H. Efficient and Orthogonal Transcription Regulation by Chemically Inducible Artificial Transcription Factors. Biochemistry 2018; 57:6452-6459. [DOI: 10.1021/acs.biochem.8b00741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Daisuke Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Taisuke Sugii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
36
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
37
|
Zeng G, Wang Y, Bruchez MP, Liang FS. Self-Reporting Chemically Induced Protein Proximity System Based on a Malachite Green Derivative and the L5** Fluorogen Activating Protein. Bioconjug Chem 2018; 29:3010-3015. [PMID: 30016083 DOI: 10.1021/acs.bioconjchem.8b00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A unique chemically induced proximity method is engineered based on mutant antibody VL domain using a fluorogenic malachite green derivative as the inducer, which gives fluorescent signals upon VL domain dimerization while simultaneously inducing downstream biological effects.
Collapse
Affiliation(s)
- Guihua Zeng
- Department of Chemistry and Chemical Biology , University of New Mexico , 300 Terrace Street NE , Albuquerque , New Mexico 87131 , United States
| | - Yi Wang
- Department of Chemistry, Department of Biological Sciences, and Molecular Biosensor and Imaging Center , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Marcel P Bruchez
- Department of Chemistry, Department of Biological Sciences, and Molecular Biosensor and Imaging Center , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Fu-Sen Liang
- Department of Chemistry and Chemical Biology , University of New Mexico , 300 Terrace Street NE , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
38
|
Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science 2018; 359:359/6380/eaao5902. [PMID: 29590011 DOI: 10.1126/science.aao5902] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proximity, or the physical closeness of molecules, is a pervasive regulatory mechanism in biology. For example, most posttranslational modifications such as phosphorylation, methylation, and acetylation promote proximity of molecules to play deterministic roles in cellular processes. To understand the role of proximity in biologic mechanisms, chemical inducers of proximity (CIPs) were developed to synthetically model biologically regulated recruitment. Chemically induced proximity allows for precise temporal control of transcription, signaling cascades, chromatin regulation, protein folding, localization, and degradation, as well as a host of other biologic processes. A systematic analysis of CIPs in basic research, coupled with recent technological advances utilizing CRISPR, distinguishes roles of causality from coincidence and allows for mathematical modeling in synthetic biology. Recently, induced proximity has provided new avenues of gene therapy and emerging advances in cancer treatment.
Collapse
Affiliation(s)
- Benjamin Z Stanton
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Emma J Chory
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald R Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
39
|
Bourke AM, Bowen AB, Kennedy MJ. New approaches for solving old problems in neuronal protein trafficking. Mol Cell Neurosci 2018; 91:48-66. [PMID: 29649542 DOI: 10.1016/j.mcn.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision.
Collapse
Affiliation(s)
- Ashley M Bourke
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
40
|
Zewe JP, Wills RC, Sangappa S, Goulden BD, Hammond GR. SAC1 degrades its lipid substrate PtdIns4 P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. eLife 2018; 7:35588. [PMID: 29461204 PMCID: PMC5829913 DOI: 10.7554/elife.35588] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Gradients of PtdIns4P between organelle membranes and the endoplasmic reticulum (ER) are thought to drive counter-transport of other lipids via non-vesicular traffic. This novel pathway requires the SAC1 phosphatase to degrade PtdIns4P in a 'cis' configuration at the ER to maintain the gradient. However, SAC1 has also been proposed to act in 'trans' at membrane contact sites, which could oppose lipid traffic. It is therefore crucial to determine which mode SAC1 uses in living cells. We report that acute inhibition of SAC1 causes accumulation of PtdIns4P in the ER, that SAC1 does not enrich at membrane contact sites, and that SAC1 has little activity in 'trans', unless a linker is added between its ER-anchored and catalytic domains. The data reveal an obligate 'cis' activity of SAC1, supporting its role in non-vesicular lipid traffic and implicating lipid traffic more broadly in inositol lipid homeostasis and function.
Collapse
Affiliation(s)
- James P Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Sahana Sangappa
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Brady D Goulden
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Gerald Rv Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
41
|
Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 2017; 8:560. [PMID: 28916764 PMCID: PMC5601922 DOI: 10.1038/s41467-017-00644-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023] Open
Abstract
Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9–MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes. Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.
Collapse
Affiliation(s)
- Simon M G Braun
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jacob G Kirkland
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emma J Chory
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dylan Husmann
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph P Calarco
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gerald R Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
42
|
Abstract
The induced dimerization of two distinct receptors through a heterobifunctional inducer is prevalent among all levels of cellular signaling processes, yet its complexity poses difficulty for systematic quantitative analysis. This paper first shows how to calculate the amount of any possible complex or monomer of heteroligand and two receptors present at equilibrium. The theory is subsequently applied to the determination of three independent equilibrium parameters involved in the rapamycin induced FKBP and FRB dimerization, in which all parameters were simultaneously estimated using one set of fluorescence resonance energy transfer (FRET) experiments. A MATLAB script is provided for parametric fitting.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, P.R. China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, P.R. China
| |
Collapse
|
43
|
Targeting protein function: the expanding toolkit for conditional disruption. Biochem J 2017; 473:2573-89. [PMID: 27574023 PMCID: PMC5003692 DOI: 10.1042/bcj20160240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/20/2016] [Indexed: 01/06/2023]
Abstract
A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours.
Collapse
|
44
|
Fronik P, Gaiser BI, Sejer Pedersen D. Bitopic Ligands and Metastable Binding Sites: Opportunities for G Protein-Coupled Receptor (GPCR) Medicinal Chemistry. J Med Chem 2017; 60:4126-4134. [DOI: 10.1021/acs.jmedchem.6b01601] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philipp Fronik
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Birgit I. Gaiser
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
45
|
De Clercq DJH, Tavernier J, Lievens S, Van Calenbergh S. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling. ACS Chem Biol 2016; 11:2075-90. [PMID: 27267544 DOI: 10.1021/acschembio.5b00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sam Lievens
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
46
|
Luo J, Liu Q, Morihiro K, Deiters A. Small-molecule control of protein function through Staudinger reduction. Nat Chem 2016; 8:1027-1034. [PMID: 27768095 PMCID: PMC5119652 DOI: 10.1038/nchem.2573] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl tRNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active, wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (EGFP), protein translocation (nuclear localization sequence), DNA recombination (Cre), and gene editing (Cas9).
Collapse
Affiliation(s)
- Ji Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Qingyang Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Kunihiko Morihiro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
47
|
Rapamycin-induced oligomer formation system of FRB–FKBP fusion proteins. J Biosci Bioeng 2016; 122:40-6. [DOI: 10.1016/j.jbiosc.2015.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022]
|
48
|
Schukur L, Fussenegger M. Engineering of synthetic gene circuits for (re-)balancing physiological processes in chronic diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:402-22. [DOI: 10.1002/wsbm.1345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Lina Schukur
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
- Faculty of Science; University of Basel; Basel Switzerland
| |
Collapse
|
49
|
Estep JA, Sternburg EL, Sanchez GA, Karginov FV. Immunoblot screening of CRISPR/Cas9-mediated gene knockouts without selection. BMC Mol Biol 2016; 17:9. [PMID: 27038923 PMCID: PMC4818936 DOI: 10.1186/s12867-016-0061-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/18/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Targeted genomic editing using the CRISPR/Cas9 methodology has opened exciting new avenues in probing gene function in virtually any model system, including cultured mammalian cells. Depending on the desired mutation, several experimental options exist in the isolation of clonal lines, such as selection with introduced markers, or screening by PCR amplification of genomic DNA. However, streamlined approaches to establishing deletion and tagging mutants with minimal genomic perturbation are of interest in applying this methodology. RESULTS We developed a procedure for rapid screening of clonal cell lines for the deletion of a protein of interest following CRISPR/Cas9 targeting in the absence of selective pressure based on dot immunoblots. To assess the technique, we probed clonal isolates of 293-TREx cells that were targeted with three separate sgRNAs against the HuR gene. Validation of knockout candidates by western blot indicated that the normalized protein abundances indicated by the dot blot serve as accurate predictors of deletion. In total, 32 independent biallelic deletion lines out of 248 screened clones were isolated, and recovery of null mutants ranged from 6 to 36% for the individual sgRNAs. Genomic sequencing verified small deletions at the targeted locus. CONCLUSIONS Clonal screening for CRISPR/Cas9-mediated editing events using dot immunoblot is a straightforward and efficient approach that facilitates rapid generation of genomic mutants to study gene function.
Collapse
Affiliation(s)
- Jason A. Estep
- Department of Cell Biology and Neuroscience, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521 USA
| | - Erin L. Sternburg
- Department of Cell Biology and Neuroscience, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521 USA
| | - Gissell A. Sanchez
- Department of Cell Biology and Neuroscience, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521 USA
| | - Fedor V. Karginov
- Department of Cell Biology and Neuroscience, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
50
|
Xu B, Zhou X, Stains CI. An improved miniprotein host for fluorogenic supramolecular assembly on the surface of living cells. RSC Adv 2016. [DOI: 10.1039/c6ra01215a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A new host–guest pair produces a significant increase in the brightness of supramolecular complexes on the surface of living cells.
Collapse
Affiliation(s)
- Bi Xu
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| | - Xinqi Zhou
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| | - Cliff I. Stains
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| |
Collapse
|