1
|
Jiang Y, Shin HH, Park BS, Li Z. Potential siderophore-dependent mutualism in the harmful dinoflagellate Alexandrium pacificum (Group IV) and bacterium Photobacterium sp. TY1-4 under iron-limited conditions. HARMFUL ALGAE 2024; 139:102726. [PMID: 39567080 DOI: 10.1016/j.hal.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 11/22/2024]
Abstract
Specific bacterial species induce algal blooms by producing growth-promoting substances, such as siderophores, under iron-limited conditions. However, the molecular mechanisms underlying these effects remain poorly understood. This study investigates the interactions between the harmful dinoflagellate Alexandrium pacificum (Group IV) and siderophore-producing bacteria, with a focus on iron acquisition facilitated by bacterial siderophores. During algal bloom seasons in the South Sea of Korea, Photobacterium sp. TY1-4 was isolated, which enhances A. pacificum cell density under iron-deficient conditions, TY1-4 can use the sterile exudates from A. pacificum as the sole source of carbon, suggesting a mutualistic relationship. Transcriptomic and genomic analyses revealed siderophore-mediated redox-based signaling and non-reductive pathways enhancing iron bioavailability. Photobacterium sp. TY1-4 initiates siderophore production through quorum sensing, whereas A. pacificum utilizes specific receptors and transporters for hydroxamate-type siderophores (ApFHUA and ApFHUC) to uptake iron. Three redox key iron-uptake genes were also identified in A. pacificum: membrane-bound ferroxidase ApFET3, high-affinity iron permease ApFTR1, and ferric-chelate reductases/oxidoreductases ApFRE1, with transcription levels inversely related to bioavailable iron. Increased iron bioavailability mediated by siderophores alleviates iron stress in A. pacificum, supporting its growth in iron-scarce environments. Additionally, A. pacificum co-cultured with Photobacterium sp. TY1-4 synthesized high-toxicity STXs, including GTX4, GTX2, and STX. These findings highlight the critical role of bacterial siderophores in iron binding and their potential impact on harmful algal bloom dynamics.
Collapse
Affiliation(s)
- Yue Jiang
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Integrative Food Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeon Ho Shin
- Division of Fisheries Life Science, Pukyong National University, Busan 48574, Republic of Korea
| | - Bum Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
2
|
González AG, Poitrasson F, Jiménez-Villacorta F, Shirokova LS, Pokrovsky OS. Contrasted redox-dependent structural control on Fe isotope fractionation during its adsorption onto and assimilation by heterotrophic soil bacteria. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:344-356. [PMID: 38169006 DOI: 10.1039/d3em00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Despite the importance of structural control on metal stable isotope fractionation in inorganic and abiotic systems, the link between metal structural changes and related isotopic fractionation during reactions with organic surfaces and live cells remains poorly established. We conducted reversible adsorption of Fe(II) and Fe(III) on the surface of exopolysaccharide (EPS)-rich and EPS-poor Pseudomonas aureofaciens, and we allowed Fe intracellular uptake by growing cells. We analyzed the Fe isotopic composition of the remaining fluid and cell biomass, and compared the isotopic fractionation during adsorption and assimilation reaction with relative changes in Fe structural status between aqueous solution and bacterial cells, based on available and newly collected X-ray absorption spectroscopy (XAS) observations. Iron(III) adsorption onto P. aureofaciens at 2.8 ≤ pH ≤ 6.0 produced an enrichment of the cell surface in heavier isotopes with Δ57Fecell-solution ranging from +0.7 to +2.1‰, without a link to pH in EPS-rich cultures. In contrast, the magnitude of isotopic fractionation increased with pH in EPS-poor cultures. Iron(II) adsorption produced an even larger enrichment of the cell surface in heavier isotopes, by up to 3.2‰, tentatively linked to Fe(III) hydroxide precipitation. Intracellular assimilation of Fe(II) favored heavier isotopes and led to Δ57Fecell-solution of +0.8‰. In addition, Fe(III) cellular uptake produced an enrichment of the bacterial biomass in lighter isotopes with Δ57Fecell-solution of -1‰. The XAS analyses demonstrated the dominance of Fe(III)-phosphate complexes both at the cell surface and in the cell interior. We suggest that heavier isotope enrichment of the cell surface relative to the aqueous solution is due to strong Fe(III)-phosphoryl surface complexes and Fe complexation to ligands responsible for metal transfer from the surface to the inner cell. In case of Fe(II) adsorption or assimilation, its partial oxidation within the cell compartments may lead to cell enrichment in heavier isotopes. In contrast, loss of symmetry of assimilated Fe(III) relative to the aqueous Fe3+ ion and longer bonds of intracellular ions relative to aqueous Fe(III)-citrate or hydroxo-complexes could produce an enrichment of cells in lighter isotopes. The versatile nature of Fe(II) and Fe(III) fractionation without a distinct effect of pH and surface exopolysaccharide coverage suggests that, in natural soil and sedimentary environments, Fe isotope fractionation during interaction with heterotrophic bacteria will be primarily governed by Fe complexation with DOM and Fe redox status in the soil pore water.
Collapse
Affiliation(s)
- Aridane G González
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
| | - Franck Poitrasson
- Géosciences Environnement Toulouse (GET), CNRS UMR 5563, UPS-IRD-CNES 14-16, Avenue Edouard Belin, 31400, Toulouse, France
| | | | - Liudmila S Shirokova
- Géosciences Environnement Toulouse (GET), CNRS UMR 5563, UPS-IRD-CNES 14-16, Avenue Edouard Belin, 31400, Toulouse, France
- N.P. Laverov Federal Center for Integrated Arctic Research (FCIArctic), Russian Academy of Sciences, Arkhangelsk, Russia
| | - Oleg S Pokrovsky
- Géosciences Environnement Toulouse (GET), CNRS UMR 5563, UPS-IRD-CNES 14-16, Avenue Edouard Belin, 31400, Toulouse, France
- BIO-GEO-CLIM Laboratory, National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
3
|
Guerreiro CV, Ziveri P, Cavaleiro C, Stuut JBW. Coccolith-calcite Sr/Ca as a proxy for transient export production related to Saharan dust deposition in the tropical North Atlantic. Sci Rep 2024; 14:4295. [PMID: 38383618 PMCID: PMC10881577 DOI: 10.1038/s41598-024-54001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Atmospheric dust deposition can modulate the earth's climate and atmospheric CO2 through fertilising the ocean (nutrient source) and by accelerating the biological carbon pump through fuelling the ballasting process. To distinguish the biogeochemical effects of Saharan dust with respect to fertilization and ballasting, and to gain a broader perspective on the coccolith calcite Sr/Ca in relation to the drivers of coccolith export production, we determined the coccolith-Sr/Ca from a one-year (2012-2013) time-series sediment trap record in the western tropical North Atlantic (M4-49°N/12°W). High Sr/Ca were linked to enhanced export production in the upper part of the photic zone, most notably under windier, dry, and dustier conditions during spring. Attenuated Sr/Ca in the autumn probably reflect a combination of lower Sr-incorporation by dominant but small-size placolith-bearing species and the presence of "aged" coccoliths rapidly scavenged during a highly productive and usually fast export event, likely added by (wet) dust ballasting. Higher Sr/Ca observed in the large coccolith size fractions support the existing notion that larger-sized coccolithophores incorporate more Sr during calcification under the same environmental conditions. The presence of the abnormally Sr-rich species Scyphosphaera apsteinii is also shown in the separated large fraction of our Sr/Ca seasonal data.
Collapse
Affiliation(s)
- C V Guerreiro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculty of Sciences of the University of Lisbon (FCUL), Lisbon, Portugal.
- IDL, Instituto Dom Luiz, FCUL, Lisbon, Portugal.
- Department of Plant Biology, FCUL, Lisbon, Portugal.
| | - P Ziveri
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- ICTA-UAB, Institut de Ciència i Tecnologia Ambientals-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Cavaleiro
- Marine Geology and Georesources (DivGM), IPMA - Portuguese Institute for Sea and Atmosphere, Lisbon, Portugal
| | - J-B W Stuut
- Department of Ocean Systems, NIOZ Royal - Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit (VU), Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chen L, Di P, Feng J, Chen D, Li N, Li Y. Impact of dust deposition on the growth of marine autotrophic and heterotrophic microorganisms: Evidence from the South China Sea. MARINE POLLUTION BULLETIN 2023; 197:115749. [PMID: 37924735 DOI: 10.1016/j.marpolbul.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Aeolian dust can provide nutrients for the ocean and affect the growth of phytoplankton. However, the impacts of dust deposition on autotrophic and heterotrophic microorganisms have rarely been studied. In this study, we conducted two microcosm experiments in the low-nutrient and low-chlorophyll environment of the South China Sea and found that dust did not stimulate the abundance of autotrophic and heterotrophic microorganisms. Our results show that dust contains most of the unreacted iron-bearing minerals, and thus provides limited bioavailable iron and nitrogen for bacterioplankton and phytoplankton growth. These results elucidate the overlooked impacts of the properties of the iron-bearing minerals in aeolian dust on microbial communities, which may play an important role in marine ecosystems and climate change.
Collapse
Affiliation(s)
- Linying Chen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Pengfei Di
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Junxi Feng
- Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou 510075, China
| | - Duofu Chen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Niu Li
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yazi Li
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Freitas MAMD, Cunha-Ferreira IC, Leal CV, Fernandez JCC, Omachi CY, Campos LS, Masi BP, Krüger RH, Hajdu E, Thompson CC, Thompson FL. Microbiome diversity from sponges biogeographically distributed between South America and Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163256. [PMID: 37011689 DOI: 10.1016/j.scitotenv.2023.163256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.
Collapse
Affiliation(s)
- Mayanne A M de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Camille V Leal
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio C C Fernandez
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Y Omachi
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lucia S Campos
- Department of Zoology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno P Masi
- Laboratory of Marine Ecology and Fishery Oceanography of the Amazon (LEMOPA), Socio environmental and Water Resources Institute (ISARH), Federal Rural University of the Amazon (UFRA), Belém, PA, Brazil
| | - Ricardo H Krüger
- Laboratory of Enzymology, Biology Institute, University of Brasília (UNB), Brasília, Brazil
| | - Eduardo Hajdu
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Duan L, Song J, Li X, Yuan H, Zhuang W. Potential risks of CO 2 removal project based on carbonate pump to marine ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160728. [PMID: 36496016 DOI: 10.1016/j.scitotenv.2022.160728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The development of marine carbon sequestration project has an important potential for carbon neutralization in the short-term (several decades). Marine carbon sequestration technology is based on biological and carbonate pumps to increase particulate organic carbon and authigenic insoluble carbonates to the deep sea or seafloor, aiming to achieve permanent carbon sequestration. Particularly, chemical carbon sequestration technology based on carbonate pump is proposed and considered to achieve short-term marine carbon sequestration in recent years. This technology mainly includes alkaline mineral addition and combining CO32- to insoluble carbonates to improve marine carbon fixation capacity. Potential marine ecosystem risks of chemical CO2 removal method should be considered before being a feasible technology. We reviewed the potential effects of marine chemical carbon sequestration project on marine organisms. Marine chemical carbon sequestration had two main effects on marine organisms: released chemicals effect, and particle effect. Released chemicals in mineral weathering directly affected phytoplankton and bacteria community. Particles formed during carbon sequestration process mainly affected filter feeding organisms. The toxic effects of particles on aquatic organisms increased with decreasing sizes and increasing concentrations of particle. Algae and crustaceans were the most sensitive groups exposed to metal nanoparticles (nm-μm) in seawaters, thus could be used as target species to evaluate ecological risk of small particles generated in chemical carbon sequestration project. Embryos or larva of filter feeding organisms were more sensitive to large clay and metal microparticles (μm‑mm) than adults, thus could be used as sensitive groups to establish safety concentration of large particles. The relatively inert metal nanoparticles and microparticles had higher safety concentrations than active ones. These particle concentration thresholds could be as a reference to design concentrations and initial sizes of applied minerals in marine chemical carbon sequestration project. This will ensure that the ecological risk is minimized when carbon fixation efficiency is maximized.
Collapse
Affiliation(s)
- Liqin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huamao Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
7
|
Schwab F. Opportunities and Limitations of Nanoagrochemicals. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fabienne Schwab
- Adolphe Merkle Institute (AMI) University of Fribourg Chemin des Verdiers 4 CH- 1700 Fribourg
| |
Collapse
|
8
|
Zhu J, Cheng K, Chen G, Zhou J, Cai Z. Complete Genome Sequence of Vibrio maritimus BH16, a Siderophore-Producing Mutualistic Bacterium Isolated from Diatom Skeletonema costatum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:723-726. [PMID: 35822853 DOI: 10.1094/mpmi-01-22-0025-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, P. R. China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, P. R. China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
| |
Collapse
|
9
|
Qixin L, Xuan F, Zhiya S, Wenxin S, Shuo W, Ji L. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing. BIORESOURCE TECHNOLOGY 2022; 354:127161. [PMID: 35429596 DOI: 10.1016/j.biortech.2022.127161] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In order to further obtain sustainable wastewater treatment technology, in-depth analysis based on algal-bacterial symbiosis, quorum sensing signal molecules and algal-bacterial relationship will lay the foundation for the synergistic algal-bacterial wastewater treatment process. The methods of enhancing algae and bacteria wastewater treatment technology were systematically explored, including promoting symbiosis, reducing algicidal behavior, eliminating the interference of quorum sensing inhibitor, and developing algae and bacteria granular sludge. These findings can provide guidance for sustainable economic and environmental development, and facilitate carbon emissions reduction by using algae and bacteria synergistic wastewater treatment technology in further attempts. The future work should be carried out in the following four aspects: (1) Screening of dominant microalgae and bacteria; (2) Coordination of stable (emerging) contaminants removal; (3) Utilization of algae to produce fertilizers and feed (additives), and (4) Constructing recombinant algae and bacteria for reducing carbon emissions and obtaining high value-added products.
Collapse
Affiliation(s)
- Liu Qixin
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feng Xuan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Sheng Zhiya
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 2W2, Canada
| | - Shi Wenxin
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Wang Shuo
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| | - Li Ji
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| |
Collapse
|
10
|
Geochronological Evidence Inferring Carbonate Compensation Depth Shoaling in the Philippine Sea after the Mid-Brunhes Event. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Carbonate compensation depth (CCD) is an important factor in the global deep ocean and in global carbon cycling; however, its variabilities have not been well documented in previous studies. In this study, we investigate two deep-sea cores collected from the Philippine Sea in terms of geochronology and geochemical properties over the past ~900 kyr. The principle results are as follows: (1) Two magnetozones are determined from the sediment’s magnetic records, which can be correlated with the Brunhes and Matuyama chrons in the geomagnetic polarity timescale. (2) The age models can be refined by tuning the Ba and Sm intensities of the two studied cores to the global ice volume, and the estimated sediment accumulation rate is ~4 mm/kyr. (3) Chalky mud and the bulk carbon δ13C record vary abruptly at ~430 ka and imply 200 m shoaling of the CCD. Based on these results, a close link is inferred between marine productivity, aeolian dust, and CCD changes, which can be correlated with a major change that occurred during the Mid-Brunhes Event. Therefore, we propose that the sedimentary processes in the Philippine Sea are evidence of global climate change, providing a unique window to observe interactions between various environmental systems.
Collapse
|
11
|
Wang B, Chen M, Zheng M, Qiu Y. The biological uptake of dissolved iron in the changing Daya Bay, South China Sea: Effect of pH and DO. MARINE POLLUTION BULLETIN 2022; 178:113635. [PMID: 35421641 DOI: 10.1016/j.marpolbul.2022.113635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The oceanic acidification and coastal hypoxia have potential to enhance biological uptake of dissolved iron (Fe) by phytoplankton. In this study, the Fe uptake rate (FeUR) in Daya Bay was significantly negatively correlated with pH and dissolved oxygen (DO) (r = -0.81 and -0.73, respectively, p < 0.001). In addition, binary regression (FeUR = -1.45 × pH - 0.10 × DO + 13.64) also indicated that both pH and DO played key roles in FeUR variations. As pH and DO decreased, Fe uptake by phytoplankton was promoted, and the contribution of nano-phytoplankton to Fe uptake increased significantly, while that of pico-FeUR decreased. These will result in the phytoplankton community to be miniaturized and Fe requirement of phytoplankton goes higher, thereby leading changes of phytoplankton composition and coastal ecosystem. This study helps to understand how Fe could affect the coastal ecosystem under the increasing anthropogenic influences.
Collapse
Affiliation(s)
- Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Min Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Minfang Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yusheng Qiu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Yuan P, Liu D. Mineral-enhanced biological pump—A strategy based on mineral-microbe interactions for increasing carbon sink in water. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Rocha GM, Salvador B, de Souza Laino P, Santos GHC, Demoner LE, da Conceição LR, Teixeira-Amaral P, Mill GN, Ghisolfi RD, Costa ES, Longhini CM, da Silva CA, Cagnin RC, Sá F, Neto RR, Junior CD, Oliveira KS, Grilo CF, da Silva Quaresma V, Bonecker SLC, Fernandes LFL. Responses of marine zooplankton indicators after five years of a dam rupture in the Doce River, Southeastern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151249. [PMID: 34715214 DOI: 10.1016/j.scitotenv.2021.151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Since November of 2015, when ore tailings from a dam rupture reached the Atlantic Ocean, researchers are trying to assess the degree of impact across the Doce River and adjacent coastal area. This study aims to use the zooplankton dynamics as a tool to evaluate the environmental impact in the coastal region, five years after the rupture, during periods of low and high river flow. Doce River flow varied from 49 to 5179 m3/s and structured the zooplankton community between periods of low and high river flow, but salinity and chlorophyll-a had stronger correlation with depth (r = 0.40 and - 0.40 respectively) than with the Doce River discharge variation along the sampling period (r < 0.2). On the other hand, inorganic particles in the water and total metal concentration (dissolved + particulate), used as tracers of the iron enriched tailing (Al, Cd, Cr, Cu, Fe, V), were correlated with fluvial discharge and showed to be the main factor driving the zooplankton community dynamics. For assessing the degree of environmental impact, we tested the ecological indexes for the zooplankton community. Margalef Richness, Pielou Evenness and Shannon-Wiener Diversity varied from 2.52, 0.40 and 1.39 (all registered during high river flow period) to 9.02, 0.85 and 3.44 (all registered during low river flow period), respectively. Along with those community indicators, we evaluated the response of representative taxonomical genera such as Paracalanus, Oikopleura and Temora, regarding the Doce River flow, and found population patterns that established a baseline for future monitoring in the region. Our results showed that the zooplankton community is more fragile when the river discharge is stronger, and this pattern is confirmed by all indicators tested.
Collapse
Affiliation(s)
- Gustavo Martins Rocha
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil.
| | - Bianca Salvador
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Pedro de Souza Laino
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Gabriel Harley Costa Santos
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Lilian Elisa Demoner
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Laura Rodrigues da Conceição
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Priscila Teixeira-Amaral
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Guilherme Nogueira Mill
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Renato David Ghisolfi
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Eduardo Schettini Costa
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Cybelle Menolli Longhini
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Cesar Alexandro da Silva
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Renata Caiado Cagnin
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Fabian Sá
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Renato Rodrigues Neto
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Camilo Dias Junior
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Kyssyanne Samihra Oliveira
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Caroline Fiório Grilo
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Valéria da Silva Quaresma
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Sérgio Luiz Costa Bonecker
- Universidade Federal do Rio de Janeiro, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 - CCS, bloco A, sala A0-0850 Cid. Universitário, Ilha do Fundão 21941-902, Brazil
| | - Luiz Fernando Loureiro Fernandes
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| |
Collapse
|
14
|
Mazzotta MG, McIlvin MR, Moran DM, Wang DT, Bidle KD, Lamborg CH, Saito MA. Characterization of the metalloproteome of Pseudoalteromonas (BB2-AT2): biogeochemical underpinnings for zinc, manganese, cobalt, and nickel cycling in a ubiquitous marine heterotroph. Metallomics 2021; 13:6409836. [PMID: 34694406 DOI: 10.1093/mtomcs/mfab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022]
Abstract
Pseudoalteromonas (BB2-AT2) is a ubiquitous marine heterotroph, often associated with labile organic carbon sources in the ocean (e.g. phytoplankton blooms and sinking particles). Heterotrophs hydrolyze exported photosynthetic materials, components of the biological carbon pump, with the use of diverse metalloenzymes containing zinc (Zn), manganese (Mn), cobalt (Co), and nickel (Ni). Studies on the metal requirements and cytosolic utilization of metals for marine heterotrophs are scarce, despite their relevance to global carbon cycling. Here, we characterized the Zn, Mn, Co, and Ni metallome of BB2-AT2. We found that the Zn metallome is complex and cytosolic Zn is associated with numerous proteins for transcription (47.2% of the metallome, obtained from singular value decomposition of the metalloproteomic data), translation (33.5%), proteolysis (12.8%), and alkaline phosphatase activity (6.4%). Numerous proteolytic enzymes also appear to be putatively associated with Mn, and to a lesser extent, Co. Putative identification of the Ni-associated proteins, phosphoglucomutase and a protein in the cupin superfamily, provides new insights for Ni utilization in marine heterotrophs. BB2-AT2 relies on numerous transition metals for proteolytic and phosphatase activities, inferring an adaptative potential to metal limitation. Our field observations of increased alkaline phosphatase activity upon addition of Zn in field incubations suggest that such metal limitation operates in sinking particulate material collected from sediment traps. Taken together, this study improves our understanding of the Zn, Mn, Co, and Ni metallome of marine heterotrophic bacteria and provides novel and mechanistic frameworks for understanding the influence of nutrient limitation on biogeochemical cycling.
Collapse
Affiliation(s)
- Michael G Mazzotta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Matthew R McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Dawn M Moran
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David T Wang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Carl H Lamborg
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Mak A Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
15
|
Yarimizu K, Mardones JI, Paredes-Mella J, Norambuena-Subiabre L, Carrano CJ, Maruyama F. The effect of iron on Chilean Alexandrium catenella growth and paralytic shellfish toxin production as related to algal blooms. Biometals 2021; 35:39-51. [PMID: 34716889 PMCID: PMC8803708 DOI: 10.1007/s10534-021-00349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly brought severe ecological and economic impacts to Chile, especially in the southern region, where the shellfish and salmon industries are world-famous. The mechanisms of such HABs have been intensively studied but are still unclear. Nutrient overloading is one of the often-discussed drivers for HABs. The present study used the A. catenella strain isolated from southern Chile to investigate how iron conditions could affect their growth and toxin production as related to HAB. Our results showed that an optimum concentration of iron was pivotal for proper A. catenella growth. Thus, while excess iron exerted a toxic effect, low iron media led to iron insufficiency and growth inhibition. In addition, the study shows that the degree of paralytic shellfish toxin production by A. catenella varied depending on the iron concentration in the culture media. The A. catenella strain from southern Chile produced GTX1-4 exclusively in the fmol cell−1 scale. Based on these findings, we suggest that including iron and paralytic shellfish toxin measurements in the fields can improve the current HAB monitoring and contribute to an understanding of A. catenella bloom dynamics in Chile.
Collapse
Affiliation(s)
- Kyoko Yarimizu
- Microbial Genomics and Ecology, Office of Academic Research and Industry-Government Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511 Japan
| | - Jorge I. Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, 5480000 Puerto Montt, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Javier Paredes-Mella
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, 5480000 Puerto Montt, Chile
| | - Luis Norambuena-Subiabre
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 547, 5480000 Puerto Montt, Chile
| | - Carl J. Carrano
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-1030 USA
| | - Fumito Maruyama
- Microbial Genomics and Ecology, Office of Academic Research and Industry-Government Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511 Japan
| |
Collapse
|
16
|
Sha J, Xiong H, Li C, Lu Z, Zhang J, Zhong H, Zhang W, Yan B. Harmful algal blooms and their eco-environmental indication. CHEMOSPHERE 2021; 274:129912. [PMID: 33979937 DOI: 10.1016/j.chemosphere.2021.129912] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs) in freshwater lakes and oceans date back to as early as the 19th century, which can cause the death of aquatic and terrestrial organisms. However, it was not until the end of the 20th century that researchers had started to pay attention to the hazards and causes of HABs. In this study, we analyzed 5720 published literatures on HABs studies in the past 30 years. Our review presents the emerging trends in the past 30 years on HABs studies, the environmental and human health risks, prevention and control strategies and future developments. Therefore, this review provides a global perspective of HABs and calls for immediate responses.
Collapse
Affiliation(s)
- Jun Sha
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China; School of Tourism and Resource Environment, Qiannan Normal University for Nationalities, Duyun, China
| | - Haiyan Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35924, United States
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
17
|
Muratore D, Weitz JS. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Affiliation(s)
- Maureen Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Ewunkem AJ, Rodgers L, Campbell D, Staley C, Subedi K, Boyd S, Graves JL. Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:790. [PMID: 33808798 PMCID: PMC8003623 DOI: 10.3390/nano11030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Both ionic and nanoparticle iron have been proposed as materials to control multidrug-resistant (MDR) bacteria. However, the potential bacteria to evolve resistance to nanoparticle bacteria remains unexplored. To this end, experimental evolution was utilized to produce five magnetite nanoparticle-resistant (FeNP1-5) populations of Escherichia coli. The control populations were not exposed to magnetite nanoparticles. The 24-h growth of these replicates was evaluated in the presence of increasing concentrations magnetite NPs as well as other ionic metals (gallium III, iron II, iron III, and silver I) and antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). Scanning electron microscopy was utilized to determine cell size and shape in response to magnetite nanoparticle selection. Whole genome sequencing was carried out to determine if any genomic changes resulted from magnetite nanoparticle resistance. After 25 days of selection, magnetite resistance was evident in the FeNP treatment. The FeNP populations also showed a highly significantly (p < 0.0001) greater 24-h growth as measured by optical density in metals (Fe (II), Fe (III), Ga (III), Ag, and Cu II) as well as antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). The FeNP-resistant populations also showed a significantly greater cell length compared to controls (p < 0.001). Genomic analysis of FeNP identified both polymorphisms and hard selective sweeps in the RNA polymerase genes rpoA, rpoB, and rpoC. Collectively, our results show that E. coli can rapidly evolve resistance to magnetite nanoparticles and that this result is correlated resistances to other metals and antibiotics. There were also changes in cell morphology resulting from adaptation to magnetite NPs. Thus, the various applications of magnetite nanoparticles could result in unanticipated changes in resistance to both metal and antibiotics.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - LaShunta Rodgers
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Daisha Campbell
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Constance Staley
- Department of Chemistry, Bennett College, Greensboro, NC 27401, USA;
| | - Kiran Subedi
- College of Agricultural and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Sada Boyd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - Joseph L. Graves
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
20
|
Tsukidate H, Otake S, Kato Y, Yoshimura K, Kitatsuji M, Yoshimura E, Suzuki M. Iron Elution from Iron and Steel Slag Using Bacterial Complex Identified from the Seawater. MATERIALS 2021; 14:ma14061477. [PMID: 33803029 PMCID: PMC8002712 DOI: 10.3390/ma14061477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
Iron and steel slag (ISS) is a byproduct of iron refining processes. The lack of iron in seawater can cause barren grounds where algae cannot grow. To improve the barren grounds of the sea, a supply of iron to the seawater is necessary. This study focused on bacteria interacting with ISS and promoting iron elution in seawater. Sulfitobacter sp. (TO1A) and Pseudomonas sp. (TO1B) were isolated from Tokyo Bay and Sagami Bay. The co-culture of both bacteria promoted more iron elution than individual cultures. After the incubation of both bacteria with ISS, quartz and vaterite appeared on the surface of the ISS. To maintain continuous iron elution from the ISS in the seawater, we also isolated Pseudoalteromonas sp. (TO7) that formed a yellow biofilm on the ISS. Iron was eluted by TO1A and TO1B, and biofilm was synthesized by TO7 continuously in the seawater. The present research is expected to contribute to the improvement of ISS usage as a material for the construction of seaweed forests.
Collapse
Affiliation(s)
- Hidenori Tsukidate
- Department of Applied Biological Chemistry, Graduate School of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (H.T.); (S.O.); (Y.K.); (E.Y.)
| | - Seika Otake
- Department of Applied Biological Chemistry, Graduate School of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (H.T.); (S.O.); (Y.K.); (E.Y.)
| | - Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (H.T.); (S.O.); (Y.K.); (E.Y.)
| | - Ko Yoshimura
- Advanced Technology Research Laboratories, Nippon Steel, 20-1 Shintomi, Futtsu, Chiba 293-0011, Japan;
| | - Masafumi Kitatsuji
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Tauhaku, Sendai, Miyagi 982-0215, Japan;
| | - Etsuro Yoshimura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (H.T.); (S.O.); (Y.K.); (E.Y.)
- Department of Liberal Arts, The Open University of Japan, 2-11 Wakaba, Mishima-ku, Chiba 261-8586, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (H.T.); (S.O.); (Y.K.); (E.Y.)
- Correspondence:
| |
Collapse
|
21
|
Qiu GW, Lis H, Qiu BS, Keren N. Long-term iron deprivation and subsequent recovery uncover heterogeneity in the response of cyanobacterial populations. Environ Microbiol 2021; 23:1793-1804. [PMID: 33615658 DOI: 10.1111/1462-2920.15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
Cyanobacteria are globally important primary producers and nitrogen fixers. They are frequently limited by iron bioavailability in natural environments that often fluctuate due to rapid consumption and irregular influx of external Fe. Here we identify a succession of physiological changes in Synechocystis sp. PCC 6803 occurring over 14-16 days of iron deprivation and subsequent recovery. We observe several adaptive strategies that allow cells to push their metabolic limits under the restriction of declining intracellular Fe quotas. Interestingly, cyanobacterial populations exposed to prolonged iron deprivation showed discernible heterogeneity in cellular auto-fluorescence during the recovery process. Using FACS and microscopy techniques we revealed that only cells with high auto-fluorescence were able to grow and reconstitute thylakoid membranes. We propose that ROS-mediated damage is likely to be associated with the emergence of the two subpopulations, and, indeed, a rapid increase in intracellular ROS content was observed during the first hours following iron addition to Fe-starved cultures. These results suggest that an increasing iron supply is a double-edged sword - posing both an opportunity and a risk. Therefore, phenotypic heterogeneity within populations is crucial for the survival and proliferation of organisms facing iron fluctuations within natural environments.
Collapse
Affiliation(s)
- Guo-Wei Qiu
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190402, Israel.,School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hagar Lis
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190402, Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Nir Keren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190402, Israel
| |
Collapse
|
22
|
Thomas MD, Ewunkem AJ, Boyd S, Williams DK, Moore A, Rhinehardt KL, Van Beveren E, Yang B, Tapia A, Han J, Harrison SH, Graves JL. Too much of a good thing: Adaption to iron (II) intoxication in Escherichia coli. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:53-67. [PMID: 33717488 PMCID: PMC7937436 DOI: 10.1093/emph/eoaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
Background There has been an increased usage of metallic antimicrobial materials to control pathogenic and multi-drug resistant bacteria. Yet, there is a corresponding need to know if this usage leads to genetic adaptations that could produce more harmful strains. Methodology Experimental evolution was used to adapt Escherichia coli K-12 MG1655 to excess iron (II) with subsequent genomic analysis. Phenotypic assays and gene expression studies were conducted to demonstrate pleiotropic effects associated with this adaptation and to elucidate potential cellular responses. Results After 200 days of adaptation, populations cultured in excess iron (II), showed a significant increase in 24-h optical densities compared to controls. Furthermore, these populations showed increased resistance toward other metals [iron (III) and gallium (III)] and to traditional antibiotics (bacitracin, rifampin, chloramphenicol and sulfanilamide). Genomic analysis identified selective sweeps in three genes; fecA, ptsP and ilvG unique to the iron (II) resistant populations, and gene expression studies demonstrated that their cellular response may be to downregulate genes involved in iron transport (cirA and fecA) while increasing the oxidative stress response (oxyR, soxS and soxR) prior to FeSO4 exposure. Conclusions and implications Together, this indicates that the selected populations can quickly adapt to stressful levels of iron (II). This study is unique in that it demonstrates that E. coli can adapt to environments that contain excess levels of an essential micronutrient while also demonstrating the genomic foundations of the response and the pleiotropic consequences. The fact that adaptation to excess iron also causes increases in general antibiotic resistance is a serious concern. Lay summary: The evolution of iron resistance in E. coli leads to multi-drug and general metal resistance through the acquisition of mutations in three genes (fecA, ptsP and ilvG) while also initiating cellular defenses as part of their normal growth process.
Collapse
Affiliation(s)
- Misty D Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- BEACON, Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Sada Boyd
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Danielle K Williams
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Adiya Moore
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Kristen L Rhinehardt
- Computational Data Science and Engineering, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA
| | - Emma Van Beveren
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Bobi Yang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Anna Tapia
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| |
Collapse
|
23
|
Zhang Y, Ryan JP, Hobson BW, Kieft B, Romano A, Barone B, Preston CM, Roman B, Raanan BY, Pargett D, Dugenne M, White AE, Freitas FH, Poulos S, Wilson ST, DeLong EF, Karl DM, Birch JM, Bellingham JG, Scholin CA. A system of coordinated autonomous robots for Lagrangian studies of microbes in the oceanic deep chlorophyll maximum. Sci Robot 2021; 6:6/50/eabb9138. [PMID: 34043577 DOI: 10.1126/scirobotics.abb9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.e., Lagrangian. Here, we report the development and application of a system of coordinated robots for studying planktonic biological communities drifting within the ocean. The presented Lagrangian system uses three coordinated autonomous robotic platforms. The focal platform consists of an autonomous underwater vehicle (AUV) fitted with a robotic water sampler. This platform localizes and drifts within a DCM community, periodically acquiring samples while continuously monitoring the local environment. The second platform is an AUV equipped with environmental sensing and acoustic tracking capabilities. This platform characterizes environmental conditions by tracking the focal platform and vertically profiling in its vicinity. The third platform is an autonomous surface vehicle equipped with satellite communications and subsea acoustic tracking capabilities. While also acoustically tracking the focal platform, this vehicle serves as a communication relay that connects the subsea robot to human operators, thereby providing situational awareness and enabling intervention if needed. Deployed in the North Pacific Ocean within the core of a cyclonic eddy, this coordinated system autonomously captured fundamental characteristics of the in situ DCM microbial community in a manner not possible previously.
Collapse
Affiliation(s)
- Yanwu Zhang
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Brett W Hobson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Brian Kieft
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Anna Romano
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | | | - Brent Roman
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Ben-Yair Raanan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Douglas Pargett
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | | | - Steve Poulos
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | | | - David M Karl
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - James M Birch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | |
Collapse
|
24
|
Krouk G, Kiba T. Nitrogen and Phosphorus interactions in plants: from agronomic to physiological and molecular insights. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:104-109. [PMID: 32882570 DOI: 10.1016/j.pbi.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) and Phosphorus (P) are the two most essential nutrients ensuring food production and security. The ever growing population demands more N and P-based fertilizers. Even though the N provision to the agricultural system is virtually infinite (Haber and Bosch process) it triggers pollution when it is not used by the plant and leaks into the environment. On the other hand, P is predicted to be a limited source worldwide. P use is also responsible for water eutrophication. Thus understanding plant response to combinations of N and P has clear implications for sustainable human development. Recent works have shed new light on how N and P closely interact to control plant responses. Several molecular actors have been revealed controlling the molecular interaction between these two essential elements drafting a working model of N and P interactions. We summarize here these new findings as well as several previous lines of evidence in agronomy and physiology studies preceding this new trend of investigation in the molecular world.
Collapse
Affiliation(s)
- Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
| | - Takatoshi Kiba
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
25
|
Affiliation(s)
- Craig A. Layman
- Department of Applied Ecology North Carolina State University Raleigh NC USA
| | - Jacob E. Allgeier
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
26
|
Fernandes LFL, Paiva TRM, Longhini CM, Pereira JB, Ghisolfi RD, Lázaro GCS, Demoner LE, Laino PDS, Conceição LRD, Sá F, Neto RR, Dias Junior C, Lemos KDN, Quaresma VDS, Oliveira KS, Grilo CF, Rocha GM. Marine zooplankton dynamics after a major mining dam rupture in the Doce River, southeastern Brazil: Rapid response to a changing environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139621. [PMID: 32485382 DOI: 10.1016/j.scitotenv.2020.139621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Zooplankton were sampled five days after the tailings from the Samarco dam rupture reached the ocean in the coastal region at the mouth of the Doce River. This was one of the largest environmental disasters in Brazilian history, and the impacts on the marine biota are not yet fully understood. This study aimed to evaluate the zooplankton community short term responses to the metal enrichment after the tailings reached the coastal region in different scenarios. Our results showed an acute impact on the zooplankton community, which peaked in abundance (222,958.60 ind/m3) and decreased in diversity (H' = 1.23) near the river mouth. Two copepod species, Parvocalanus sp. and Oithona nana, composed up to 61% of the total abundance and they were correlated with concentrations of Fe, Pb, Cu and Zn in particulate fraction. These species feed opportunistically on nanophytoplankton, which dominated the autotroph community, possibly in response to the iron enrichment caused by the mud flow. A shift on zooplankton species composition was also observed. During the first three days, we found the presence of oceanic species in the 20 and 30 m isobaths during an incomplete upwelling event, which directly correlated with the presence of Calanoides carinatus. However, only three days later, following a cold front passage and consequent increase of water turbidity, those species were already absent, and the zooplankton community was significantly altered (PERMANOVA, df = 1, pseudo-F = 9.2247, p = .001). Zooplankton responded quickly to the environmental changes detected during our sampling period and proved to be key factors in costal monitoring, especially in dynamic oceanographic areas such as the Doce River coastal region.
Collapse
Affiliation(s)
- Luiz Fernando Loureiro Fernandes
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil.
| | - Tayná Rosa Martins Paiva
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Cybelle Menolli Longhini
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Juliano Bicalho Pereira
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Renato David Ghisolfi
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Georgette Cristina Salvador Lázaro
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Lilian Elisa Demoner
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Pedro de Souza Laino
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Laura Rodrigues da Conceição
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Fabian Sá
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Renato Rodrigues Neto
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Camilo Dias Junior
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Kássia do Nascimento Lemos
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Valéria da Silva Quaresma
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Kyssyanne Samihra Oliveira
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Caroline Fiório Grilo
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| | - Gustavo Martins Rocha
- Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari 514, Vitória, Espírito Santo, Brazil
| |
Collapse
|
27
|
Mazzotta MG, McIlvin MR, Saito MA. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics 2020; 12:654-667. [PMID: 32301469 PMCID: PMC8161647 DOI: 10.1039/d0mt00034e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∼51 : 1) to be between ∼83 μmol : mol Fe : C, ∼11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.
Collapse
Affiliation(s)
- Michael G Mazzotta
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
| | | | | |
Collapse
|
28
|
Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, Martiny AC. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190254. [PMID: 32200740 PMCID: PMC7133529 DOI: 10.1098/rstb.2019.0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
Linking 'omics measurements with biogeochemical cycles is a widespread challenge in microbial community ecology. Here, we propose applying genomic adaptation as 'biosensors' for microbial investments to overcome nutrient stress. We then integrate this genomic information with a trait-based model to predict regional shifts in the elemental composition of marine plankton communities. We evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, Indian and Pacific Oceans. We find that our genome-based trait model significantly improves our prediction of particulate C : P (carbon : phosphorus) across ocean regions. Furthermore, we detect previously unrecognized ocean areas of iron, nitrogen and phosphorus stress. In many ecosystems, it can be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understanding microbial responses to environmental changes and the biogeochemical outcomes. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Catherine A. Garcia
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - George I. Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Lucas J. Ustick
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W. Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Yamamoto Y, Sanagawa Y, Imai S. Determination of Trace Elements in Aerosols at a Rural Mountainous Area and a Local City of Eastern Shikoku Region, Japan. ANAL SCI 2020; 36:637-641. [PMID: 32249249 DOI: 10.2116/analsci.20sbn06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 08/09/2023]
Abstract
A simple digestion method for a mixed cellulose membrane filter in order to analyze trace elements in aerosols was examined. The determination of Cu, Fe and Ni in the certified reference materials of China loess (CJ-1) could be conducted using the digestion method. Trace elements in aerosols smaller than 10 μm size collected at Tokushima City and near mountain areas for each season were determined as a water-soluble fraction and all components by the digestion method. Back trajectory analysis implied that the contribution from the Asian continent was larger in the winter and spring than the summer. Systematic changes in the trace element compositions for each season were not observed, except for Fe, Th and U. Water-soluble components in aerosols at Tokushima City showed higher concentrations of all trace elements than those of the mountain areas. For aerosols in Tokushima City and near to the mountain areas, As, Bi, Cd, Cu and Pb were mainly derived from anthropogenic sources, whereas Ba, Co, Cs, Ga, Mn, Rb, Sr, Th, U and V were derived from natural crustal sources. The origin of Pb and Cd was considered based on the Pb/Cd ratio.
Collapse
Affiliation(s)
- Yuhei Yamamoto
- Division of Chemistry, Institute of Natural Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan.
| | - Yosuke Sanagawa
- Department of Chemistry, Graduate School of Integrated Arts and Sciences, The University of Tokushima, 1-1 Minamijosanjima, Tokushima, 770-8502, Japan
| | - Shoji Imai
- Division of Chemistry, Institute of Natural Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
| |
Collapse
|
30
|
Aswini AR, Hegde P, Aryasree S, Girach IA, Nair PR. Continental outflow of anthropogenic aerosols over Arabian Sea and Indian Ocean during wintertime: ICARB-2018 campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135214. [PMID: 31836221 DOI: 10.1016/j.scitotenv.2019.135214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Chemical characterisation of atmospheric aerosols over Arabian Sea (AS) and Indian Ocean (IO) have been carried out during the winter period (January to February 2018) as part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB-2018). Mass concentrations of organic carbon (OC), elemental carbon (EC), water soluble and insoluble OC (WSOC, WIOC), primary and secondary OC (POC, SOC), water-soluble inorganic ions and trace metals have been estimated with a view to identify and quantify the major anthropogenic pollutants affecting the oceanic environments. Aerosol mass loading was found to exhibit strong spatial heterogeneity (varying from 13 to 84 μg m-3), significantly modulated by the origin of air-mass trajectories. Chemical analysis of aerosols revealed the presence of an intense pollution plume over south-eastern coastal Arabian Sea, near to south-west Indian peninsula (extending from ~ 12°N to 0° at 75°E) with a strong latitudinal gradient (~3 μg m-3/deg. from north to south) dominated by anthropogenic species contributing as high as 73% (38% nss-SO42-, 24.2% carbonaceous aerosols (21% Organic Matter, 3.2% EC) and 10% NH4+). Anthropogenic signature over oceanic environment was also evident from the dominance and high enrichment of elements like Zn, Cu, Mn and Pb in trace metals. Long-range transport of air-masses originating from Indo Gangetic Plains and its outflow regions in Bay of Bengal, has been seen over Arabian Sea during winter, that imparted such strong anthropogenic signatures over this oceanic environment. Comparison with previous cruise studies conducted nearly two decades ago shows a more than two-fold increase in the concentration of nss-SO42-, over the continental outflow region in Arabian Sea.
Collapse
Affiliation(s)
- A R Aswini
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India; Cochin University of Science and Technology, Cochin, India
| | - Prashant Hegde
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India.
| | - S Aryasree
- Institute for applied Geosciences, Technical University Darmstadt, Darmstadt, Germany
| | - Imran A Girach
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India
| | - Prabha R Nair
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India
| |
Collapse
|
31
|
Ye F, Kameyama S. Long-term spatiotemporal changes of 15 water-quality parameters in Japan: An exploratory analysis of countrywide data during 1982-2016. CHEMOSPHERE 2020; 242:125245. [PMID: 31704519 DOI: 10.1016/j.chemosphere.2019.125245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
We conducted an exploratory analysis of 15 water-quality parameters collected countrywide during 1982-2016 to better understand human impacts on aquatic ecosystems in Japan. We used the Mann-Kendall test to identify temporal trends. On the basis of this analysis, we identified and ranked the sites for future management where there were trends toward lower water quality. The study showed general improvement of dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, Escherichia coli counts, n-hexane extracts, total nitrogen, total phosphorus, and total zinc. We concluded that management of wastewater has been effective throughout Japan, but with the caveat that conditions have deteriorated at some sites, which should be the focus of studies aimed at identifying the causes of the lower water quality. Concentrations of chloroform, formaldehyde, nonylphenol, and linear alkylbenzene sulfonates, which are toxic environmental pollutants that can have adverse effects on human and ecosystem health, showed significant increasing or decreasing temporal trends at only a few monitoring sites. Sites where concentrations of these toxicants increased should be targeted for further study to determine whether remedial actions are needed.
Collapse
Affiliation(s)
- Feng Ye
- Connectivity of Hills, Humans and Oceans Unit, Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan; Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Satoshi Kameyama
- Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
32
|
Abstract
Marine microbe growth is limited by iron over about half of the global ocean surface. Dissolved iron is quickly lost from the ocean, but its availability to marine microbes may be enhanced by binding with organic molecules which, in turn, are produced by microbes. We hypothesize this forms a reinforcing cycle between biological activity and iron cycling that locally matches the availability of iron and other nutrients, leading to global-scale resource colimitation between macronutrients and micronutrients, and maximizing biological productivity. Idealized models support this hypothesis, depending on the specific relationships between microbial sources and sinks of organic molecules. An evolutionary selection may have occurred which optimizes these characteristics, resulting in “just enough” iron in the ocean. Iron is the limiting factor for biological production over a large fraction of the surface ocean because free iron is rapidly scavenged or precipitated under aerobic conditions. Standing stocks of dissolved iron are maintained by association with organic molecules (ligands) produced by biological processes. We hypothesize a positive feedback between iron cycling, microbial activity, and ligand abundance: External iron input fuels microbial production, creating organic ligands that support more iron in seawater, leading to further macronutrient consumption until other microbial requirements such as macronutrients or light become limiting, and additional iron no longer increases productivity. This feedback emerges in numerical simulations of the coupled marine cycles of macronutrients and iron that resolve the dynamic microbial production and loss of iron-chelating ligands. The model solutions resemble modern nutrient distributions only over a finite range of prescribed ligand source/sink ratios where the model ocean is driven to global-scale colimitation by micronutrients and macronutrients and global production is maximized. We hypothesize that a global-scale selection for microbial ligand cycling may have occurred to maintain “just enough” iron in the ocean.
Collapse
|
33
|
Abstract
Blue Carbon is a term coined in 2009 to draw attention to the degradation of marine and coastal ecosystems and the need to conserve and restore them to mitigate climate change and for the other ecosystem services they provide. Blue Carbon has multiple meanings, which we aim to clarify here, which reflect the original descriptions of the concept including (1) all organic matter captured by marine organisms, and (2) how marine ecosystems could be managed to reduce greenhouse gas emissions and thereby contribute to climate change mitigation and conservation. The multifaceted nature of the Blue Carbon concept has led to unprecedented collaboration across disciplines, where scientists, conservationists and policy makers have interacted intensely to advance shared goals. Some coastal ecosystems (mangroves, tidal marshes and seagrass) are established Blue Carbon ecosystems as they often have high carbon stocks, support long-term carbon storage, offer the potential to manage greenhouse gas emissions and support other adaptation policies. Some marine ecosystems do not meet key criteria for inclusion within the Blue Carbon framework (e.g. fish, bivalves and coral reefs). Others have gaps in scientific understanding of carbon stocks or greenhouse gas fluxes, or currently there is limited potential for management or accounting for carbon sequestration (macroalgae and phytoplankton), but may be considered Blue Carbon ecosystems in the future, once these gaps are addressed.
Collapse
Affiliation(s)
- Catherine E Lovelock
- 1 School of Biological Sciences, The University of Queensland , St Lucia, Queensland 4072 , Australia
| | - Carlos M Duarte
- 2 King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
34
|
Xing G, Garg S, Waite TD. Is Superoxide-Mediated Fe(III) Reduction Important in Sunlit Surface Waters? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13179-13190. [PMID: 31638396 DOI: 10.1021/acs.est.9b04718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two major pathways are reported to account for photochemical reduction of Fe(III) in sunlit surface waters, namely, ligand-to-metal charge transfer (LMCT) and superoxide-mediated iron reduction (SMIR). In this study, we investigate the impact of Fe(III) speciation (organically complexed (Fe(III)L versus iron oxyhydroxide (AFO)) on Fe(III) reducibility by photogenerated superoxide (O2•-) and LMCT. To simulate conditions typical of fresh, estuarine, and coastal waters, we have used Suwannee River Fulvic Acid (SRFA) as a representative of the natural organic matter likely to associate with Fe(III). Our results show that the photolabile Fe(III)SRFA complex is reduced rapidly by LMCT, while O2•- does not play a role in reduction of these entities. In contrast, the relatively less photolabile AFO is reduced by both O2•- and LMCT. The reduction of AFO by O2•- occurs following the dissolution of AFO, and hence, the contribution of O2•- to reductive dissolution of AFO is dependent on conditions such as the age of the AFO and initial AFO concentration affecting the rate of dissolution of AFO. Our results further show that while colloidal Fe(III) (in this work, particles >0.025 μm) is reduced by O2•-, there is no involvement of O2•- in dissolved Fe(III) reduction. Overall, our results show that superoxide-mediated iron reduction will be important only in natural waters containing limited concentrations of Fe binding ligands.
Collapse
Affiliation(s)
- Guowei Xing
- School of Civil and Environmental Engineering , The University of New South Wales , Sydney , NSW 2052 , Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering , The University of New South Wales , Sydney , NSW 2052 , Australia
| | - T David Waite
- School of Civil and Environmental Engineering , The University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
35
|
Graves JL, Ewunkem AJ, Ward J, Staley C, Thomas MD, Rhinehardt KL, Han J, Harrison SH. Experimental evolution of gallium resistance in Escherichia coli. EVOLUTION MEDICINE AND PUBLIC HEALTH 2019; 2019:169-180. [PMID: 31890209 PMCID: PMC6928379 DOI: 10.1093/emph/eoz025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/29/2019] [Indexed: 12/26/2022]
Abstract
Background and Objectives Metallic antimicrobial materials are of growing interest due to their potential to control pathogenic and multidrug-resistant bacteria. Yet we do not know if utilizing these materials can lead to genetic adaptations that produce even more dangerous bacterial varieties. Methodology Here we utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance. Results By day 10 of evolution, increased gallium resistance was evident in populations cultured in medium containing a sublethal concentration of gallium. Furthermore, these populations showed increased resistance to ionic silver and iron (III), but not iron (II) and no increase in traditional antibiotic resistance compared with controls and the ancestral strain. In contrast, the control populations showed increased resistance to rifampicin relative to the gallium-resistant and ancestral population. Genomic analysis identified hard selective sweeps of mutations in several genes in the gallium (III)-resistant lines including: fecA (iron citrate outer membrane transporter), insl1 (IS30 tranposase) one intergenic mutations arsC →/→ yhiS; (arsenate reductase/pseudogene) and in one pseudogene yedN ←; (iapH/yopM family). Two additional significant intergenic polymorphisms were found at frequencies > 0.500 in fepD ←/→ entS (iron-enterobactin transporter subunit/enterobactin exporter, iron-regulated) and yfgF ←/→ yfgG (cyclic-di-GMP phosphodiesterase, anaerobic/uncharacterized protein). The control populations displayed mutations in the rpoB gene, a gene associated with rifampicin resistance. Conclusions This study corroborates recent results observed in experiments utilizing pathogenic Pseudomonas strains that also showed that Gram-negative bacteria can rapidly evolve resistance to an atom that mimics an essential micronutrient and shows the pleiotropic consequences associated with this adaptation. Lay summary We utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Joseph L Graves
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University & UNC Greensboro, Greensboro, NC, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Akamu J Ewunkem
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University & UNC Greensboro, Greensboro, NC, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Jason Ward
- High School Science Teacher, Davie Public High School, Davie, NC, USA
| | | | - Misty D Thomas
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| | - Kristen L Rhinehardt
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University & UNC Greensboro, Greensboro, NC, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Jian Han
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| | - Scott H Harrison
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| |
Collapse
|
36
|
Anderson TR, Gentleman WC. Remembering John Steele and his models for understanding the structure and function of marine ecosystems. JOURNAL OF PLANKTON RESEARCH 2019; 41:609-620. [PMID: 31768080 PMCID: PMC6862939 DOI: 10.1093/plankt/fbz042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
John Steele (1926-2013) is remembered for his ecosystem modelling studies on the role of biological interactions and environment on the structure and function of marine ecosystems, including consequences for fish production and fisheries management. Here, we provide a scientific tribute to Steele focusing on, by means of example, his modelling of plankton predation [Steele and Henderson (1992) The role of predation in plankton models. J. Plankton Res., 14, 157-172] that showed that differences in ecosystem dynamics between the subarctic Pacific and North Atlantic oceans can be explained solely on the basis of zooplankton mortality. The study highlights Steele's artistry in simplifying the system to a tractable minimal model while paying great attention to the precise functional forms used to parameterize mortality, grazing and other biological processes. The success of this and other works by Steele was in large part due to his effective communication with the rest of the scientific community (especially non-modellers) resulting from his enthusiasm, use of an experiment-like (hypothesis driven) approach to applying his models and by describing simplifications and assumptions in scrupulous detail. We also intend our contribution to remember Steele as the consummate gentleman, notably his humble, behind-the-scenes attitude, his humour and his dedication to enhancing the careers of others.
Collapse
Affiliation(s)
- Thomas R Anderson
- NATIONAL OCEANOGRAPHY CENTRE, EUROPEAN WAY, SOUTHAMPTON SO14 3ZH, UK
| | - Wendy C Gentleman
- Department of Engineering Mathematics, Dalhousie University, 5217 Morris St, PO Box 15000, Halifax, NS B3J 1B6 Canada
| |
Collapse
|
37
|
Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean. Sci Rep 2019; 9:11652. [PMID: 31406147 PMCID: PMC6690902 DOI: 10.1038/s41598-019-48035-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022] Open
Abstract
Recent studies have elucidated that iron (Fe) is a critical trace metal that influences the productivity of marine ecosystems and the biogeochemical cycles of other elements in the modern ocean. However, our understanding of the biogeochemistry of Fe remains incomplete. Herein, we report basin-scale and full-depth sectional distributions of total dissolvable iron (tdFe), dissolved iron (dFe), and labile particulate iron (lpFe = tdFe – dFe) in the North Pacific Ocean, as observed during three cruises of the GEOTRACES Japan program. We found that lpFe dominates tdFe and is significantly correlated with labile particulate aluminum (lpAl): lpFe [nmol kg−1] = (0.544 ± 0.005) lpAl [nmol kg−1] + 0.11 ± 0.04, r2 = 0.968, n = 432. The results indicate a major lithogenic contribution to the distribution of particulate Fe. For dFe, the unique distribution is attributed to the combined effects of biogeochemical cycling, manganese reduction, and lithogenic contribution. Based on concurrent observations of Fe, Al, and manganese (Mn), we infer that the width of the boundary scavenging zone is approximately 500 km off the Aleutian shelf. We estimate the inventory of tdFe in the North Pacific as 1.1 × 1012 mol, which is approximately four times that of dFe. Our results emphasize the potential importance of lpFe in the ocean’s iron cycle.
Collapse
|
38
|
Complex Microbial Communities Drive Iron and Sulfur Cycling in Arctic Fjord Sediments. Appl Environ Microbiol 2019; 85:AEM.00949-19. [PMID: 31076435 DOI: 10.1128/aem.00949-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022] Open
Abstract
Glacial retreat is changing biogeochemical cycling in the Arctic, where glacial runoff contributes iron for oceanic shelf primary production. We hypothesize that in Svalbard fjords, microbes catalyze intense iron and sulfur cycling in low-organic-matter sediments. This is because low organic matter limits sulfide generation, allowing iron mobility to the water column instead of precipitation as iron monosulfides. In this study, we tested this with high-depth-resolution 16S rRNA gene libraries in the upper 20 cm at two sites in Van Keulenfjorden, Svalbard. At the site closer to the glaciers, iron-reducing Desulfuromonadales, iron-oxidizing Gallionella and Mariprofundus, and sulfur-oxidizing Thiotrichales and Epsilonproteobacteria were abundant above a 12-cm depth. Below this depth, the relative abundances of sequences for sulfate-reducing Desulfobacteraceae and Desulfobulbaceae increased. At the outer station, the switch from iron-cycling clades to sulfate reducers occurred at shallower depths (∼5 cm), corresponding to higher sulfate reduction rates. Relatively labile organic matter (shown by δ13C and C/N ratios) was more abundant at this outer site, and ordination analysis suggested that this affected microbial community structure in surface sediments. Network analysis revealed more correlations between predicted iron- and sulfur-cycling taxa and with uncultured clades proximal to the glacier. Together, these results suggest that complex microbial communities catalyze redox cycling of iron and sulfur, especially closer to the glacier, where sulfate reduction is limited due to low availability of organic matter. Diminished sulfate reduction in upper sediments enables iron to flux into the overlying water, where it may be transported to the shelf.IMPORTANCE Glacial runoff is a key source of iron for primary production in the Arctic. In the fjords of the Svalbard archipelago, glacial retreat is predicted to stimulate phytoplankton blooms that were previously restricted to outer margins. Decreased sediment delivery and enhanced primary production have been hypothesized to alter sediment biogeochemistry, wherein any free reduced iron that could potentially be delivered to the shelf will instead become buried with sulfide generated through microbial sulfate reduction. We support this hypothesis with sequencing data that showed increases in the relative abundance of sulfate reducing taxa and sulfate reduction rates with increasing distance from the glaciers in Van Keulenfjorden, Svalbard. Community structure was driven by organic geochemistry, suggesting that enhanced input of organic material will stimulate sulfate reduction in interior fjord sediments as glaciers continue to recede.
Collapse
|
39
|
Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM, Sahai N, Schroeder PA, Vikesland P, Westerhoff P, Yang Y. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019; 363:363/6434/eaau8299. [DOI: 10.1126/science.aau8299] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanomaterials are critical components in the Earth system’s past, present, and future characteristics and behavior. They have been present since Earth’s origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.
Collapse
Affiliation(s)
- Michael F. Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
- Subsurface Science and Technology Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David W. Mogk
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717-3480, USA
| | - James Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - George W. Luther
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - B. Peter McGrail
- Applied Functional Materials Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mitsu Murayama
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Reactor Materials and Mechanical Design Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Nikolla P. Qafoku
- Subsurface Science and Technology Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kevin M. Rosso
- Geochemistry Group, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Nita Sahai
- Department of Polymer Science, University of Akron, Akron, OH 44325-3909, USA
| | | | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
40
|
Krachler R, Krachler R, Valda A, Keppler BK. Natural iron fertilization of the coastal ocean by "blackwater rivers". THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:952-958. [PMID: 30625681 DOI: 10.1016/j.scitotenv.2018.11.423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 05/23/2023]
Abstract
The present study elucidates the role of natural iron fertilization of the coastal ocean by so-called "blackwater rivers". Areas of marsh, fen, peatland, boreal forest etc. are characterized by organic-rich soils. From those soils, humic substances (humic and fulvic acids) are leached to the aquatic system resulting in river water that is low in pH and dark-brown in color. The point is that "blackwater rivers" tend to be rich in dissolved iron due to the unique chelating properties of humic and fulvic acids which bind Fe(III) and keep it in solution. We performed algal physiological (growth rate) experiments under conditions of iron deficiency with the marine unicellular phytoplankton algae Chlorella salina and Diacronema lutheri in 0.2 μm cut-off filtered mixtures of natural "blackwater river" water and synthetic seawater. Our results demonstrate that the iron naturally present in "blackwater rivers" is readily bioavailable to both marine algal species. Furthermore, the humic and fulvic acids exert an additional stimulatory effect on the marine algae. Both algae thrive much better in the presence of natural humic and fulvic acids as compared to a medium where EDTA is used as an iron-chelating agent. Our results indicate that "blackwater rivers", in sharp contrast to other types of rivers, are excellent sources of bioavailable iron to marine phytoplankton. This natural iron fertilization may give rise to photosynthesis-driven sequestration of CO2 from the atmosphere to the sea, as can be seen from the visualization of CO2 surface concentrations by NASA (NASA GEOS-5 model) which shows the global sources and sinks of CO2 localized in time and space. The results by NASA suggest that strong marine CO2 sinks in coastal waters tend to occur close to "blackwater river" estuaries. It is thus evident that "blackwater rivers" act as important sources of a limiting nutrient (iron) to the ocean.
Collapse
Affiliation(s)
- Regina Krachler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währingerstrasse 42, A-1090 Vienna, Austria.
| | - Rudolf Krachler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währingerstrasse 42, A-1090 Vienna, Austria
| | - Alexander Valda
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währingerstrasse 42, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währingerstrasse 42, A-1090 Vienna, Austria
| |
Collapse
|
41
|
Exploring Possible Influence of Dust Episodes on Surface Marine Chlorophyll Concentrations. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7020050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Desert dust deposition is thought to act as fertilizer for phytoplankton growth, since it is rich in the required nutrients. The Mediterranean Sea is a nutrient poor marine environment—with its eastern part being the most oligotrophic—which is subject to dust transport. The Hellenic Seas are part of this low-nutrient, low-chlorophyll environment and they are also affected by dust deposition events. Thus, the dust fertilizing effect can be particularly important, especially during the stratification period, when the nutrients needed for phytoplankton growth are not imported from deeper layers. Some individual dust events are examined here in respect of their possible influence on phytoplankton, through the observed variations of satellite derived chlorophyll concentrations. Two strong dust events that were also extreme weather events and three events in the June–September stratification period are examined for the Hellenic Seas as well as a strong dust event in the Central Mediterranean Sea. The results, only when based on absolute chlorophyll differences above 50%, show that dust events seem to favour phytoplankton abundance mainly during the low productive period; however, these differences are area-limited. The difficulty of reaching safe results through specific dust events and discriminating between other meteorological factors favouring phytoplankton growth are also discussed.
Collapse
|
42
|
Schorsch M, Kramer M, Goss T, Eisenhut M, Robinson N, Osman D, Wilde A, Sadaf S, Brückler H, Walder L, Scheibe R, Hase T, Hanke GT. A unique ferredoxin acts as a player in the low-iron response of photosynthetic organisms. Proc Natl Acad Sci U S A 2018; 115:E12111-E12120. [PMID: 30514818 PMCID: PMC6304933 DOI: 10.1073/pnas.1810379115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron chronically limits aquatic photosynthesis, especially in marine environments, and the correct perception and maintenance of iron homeostasis in photosynthetic bacteria, including cyanobacteria, is therefore of global significance. Multiple adaptive mechanisms, responsive promoters, and posttranscriptional regulators have been identified, which allow cyanobacteria to respond to changing iron concentrations. However, many factors remain unclear, in particular, how iron status is perceived within the cell. Here we describe a cyanobacterial ferredoxin (Fed2), with a unique C-terminal extension, that acts as a player in iron perception. Fed2 homologs are highly conserved in photosynthetic organisms from cyanobacteria to higher plants, and, although they belong to the plant type ferredoxin family of [2Fe-2S] photosynthetic electron carriers, they are not involved in photosynthetic electron transport. As deletion of fed2 appears lethal, we developed a C-terminal truncation system to attenuate protein function. Disturbed Fed2 function resulted in decreased chlorophyll accumulation, and this was exaggerated in iron-depleted medium, where different truncations led to either exaggerated or weaker responses to low iron. Despite this, iron concentrations remained the same, or were elevated in all truncation mutants. Further analysis established that, when Fed2 function was perturbed, the classical iron limitation marker IsiA failed to accumulate at transcript and protein levels. By contrast, abundance of IsiB, which shares an operon with isiA, was unaffected by loss of Fed2 function, pinpointing the site of Fed2 action in iron perception to the level of posttranscriptional regulation.
Collapse
Affiliation(s)
- Michael Schorsch
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, United Kingdom
| | - Manuela Kramer
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, United Kingdom
| | - Tatjana Goss
- Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nigel Robinson
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom
| | - Deenah Osman
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Shamaila Sadaf
- Institute of Chemistry of New Materials, University of Osnabrück, 49069 Osnabrück, Germany
| | - Hendrik Brückler
- Institute of Chemistry of New Materials, University of Osnabrück, 49069 Osnabrück, Germany
| | - Lorenz Walder
- Institute of Chemistry of New Materials, University of Osnabrück, 49069 Osnabrück, Germany
| | - Renate Scheibe
- Plant Physiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Toshiharu Hase
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Guy T Hanke
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, United Kingdom;
| |
Collapse
|
43
|
In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth. Sci Rep 2018; 8:16125. [PMID: 30382139 PMCID: PMC6208410 DOI: 10.1038/s41598-018-34465-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022] Open
Abstract
In this first in situ study of the dynamic availability of phytoplankton micronutrients, a SeaExplorer glider was combined with Diffusive Gradients in Thin Films and deployed in the Mediterranean Sea. On the basis of their labile metal complex pools, we discovered that Fe and Co can be potentially limiting and Cu co-limiting to diatom growth, contrary to the generally accepted view that phosphorus (phosphate) is the growth limiting element in the Mediterranean Sea. For flagellates and picoplankton, phosphorus remains the main element limiting growth. Our in situ measurements showed that organic complexes of Fe and Cu (>98% of total dissolved concentration), dissociate slower than inorganic complexes of Co, Cd and Ni (>99% of total dissolved concentration being free ions and inorganic complexes). This strengthens the potential growth limiting effect of Fe and Cu versus phosphate, which is present as a free ion and, thus, directly available for plankton.
Collapse
|
44
|
Limaye SS, Mogul R, Smith DJ, Ansari AH, Słowik GP, Vaishampayan P. Venus' Spectral Signatures and the Potential for Life in the Clouds. ASTROBIOLOGY 2018; 18:1181-1198. [PMID: 29600875 PMCID: PMC6150942 DOI: 10.1089/ast.2017.1783] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/11/2018] [Indexed: 05/17/2023]
Abstract
The lower cloud layer of Venus (47.5-50.5 km) is an exceptional target for exploration due to the favorable conditions for microbial life, including moderate temperatures and pressures (∼60°C and 1 atm), and the presence of micron-sized sulfuric acid aerosols. Nearly a century after the ultraviolet (UV) contrasts of Venus' cloud layer were discovered with Earth-based photographs, the substances and mechanisms responsible for the changes in Venus' contrasts and albedo are still unknown. While current models include sulfur dioxide and iron chloride as the UV absorbers, the temporal and spatial changes in contrasts, and albedo, between 330 and 500 nm, remain to be fully explained. Within this context, we present a discussion regarding the potential for microorganisms to survive in Venus' lower clouds and contribute to the observed bulk spectra. In this article, we provide an overview of relevant Venus observations, compare the spectral and physical properties of Venus' clouds to terrestrial biological materials, review the potential for an iron- and sulfur-centered metabolism in the clouds, discuss conceivable mechanisms of transport from the surface toward a more habitable zone in the clouds, and identify spectral and biological experiments that could measure the habitability of Venus' clouds and terrestrial analogues. Together, our lines of reasoning suggest that particles in Venus' lower clouds contain sufficient mass balance to harbor microorganisms, water, and solutes, and potentially sufficient biomass to be detected by optical methods. As such, the comparisons presented in this article warrant further investigations into the prospect of biosignatures in Venus' clouds.
Collapse
Affiliation(s)
- Sanjay S. Limaye
- Space Science and Engineering Center, University of Wisconsin, Madison, Wisconsin
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, Pomona, California
| | - David J. Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California
| | - Arif H. Ansari
- Precambrian Palaeobotany Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | | | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
45
|
|
46
|
Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci Rep 2018; 8:2866. [PMID: 29434297 PMCID: PMC5809506 DOI: 10.1038/s41598-018-21247-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/01/2018] [Indexed: 11/08/2022] Open
Abstract
Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.
Collapse
|
47
|
Achterberg EP, Steigenberger S, Marsay CM, LeMoigne FAC, Painter SC, Baker AR, Connelly DP, Moore CM, Tagliabue A, Tanhua T. Iron Biogeochemistry in the High Latitude North Atlantic Ocean. Sci Rep 2018; 8:1283. [PMID: 29352137 PMCID: PMC5775377 DOI: 10.1038/s41598-018-19472-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/02/2018] [Indexed: 11/15/2022] Open
Abstract
Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.
Collapse
Affiliation(s)
- Eric P Achterberg
- Earth and Ocean Science, National Oceanography Centre Southampton, University of Southampton, Southampton, SO14 3ZH, UK. .,GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148, Germany.
| | - Sebastian Steigenberger
- Earth and Ocean Science, National Oceanography Centre Southampton, University of Southampton, Southampton, SO14 3ZH, UK.,National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Chris M Marsay
- Earth and Ocean Science, National Oceanography Centre Southampton, University of Southampton, Southampton, SO14 3ZH, UK.,Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, 31411, USA
| | - Frédéric A C LeMoigne
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148, Germany.,National Oceanography Centre, Southampton, SO14 3ZH, UK
| | | | - Alex R Baker
- School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - C Mark Moore
- Earth and Ocean Science, National Oceanography Centre Southampton, University of Southampton, Southampton, SO14 3ZH, UK
| | - Alessandro Tagliabue
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GB, UK
| | - Toste Tanhua
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148, Germany
| |
Collapse
|
48
|
Lehahn Y, d'Ovidio F, Koren I. A Satellite-Based Lagrangian View on Phytoplankton Dynamics. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:99-119. [PMID: 28961072 DOI: 10.1146/annurev-marine-121916-063204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.
Collapse
Affiliation(s)
- Yoav Lehahn
- Department of Marine Geosciences, University of Haifa, Haifa 3498838, Israel;
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Francesco d'Ovidio
- Sorbonne Université (UPMC Paris 6/CNRS/IRD/MNHN), LOCEAN-IPSL, 75005 Paris, France;
| | - Ilan Koren
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
49
|
Su H, Yang R, Zhang A, Li Y, Qu S, Wang X. Characteristics of trace metals and phosphorus in seawaters offshore the Yangtze River. MARINE POLLUTION BULLETIN 2017; 124:1020-1032. [PMID: 28129921 DOI: 10.1016/j.marpolbul.2017.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
This study presents the spatial distribution of total dissolved Cu, Zn, Co, and V during an autumn survey in the East China Sea (ECS). Dissolved Fe and its organic complexation were also investigated. The present study aimed to evaluate the relationship between Cu, Zn, Co, V, D-Fe and its organic ligands and total dissolved phosphate (TDP) in the coastal waters of the ECS. A correlation analysis shows that Cu, Zn and D-Fe were nutrient-like metals, whereas Co and V were non-nutrient-like metals. A multivariate statistical analysis showed that TDP was associated with D-Fe, Cu, Zn and Co, but was not associated with V. Furthermore, TDP was observed to be positively related with D-Fe, while negatively with Fe', which indicated that the limitation of TDP decreased the uptake of Fe'. This paper improves our understanding of the association among trace metals, TDP and phytoplankton biomass in the ECS.
Collapse
Affiliation(s)
- Han Su
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
| | - Rujun Yang
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China.
| | - Aibin Zhang
- College of Marine Geoscience, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
| | - Yan Li
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
| | - Shenglu Qu
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
| | - Xuchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
| |
Collapse
|
50
|
Rafter PA, Sigman DM, Mackey KRM. Recycled iron fuels new production in the eastern equatorial Pacific Ocean. Nat Commun 2017; 8:1100. [PMID: 29062103 PMCID: PMC5653654 DOI: 10.1038/s41467-017-01219-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022] Open
Abstract
Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.
Collapse
Affiliation(s)
- Patrick A Rafter
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA.
| | - Daniel M Sigman
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Katherine R M Mackey
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| |
Collapse
|