1
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
2
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity as an Index of Auditory Short-Term Plasticity: Associations with Cortisol, Inflammation, and Gray Matter Volume in Youth at Clinical High Risk for Psychosis. Clin EEG Neurosci 2025; 56:46-59. [PMID: 39552576 DOI: 10.1177/15500594241294035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mismatch negativity (MMN) event-related potential (ERP) component reduction, indexing N-methyl-D-aspartate receptor (NMDAR)-dependent auditory echoic memory and short-term plasticity, is a well-established biomarker of schizophrenia that is sensitive to psychosis risk among individuals at clinical high-risk (CHR-P). Based on the NMDAR-hypofunction model of schizophrenia, NMDAR-dependent plasticity is predicted to contribute to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia during late adolescence or young adulthood, including gray matter loss. Moreover, stress and inflammation disrupt plasticity. Therefore, using data collected during the 8-center North American Prodrome Longitudinal Study (NAPLS-2), we explored relationships between MMN amplitudes and salivary cortisol, gray matter volumes, and inflammatory cytokines. Participants included 303 CHR-P individuals with baseline electroencephalography (EEG) data recorded during an MMN paradigm as well as structural magnetic resonance imaging (MRI) and salivary cortisol, of which a subsample (n = 57) also completed blood draws. More deficient MMN amplitudes were associated with greater salivary cortisol and pro-inflammatory cytokine levels in future CHR-Converters, but not among those who did not convert to psychosis within the next two years. More deficient MMN amplitude was also associated with smaller total gray matter volume across participants regardless of future clinical outcomes, and with subcortical gray matter volumes among future CHR-Converters only. These findings are consistent with the theory that deficient NMDAR-dependent plasticity results in an overabundance of weak synapses that are subject to over-pruning during psychosis onset, contributing to gray matter loss. Further, MMN plasticity mechanisms may interact with stress, cortisol, and neuroinflammatory processes, representing a proximal influence of psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Peter M Bachman
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
| | - Erica Duncan
- Mental Health Service, Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason K Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Mental Health Service, Veterans Affairs San Diego Health Care System, La Jolla, CA, USA
| | - Margaret A Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
- Mental Health Service, Veterans Affairs Boston Health Care System, Brockton, MA, USA
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Elaine F Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, School of Medicine, New Haven, CT, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
3
|
Mazurie Z, Branchereau P, Cattaert D, Henkous N, Savona-Baron C, Vouimba RM. Acute stress differently modulates interneurons excitability and synaptic plasticity in the primary motor cortex of wild-type and SOD1 G93A mouse model of ALS. J Physiol 2024; 602:4987-5015. [PMID: 39216080 DOI: 10.1113/jp285210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Primary motor cortex (M1) network stability depends on activity of inhibitory interneurons, for which susceptibility to stress was previously demonstrated in limbic regions. Hyperexcitability in M1 following changes in the excitatory/inhibitory balance is a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Using electrophysiological approaches, we assessed the impact of acute restraint stress on inhibitory interneurons excitability and global synaptic plasticity in M1 of the SOD1G93A ALS mouse model at a late pre-symptomatic stage (10-12.5 weeks). Based on their firing type (continuous, discontinuous, with accommodation or not) and electrophysiological characteristics (resting potential, rheobase, firing frequency), interneurons from M1 slices were separated into four clusters, labelled from 1 to 4. Among them, only interneurons from the first cluster, presenting continuous firing with few accommodations, tended to show increased excitability in wild-type (WT) and decreased excitability in SOD1G93A animals following stress. In vivo analyses of evoked field potentials showed that stress suppressed the theta burst-induced plasticity of an excitatory component (N1) recorded in the superficial layers of M1 in WT, with no impact on an inhibitory complex (N2-P1) from the deeper layers. In SOD1G93A mice, stress did not affect N1 but suppressed the N2-P1 plasticity. These data suggest that stress can alter M1 network functioning in a different manner in WT and SOD1G93A mice, possibly through changes of inhibitory interneurons excitability and synaptic plasticity. This suggests that stress-induced activity changes in M1 may therefore influence ALS outcomes. KEY POINTS: Disruption of the excitatory/inhibitory balance in the primary motor cortex (M1) has been linked to cortical hyperexcitability development, a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Psychological stress was reported to influence excitatory/inhibitory balance in limbic regions, but very little is known about its influence on the M1 functioning under physiological or pathological conditions. Our study revealed that acute stress influences the excitatory/inhibitory balance within the M1, through changes in interneurons excitability along with network plasticity. Such changes were different in pathological (SOD1G93A ALS mouse model) vs. physiological (wild-type) conditions. The results of our study help us to better understand how stress modulates the M1 and highlight the need to further characterize stress-induced motor cortex changes because it may be of importance when evaluating ALS outcomes.
Collapse
Affiliation(s)
- Zoé Mazurie
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nadia Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Catherine Savona-Baron
- Present address: BoRdeaux Institute of onCology (BRIC), INSERM U1312, University of Bordeaux, Bordeaux, France
| | - Rose-Marie Vouimba
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Otsuka H, Sasaki-Hamada S, Ishibashi H, Oka JI. Hippocampal acetylcholine receptor activation-dependent long-term depression in streptozotocin-induced diabetic rats. Neurosci Lett 2024; 822:137650. [PMID: 38253285 DOI: 10.1016/j.neulet.2024.137650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Cholinergic innervation of the hippocampus correlates with memory formation. In a well-established animal model of type 1 diabetes mellitus, obtained by injecting young adult rats with streptozotocin (STZ), reductions have been reported in the expression of acetylcholine receptors and choline acetyltransferase. In this study, we showed that long-term synaptic depression (LTD) induced by carbachol (CCh), a nonselective cholinergic receptor agonist, at Schaffer collateral-CA1 synapses in hippocampal slices was significantly weaker in streptozotocin-induced diabetic rats (STZ rats) than in age-matched control rats. No significant change was observed in the paired-pulse ratio between before and 80 min after the application of CCh in control and STZ rats. Moreover, CCh-induced LTD in control and STZ rats was not affected by an NMDA receptor antagonist. Although the application of CCh down-regulated the surface expression of GluA2 in the hippocampus of control rats, but not STZ rats. Therefore, the present results suggest that acetylcholine receptor-mediated LTD in STZ rats requires the internalization of AMPA receptors on the postsynaptic surface and their intracellular effects in the hippocampus.
Collapse
Affiliation(s)
- Hayuma Otsuka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan.
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan.
| |
Collapse
|
5
|
Bolouri-Roudsari A, Baghani M, Askari K, Mazaheri S, Haghparast A. The integrative role of orexin-1 and orexin-2 receptors within the hippocampal dentate gyrus in the modulation of the stress-induced antinociception in the formalin pain test in the rat. Behav Pharmacol 2024; 35:14-25. [PMID: 37578388 DOI: 10.1097/fbp.0000000000000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The stressful experiences, by triggering a cascade of hormonal and neural changes, can produce antinociception commonly referred to as stress-induced antinociception (SIA). Orexin neuropeptides have an essential role in stress responses and pain modulation. The dentate gyrus receives orexinergic projections and has been shown to be involved in pain processing. The current study investigated the possible role of orexin-1 and orexin-2 receptors (OX1r and OX2r, respectively) within the dentate gyrus in SIA in a rat model of formalin-induced pain behavior in one hind paw. Male Wistar rats weighing 230-250 g underwent stereotaxic surgery and a cannula was implanted in their brains, above the dentate gyrus region. Either SB334867 or TCS OX2 29 (OX1r and OX2r antagonists, respectively) was microinjected into the dentate gyrus region at a range of doses at 1, 3, 10, and 30 nmol (control group received DMSO 12% as vehicle), 5 min before the forced swim stress (FSS) exposure. The formalin test was performed to assess pain-related behaviors. The results indicated that FSS exposure relieves pain-related behavior in the early and late phases of the formalin test. Blockade of intra-dentate gyrus OX1 or OX2 receptors reduced the antinociceptive responses induced by FSS in the formalin test, with more impact during the late phase. Our findings support the potential role of intra-dentate gyrus orexin receptors as target sites of orexin neurons in painful and stressful situations. Therefore, understanding the exact mechanisms of SIA and the role of the orexinergic system in this phenomenon can lead to identifying the strategies to guide future research and offer a new approach to discovering new pain therapeutic agents.
Collapse
Affiliation(s)
- Arad Bolouri-Roudsari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Matin Baghani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | | | - Sajad Mazaheri
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
6
|
Zhang J, Li W, Liao T, Li M, Yao X, Zhang Y, Zhang B, Zhang J, Jiang X, Wang K, Jing L. Diazepam promotes active avoidance extinction associating with increased dorsal CA3 and amygdala activity. Brain Res 2023; 1817:148481. [PMID: 37429455 DOI: 10.1016/j.brainres.2023.148481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Active avoidance (AA) is an adaptive response to potentially harmful situations while maladapted avoidance that does not extinguish is one of the core symptoms of anxiety and post-traumatic stress disorder. However, the neural mechanisms of AA extinction and its relationship to anxiety remain unclear. We examined AA extinction during three extinction training sessions in two-way active avoidance paradigm and tested the effect of anxiolytic on AA extinction. Then we performed a meta-analysis of rodent studies, identified anxiolytic diazepam facilitates AA acquisition, and tested the same treatment in AA extinction. Diazepam-treated rats significantly reduced avoidance in the first two extinction training, compared with the saline-treated rats, and the reduction in avoidance remained in the third drug-free session. Then we explored extinction associated hippocampal and amygdala activity in saline-and diazepam-treated rats using c-Fos immunostaining following the last extinction session. The density of c-Fos positive cells was higher in dorsal CA3 of the diazepam group than in that of saline-treated animals, and was also higher in the central and basolateral amygdala regions of diazepam-treated rats than in that of saline-treated animals. Combined, these results suggest anxiolytics promotes AA extinction associated with dorsal CA3 and amygdala activity changes.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjun Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Taohong Liao
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Meijuan Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Yao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Bingyu Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Jiang
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China..
| | - Kai Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Liang Jing
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China..
| |
Collapse
|
7
|
Delcourte S, Bouloufa A, Rovera R, Bétry C, Abrial E, Dkhissi-Benyahya O, Heinrich C, Marcy G, Raineteau O, Haddjeri N, Lucas G, Etiévant A. Chemogenetic activation of prefrontal astroglia enhances recognition memory performance in rat. Biomed Pharmacother 2023; 166:115384. [PMID: 37657260 DOI: 10.1016/j.biopha.2023.115384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Prefrontal cortex (PFC) inputs to the hippocampus are supposed to be critical in memory processes. Astrocytes are involved in several brain functions, such as homeostasis, neurotransmission, synaptogenesis. However, their role in PFC-mediated modulation of memory has yet to be studied. The present study aims at uncovering the role of PFC astroglia in memory performance and synaptic plasticity in the hippocampus. Using chemogenetic and lesions approaches of infralimbic PFC (IL-PFC) astrocytes, we evaluated memory performance in the novel object recognition task (NOR) and dorsal hippocampus synaptic plasticity. We uncovered a surprising role of PFC astroglia in modulating object recognition memory. In opposition to the astroglia PFC lesion, we show that chemogenetic activation of IL-PFC astrocytes increased memory performance in the novel object recognition task and facilitated in vivo dorsal hippocampus synaptic metaplasticity. These results redefine the involvement of PFC in recognition mnemonic processing, uncovering an important role of PFC astroglia.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Amel Bouloufa
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Cécile Bétry
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Erika Abrial
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Guillaume Lucas
- Université de Bordeaux, CNRS UMR 5287, INCIA, P3TN, Bordeaux F-33000, France
| | - Adeline Etiévant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
8
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
9
|
Kim EJ, Kim JJ. Neurocognitive effects of stress: a metaparadigm perspective. Mol Psychiatry 2023; 28:2750-2763. [PMID: 36759545 PMCID: PMC9909677 DOI: 10.1038/s41380-023-01986-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Stressful experiences, both physical and psychological, that are overwhelming (i.e., inescapable and unpredictable), can measurably affect subsequent neuronal properties and cognitive functioning of the hippocampus. At the cellular level, stress has been shown to alter hippocampal synaptic plasticity, spike and local field potential activity, dendritic morphology, neurogenesis, and neurodegeneration. At the behavioral level, stress has been found to impair learning and memory for declarative (or explicit) tasks that are based on cognition, such as verbal recall memory in humans and spatial memory in rodents, while facilitating those that are based on emotion, such as differential fear conditioning in humans and contextual fear conditioning in rodents. These vertically related alterations in the hippocampus, procedurally observed after subjects have undergone stress, are generally believed to be mediated by recurrently elevated circulating hypothalamic-pituitary-adrenal (HPA) axis effector hormones, glucocorticoids, directly acting on hippocampal neurons densely populated with corticosteroid receptors. The main purposes of this review are to (i) provide a synopsis of the neurocognitive effects of stress in a historical context that led to the contemporary HPA axis dogma of basic and translational stress research, (ii) critically reappraise the necessity and sufficiency of the glucocorticoid hypothesis of stress, and (iii) suggest an alternative metaparadigm approach to monitor and manipulate the progression of stress effects at the neural coding level. Real-time analyses can reveal neural activity markers of stress in the hippocampus that can be used to extrapolate neurocognitive effects across a range of stress paradigms (i.e., resolve scaling and dichotomous memory effects issues) and understand individual differences, thereby providing a novel neurophysiological scaffold for advancing future stress research.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Elias E, Zhang AY, White AG, Pyle MJ, Manners MT. Voluntary wheel running promotes resilience to the behavioral effects of unpredictable chronic mild stress in male and female mice. Stress 2023; 26:2203769. [PMID: 37125617 DOI: 10.1080/10253890.2023.2203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Affiliation(s)
- Elias Elias
- Department of Biology. College of Arts and Sciences. St Joseph's University, Philadelphia, PA 19131, United States
- Graduate Program in Cell and Molecular Biology
| | - Ariel Y Zhang
- Department of Biology. College of Arts and Sciences. St Joseph's University, Philadelphia, PA 19131, United States
- Graduate Program in Cell and Molecular Biology
| | - Abigail G White
- Department of Biology. College of Arts and Sciences. St Joseph's University, Philadelphia, PA 19131, United States
- Program in Neuroscience
| | - Matthew J Pyle
- Department of Biology. College of Arts and Sciences. St Joseph's University, Philadelphia, PA 19131, United States
| | - Melissa T Manners
- Department of Biology. College of Arts and Sciences. St Joseph's University, Philadelphia, PA 19131, United States
- Graduate Program in Cell and Molecular Biology
- Program in Neuroscience
- Department of Biological and Biomedical Sciences. College of Science and Mathematics. Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
11
|
Jyothi AK, Thotakura B, Priyadarshini SC, Patil S, Poojari MS, Subramanian M. Paternal stress alters synaptic density and expression of GAP-43, GRIN1, M1 and SYP genes in the hippocampus and cortex of offspring of stress-induced male rats. Morphologie 2023; 107:67-79. [PMID: 35715368 DOI: 10.1016/j.morpho.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Adverse experiences during pregnancy have a negative impact on the neuronal structure and behavior of offspring, but the effects of a father's life events on the outcome of progeny are scarce. The present study is intended to investigate whether paternal stress affects the offspring brain structure, especially those regions concerned with learning and formation of memory, namely the hippocampus (HC) and prefrontal cortex (PFC), and also the expression of certain genes linked to learning and memory in the offspring. Induced stress to male rats by five stressors, one per day followed by allowing them to mate with the normal, unstressed female. Synaptophysin immunoreactivity was assessed in the tissue sections of the HC and PFC as well as expression of genes concerned with learning and memory was evaluated by RT-PCR in the progeny of stress-received males. The progeny of stressed rats had reduced antisynaptophysin immunoreactivity in the HC and PFC. The synaptic density in HC was less in the A-S (Offspring of male rats who received stress during adulthood) and PA-S (offspring of male rats who received stress during both adolescence and adulthood) than in P-S (offspring of male rats who received stress during adolescence) and C-C (offspring of control) groups. Similar results were observed even in the PFC. The results of post hoc tests proved that the HC and PFC of the progeny of stress-exposed rats exhibited considerably less synaptic density than control (P<0.05), and the levels of expression of GAP-43, GRIN1, M1, and SYP genes in HC and PFC were down-regulated. This study concludes that paternal adverse experiences can affect the offspring's synaptic plasticity and also the genes, which can regulate learning and formation of memory.
Collapse
Affiliation(s)
- A K Jyothi
- Department of Anatomy, Basaveshwara Medical College and Hospital, 577502 Chitradurga, Karnataka, India
| | - B Thotakura
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, 603103 Kanchipuram, Tamil Nadu, India.
| | - S C Priyadarshini
- Department of Anatomy, Tagore Medical College & Hospital, 600127 Chennai, Tamil Nadu, India
| | - S Patil
- Department of Anatomy, Basaveshwara Medical College and Hospital, 577502 Chitradurga, Karnataka, India
| | - M S Poojari
- Department of Anatomy, Basaveshwara Medical College and Hospital, 577502 Chitradurga, Karnataka, India
| | - M Subramanian
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, 603103 Kanchipuram, Tamil Nadu, India
| |
Collapse
|
12
|
Gaszner T, Farkas J, Kun D, Ujvári B, Füredi N, Kovács LÁ, Hashimoto H, Reglődi D, Kormos V, Gaszner B. Epigenetic and Neuronal Activity Markers Suggest the Recruitment of the Prefrontal Cortex and Hippocampus in the Three-Hit Model of Depression in Male PACAP Heterozygous Mice. Int J Mol Sci 2022; 23:ijms231911739. [PMID: 36233039 PMCID: PMC9570135 DOI: 10.3390/ijms231911739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.
Collapse
Affiliation(s)
- Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Dániel Kun
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- ELKH-PTE PACAP Research Group Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
13
|
Chenani A, Weston G, Ulivi AF, Castello-Waldow TP, Huettl RE, Chen A, Attardo A. Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning. Transl Psychiatry 2022; 12:381. [PMID: 36096987 PMCID: PMC9468341 DOI: 10.1038/s41398-022-02107-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
Stress exposure impairs brain structure and function, resulting in cognitive deficits and increased risk for psychiatric disorders such as depression, schizophrenia, anxiety and post-traumatic stress disorder. In particular, stress exposure affects function and structure of hippocampal CA1 leading to impairments in episodic memory. Here, we applied longitudinal deep-brain optical imaging to investigate the link between changes in activity patterns and structural plasticity of dorsal CA1 pyramidal neurons and hippocampal-dependent learning and memory in mice exposed to stress. We found that several days of repeated stress led to a substantial increase in neuronal activity followed by disruption of the temporal structure of this activity and spatial coding. We then tracked dynamics of structural excitatory connectivity as a potential underlying cause of the changes in activity induced by repeated stress. We thus discovered that exposure to repeated stress leads to an immediate decrease in spinogenesis followed by decrease in spine stability. By comparison, acute stress led to stabilization of the spines born in temporal proximity to the stressful event. Importantly, the temporal relationship between changes in activity levels, structural connectivity and activity patterns, suggests that loss of structural connectivity mediates the transition between increased activity and impairment of temporal organization and spatial information content in dorsal CA1 upon repeated stress exposure.
Collapse
Affiliation(s)
| | - Ghabiba Weston
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany
| | - Alessandro F Ulivi
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | | | | | - Alon Chen
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany
- Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alessio Attardo
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany.
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| |
Collapse
|
14
|
Zakaria FH, Samhani I, Mustafa MZ, Shafin N. Pathophysiology of Depression: Stingless Bee Honey Promising as an Antidepressant. Molecules 2022; 27:molecules27165091. [PMID: 36014336 PMCID: PMC9416360 DOI: 10.3390/molecules27165091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a debilitating psychiatric disorder impacting an individual’s quality of life. It is the most prevalent mental illness across all age categories, incurring huge socio-economic impacts. Most depression treatments currently focus on the elevation of neurotransmitters according to the monoamine hypothesis. Conventional treatments include tricyclic antidepressants (TCAs), norepinephrine–dopamine reuptake inhibitors (NDRIs), monoamine oxidase inhibitors (MAOIs), and serotonin reuptake inhibitors (SSRIs). Despite numerous pharmacological strategies utilising conventional drugs, the discovery of alternative medicines from natural products is a must for safer and beneficial brain supplement. About 30% of patients have been reported to show resistance to drug treatments coupled with functional impairment, poor quality of life, and suicidal ideation with a high relapse rate. Hence, there is an urgency for novel discoveries of safer and highly effective depression treatments. Stingless bee honey (SBH) has been proven to contain a high level of antioxidants compared to other types of honey. This is a comprehensive review of the potential use of SBH as a new candidate for antidepressants from the perspective of the monoamine, inflammatory and neurotrophin hypotheses.
Collapse
Affiliation(s)
- Fatin Haniza Zakaria
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
| | - Ismail Samhani
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, Kuala Terengganu 20400, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
- Correspondence: (M.Z.M.); (N.S.); Tel.: +609-7673000 (M.Z.M. & N.S.)
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Malaysia
- Correspondence: (M.Z.M.); (N.S.); Tel.: +609-7673000 (M.Z.M. & N.S.)
| |
Collapse
|
15
|
Lee Y, Bortolotto ZA, Bradley CA, Sanderson TM, Zhuo M, Kaang BK, Collingridge GL. The GSK-3 Inhibitor CT99021 Enhances the Acquisition of Spatial Learning and the Accuracy of Spatial Memory. Front Mol Neurosci 2022; 14:804130. [PMID: 35153671 PMCID: PMC8829050 DOI: 10.3389/fnmol.2021.804130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a Ser/Thr protein kinase that regulates many cellular processes, including synaptic plasticity. Previously, we reported that inhibition of GSK-3 prevents the induction of one of the major forms of synaptic plasticity, N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD), in hippocampal slices. In the present study, we have investigated the effects of inhibiting GSK-3 on learning and memory in healthy naïve animals. Systemic administration of a highly selective GSK-3 inhibitor, CT99021, reversibly blocked NMDAR-dependent LTD in the CA1 region of the hippocampus in anesthetized adult mice. In behavioral tasks, CT99021 had no effect on locomotor activity, anxiety, hippocampus-dependent contextual fear memory, and hippocampus-dependent reversal learning. However, CT99021 facilitated the rate of learning in the Morris water maze (MWM) and T-maze and enhanced the accuracy of long-term spatial memory in the MWM. These findings suggest that GSK-3 regulates the accuracy of spatial memory acquisition and recall.
Collapse
Affiliation(s)
- Yeseul Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zuner A. Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clarrisa A. Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Genes and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas M. Sanderson
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Bong-Kiun Kaang,
| | - Graham L. Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Graham L. Collingridge,
| |
Collapse
|
16
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
17
|
Enduring glucocorticoid-evoked exacerbation of synaptic plasticity disruption in male rats modelling early Alzheimer's disease amyloidosis. Neuropsychopharmacology 2021; 46:2170-2179. [PMID: 34188184 PMCID: PMC8505492 DOI: 10.1038/s41386-021-01056-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction is a likely proximate cause of subtle cognitive impairment in early Alzheimer's disease. Soluble oligomers are the most synaptotoxic forms of amyloid ß-protein (Aß) and mediate synaptic plasticity disruption in Alzheimer's disease amyloidosis. Because the presence and extent of cortisol excess in prodromal Alzheimer's disease predicts the onset of cognitive symptoms we hypothesised that corticosteroids would exacerbate the inhibition of hippocampal synaptic long-term potentiation in a rat model of Alzheimer's disease amyloidosis. In a longitudinal experimental design using freely behaving pre-plaque McGill-R-Thy1-APP male rats, three injections of corticosterone or the glucocorticoid methylprednisolone profoundly disrupted long-term potentiation induced by strong conditioning stimulation for at least 2 months. The same treatments had a transient or no detectible detrimental effect on synaptic plasticity in wild-type littermates. Moreover, corticosterone-mediated cognitive dysfunction, as assessed in a novel object recognition test, was more persistent in the transgenic animals. Evidence for the involvement of pro-inflammatory mechanisms was provided by the ability of the selective the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome inhibitor Mcc950 to reverse the synaptic plasticity deficit in corticosterone-treated transgenic animals. The marked prolongation of the synaptic plasticity disrupting effects of brief corticosteroid excess substantiates a causal role for hypothalamic-pituitary-adrenal axis dysregulation in early Alzheimer's disease.
Collapse
|
18
|
Tian T, Qin X, Wang Y, Shi Y, Yang X. 40 Hz Light Flicker Promotes Learning and Memory via Long Term Depression in Wild-Type Mice. J Alzheimers Dis 2021; 84:983-993. [PMID: 34602491 DOI: 10.3233/jad-215212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND 40 Hz light flicker is a well-known non-invasive treatment that is thought to be effective in treating Alzheimer's disease. However, the effects of 40 Hz visual stimulation on neural networks, synaptic plasticity, and learning and memory in wild-type animals remain unclear. OBJECTIVE We aimed to explore the impact of 40 Hz visual stimulation on synaptic plasticity, place cell, and learning and memory in wild-type mice. METHODS c-Fos+ cell distribution and in vivo electrophysiology was used to explore the effects of 40 Hz chronic visual stimulation on neural networks and neuroplasticity in wild-type mice. The character of c-Fos+ distribution in the brain and the changes of corticosterone levels in the blood were used to investigate the state of animal. Place cell analysis and novel location test were utilized to examine the effects of 40 Hz chronic visual stimulation on learning and memory in wild-type mice. RESULTS We found that 40 Hz light flicker significantly affected many brain regions that are related to stress. Also, 40 Hz induced gamma enrichment within 15 min after light flickers and impaired the expression of long-term potentiation (LTP), while facilitated the expression of long-term depression (LTD) in the hippocampal CA1. Furthermore, 40 Hz light flicker enhanced the expression of corticosterone, rendered well-formed place cells unstable and improved animal's learning and memory in novel local recognition test, which could be blocked by pre-treatment with the LTD specific blocker Glu2A-3Y. CONCLUSION These finding suggested that 40 Hz chronic light flicker contains stress effects, promoting learning and memory in wild-type mice via LTD.
Collapse
Affiliation(s)
- Tian Tian
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin Qin
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yan Shi
- Faculty of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Xin Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
19
|
Infortuna C, Mineo L, Buffer S, Thomas FP, Muscatello MRA, Aguglia E, Bruno A, Zoccali RA, Sheikh A, Chusid E, Han Z, Battaglia F. Acute social and somatic stress alters cortical metaplasticity probed with non-invasive brain stimulation in humans. Int J Psychophysiol 2021; 170:1-5. [PMID: 34547303 DOI: 10.1016/j.ijpsycho.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Studying the neuronal mechanisms that govern the cortical adaptations to acute stress is critical for understanding the development of neuropsychiatric diseases. Homeostatic plasticity stabilizes the neural activity in which a previous synaptic event drives subsequent synaptic plasticity. In this study, we evaluated the effect of acute stress induced with the socially evaluated cold pressor test (SECPT) on cortical metaplasticity in humans using a non-invasive brain stimulation protocol. After being exposed to the SECPT and control stress conditions, 30 healthy participants were tested for cortical metaplasticity assessed with changes in the amplitude of the motor evoked potential (MEP) induced by a single-pulse transcranial magnetic stimulation (TMS). Cortical metaplasticity was induced by combining priming with cathodal tDCS (cTDCS) followed by a sub-threshold 1-Hz repetitive stimulation (rTMS) test session. Our results showed that SECPT induced cardiovascular adaptations (increase in systolic, diastolic blood pressure, and heart rate), indicating that SECPT effectively induced acute stress. Also, in our experiments stimulation of subjects with 1-Hz rTMS after they had undergone the SECPT condition induced inhibition of MEP whereas 1-Hz rTMS administered after the control condition induced a facilitatory (physiologic) response pattern. Here we observed that acute stress impairs homeostatic metaplasticity. The dysfunctional regulation of cortical plastic changes after stress could play a pivotal role in the pathogenesis of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Carmenrita Infortuna
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Ludovico Mineo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Steven Buffer
- Department of Medical Sciences and Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Maria Rosaria Anna Muscatello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Antonio Bruno
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Rocco Antonio Zoccali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Asad Sheikh
- Department of Pre-clinical Sciences, New York College of Podiatric Medicine, New York, USA
| | - Eileen Chusid
- Department of Pre-clinical Sciences, New York College of Podiatric Medicine, New York, USA
| | - Zhyiong Han
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Fortunato Battaglia
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA.
| |
Collapse
|
20
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
21
|
The Amygdala Responds Rapidly to Flashes Linked to Direct Retinal Innervation: A Flash-evoked Potential Study Across Cortical and Subcortical Visual Pathways. Neurosci Bull 2021; 37:1107-1118. [PMID: 34086263 DOI: 10.1007/s12264-021-00699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/27/2021] [Indexed: 12/20/2022] Open
Abstract
Rapid detection and response to visual threats are critical for survival in animals. The amygdala (AMY) is hypothesized to be involved in this process, but how it interacts with the visual system to do this remains unclear. By recording flash-evoked potentials simultaneously from the superior colliculus (SC), lateral posterior nucleus of the thalamus, AMY, lateral geniculate nucleus (LGN) and visual cortex, which belong to the cortical and subcortical pathways for visual fear processing, we investigated the temporal relationship between these regions in visual processing in rats. A quick flash-evoked potential (FEP) component was identified in the AMY. This emerged as early as in the LGN and was approximately 25 ms prior to the earliest component recorded in the SC, which was assumed to be an important area in visual fear. This quick P1 component in the AMY was not affected by restraint stress or corticosterone injection, but was diminished by RU38486, a glucocorticoid receptor blocker. By injecting a monosynaptic retrograde AAV tracer into the AMY, we found that it received a direct projection from the retina. These results confirm the existence of a direct connection from the retina to the AMY, that the latency in the AMY to flashes is equivalent to that in the sensory thalamus, and that the response is modulated by glucocorticoids.
Collapse
|
22
|
Xing X, Fu J, Wang H, Zheng X. Contributions of prelimbic cortex, dorsal and ventral hippocampus, and basolateral amygdala to fear return induced by elevated platform stress in rats. Brain Res 2021; 1761:147398. [PMID: 33662338 DOI: 10.1016/j.brainres.2021.147398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022]
Abstract
Fear relapse is a major challenge in the treatment of stress-related mental disorders. Most investigations have focused on fear return induced by stimuli associated with the initial fear learning, while little attention has been paid to fear return evoked after exposure to an unconditioned stressor. This study explored the neural mechanisms of fear return induced by elevated platform (EP) stressor in Sprague-Dawley rats initially subjected to auditory fear conditioning. The contributions of the prelimbic cortex (PL), dorsal hippocampus (DH), ventral hippocampus (VH), and basolateral amygdala (BLA) were examined by targeted bilateral intracerebral injection of the GABAA agonist muscimol after elevated platform (EP) stressor. Muscimol-induced inactivation of PL or BLA significantly impaired the return of conditioning fear, while inactivation of the DH or VH had no effect. These results suggest that fear return induced by non-associative stressor may depend on the PL and BLA but not on the hippocampus.
Collapse
Affiliation(s)
- Xiaoli Xing
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Education Science, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Juan Fu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, Shandong Province, PR China
| | - Hongbo Wang
- School of Education Science, Henan University, Kaifeng 475004, Henan Province, PR China
| | - Xigeng Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
23
|
Giacobbe J, Marrocu A, Di Benedetto MG, Pariante CM, Borsini A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain Behav Immun 2021; 93:353-367. [PMID: 33383145 DOI: 10.1016/j.bbi.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022] Open
Abstract
The endocannabinoid (eCB) system is considered relevant in the pathophysiology of affective disorders, and a potential therapeutic target, as its hypoactivity is considered an important risk factor of depression. However, the biological mechanisms whereby the eCB system affects mood remain elusive. Through a systematic review, thirty-seven articles were obtained from the PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the eCB system on the immune system and neurogenesis, as well as resulting behavioural effects in rodent models of affective disorders. Overall, activation of the eCB system appears to decrease depressive-like behaviour and to be anti-inflammatory, while promoting neuro- and synaptogenesis in various models. Activation of cannabinoid receptors (CBRs) is shown to be crucial in improving depressive-like and anxiety-like behaviour, although cannabidiol administration suggests a role of additional mechanisms. CB1R signalling, as well as fatty acid amide hydrolase (FAAH) inhibition, are associated with decreased pro-inflammatory cytokines. Moreover, activation of CBRs is required for neurogenesis, which is also upregulated by FAAH inhibitors. This review is the first to assess the association between the eCB system, immune system and neurogenesis, alongside behavioural outcomes, across rodent models of affective disorders. We confirm the therapeutic potential of eCB system activation in depression and anxiety, highlighting immunoregulation as an important mechanism whereby dysfunctional behaviour and neurogenesis can be improved.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessia Marrocu
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
24
|
The Role of Neurotrophic Factors in Pathophysiology of Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:257-272. [PMID: 33834404 DOI: 10.1007/978-981-33-6044-0_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to the neurotrophic hypothesis of major depressive disorder (MDD), impairment in growth factor signaling might be associated with the pathology of this illness. Current evidence demonstrates that impaired neuroplasticity induced by alterations of neurotrophic growth factors and related signaling pathways may be underlying to the pathophysiology of MDD. Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophic factor involved in the neurobiology of MDD. Nevertheless, developing evidence has implicated other neurotrophic factors, including neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), glial cell-derived neurotrophic factor (GDNF), and fibroblast growth factor (FGF) in the MDD pathophysiology. Here, we summarize the current literature on the involvement of neurotrophic factors and related signaling pathways in the pathophysiology of MDD.
Collapse
|
25
|
Nam MH, Won W, Han KS, Lee CJ. Signaling mechanisms of μ-opioid receptor (MOR) in the hippocampus: disinhibition versus astrocytic glutamate regulation. Cell Mol Life Sci 2021; 78:415-426. [PMID: 32671427 PMCID: PMC11073310 DOI: 10.1007/s00018-020-03595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
μ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynaptic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent conditioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place preference and other hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, 123 Dongdae-ro, Gyeongju, Gyeongbuk, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
26
|
Understanding stress: Insights from rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100013. [PMID: 36246514 PMCID: PMC9559100 DOI: 10.1016/j.crneur.2021.100013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
Through incorporating both physical and psychological forms of stressors, a variety of rodent models have provided important insights into the understanding of stress physiology. Rodent models also have provided significant information with regards to the mechanistic basis of the pathophysiology of stress-related disorders such as anxiety disorders, depressive illnesses, cognitive impairment and post-traumatic stress disorder. Additionally, rodent models of stress have served as valuable tools in the area of drug screening and drug development for treatment of stress-induced conditions. Although rodent models do not accurately reproduce the biochemical or physiological parameters of stress response and cannot fully mimic the natural progression of human disorders, yet, animal research has provided answers to many important scientific questions. In this review article, important studies utilizing a variety of stress models are described in terms of their design and apparatus, with specific focus on their capabilities to generate reliable behavioral and biochemical read-out. The review focusses on the utility of rodent models by discussing examples in the literature that offer important mechanistic insights into physiologically relevant questions. The review highlights the utility of rodent models of stress as important tools for advancing the mission of scientific research and inquiry. Stressful life events may lead to the onset of severe psychopathologies in humans. Rodents may model many features of stress exposure in human populations. Induction of stress via pharmacological and psychological manipulations alter rodent behavior. Mechanistic rodent studies reveal key molecular targets critical for new therapeutic targets.
Collapse
|
27
|
Social Transmission and Buffering of Hippocampal Metaplasticity after Stress in Mice. J Neurosci 2020; 41:1317-1330. [PMID: 33310752 DOI: 10.1523/jneurosci.1751-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
In social animals, the behavioral and hormonal responses to stress can be transmitted from one individual to another through a social transmission process, and, conversely, social support ameliorates stress responses, a phenomenon referred to as social buffering. Metaplasticity represents activity-dependent synaptic changes that modulate the ability to elicit subsequent synaptic plasticity. Authentic stress can induce hippocampal metaplasticity, but whether transmitted stress has the same ability remains unknown. Here, using an acute restraint-tailshock stress paradigm, we report that both authentic and transmitted stress in adult male mice trigger metaplastic facilitation of long-term depression (LTD) induction at hippocampal CA1 synapses. Using LTD as a readout of persistent synaptic consequences of stress, our findings demonstrate that, in a male-male dyad, stress transmission happens in nearly half of naive partners and stress buffering occurs in approximately half of male stressed mice that closely interact with naive partners. By using a social-confrontation tube test to assess the dominant-subordinate relationship in a male-male dyad, we found that stressed subordinate mice are not buffered by naive dominant partners and that stress transmission is exhibited in ∼60% of dominant naive partners. Furthermore, the appearance of stress transmission correlates with more time spent in sniffing the anogenital area of stressed mice, and the appearance of stress buffering correlates with more time engaged in allogrooming from naive partners. Chemical ablation of the olfactory epithelium with dichlobenil or physical separation between social contacts diminishes stress transmission. Together, our data demonstrate that transmitted stress can elicit metaplastic facilitation of LTD induction as authentic stress.SIGNIFICANCE STATEMENT Social animals can acquire information about their environment through interactions with conspecifics. Stress can induce enduring changes in neural activity and synaptic function. Current studies are already unraveling the transmission and buffering of stress responses between individuals, but little is known about the relevant synaptic changes associated with social transmission and buffering of stress. Here, we show that authentic and transmitted stress can prime glutamatergic synapses onto hippocampal CA1 neurons to undergo long-term depression. This hippocampal metaplasticity is bufferable following social interactions with naive partners. Hierarchical status of naive partners strongly affects the social buffering effect on synaptic consequences of stress. This work provides novel insights into the conceptual framework for synaptic changes with social transmission and buffering of stress.
Collapse
|
28
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
29
|
Deonaraine KK, Wang Q, Cheng H, Chan KL, Lin HY, Liu K, Parise LF, Cathomas F, Leclair KB, Flanigan ME, Li L, Aleyasin H, Guevara C, Hao K, Zhang B, Russo SJ, Wang J. Sex-specific peripheral and central responses to stress-induced depression and treatment in a mouse model. J Neurosci Res 2020; 98:2541-2553. [PMID: 32918293 DOI: 10.1002/jnr.24724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 11/11/2022]
Abstract
Major depressive disorder affects ~20% of the world population and is characterized by strong sexual dimorphism with females being two to three times more likely to develop this disorder. Previously, we demonstrated that a combination therapy with dihydrocaffeic acid and malvidin-glucoside to synergistically target peripheral inflammation and stress-induced synaptic maladaptation in the brain was effective in alleviating chronic social defeat stress (CSDS)-induced depression-like phenotype in male mice. Here, we test the combination therapy in a female CSDS model for depression and compared sex-specific responses to stress in the periphery and the central nervous system. Similar to male mice, the combination treatment is also effective in promoting resilience against the CSDS-induced depression-like behavior in female mice. However, there are sex-specific differences in peripheral immune responses and differential gene regulation in the prefrontal cortex to chronic stress and to the treatment. These data indicate that while therapeutic approaches to combat stress-related disorders may be effective in both sexes, the mechanisms underlying these effects differ, emphasizing the need for inclusion of both sexes in preclinical studies using animal models.
Collapse
Affiliation(s)
- Kristina K Deonaraine
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute of Genomics and Multi-Scale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L Chan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Yun Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kalena Liu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F Parise
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flurin Cathomas
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine B Leclair
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meghan E Flanigan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Li
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hossein Aleyasin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Guevara
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute of Genomics and Multi-Scale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
30
|
Huang C, Chen JT. Chronic retinoic acid treatment induces affective disorders by impairing the synaptic plasticity of the hippocampus. J Affect Disord 2020; 274:678-689. [PMID: 32664002 DOI: 10.1016/j.jad.2020.05.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/18/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND More and more people are suffering from depression in modern society. It is believed that the development of depression results from alterations in synaptic transmission, especially in the hippocampus. Animal experiments and clinical studies have demonstrated that retinoids are essential components in hippocampal synaptic plasticity, and they have a close relationship with depression. However, it is still unclear how excessive retinoic acid (RA) causes depression and what synaptic and molecular mechanisms underlie it. METHODS Behavioral, electrophysiological, and molecular approaches were employed to characterize the effects of RA on depression and synaptic plasticity. RA was continuously administered intracerebroventricularly through an osmotic pump. RESULTS RA treatment induced depression-like behaviors, as evidenced by decreased sucrose preference and increased immobile duration in both the forced swim test and the tail suspension test. RA administration also induced anxiety-like behaviors, indicated by decreased duration in the open arms of the elevated plus maze and the central of the open field. RA treatment decreased the neuronal excitability of the hippocampus either by changing the excitatory/inhibitory receptor balance or by promoting the synthesis of inhibitory neurotransmitters. Moreover, long-term potentiation was decreased in both the excitatory postsynaptic potential and the population spike in RA-treated rats, presumably a consequence of the reduced glur1 transcript level. LIMITATIONS The mechanism of how excess RA affects the hippocampal gene expression and synaptic plasticity requires further study. CONCLUSIONS RA treatment can induce depression-like behavior in rats and impair hippocampal plasticity. Thus, improving synaptic plasticity in the hippocampus may ameliorate the affective disorders caused by excessive RA.
Collapse
Affiliation(s)
- Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Ju-Tao Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
31
|
Guo KF, Dai M, Liu YM, Zhang JC, Chen YM, Ye H, Li MB, Mao RR, Cao J. Acute Administration of Methyleugenol Impairs Hippocampus-Dependent Contextual Fear Memory and Increases Anxiety-like Behavior in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7490-7497. [PMID: 32551566 DOI: 10.1021/acs.jafc.0c01863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methyleugenol (ME) as a natural essential oil in many plant species is widely used in human food and beverage for its fragrance and possible beneficial health effects. Previous chronic or subacute studies in rodents show that ME mainly causes liver toxicity. However, whether and how acute ME affects the central nervous system still remain elusive. Here, we found that ME administrated into the hippocampus impaired the acquisition of hippocampus-dependent contextual fear memory in mice (ME vs control: repeated-measures two-way ANOVA, F(5,70) = 2.937, p < 0.05; Fisher test, p < 0.05, respectively, 53 ± 5.2% vs 73 ± 7.6% during trial 4 and 46.8 ± 6% vs 74.5 ± 9.3% during trial 5). Meanwhile, acute ME impaired hippocampal CA1 long-term potentiation (LTP; ME vs control: independent t-test, p < 0.01, 110.6 ± 1.8% vs 133.3 ± 5.6%) while facilitated long-term depression (LTD; p < 0.01, 75.7 ± 3.4% vs 88.6 ± 1.7%) in mice brain slices and inducing a decrease in learning-dependent phosphorylation of Ser831 (ME vs control: independent t-test, p < 0.001, 0.87 ± 0.03 vs 1.23 ± 0.03) and Ser845 (p < 0.01, 0.42 ± 0.07 vs 0.97 ± 0.14) sites of excitatory glutamate AMPA receptor subunit 1 (GluA1) in the hippocampus, which may be the underlying mechanisms of impairment of hippocampus-dependent learning. In addition, intrahippocampal infusion of ME also increased anxiety-like behaviors in mice. These results suggested that acute ME impaired the hippocampus function at behavioral, cellular, and molecular levels, indicating the potential risks of ME on the central nervous system.
Collapse
Affiliation(s)
- Kai-Fei Guo
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology and School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Man Dai
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology and School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Yi-Miao Liu
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology and School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Ji-Chuan Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan-Mei Chen
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hui Ye
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Man-Bi Li
- Yunnan Institute of Environmental Sciences, Kunming, Yunnan 650034, China
| | - Rong-Rong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jun Cao
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology and School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
32
|
Sadeghian A, Salari Z, Azizi H, Raoufy MR, Shojaei A, Kosarmadar N, Zare M, Rezaei M, Barkley V, Javan M, Fathollahi Y, Mirnajafi-Zadeh J. The role of dopamine D 2-like receptors in a "depotentiation-like effect" of deep brain stimulation in kindled rats. Brain Res 2020; 1738:146820. [PMID: 32251663 DOI: 10.1016/j.brainres.2020.146820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
The mechanisms involved in the anti-seizure effects of low-frequency stimulation (LFS) have not been completely determined. However, Gi-protein-coupled receptors, including D2-like receptors, may have a role in mediating these effects. In the present study, the role of D2-like receptors in LFS' anti-seizure action was investigated. Rats were kindled with semi-rapid (6 stimulations per day), electrical stimulation of the hippocampal CA1 area. In LFS-treated groups, subjects received four trials of LFS at 5 min, 6 h, 24 h, and 30 h following the last kindling stimulation. Each LFS set occurred at 5 min intervals, and consisted of 4 trains. Each train contained 200, 0/1 ms long, monophasic square wave pulses at 1 Hz. Haloperidol (D2-like receptors antagonist, 2 µm) and/or bromocriptine (D2-like receptors agonist 2 µg/µlit) were microinjected into the lateral ventricle immediately after the last kindling, before applying LFS. Obtained results showed that applying LFS in fully-kindled subjects led to a depotentiation-like decrease in kindling-induced potentiation and reduced the amplitude and rise slope of excitatory and inhibitory post-synaptic currents in whole-cell recordings from CA1 pyramidal neurons. In addition, LFS restored the kindling-induced, spatial learning and memory impairments in the Barnes maze test. A D2-like receptor antagonist inhibited these effects of LFS, while a D2-like receptor agonist mimicked these effects. In conclusion, a depotentiation-like mechanism may be involved in restoring LFS' effects on learning and memory, and synaptic plasticity. These effects depend on D2-like receptors activity.
Collapse
Affiliation(s)
- Azam Sadeghian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Salari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Kosarmadar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
33
|
Moench KM, Breach MR, Wellman CL. Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Horm Behav 2020; 117:104615. [PMID: 31634476 PMCID: PMC6980662 DOI: 10.1016/j.yhbeh.2019.104615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA.
| |
Collapse
|
34
|
Hippocampal µ-opioid receptors on GABAergic neurons mediate stress-induced impairment of memory retrieval. Mol Psychiatry 2020; 25:977-992. [PMID: 31142818 PMCID: PMC7192851 DOI: 10.1038/s41380-019-0435-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
Abstract
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAA receptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Collapse
|
35
|
Kang J, Wang Y, Wang D. Endurance and resistance training mitigate the negative consequences of depression on synaptic plasticity through different molecular mechanisms. Int J Neurosci 2019; 130:541-550. [DOI: 10.1080/00207454.2019.1679809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Kang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Youhua Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Di Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
36
|
Neurophysiologic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31784959 DOI: 10.1007/978-981-32-9271-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Enormous efforts for near half-century have harvested a plenty of understanding on major depressive disorder (MDD), although the underlying mechanisms are still elusive. The available antidepressants are far from satisfaction due to long-delay action (LDA) of antidepressant efficacy and low response rates in MDD patients. Notably, discovery of a single low-dose ketamine-producing rapid-onset and sustained antidepressant efficacy has inspired new research direction. These new studies have revealed ketamine's NMDAR-dependent and NMDAR-independent mechanisms, most of which are well known to be the key bases of synaptic plasticity as well as learning and memory. In fact, animal models of MDD are all based on the principle of learning and memory, i.e., the change of a behavior, for which monoaminergic and glutamatergic systems are the major modulators and executors, respectively. Reconsidering MDD as an aberrant form of emotion-related learning and memory would endow us a clearer research direction for developing new techniques or ways to prevent, diagnose, and treat MDD.
Collapse
|
37
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
38
|
O'Riordan KJ, Hu NW, Rowan MJ. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus. Cell Rep 2019; 22:2053-2065. [PMID: 29466733 DOI: 10.1016/j.celrep.2018.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/16/2017] [Accepted: 01/26/2018] [Indexed: 01/03/2023] Open
Abstract
Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland; Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
39
|
Bliss T, Collingridge GL. Persistent memories of long-term potentiation and the N-methyl-d-aspartate receptor. Brain Neurosci Adv 2019; 3:2398212819848213. [PMID: 32166182 PMCID: PMC7058229 DOI: 10.1177/2398212819848213] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/17/2022] Open
Abstract
In this article, we describe our involvement in the early days of research into long-term potentiation. We start with a description of the early experiments conducted in Oslo and London where long-term potentiation was first characterised. We discuss the ways in which the molecular pharmacology of glutamate receptors control the induction and expression of long-term potentiation and its counterpart, long-term depression. We then go on to summarise the extraordinary advances in understanding the cellular mechanisms of synaptic plasticity that have taken place in the subsequent half century. Finally, the increasing evidence that impaired long-term potentiation is a core feature of many brain disorders (LToPathies) is addressed by way of a few selected examples.
Collapse
Affiliation(s)
- Tvp Bliss
- The Francis Crick Institute, London, UK.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - G L Collingridge
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases and Department of Physiology, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
Dahlin E, Andersson M, Thorén A, Hanse E, Seth H. Effects of physical exercise and stress on hippocampal CA1 and dentate gyrus synaptic transmission and long-term potentiation in adolescent and adult Wistar rats. Neuroscience 2019; 408:22-30. [PMID: 30926550 DOI: 10.1016/j.neuroscience.2019.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
It is commonly recognized that physical exercise positively affects several CNS regions and improves cognitive abilities. For example, exercise is associated with an increase in neurogenesis and facilitation of long-term potentiation in the hippocampus. Conversely, animal models for depression are associated with a decrease in neurogenesis and a reduction of long-term potentiation in the hippocampus. Although exercise could be a viable option in the treatment of some forms of depression, the mechanisms responsible for such improvements have not been elucidated. In this study, we examine hippocampal function using electrophysiological field recordings in CA1 and dentate gyrus to study baseline synaptic transmission and long-term potentiation in adolescent and adult rats prenatally exposed to the glucocorticoid dexamethasone. One group of animals was allowed to run voluntarily for 10 or 21 days using an exercise wheel before the experiments, and the control group was prevented from running (i.e. the exercise wheel was locked). In adult saline-exposed animals, exercise was associated with increased long-term potentiation in the dentate gyrus. Unexpectedly, in dexamethasone-exposed animals, dentate gyrus long-term potentiation was facilitated, whereas long-term potentiation in CA1 was unaffected by prenatal dexamethasone or by 10 or 21 days of voluntary running. Irrespective of age, prenatal dexamethasone and running had limited effects on synaptic transmission and presynaptic release in CA1 and dentate gyrus. In summary, running facilitates dentate gyrus long-term potentiation in adult animals that resembles the effects of prenatal dexamethasone.
Collapse
Affiliation(s)
- Emelie Dahlin
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mats Andersson
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Albin Thorén
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Hanse
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Seth
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
41
|
Fan KM, Qiu LJ, Ma N, Du YN, Qian ZQ, Wei CL, Han J, Ren W, Shi MM, Liu ZQ. Acute Stress Facilitates LTD Induction at Glutamatergic Synapses in the Hippocampal CA1 Region by Activating μ-Opioid Receptors on GABAergic Neurons. Front Neurosci 2019; 13:71. [PMID: 30800053 PMCID: PMC6375894 DOI: 10.3389/fnins.2019.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Acute stress impairs recall memory through the facilitation of long-term depression (LTD) of hippocampal synaptic transmission. The endogenous opioid system (EOS) plays essential roles in stress-related emotional and physiological responses. Specifically, behavioral studies have shown that the impairment of memory retrieval induced by stressful events involves the activation of opioid receptors. However, it is unclear whether signaling mediated by μ-opioid receptors (μRs), one of the three major opioid receptors, participates in acute stress-related hippocampal LTD facilitation. Here, we examined the effects of a single elevated platform (EP) stress exposure on excitatory synaptic transmission and plasticity at the Schaffer collateral-commissural (SC) to CA1 synapses by recording electrically evoked field excitatory postsynaptic potentials and population spikes of hippocampal pyramidal neurons in anesthetized adult mice. EP stress exposure attenuated GABAergic feedforward and feedback inhibition of CA1 pyramidal neurons and facilitated low-frequency stimulation (LFS)-induced long-term depression (LTD) at SC-CA1 glutamatergic synapses. These effects were reproduced by exogenously activating μRs in unstressed mice. The specific deletion of μRs on GABAergic neurons (μRGABA) not only prevented the EP stress-induced memory impairment but also reversed the EP stress-induced attenuation of GABAergic inhibition and facilitation of LFS-LTD. Our results suggest that acute stress endogenously activates μRGABA to attenuate hippocampal GABAergic signaling, thereby facilitating LTD induction at excitatory synapses and eliciting memory impairments.
Collapse
Affiliation(s)
- Ka-Min Fan
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Li-Juan Qiu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Ning Ma
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Yi-Nan Du
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Zhao-Qiang Qian
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Chun-Ling Wei
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Mei-Mei Shi
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Zhi-Qiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
42
|
Moench KM, Breach MR, Wellman CL. Chronic stress produces enduring sex- and region-specific alterations in novel stress-induced c-Fos expression. Neurobiol Stress 2019; 10:100147. [PMID: 30937353 PMCID: PMC6430515 DOI: 10.1016/j.ynstr.2019.100147] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Prolonged or repeated exposure to stress increases risk for a variety of psychological disorders, many of which are marked by dysfunction of corticolimbic brain regions. Notably, women are more likely than men to be diagnosed with these disorders, especially when onset of symptoms follows stressful life events. Using rodent models, investigators have recently begun to elucidate sex-specific changes in the brain and behavior that occur immediately following chronic stress. However, little is known regarding the lasting sequelae of chronic stress, as well as how potential changes may impact responsivity to future stressors. We recently demonstrated that male and female rats show different patterns of dendritic reorganization in medial prefrontal cortex in the days following chronic stress. Here, we examined the immediate and lasting effects of chronic restraint stress (CRS; 3 h/day, 10 days) on neuronal activation, across several corticolimbic brain regions, induced by novel acute stress exposure. Chronically stressed male and female rats were exposed to acute elevated platform stress (EPS) either 1 (CRS-EPS) or 7 (CRS-Rest-EPS) days after CRS. Compared to rats exposed to EPS only, significant reductions in acute stress-induced c-Fos expression were observed in the medial prefrontal cortex, hippocampus, and paraventricular nucleus of the hypothalamus (PVN) in CRS-EPS male rats, some of which persisted to 7 days post-stress. In contrast, we found little modulation of novel stress-induced c-Fos expression in CRS-EPS female rats. However, CRS-Rest-EPS female rats exhibited a significant enhancement of acute stress-induced neuronal activity in the PVN. Together, these data show that prior chronic stress produces sex- and region-specific alterations in novel stress-induced neuronal activation, which are dependent on the presence or absence of a rest period following chronic stress. These findings suggest that the post-stress rest period may give rise to sex-specific neuroadaptations to stress, which may underlie sex differences in stress susceptibility versus resilience. In males, chronic stress blunts corticolimbic activation to a novel stressor. A post-stress rest period restores acute stress responsivity in male rats. In females, chronic stress blunts activation to novel stress in OFC only. After a post-stress rest period, novel stress enhances c-Fos in PVN and BLA in females. The post-stress rest period may give rise to sex-specific neuroadaptations to stress.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.,Program in Neuroscience, Indiana University, Bloomington, IN, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.,Program in Neuroscience, Indiana University, Bloomington, IN, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
43
|
Selegiline ameliorates depression-like behaviors in rodents and modulates hippocampal dopaminergic transmission and synaptic plasticity. Behav Brain Res 2019; 359:353-361. [DOI: 10.1016/j.bbr.2018.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
|
44
|
Khazen T, Shrivastava K, Jada R, Hatoum OA, Maroun M. Different mechanisms underlie stress-induced changes in plasticity and metaplasticity in the prefrontal cortex of juvenile and adult animals. Neurobiol Learn Mem 2018; 154:5-11. [DOI: 10.1016/j.nlm.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
|
45
|
Zhang JJ, Haubrich J, Bernabo M, Finnie PS, Nader K. Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiol Learn Mem 2018; 154:78-86. [DOI: 10.1016/j.nlm.2018.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
46
|
Alkadhi KA. Delayed effects of combined stress and Aβ infusion on L-LTP of the dentate gyrus: Prevention by nicotine. Neurosci Lett 2018; 682:10-15. [PMID: 29883681 DOI: 10.1016/j.neulet.2018.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
Abstract
Alzheimer's Disease (AD) is a progressive dementia hallmarked by the presence in the brain of extracellular beta-amyloid (Aβ) plaques and intraneuronal fibrillary tangles. Chronic stress is associated with heightened Aβ buildup and acceleration of development of AD, however, stress alone has no significant effect on synaptic plasticity in the dentate gyrus (DG) area. Previously, we have reported that the combination of stress and AD causes more severe inhibition of synaptic plasticity of hippocampal area CA1 than chronic stress or AD alone, and that chronic nicotine treatment prevents this impairment. To investigate the effect of stress and nicotine on synaptic plasticity in the relatively injury-resistant DG area, the present experiments analyzed the effect of chronic stress and the neuroprotective effect of nicotine on LTP in the DG area of a rat model of AD. Wistar rats were chronically stressed and treated with nicotine (1 mg/kg/twice daily; s.c.) for six weeks. Then, at weeks 5-6, AD model was generated by 14-day i.c.v osmotic pump infusion of Aβ peptides (300 pmol/day) into the brains of these rats. Field potential recordings from the DG area of anesthetized rats, revealed that while chronic stress did not accentuate Aβ-induced impairments of E-LTP, it markedly augmented Aβ effect on L-LTP that was only seen 100 min after multiple high frequency stimulation. This delayed action is likely to be due to impairment of process of de novo protein synthesis required for maintenance phase of L-LTP. Chronic nicotine treatment prevented stress-enhanced suppression of synaptic plasticity.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
47
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
48
|
Chen Q, Ren L, Min S, Hao X, Chen H, Deng J. Changes in synaptic plasticity are associated with electroconvulsive shock-induced learning and memory impairment in rats with depression-like behavior. Neuropsychiatr Dis Treat 2018; 14:1737-1746. [PMID: 29997435 PMCID: PMC6033087 DOI: 10.2147/ndt.s163756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Accompanied with the effective antidepressant effect, electroconvulsive shock (ECS) can induce cognitive impairment, but the mechanism is unclear. Synaptic plasticity is the fundamental mechanism of learning and memory. This study aimed to investigate the effect of ECS on synaptic plasticity changes in rats with depression-like behavior. METHODS Chronic unpredictable mild stress procedure was conducted to establish a model of depression-like behavior. Rats were randomly divided into the following three groups: control group with healthy rats (group C), rats with depression-like behavior (group D), and rats with depression-like behavior undergoing ECS (group DE). Depression-like behavior and spatial learning and memory function were assessed by sucrose preference test and Morris water test, respectively. Synaptic plasticity changes in long-term potentiation (LTP), long-term depression (LTD), depotentiation, and post-tetanic potentiation (PTP) were tested by electrophysiological experiment. RESULTS ECS could exert antidepressant effect and also induced spatial learning and memory impairment in rats with depression-like behavior. And, data on electrophysiological experiment showed that ECS induced lower magnitude of LTP, higher magnitude of LTD, higher magnitude of depotentiation, and lower magnitude of PTP. CONCLUSION ECS-induced learning and memory impairment may be attributed to postsynaptic mechanism of LTP impairment, LTD and depotentiation enhancement, and presynaptic mechanism of PTP impairment.
Collapse
Affiliation(s)
- Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jie Deng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
| |
Collapse
|
49
|
Normann C, Frase S, Haug V, von Wolff G, Clark K, Münzer P, Dorner A, Scholliers J, Horn M, Vo Van T, Seifert G, Serchov T, Biber K, Nissen C, Klugbauer N, Bischofberger J. Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter-Independent Inhibition of L-Type Calcium Channels. Biol Psychiatry 2018; 84:55-64. [PMID: 29174591 DOI: 10.1016/j.biopsych.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. METHODS We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca2+) channels in heterologous expression systems were used to determine the modulation of Ca2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. RESULTS SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. CONCLUSIONS These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression.
Collapse
Affiliation(s)
- Claus Normann
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.
| | - Sibylle Frase
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Verena Haug
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Gregor von Wolff
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Kristin Clark
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Patrick Münzer
- Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Alexandra Dorner
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Jonas Scholliers
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Max Horn
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tanja Vo Van
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Gabriel Seifert
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Klugbauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
50
|
Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 2018; 41:585-596. [PMID: 29594645 DOI: 10.1007/s10545-018-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.
Collapse
Affiliation(s)
- Graeme Preston
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|