1
|
Zhang N, Wu J, Gao S, Peng H, Li H, Gibson C, Wu S, Zhu J, Zheng Q. pH-Controlled Chemoselective Rapid Azo-Coupling Reaction (CRACR) Enables Global Profiling of Serotonylation Proteome in Cancer Cells. J Proteome Res 2024; 23:4457-4466. [PMID: 39208062 DOI: 10.1021/acs.jproteome.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Serotonylation has been identified as a novel protein posttranslational modification for decades, where an isopeptide bond is formed between the glutamine residue and serotonin through transamination. Transglutaminase 2 (also known as TGM2 or TGase2) was proven to act as the main "writer" enzyme for this PTM, and a number of key regulatory proteins (including small GTPases, fibronectin, fibrinogen, serotonin transporter, and histone H3) have been characterized as the substrates of serotonylation. However, due to the lack of pan-specific antibodies for serotonylated glutamine, the precise enrichment and proteomic profiling of serotonylation still remain challenging. In our previous research, we developed an aryldiazonium probe to specifically label protein serotonylation in a bioorthogonal manner, which depended on a pH-controlled chemoselective rapid azo-coupling reaction. Here, we report the application of a photoactive aryldiazonium-biotin probe for the global profiling of serotonylation proteome in cancer cells. Thus, over 1,000 serotonylated proteins were identified from HCT 116 cells, many of which are highly related to carcinogenesis. Moreover, a number of modification sites of these serotonylated proteins were determined, attributed to the successful application of our chemical proteomic approach. Overall, these findings provided new insights into the significant association between cellular protein serotonylation and cancer development, further suggesting that to target TGM2-mediated monoaminylation may serve as a promising strategy for cancer therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
3
|
Abstract
This article represents a republication of an article originally published in STH in 2005. This republication is to help celebrate 50 years of publishing for STH. The original abstract follows.Platelets are specialized blood cells that play central roles in physiologic and pathologic processes of hemostasis, inflammation, tumor metastasis, wound healing, and host defense. Activation of platelets is crucial for platelet function that includes a complex interplay of adhesion and signaling molecules. This article gives an overview of the activation processes involved in primary and secondary hemostasis, for example, platelet adhesion, platelet secretion, platelet aggregation, microvesicle formation, and clot retraction/stabilization. In addition, activated platelets are predominantly involved in cross-talk to other blood and vascular cells. Stimulated "sticky" platelets enable recruitment of leukocytes at sites of vascular injury under high shear conditions. Platelet-derived microparticles as well as soluble adhesion molecules, sP-selectin and sCD40L, shed from the surface of activated platelets, are capable of activating, in turn, leukocytes and endothelial cells. This article focuses further on the new view of receptor-mediated thrombin generation of human platelets, necessary for the formation of a stable platelet-fibrin clot during secondary hemostasis. Finally, special emphasis is placed on important stimulatory and inhibitory signaling pathways that modulate platelet function.
Collapse
Affiliation(s)
- Kerstin Jurk
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Munster, Germany
| | - Beate E Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Munster, Germany
| |
Collapse
|
4
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M, Maze I. Serotonin Transporter-dependent Histone Serotonylation in Placenta Contributes to the Neurodevelopmental Transcriptome. J Mol Biol 2024; 436:168454. [PMID: 38266980 PMCID: PMC10957302 DOI: 10.1016/j.jmb.2024.168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation is dependent on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Germany
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Zlamal J, Aliotta A, Alberio L, Chen V, Bakchoul T. Diagnostic value of antibody-induced procoagulant platelets in heparin-induced thrombocytopenia: communication from the ISTH SSC Subcommittee on Platelet Immunology. J Thromb Haemost 2024; 22:860-868. [PMID: 38065529 DOI: 10.1016/j.jtha.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) is an immune-mediated prothrombotic disorder characterized by a drop in platelet count and an increased risk of thromboembolic events. The accurate diagnosis of HIT involves clinical assessment and laboratory testing with well-characterized functional tests. Recent research has shown the potential of investigating procoagulant platelet formation induced by HIT antibodies. To successfully implement these assays in clinical laboratories, careful consideration of technical and preanalytical factors is crucial. In this communication from the SSC Platelet Immunology, we provide a consensus from experts on the use of flow cytometry in HIT diagnosis, highlighting the importance of standardized protocols.
Collapse
Affiliation(s)
- Jan Zlamal
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany; Centre for Clinical Transfusion Medicine, Tübingen, Germany
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Vivien Chen
- ANZAC Research Institute, Sydney Local Health District, Sydney, New South Wales, Australia; Department of Haematology, Concord Repatriation General Hospital and NSW Health Pathology, Sydney, New South Wales, Australia; Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany; Centre for Clinical Transfusion Medicine, Tübingen, Germany.
| |
Collapse
|
8
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Crossen J, Stalker TJ, Diamond SL. Fluorescent peptide for detecting factor XIIIa activity and fibrin in whole blood clots forming under flow. Res Pract Thromb Haemost 2024; 8:102291. [PMID: 38222077 PMCID: PMC10787300 DOI: 10.1016/j.rpth.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024] Open
Abstract
Background During clotting, thrombin generates fibrin monomers and activates plasma-derived transglutaminase factor (F) XIIIa; collagen and thrombin-activated platelets offer thrombin-independent cellular FXIIIa (cFXIIIa) for clotting. Detecting fibrin on collagen and tissue factor surfaces in whole blood clotting typically uses complex reagents like fluorescent fibrinogen or antifibrin antibody. Objectives We want to test whether the peptide using the α2- antiplasmin crosslinking mechanism by FXIIIa is a useful tool in both monitoring FXIIIa activity, and visualize and monitor fibrin formation, deposition, and extent of crosslinking within fibrin structures in whole blood clots formed under flow. Methods We tested a fluorescent peptide derived from α2-antiplasmin sequence (Ac-GNQEQVSPLTLLKWC-fluorescein) to monitor the location of transglutaminase activity and fibrin during whole blood clotting under microfluidic flow (wall shear rate, 100 s-1). Results The peptide rapidly colocated with accumulating fibrin due to transglutaminase activity, confirmed by Phe-Pro-Arg-chloromethylketone inhibiting fibrin and peptide labeling. The FXIIIa inhibitor T101 had no effect on fibrin generation but ablated the labeling of fibrin by the peptide. Similarly, Gly-Pro-Arg-Pro abated fibrin formation and thus strongly attenuated the peptide signal. At arterial wall shear rate (1000 s-1), less fibrin was formed, and consequently, less peptide labeling of fibrin was detected compared with venous conditions. The addition of tissue plasminogen activator caused a reduction of both fibrin and peptide signals. Also, the peptide strongly colocalized with fibrin (but not platelets) in clots from laser-injured mouse cremaster arterioles. For clotting under flow, FXIIIa activity was most likely plasma-derived since a RhoA inhibitor did not block α2-antiplasmin fragment cross-linking to fibrin. Conclusion Under flow, the majority of FXIIIa-dependent fibrin labeling with peptide during clotting was distal of thrombin activity. The synthetic peptide provided a strong and sustained labeling of fibrin as it formed under flow.
Collapse
Affiliation(s)
- Yue Liu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer Crossen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy J. Stalker
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M, Maze I. Serotonin transporter-dependent histone serotonylation in placenta contributes to the neurodevelopmental transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567020. [PMID: 38014301 PMCID: PMC10680709 DOI: 10.1101/2023.11.14.567020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation largely depends on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Germany
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2023; 231:159-169. [PMID: 36008192 DOI: 10.1016/j.thromres.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production. Other blood cells incorporate into a fibrin mesh that is consolidated by FXIIIa-mediated crosslinking and platelet contractile activity. The latter results in the asymmetric redistribution of erythrocytes into a tighter central mass providing the clot with stability and resistance to fibrinolysis. Integrin αIIbβ3 on platelets is the key player in these events, bridging fibrin and the platelet cytoskeleton. Glycoprotein VI participates in thrombus formation but not in the retraction. Rheological and environmental factors influence clot construction with retraction driven by the platelet cytoskeleton with actomyosin acting as the motor. Activated platelets provide procoagulant activity stimulating thrombin generation together with the release of a plethora of biologically active proteins and substances from storage pools; many form chemotactic gradients within the fibrin or the underlying matrix. Also released are newly synthesized metabolites and lipid-rich vesicles that circulate within the vasculature and mimic platelet functions. Platelets and their released elements play key roles in wound healing. This includes promoting stem cell and mesenchymal stromal cell recruitment, fibroblast and endothelial cell migration, angiogenesis and matrix formation. These properties have led to the use of autologous clots in therapies designed to accelerate tissue repair while offering the potential for genetic manipulation in both inherited and acquired diseases.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France.
| |
Collapse
|
12
|
Zlamal J, Singh A, Weich K, Jaffal H, Uzun G, Pelzl L, Althaus K, Bakchoul T. Platelet phosphatidylserine is the critical mediator of thrombosis in heparin-induced thrombocytopenia. Haematologica 2023; 108:2690-2702. [PMID: 37102605 PMCID: PMC10542843 DOI: 10.3324/haematol.2022.282275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is a severe immune-mediated prothrombotic disorder caused by antibodies (Ab) reactive to complexes of platelet factor 4 and heparin. Platelets (PLT) and their interaction with different immune cells contribute to prothrombotic conditions in HIT. However, the exact mechanisms and the role of different PLT subpopulations in this prothrombotic environment remain poorly understood. In this study, we observed that HIT patient Ab induce a new PLT population that is characterized by increased P-selectin expression and phosphatidylserine (PS) externalization. Formation of this procoagulant PLT subpopulation was dependent on engagement of PLT Fc-γ-RIIA by HIT Ab and resulted in a significant increase of thrombin generation on the PLT surface. Using an ex vivo thrombosis model and multi-parameter assessment of thrombus formation, we observed that HIT Ab-induced procoagulant PLT propagated formation of large PLT aggregates, leukocyte recruitment and most importantly, fibrin network generation. These prothrombotic conditions were prevented via the upregulation of PLT intracellular cAMP with Iloprost, a clinically approved prostacyclin analogue. Additionally, the functional relevance of P-selectin and PS was dissected. While inhibition of P-selectin did not affect thrombus formation, the specific blockade of PS prevented HIT Ab-mediated thrombin generation and most importantly procoagulant PLT-mediated thrombus formation ex vivo. Taken together, our findings indicate that procoagulant PLT are critical mediators of prothrombotic conditions in HIT. Specific PS targeting could be a promising therapeutic approach to prevent thromboembolic events in HIT patients.
Collapse
Affiliation(s)
- Jan Zlamal
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany; Centre for Clinical Transfusion Medicine, Tübingen
| | - Anurag Singh
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen
| | - Karoline Weich
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen
| | - Hisham Jaffal
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen
| | - Günalp Uzun
- Centre for Clinical Transfusion Medicine, Tübingen
| | - Lisann Pelzl
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany; Centre for Clinical Transfusion Medicine, Tübingen
| | - Karina Althaus
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany; Centre for Clinical Transfusion Medicine, Tübingen
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany; Centre for Clinical Transfusion Medicine, Tübingen.
| |
Collapse
|
13
|
Mitchell JL, Little G, Bye AP, Gaspar RS, Unsworth AJ, Kriek N, Sage T, Stainer A, Sangowawa I, Morrow GB, Bastos RN, Shapiro S, Desborough MJ, Curry N, Gibbins JM, Whyte CS, Mutch NJ, Jones CI. Platelet factor XIII-A regulates platelet function and promotes clot retraction and stability. Res Pract Thromb Haemost 2023; 7:100200. [PMID: 37601014 PMCID: PMC10439398 DOI: 10.1016/j.rpth.2023.100200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 08/22/2023] Open
Abstract
Background Factor XIII (FXIII) is an important proenzyme in the hemostatic system. The plasma-derived enzyme activated FXIII cross-links fibrin fibers within thrombi to increase their mechanical strength and cross-links fibrin to fibrinolytic inhibitors, specifically α2-antiplasmin, to increase resistance to fibrinolysis. We have previously shown that cellular FXIII (factor XIII-A [FXIII-A]), which is abundant in the platelet cytoplasm, is externalized onto the activated membrane and cross-links extracellular substrates. The contribution of cellular FXIII-A to platelet activation and platelet function has not been extensively studied. Objectives This study aims to identify the role of platelet FXIII-A in platelet function. Methods We used normal healthy platelets with a cell permeable FXIII inhibitor and platelets from FXIII-deficient patients as a FXIII-free platelet model in a range of platelet function and clotting tests. Results Our data demonstrate that platelet FXIII-A enhances fibrinogen binding to the platelet surface upon agonist stimulation and improves the binding of platelets to fibrinogen and aggregation under flow in a whole-blood thrombus formation assay. In the absence of FXIII-A, platelets show reduced sensitivity to agonist stimulation, including decreased P-selectin exposure and fibrinogen binding. We show that FXIII-A is involved in platelet spreading where a lack of FXIII-A reduces the ability of platelets to fully spread on fibrinogen and collagen. Our data demonstrate that platelet FXIII-A is important for clot retraction where clots formed in its absence retracted to a lesser extent. Conclusion Overall, this study shows that platelet FXIII-A functions during thrombus formation by aiding platelet activation and thrombus retraction in addition to its antifibrinolytic roles.
Collapse
Affiliation(s)
- Joanne L. Mitchell
- Institute for Cardiovascular Research, University of Birmingham, Birmingham, UK
| | - Gemma Little
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Renato S. Gaspar
- Heart Institute, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Neline Kriek
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Alexander Stainer
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Ibidayo Sangowawa
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Gael B. Morrow
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Susan Shapiro
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J.R. Desborough
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
| | - Nicola Curry
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Claire S. Whyte
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher I. Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
14
|
Al-Kachak A, Maze I. Post-translational modifications of histone proteins by monoamine neurotransmitters. Curr Opin Chem Biol 2023; 74:102302. [PMID: 37054563 PMCID: PMC10225327 DOI: 10.1016/j.cbpa.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Protein monoaminylation is a biochemical process through which biogenic monoamines (e.g., serotonin, dopamine, histamine, etc.) are covalently bonded to certain protein substrates via Transglutaminase 2, an enzyme that catalyzes the transamidation of primary amines to the γ-carboxamides of glutamine residues. Since their initial discovery, these unusual post-translational modifications have been implicated in a wide variety of biological processes, ranging from protein coagulation to platelet activation and G-protein signaling. More recently, histone proteins - specifically histone H3 at glutamine 5 (H3Q5) - have been added to the growing list of monoaminyl substrates in vivo, with H3Q5 monoaminylation demonstrated to regulate permissive gene expression in cells. Such phenomena have further been shown to contribute critically to various aspects of (mal)adaptive neuronal plasticity and behavior. In this short review, we examine the evolution of our understanding of protein monoaminylation events, highlighting recent advances in the elucidation of their roles as important chromatin regulators.
Collapse
Affiliation(s)
- Amni Al-Kachak
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
16
|
Angénieux C, Couvidou A, Brouard N, Eckly A, Dupuis A, Mangin PH, Maître B. Discriminating young platelets on human leukocyte antigen-I expression highlights their extremely high reactivity potential. Res Pract Thromb Haemost 2023; 7:100006. [PMID: 36970736 PMCID: PMC10031328 DOI: 10.1016/j.rpth.2022.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 02/16/2023] Open
Abstract
Background The platelet population is heterogeneous, with different subsets that differ on the basis of their function and reactivity. An intrinsic factor participating in this difference of reactivity could be the platelet age. The lack of relevant tools allowing a formal identification of young platelets prevents so far to draw solid conclusions regarding platelet reactivity. We recently reported that human leukocyte antigen-I (HLA-I) molecules are more expressed on human young platelets. Objectives The aim of this study was to assess platelet reactivity according to their age based on HLA-I expression level. Methods Platelet activation was assessed by flow cytometry (FC) for different platelet subsets based on their HLA-I expression. These populations were further cell sorted and their intrinsic properties were determined by FC and electron microscopy (EM). Statistical analyses were performed with GraphPad Prism 5.02 software using two-way ANOVA followed by a Tukey post hoc test. Results HLA-I expression level allowed the identification of 3 platelet subpopulations regarding to their age (HLA low, dim, and high). HLA-I was reliable to guide platelet cell sorting and highlighted the features of young platelets in the HLA-Ihigh population. In response to different soluble agonists, HLA-Ihigh platelets were the most reactive subset as shown by the level of P-selectin secretion and fibrinogen binding assessed by flow cytometry. Moreover, the highest capacity of HLA-Ihigh platelets to simultaneously express annexin-V and von Willebrand factor or activated αIIbβ3 after coactivation with TRAP and CRP indicated that the procoagulant feature of platelets was age-related. Conclusion The young HLA-Ihigh population is the most reactive and prone to become procoagulant. These results open up new perspectives to investigate deeply the role of young and old platelets.
Collapse
Affiliation(s)
- Catherine Angénieux
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Adèle Couvidou
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nathalie Brouard
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Anita Eckly
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Arnaud Dupuis
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Pierre H. Mangin
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Blandine Maître
- UMR_S1255, INSERM, Strasbourg, France
- Etablissement Français du Sang-Grand Est, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Correspondence Blandine Maître, UMR_S1255 INSERM, Université de Strasbourg, Etablissement Français du Sang-Grand Est, 10 rue Spielmann, BP 36, F-67065 Strasbourg Cedex, France.
| |
Collapse
|
17
|
Indications that the Antimycotic Drug Amphotericin B Enhances the Impact of Platelets on Aspergillus. Antimicrob Agents Chemother 2022; 66:e0068122. [PMID: 36190233 PMCID: PMC9578436 DOI: 10.1128/aac.00681-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets are currently thought to harbor antimicrobial functions and might therefore play a crucial role in infections, e.g., those caused by Aspergillus or mucormycetes. The incidence of invasive fungal infections is increasing, particularly during the coronavirus disease 2019 (COVID-19) pandemic, and such infections continue to be life-threatening in immunocompromised patients. For this reason, the interaction of antimycotics with platelets is a key issue to evaluate modern therapeutic regimens. Amphotericin B (AmB) is widely used for the therapy of invasive fungal infections either as deoxycholate (AmB-D) or as a liposomal formulation (L-AmB). We showed that AmB strongly activates platelets within a few minutes. AmB concentrations commonly measured in the blood of patients were sufficient to stimulate platelets, indicating that this effect is highly relevant in vivo. The stimulating effect was corroborated by a broad spectrum of platelet activation parameters, including degranulation, aggregation, budding of microparticles, morphological changes, and enhanced adherence to fungal hyphae. Comparison between the deoxycholate and the liposomal formulation excluded the possibility that the liposomal part of L-Amb is responsible for these effects, as no difference was visible. The induction of platelet activation and alteration by L-AmB resulted in the activation of other parts of innate immunity, such as stimulation of the complement cascade and interaction with granulocytes. These mechanisms might substantially fuel the antifungal immune reaction in invasive mycoses. On the other hand, thrombosis and excessive inflammatory processes might occur via these mechanisms. Furthermore, the viability of L-AmB-activated platelets was consequently decreased, a process that might contribute to thrombocytopenia in patients.
Collapse
|
18
|
Denorme F, Campbell RA. Procoagulant platelets: novel players in thromboinflammation. Am J Physiol Cell Physiol 2022; 323:C951-C958. [PMID: 35993516 PMCID: PMC9484986 DOI: 10.1152/ajpcell.00252.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Platelets play a key role in maintaining hemostasis. However, dysregulated platelet activation can lead to pathological thrombosis or bleeding. Once a platelet gets activated, it will either become an aggregatory platelet or eventually a procoagulant platelet with both types playing distinct roles in thrombosis and hemostasis. Although aggregatory platelets have been extensively studied, procoagulant platelets have only recently come into the spotlight. Procoagulant platelets are a subpopulation of highly activated platelets that express phosphatidylserine and P-selectin on their surface, allowing for coagulation factors to bind and thrombin to be generated. In recent years, novel roles for procoagulant platelets have been identified and they have increasingly been implicated in thromboinflammatory diseases. Here, we provide an up-to-date review on the mechanisms resulting in the formation of procoagulant platelets and how they contribute to hemostasis, thrombosis, and thromboinflammation.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program in Molecular Medicine, Salt Lake City, Utah
| | - Robert A Campbell
- University of Utah Molecular Medicine Program in Molecular Medicine, Salt Lake City, Utah
- Division of Microbiology and Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah
- Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
19
|
Bourguignon A, Tasneem S, Hayward CPM. Update on platelet procoagulant mechanisms in health and in bleeding disorders. Int J Lab Hematol 2022; 44 Suppl 1:89-100. [PMID: 36074709 DOI: 10.1111/ijlh.13866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Platelet procoagulant mechanisms are emerging to be complex and important to achieving haemostasis. The mechanisms include the release of procoagulant molecules from platelet storage granules, and strong agonist-induced expression of procoagulant phospholipids on the outer platelet membrane for tenase and prothrombinase assembly. The release of dense granule polyphosphate is important to platelet procoagulant function as it promotes the activation of factors XII, XI and V, inhibits tissue factor pathway inhibitor and fibrinolysis, and strengthens fibrin clots. Platelet procoagulant function also involves the release of partially activated factor V from platelets. Scott syndrome has provided important insights on the mechanisms that regulate procoagulant phospholipids expression on the external platelet membrane, which require strong agonist stimulation that increase cystolic calcium levels, mitochondrial calcium uptake, the loss of flippase function and activation of the transmembrane scramblase protein anoctamin 6. There have been advances in the methods used to directly and indirectly assess platelet procoagulant function in health and disease. Assessments of thrombin generation with platelet rich plasma samples has provided new insights on how platelet procoagulant function is altered in inherited platelet disorders, and how platelets influence the bleeding phenotype of a number of severe coagulation factor deficiencies. Several therapies, including desmopressin and recombinant factor VIIa, improve thrombin generation by platelets. There is growing interest in targeting platelet procoagulant function for therapeutic benefit. This review highlights recent advances in our understanding of platelet-dependent procoagulant mechanisms in health and in bleeding disorders.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
20
|
Altered platelet functions during treatment with apremilast for psoriatic arthritis: A case report. Curr Res Transl Med 2022; 70:103358. [PMID: 35724504 DOI: 10.1016/j.retram.2022.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/05/2022] [Indexed: 01/31/2023]
|
21
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
22
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
23
|
Segot A, Adler M, Aliotta A, Matthey‐Guirao E, Nagler M, Bertaggia Calderara D, Grandoni F, Gomez FJ, Alberio L. Low COAT platelets are frequent in patients with bleeding disorders of unknown cause (BDUC) and can be enhanced by DDAVP. J Thromb Haemost 2022; 20:1271-1274. [PMID: 35243754 PMCID: PMC9314658 DOI: 10.1111/jth.15687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Amandine Segot
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Marcel Adler
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
- Department of Clinical Chemistry, InselspitalBern University HospitalUniversity of Bern (UNIBE)BernSwitzerland
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Elena Matthey‐Guirao
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Michael Nagler
- Department of Clinical Chemistry, InselspitalBern University HospitalUniversity of Bern (UNIBE)BernSwitzerland
| | - Debora Bertaggia Calderara
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Francesco Grandoni
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Francisco J. Gomez
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
24
|
Aliotta A, Alberio L. Another piece of knowledge in the puzzle of procoagulant COAT platelets. J Thromb Haemost 2022; 20:1073-1076. [PMID: 35445576 PMCID: PMC9320822 DOI: 10.1111/jth.15683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research LaboratoryDivision of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research LaboratoryDivision of Hematology and Central Hematology LaboratoryLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
25
|
Somodi L, Beke Debreceni I, Kis G, Cozzolino M, Kappelmayer J, Antal M, Panyi G, Bárdos H, Mutch N, Muszbek L. Activation mechanism dependent surface exposure of cellular factor XIII on activated platelets and platelet microparticles. J Thromb Haemost 2022; 20:1223-1235. [PMID: 35146910 PMCID: PMC9303193 DOI: 10.1111/jth.15668] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets contain a high amount of potentially active A subunit dimer of coagulation factor XIII (cellular FXIII; cFXIII). It is of cytoplasmic localization, not secreted, but becomes translocated to the surface of platelets activated by convulxin and thrombin (CVX+Thr). OBJECTIVE To explore the difference in cFXIII translocation between receptor mediated and non-receptor mediated platelet activation and if translocation can also be detected on platelet-derived microparticles. Our aim was also to shed some light on the mechanism of cFXIII translocation. METHODS Gel-filtered platelets were activated by CVX+Thr or Ca2+ -ionophore (calcimycin). The translocation of cFXIII and phosphatidylserine (PS) to the surface of activated platelets and platelet-derived microparticles was investigated by flow cytometry, immunofluorescence, and immune electron microscopy. Fluo-4-AM fluorescence was used for the measurement of intracellular Ca2+ concentration. RESULTS Receptor mediated activation by CVX+Thr exposed cFXIII to the surface of more than 60% of platelets. Electron microscopy revealed microparticles with preserved membrane structure and microparticles devoid of labeling for membrane glycoprotein CD41a. cFXIII was observed on both types of microparticles but was more abundant in the absence of CD41a. Rhosin, a RhoA inhibitor, significantly decreased cFXIII translocation. Non-receptor mediated activation of platelets by calcimycin elevated intracellular Ca2+ concentration, induced the translocation of PS to the surface of platelets and microparticles, but failed to expose cFXIII. CONCLUSIONS The elevation of intracellular Ca2+ concentration is sufficient for the translocation of PS from the internal layer of the membrane, while the translocation of cFXIII from the platelet cytoplasm requires additional receptor mediated mechanism(s).
Collapse
Affiliation(s)
- Laura Somodi
- Division of Clinical Laboratory ScienceFaculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Laboratory MedicineFaculty of MedicineUniversity of DebrecenDebrecenHungary
- Kálmán Laki Doctoral School of Biomedical and Clinical SciencesUniversity of DebrecenDebrecenHungary
| | - Ildikó Beke Debreceni
- Department of Laboratory MedicineFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and EmbryologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Marco Cozzolino
- Department of Biophysics and Cell BiologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - János Kappelmayer
- Department of Laboratory MedicineFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and EmbryologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - György Panyi
- Department of Biophysics and Cell BiologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Helga Bárdos
- Department of Public Health and EpidemiologyFaculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nicola J. Mutch
- Aberdeen Cardiovascular and Diabetes CentreSchool of MedicineMedical Science and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - László Muszbek
- Division of Clinical Laboratory ScienceFaculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Laboratory MedicineFaculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
26
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
27
|
Zhu W, Guo S, Homilius M, Nsubuga C, Wright SH, Quan D, Kc A, Eddy SS, Victorio RA, Beerens M, Flaumenhaft R, Deo RC, MacRae CA. PIEZO1 mediates a mechanothrombotic pathway in diabetes. Sci Transl Med 2022; 14:eabk1707. [PMID: 34985971 DOI: 10.1126/scitranslmed.abk1707] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Max Homilius
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Cissy Nsubuga
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shane H Wright
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dajun Quan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashmita Kc
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Samuel S Eddy
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Manu Beerens
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Robert Flaumenhaft
- Harvard Medical School, Boston, MA 02115, USA.,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rahul C Deo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Calum A MacRae
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
van der Wal DE, Davis AM, Marks DC. Donor citrate reactions influence the phenotype of apheresis platelets following storage. Transfusion 2021; 62:273-278. [PMID: 34761380 DOI: 10.1111/trf.16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet collection and processing methods, as well as donor attributes, can influence platelet function and quality during ex vivo storage. In this study, activation and procoagulant responses in platelets collected from donors experiencing a citrate reaction (CR) were investigated. STUDY DESIGN AND METHODS Apheresis platelet components (n = 54) were stored in 100% autologous plasma and tested on days 1 and 5 post-collection. Platelet components were categorized into two groups according to whether the donor had experienced a CR during donation (n = 10; non-CR group, n = 44). Platelet aggregation was initiated with collagen and thrombin. Platelet phenotype was characterized by flow cytometry. Fibrinogen binding was assessed following collagen + thrombin stimulation (COATed platelets), and procoagulant activity was assessed using a procoagulant phospholipid assay (PPL). Platelet microparticle (PMP) subsets were enumerated by flow cytometry. RESULTS Basal von Willebrand factor (VWF) binding was higher in the CR donations when compared with the non-CR group. Collagen aggregation was significantly higher in platelets from CR donations, in contrast to aggregation induced by thrombin. The proportion of phosphatidylserine (PS) positive PMP and PPL clotting time were higher in the CR group, in contrast to the number of basal PS+ platelets and COATed platelets following stimulation. CONCLUSION Platelets donated by donors who experienced a CR during donation had higher platelet activation response and possibly a more procoagulant PMP phenotype, suggesting that this donor reaction might lead to increased platelet activation.
Collapse
Affiliation(s)
- Dianne E van der Wal
- Research and Development, Australian Red Cross Lifeblood, Sydney (Alexandria), New South Wales, Australia
| | - April M Davis
- Research and Development, Australian Red Cross Lifeblood, Sydney (Alexandria), New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney (Alexandria), New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
29
|
Jurk K. Functional diversity of primed platelets - powered by machine learning. Thromb Haemost 2021; 122:661. [PMID: 34753189 DOI: 10.1055/a-1690-8971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
No Abstract.
Collapse
Affiliation(s)
- Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
30
|
Dave RG, Geevar T, Aaron S, Ninan Benjamin R, Mammen J, Kumar S, Vijayan R, Gowri M, C Nair S. Diagnostic utility of flow cytometry based coated-platelets assay as a biomarker to predict thrombotic or hemorrhagic phenotype in acute stroke. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 102:246-253. [PMID: 34152689 DOI: 10.1002/cyto.b.22026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Coated-platelets are sub-population of platelets "coated" with highly procoagulant proteins and phosphatidylserine that sustains thrombin generation. They are produced upon dual agonist stimulation by collagen and thrombin. This study was conducted to assess if there was any difference in the levels of coated-platelets in patients with primary intracranial hemorrhage (PICH) and ischemic stroke due to large artery atherosclerosis (LAA) as compared to healthy controls, and to see if coated-platelet levels had any influence on the hemorrhagic transformation (HT) of ischemic stroke. METHODS Coated-platelet levels were determined by flow cytometry using fluorescently tagged Annexin V antibody to identify phosphatidylserine exposed on the surface of platelets activated by dual agonists (convulxin and thrombin) in cross-sectional cohort of 75 patients with stroke and 34 controls. RESULTS Patients with PICH (n = 35) had significantly lower coated-platelets than the controls (adjusted mean ± SE, 21.0 ± 1.9% vs. 36.1 ± 1.7%, p < 0.001), while patients with LAA (n = 30) had significantly higher coated-platelets than controls (adjusted mean ± SE, 51.9 ± 1.5% vs. 36.1 ± 1.7%, p < 0.001). Patients with subsequent HT of ischemic stroke (n = 10) had significantly lower coated-platelet levels at admission compared to those without HT (adjusted mean ± SE, 18.1 ± 2.6% vs. 51.9 ± 1.5%, p < 0.001). CONCLUSIONS Coated-platelet levels are significantly different in patients with hemorrhagic and ischemic stroke as compared with controls. Lower levels of coated-platelets measured by flow cytometry may be earliest predictor of subsequent HT in patients with ischemic stroke even before the radiological changes suggestive of HT are visualized.
Collapse
Affiliation(s)
- Rutvi Gautam Dave
- Department of Transfusion Medicine and Immunohematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Tulasi Geevar
- Department of Transfusion Medicine and Immunohematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanjith Aaron
- Department of Neurology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Joy Mammen
- Department of Transfusion Medicine and Immunohematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Snehil Kumar
- Department of Transfusion Medicine and Immunohematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ramya Vijayan
- Department of Transfusion Medicine and Immunohematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mahasampath Gowri
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sukesh C Nair
- Department of Transfusion Medicine and Immunohematology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
31
|
Increased procoagulant platelet levels are predictive of death in COVID-19. GeroScience 2021; 43:2055-2065. [PMID: 34109507 PMCID: PMC8189550 DOI: 10.1007/s11357-021-00385-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Prior research has identified abnormal platelet procoagulant responses in COVID-19. Coated-platelets, a form of procoagulant platelets, support thrombin formation and are elevated in ischemic stroke patients with increased risk for recurrent infarction. Our goal was to examine changes in coated-platelet levels over the course of COVID-19 infection and determine their association with disease severity, thrombosis, and death. Coated-platelet levels were assayed after admission and repeated weekly in COVID-19 patients, and in COVID-19 negative controls. Receiver operator characteristic (ROC) analysis was used to calculate area under the curve (AUC) values for a model including baseline coated-platelets to predict death. Kaplan–Meier and Cox proportional hazards analysis was used to predict risk for death at 90 days. We enrolled 33 patients (22 with moderate and 11 with severe infection) and 20 controls. Baseline coated-platelet levels were lower among moderate (mean ± SD; 21.3 ± 9.8%) and severe COVID-19 patients (28.5 ± 11.9%) compared to controls (38.1 ± 10.4%, p < 0.0001). Coated-platelet levels increased during follow-up in COVID-19 patients by 7% (relative) per day from symptom onset (95% CI 2–12%, p = 0.007). A cut-off of 33.9% for coated-platelet levels yielded 80% sensitivity and 96% specificity for death at 90 days, with resulting AUC of 0.880 (95% CI 0.680–1.0, p = 0.0002). The adjusted hazard ratio for death in patients with coated-platelet levels > 33.9% was 40.99 when compared to those with levels ≤ 33.9% (p < 0.0001). Platelet procoagulant potential is transiently decreased in most patients during COVID-19; however, increased baseline platelet procoagulant levels predict death. Defining the mechanisms involved and potential links with aging may yield novel treatment targets.
Collapse
|
32
|
Jiang SH, Wang YH, Hu LP, Wang X, Li J, Zhang XL, Zhang ZG. The physiology, pathology and potential therapeutic application of serotonylation. J Cell Sci 2021; 134:268950. [PMID: 34085694 DOI: 10.1242/jcs.257337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The classical neurotransmitter serotonin or 5-hydroxytryptamine (5-HT), synthesized from tryptophan, can be produced both centrally and peripherally. Through binding to functionally distinct receptors, serotonin is profoundly implicated in a number of fundamental physiological processes and pathogenic conditions. Recently, serotonin has been found covalently incorporated into proteins, a newly identified post-translational modification termed serotonylation. Transglutaminases (TGMs), especially TGM2, are responsible for catalyzing the transamidation reaction by transferring serotonin to the glutamine residues of target proteins. Small GTPases, extracellular matrix protein fibronectin, cytoskeletal proteins and histones are the most reported substrates for serotonylation, and their functions are triggered by this post-translational modification. This Review highlights the roles of serotonylation in physiology and diseases and provides perspectives for pharmacological interventions to ameliorate serotonylation for disease treatment.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
33
|
Bockaert J, Bécamel C, Chaumont-Dubel S, Claeysen S, Vandermoere F, Marin P. Novel and atypical pathways for serotonin signaling. Fac Rev 2021; 10:52. [PMID: 34195691 PMCID: PMC8204760 DOI: 10.12703/r/10-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor β-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Collapse
Affiliation(s)
- Joël Bockaert
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carine Bécamel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Claeysen
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
34
|
Podoplelova NA, Nechipurenko DY, Ignatova AA, Sveshnikova AN, Panteleev MA. Procoagulant Platelets: Mechanisms of Generation and Action. Hamostaseologie 2021; 41:146-153. [PMID: 33860522 DOI: 10.1055/a-1401-2706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the past decades, it has been increasingly recognized that the major function of accelerating membrane-dependent reactions of blood coagulation is predominantly implemented by a subset of activated platelets. These procoagulant platelets (also called collagen- and thrombin-activated or COAT, coated, necrotic, although there could be subtle differences between these definitions) are uniquely characterized by both procoagulant activity and, at the same time, inactivated integrins and profibrinolytic properties. The mechanisms of their generation both in vitro and in situ have been increasingly becoming clear, suggesting unique and multidirectional roles in hemostasis and thrombosis. In this mini-review, we shall highlight the existing concepts and challenges in this field.
Collapse
Affiliation(s)
- N A Podoplelova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
| | - D Y Nechipurenko
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - A A Ignatova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Alberio L. High-Dose Epinephrine Enhances Platelet Aggregation at the Expense of Procoagulant Activity. Thromb Haemost 2021; 121:1337-1344. [PMID: 33690868 DOI: 10.1055/a-1420-7630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Platelet activation is characterized by shape change, granule secretion, activation of fibrinogen receptor (glycoprotein IIb/IIIa) sustaining platelet aggregation, and externalization of negatively charged aminophospholipids contributing to platelet procoagulant activity. Epinephrine (EPI) alone is a weak platelet activator. However, it is able to potentiate platelet activation initiated by other agonists. In this work, we investigated the role of EPI in the generation of procoagulant platelets. Human platelets were activated with convulxin (CVX), thrombin (THR) or protease-activated receptor (PAR) agonists, EPI, and combination thereof. Platelet aggregation was assessed by light transmission aggregometry or with PAC-1 binding by flow cytometry. Procoagulant collagen-and-THR (COAT) platelets, induced by combined activation with CVX-and-THR, were visualized by flow cytometry as Annexin-V-positive and PAC-1-negative platelets. Cytosolic calcium fluxes were monitored by flow cytometry using Fluo-3 indicator. EPI increased platelet aggregation induced by all agonist combinations tested. On the other hand, EPI dose-dependently reduced the formation of procoagulant COAT platelets generated by combined CVX-and-THR activation. We observed a decreased Annexin-V-positivity and increased binding of PAC-1 with the triple activation (CVX + THR + EPI) compared with CVX + THR. Calcium mobilization with triple activation was decreased with the higher EPI dose (1,000 µM) compared with CVX + THR calcium kinetics. In conclusion, when platelets are activated with CVX-and-THR, the addition of increasing concentrations of EPI (triple stimulation) modulates platelet response reducing cytosolic calcium mobilization, decreasing procoagulant activity, and enhancing platelet aggregation.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Maxime G Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
36
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J Clin Med 2021; 10:jcm10050894. [PMID: 33668091 PMCID: PMC7956450 DOI: 10.3390/jcm10050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Platelets are active key players in haemostasis. Qualitative platelet dysfunctions result in thrombocytopathies variously characterized by defects of their adhesive and procoagulant activation endpoints. In this review, we summarize the traditional platelet defects in adhesion, secretion, and aggregation. In addition, we review the current knowledge about procoagulant platelets, focusing on their role in bleeding or thrombotic pathologies and their pharmaceutical modulation. Procoagulant activity is an important feature of platelet activation, which should be specifically evaluated during the investigation of a suspected thrombocytopathy.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Maxime G. Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Matteo Marchetti
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Service de Médecine Interne, Hôpital de Nyon, CH-1260 Nyon, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Correspondence:
| |
Collapse
|
37
|
Tohidi-Esfahani I, Lee CSM, Liang HPH, Chen VMY. Procoagulant platelets: Laboratory detection and clinical significance. Int J Lab Hematol 2021; 42 Suppl 1:59-67. [PMID: 32543068 DOI: 10.1111/ijlh.13197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Platelets play a critical role in both haemostasis and thrombosis, and it is now evident that not all platelets behave the same when they are called to action. A functionally distinct subpopulation of platelets forms in response to maximal agonist stimulation: the procoagulant platelet. This platelet subpopulation is defined by its ability to expose phosphatidylserine on its surface, allowing for coagulation factor complexes to form and generate bursts of thrombin and fibrin to stabilize platelet clots. Reduced levels of procoagulant platelets have been linked to bleeding in Scott's syndrome and haemophilia A patients, and elevated levels have been demonstrated in many thrombotic disorders, including identifying patients at higher risk for stroke recurrence. One obstacle for incorporating an assay for measuring procoagulant platelets into clinical management algorithms is the lack of consensus on the exact definition and markers for this subpopulation. This review will outline the biological characteristics of procoagulant platelets and the laboratory assays currently used to identify them in research settings. It will summarize the findings of clinical research demonstrating the relevance of measuring the procoagulant platelet levels in patients and will discuss how an appropriate assay can be used to elucidate the mechanism behind the formation of this subpopulation, facilitating novel drug discovery to improve upon current outcomes in cardiovascular and other thrombotic disorders.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Christine S M Lee
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Hai Po H Liang
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Vivien M Y Chen
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Fernández DI, Kuijpers MJE, Heemskerk JWM. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2020; 32:863-871. [PMID: 33356720 DOI: 10.1080/09537104.2020.1859103] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most agonists stimulate platelet Ca2+ rises via G-protein coupled receptors (GPCRs) or ITAM-linked receptors (ILRs). Well studied are the GPCRs stimulated by the soluble agonists thrombin (PAR1, PAR4), ADP (P2Y1, P2Y12), and thromboxane A2 (TP), signaling via phospholipase (PLC)β isoforms. The platelet ILRs glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2), and FcγRIIa are stimulated by adhesive ligands or antibody complexes and signal via tyrosine protein kinases and PLCγ isoforms. Marked differences exist between the GPCR- and ILR-induced Ca2+ signaling in: (i) dependency of tyrosine phosphorylation; (ii) oscillatory versus continued Ca2+ rises by mobilization from the endoplasmic reticulum; and (iii) smaller or larger role of extracellular Ca2+ entry via STIM1/ORAI1. Co-stimulation of both types of receptors, especially by thrombin (PAR1/4) and collagen (GPVI), leads to a highly enforced Ca2+ rise, involving mitochondrial Ca2+ release, which activates the ion and phospholipid channel, anoctamin-6. This highly Ca2+-dependent process causes swelling, ballooning, and phosphatidylserine expression, establishing a unique platelet population swinging between vital and necrotic (procoagulant 'zombie' platelets). Additionally, the high Ca2+ status of procoagulant platelets induces a set of additional events: (i) Ca2+ dependent cleavage of signaling proteins and receptors via calpain and ADAM isoforms; (ii) microvesiculation; (iii) enhanced coagulation factor binding; and (iv) fibrin-coat formation involving transglutaminases. Given the additive roles of GPCR and ILR in Ca2+ signal generation, high-throughput screening of biomolecules or small molecules based on Ca2+ flux measurements provides a promising way to find new inhibitors interfering with prolonged high Ca2+, phosphatidylserine expression, and hence platelet procoagulant activity.
Collapse
Affiliation(s)
- Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
39
|
Aliotta A, Krüsi M, Bertaggia Calderara D, Zermatten MG, Gomez FJ, Batista Mesquita Sauvage AP, Alberio L. Characterization of Procoagulant COAT Platelets in Patients with Glanzmann Thrombasthenia. Int J Mol Sci 2020; 21:E9515. [PMID: 33327658 PMCID: PMC7765091 DOI: 10.3390/ijms21249515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Patients affected by the rare Glanzmann thrombasthenia (GT) suffer from defective or low levels of the platelet-associated glycoprotein (GP) IIb/IIIa, which acts as a fibrinogen receptor, and have therefore an impaired ability to aggregate platelets. Because the procoagulant activity is a dichotomous facet of platelet activation, diverging from the aggregation endpoint, we were interested in characterizing the ability to generate procoagulant platelets in GT patients. Therefore, we investigated, by flow cytometry analysis, platelet functions in three GT patients as well as their ability to generate procoagulant collagen-and-thrombin (COAT) platelets upon combined activation with convulxin-plus-thrombin. In addition, we further characterized intracellular ion fluxes during the procoagulant response, using specific probes to monitor by flow cytometry kinetics of cytosolic calcium, sodium, and potassium ion fluxes. GT patients generated higher percentages of procoagulant COAT platelets compared to healthy donors. Moreover, they were able to mobilize higher levels of cytosolic calcium following convulxin-plus-thrombin activation, which is congruent with the greater procoagulant activity. Further investigations will dissect the role of GPIIb/IIIa outside-in signalling possibly implicated in the regulation of platelet procoagulant activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; (A.A.); (M.K.); (D.B.C.); (M.G.Z.); (F.J.G.); (A.P.B.M.S.)
| |
Collapse
|
40
|
Morrow GB, Whyte CS, Mutch NJ. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. Haematologica 2020; 105:2824-2833. [PMID: 33256381 PMCID: PMC7716352 DOI: 10.3324/haematol.2019.230367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023] Open
Abstract
Platelets harbor the primary reservoir of circulating plasminogen activator inhibitor 1 (PAI-1), but the reportedly low functional activity of this pool of inhibitor has led to debate over its contribution to thrombus stability. Here we analyze the fate of PAI-1 secreted from activated platelets and examine its role in maintaining thrombus integrity. Activation of platelets results in translocation of PAI-1 to the outer leaflet of the membrane, with maximal exposure in response to strong dual agonist stimulation. PAI-1 is found to co-localize in the cap of PS-exposing platelets with its cofactor, vitronectin, and fibrinogen. Inclusion of tirofiban or Gly-Pro-Arg-Pro significantly attenuated exposure of PAI-1, indicating a crucial role for integrin αIIbβ3 and fibrin in delivery of PAI-1 to the activated membrane. Separation of platelets post-stimulation into soluble and cellular components revealed the presence of PAI-1 antigen and activity in both fractions, with approximately 40% of total platelet-derived PAI-1 remaining associated with the cellular fraction. Using a variety of fibrinolytic models we found that platelets produce a strong stabilizing effect against tPA-mediated clot lysis. Platelet lysate, as well as soluble and cellular fractions stabilize thrombi against premature degradation in a PAI-1 dependent manner. Our data show for the first time that a functional pool of PAI-1 is anchored to the membrane of stimulated platelets and regulates local fibrinolysis. We reveal a key role for integrin αIIbβ3 and fibrin in delivery of PAI-1 from platelet α-granules to the activated membrane. These data suggest that targeting platelet-associated PAI-1 may represent a viable target for novel profibrinolytic agents.
Collapse
Affiliation(s)
- Gael B. Morrow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Nicola J. Mutch
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
41
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
42
|
Kholmukhamedov A. Procoagulant Platelets. Platelets 2020. [DOI: 10.5772/intechopen.92638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two well-known subpopulations of activated platelets: pro-aggregatory and procoagulant. Procoagulant platelets represent a subpopulation of activated platelets, which are morphologically and functionally distinct from pro-aggregatory ones. Although various names have been used to describe these platelets in the literature (CoaT, CoaTed, highly activated, ballooned, capped, etc.), there is a consensus on their phenotypic features including exposure of high levels of phosphatidylserine (PSer) on the surface; decreased aggregatory and adhesive properties; support of active tenase and prothrombinase complexes; maximal generation by co-stimulation of glycoprotein VI (GPVI) and protease-activated receptors (PAR). In this chapter, morphologic and functional features of procoagulant platelets, as well as the mechanisms of their formation, will be discussed.
Collapse
|
43
|
Hur WS, Juang LJ, Mazinani N, Munro L, Jefferies WA, Kastrup CJ. Post-Translational Modifications of Platelet-Derived Amyloid Precursor Protein by Coagulation Factor XIII-A. Biochemistry 2020; 59:4449-4455. [PMID: 33161719 DOI: 10.1021/acs.biochem.0c00450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological function of amyloid β precursor protein (APP) in platelets has remained elusive. Upon platelet activation, APP localizes to the platelet surface and is proteolytically processed by proteases to release various metabolites, including amyloid β (Aβ) and soluble APP. Synthetic Aβ is a substrate of activated coagulation factor XIII (FXIII-A*), a transglutaminase that is active both inside and on the surface of platelets. Here we tested if platelet APP and its fragments are covalently modified by FXIII-A*. Platelet-derived FXIII-A* and fibrin(ogen) bound to APP, and their bound fractions increased 7- and 11-fold upon platelet activation, respectively. The processing of platelet APP was enhanced when FXIII-A* was inhibited. Soluble APPβ was covalently cross-linked by FXIII-A*. This mechanism regulating APP processing is significant, because controlling the processing of APP, such as by inhibiting specific secretases that cleave APP, is a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Woosuk S Hur
- Michael Smith Laboratories and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Lih Jiin Juang
- Michael Smith Laboratories and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Nima Mazinani
- Michael Smith Laboratories and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Lonna Munro
- Michael Smith Laboratories and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.,Departments of Microbiology & Immunology, Medical Genetics, Zoology, and Urology, Djavad Mowafaghian Centre for Brain Health, and Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Wilfred A Jefferies
- Michael Smith Laboratories and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.,Departments of Microbiology & Immunology, Medical Genetics, Zoology, and Urology, Djavad Mowafaghian Centre for Brain Health, and Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Christian J Kastrup
- Michael Smith Laboratories and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
44
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Alberio L. Sodium-Calcium Exchanger Reverse Mode Sustains Dichotomous Ion Fluxes Required for Procoagulant COAT Platelet Formation. Thromb Haemost 2020; 121:309-321. [PMID: 33099282 DOI: 10.1055/s-0040-171670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Procoagulant collagen-and-thrombin (COAT)-activated platelets represent a subpopulation of activated platelets, which retain a coat of prohemostatic proteins and express phosphatidylserine on their surface. Dichotomous intracellular signaling generating procoagulant platelet activity instead of traditional aggregating endpoints is still not fully elucidated. It has been demonstrated that secondary messengers such as calcium and sodium play a critical role in platelet activation. Therefore, we developed a flow cytometric analysis to investigate intracellular ion fluxes simultaneously during generation of aggregating and procoagulant platelets. Human platelets were activated by convulxin-plus-thrombin. Cytosolic calcium, sodium, and potassium ion fluxes were visualized by specific ion probes and analyzed by flow cytometry. We observed high and prolonged intracellular calcium concentration, transient sodium increase, and fast potassium efflux in COAT platelets, whereas aggregating non-COAT platelets rapidly decreased their calcium content, maintaining higher cytosolic sodium, and experiencing lower and slower potassium depletion. Considering these antithetical patterns, we investigated the role of the sodium-calcium exchanger (NCX) during convulxin-plus-thrombin activation. NCX inhibitors, CBDMB and ORM-10103, dose-dependently reduced the global calcium mobilization induced by convulxin-plus-thrombin activation and dose-dependently prevented formation of procoagulant COAT platelets. Our data demonstrate that both NCX modes are used after convulxin-plus-thrombin-induced platelet activation. Non-COAT platelets use forward-mode NCX, thus pumping calcium out and moving sodium in, while COAT platelets rely on reverse NCX function, which pumps additional calcium into the cytosol, by extruding sodium. In conclusion, we described for the first time the critical and dichotomous role of NCX function during convulxin-plus-thrombin-induced platelet activation.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Maxime G Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
45
|
Abstract
AbstractThe characterization of platelet concentrates (PCs) in transfusion medicine has been performed with different analytical methods and platelet lesions (from biochemistry to cell biology) have been documented. In routine quality assessment and validation of manufacturing processes of PCs for transfusion purposes, only basic parameters are monitored and the platelet functions are not included. However, PCs undergo several manipulations during the processing and the basic parameters do not provide sensitive analyses to properly picture out the impact of the blood component preparation and storage on platelets. To improve the transfusion supply chain and the platelet functionalities, additional parameters should be used. The present short review will focus on the different techniques to monitor ex vivo platelet lesions from phenotype characterization to advanced omic analyses. Then, the opportunities to use these methods in quality control, process validation, development, and research will be discussed. Functional markers should be considered because they would be an advantage for the future developments in transfusion medicine.
Collapse
|
46
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
47
|
Zapilko V, Fish RJ, Garcia A, Reny JL, Dunoyer-Geindre S, Lecompte T, Neerman-Arbez M, Fontana P. MicroRNA-126 is a regulator of platelet-supported thrombin generation. Platelets 2020; 31:746-755. [DOI: 10.1080/09537104.2020.1775804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Veronika Zapilko
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | | - Thomas Lecompte
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
48
|
Jongen MSA, MacArthur BD, Englyst NA, West J. Single platelet variability governs population sensitivity and initiates intrinsic heterotypic responses. Commun Biol 2020; 3:281. [PMID: 32499608 PMCID: PMC7272428 DOI: 10.1038/s42003-020-1002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Investigations into the nature of platelet functional variety and consequences for homeostasis require new methods for resolving single platelet phenotypes. Here we combine droplet microfluidics with flow cytometry for high throughput single platelet function analysis. A large-scale sensitivity continuum was shown to be a general feature of human platelets from individual donors, with hypersensitive platelets coordinating significant sensitivity gains in bulk platelet populations and shown to direct aggregation in droplet-confined minimal platelet systems. Sensitivity gains scaled with agonist potency (convulxin > TRAP-14>ADP) and reduced the collagen and thrombin activation threshold required for platelet population polarization into pro-aggregatory and pro-coagulant states. The heterotypic platelet response results from an intrinsic behavioural program. The method and findings invite future discoveries into the nature of hypersensitive platelets and how community effects produce population level responses in health and disease. Maaike S. A. Jongen et al. combine droplet microfluidics with flow cytometry to resolve single platelet responses to agonists. They demonstrate that hyperactive platelets enhance the platelet population response by paracrine signaling as a function of agonist potency and heterotypic responses result from an intrinsic behavioural program.
Collapse
Affiliation(s)
- Maaike S A Jongen
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ben D MacArthur
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Nicola A Englyst
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK. .,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
49
|
Reddy EC, Rand ML. Procoagulant Phosphatidylserine-Exposing Platelets in vitro and in vivo. Front Cardiovasc Med 2020; 7:15. [PMID: 32195268 PMCID: PMC7062866 DOI: 10.3389/fcvm.2020.00015] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological heterogeneity of platelets leads to diverse responses and the formation of discrete subpopulations upon platelet stimulation. Procoagulant platelets are an example of such subpopulations, a key characteristic of which is exposure either of the anionic aminophospholipid phosphatidylserine (PS) or of tissue factor on the activated platelet surface. This review focuses on the former, in which PS exposure on a subpopulation of platelets facilitates assembly of the intrinsic tenase and prothrombinase complexes, thereby accelerating thrombin generation on the activated platelet surface, contributing importantly to the hemostatic process. Mechanisms involved in platelet PS exposure, and accompanying events, induced by physiologically relevant agonists are considered then contrasted with PS exposure resulting from intrinsic pathway-mediated apoptosis in platelets. Pathologies of PS exposure, both inherited and acquired, are described. A consideration of platelet PS exposure as an antithrombotic target concludes the review.
Collapse
Affiliation(s)
- Emily C Reddy
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margaret L Rand
- Division of Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Kirkpatrick AC, Vincent AS, Dale GL, Prodan CI. Increased platelet procoagulant potential predicts recurrent stroke and TIA after lacunar infarction. J Thromb Haemost 2020; 18:660-668. [PMID: 31858724 DOI: 10.1111/jth.14714] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mean levels of coated-platelets, a subset of highly procoagulant platelets, are decreased in patients with lacunar as compared to those with non-lacunar stroke. Elevated coated-platelets are associated with increased risk for recurrent infarction in non-lacunar stroke and predict incident stroke after transient ischemic attack (TIA). OBJECTIVE We investigated if coated-platelet levels are predictive of recurrent cerebral ischemia following lacunar stroke. METHODS Coated-platelet levels were assayed in consecutive patients with acute lacunar stroke, who were followed for up to 12 months. Cox proportional hazards regression analysis was used to estimate the combined risk of stroke and TIA at 12 months according to initial coated-platelet levels. RESULTS We enrolled a total of 109 lacunar stroke patients. Eight events were recorded over a mean follow-up period of 10.8 months. A cut-off of 42.6% for coated-platelet levels yielded a sensitivity of 0.75 (0.35-0.97; 95% confidence interval [CI]), specificity of 0.92 (0.85-0.97), positive predictive value of 0.43 (0.26-0.62), and a negative predictive value of 0.98 (0.93-0.99) for recurrent stroke/TIA. The adjusted hazard ratio for recurrent stroke/TIA in patients with coated-platelet levels ≥ 42.6% was 23.9 (95% CI: 4.26-134.4) when compared to those with levels < 42.6%. CONCLUSIONS Identification of increased platelet procoagulant potential may improve our ability to identify patients at higher risk of recurrent stroke/TIA following a lacunar stroke. Further study of mechanisms involved is warranted and may yield novel targets for prevention and treatment.
Collapse
Affiliation(s)
- Angelia C Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Andrea S Vincent
- Cognitive Science Research Center, University of Oklahoma, Norman, OK, USA
| | - George L Dale
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|