1
|
Jing PB, Zhou YW, Zhang FM, Ge JY, Wu JN, Xu JH, Cao XH, Chang N, Zhou X, Luo L, Liu XJ. Autistic-like behaviors and impaired chronic inflammatory pain in primary nociceptive neuron-specific deletion of Mecp2 or Fmr1 knockout male mice. Behav Brain Res 2025; 486:115570. [PMID: 40174753 DOI: 10.1016/j.bbr.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/07/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
AIMS Recent studies have identified the roles of autism risk genes in primary sensory neurons and their connection to autism spectrum disorder (ASD) etiology. However, further research is needed to determine the specific impact of different sensory neuron populations. The aim of this study was to investigate the actions of Mecp2 or Fmr1 expression in primary nociceptive neurons on ASD and pain perception. METHODS Conditional knockout mice lacking Mecp2 or Fmr1, both known to be associated with ASD, were generated specifically in nociceptive neurons of dorsal root ganglion (DRG) and trigeminal ganglion. A series of behavioral tests were used to assess ASD-relevant and pain-related behaviors in normal and inflammatory pain states. Formalin and complete Freund's adjuvant (CFA) injection were used to evoke acute and chronic inflammatory pain. Immunofluorescent approach was employed to study neuroinflammation and calcitonin gene-related peptide (CGRP) expression. RESULTS Both lines exhibited autistic-like behaviors, with reduced social interactions in SNScre/Mecp2f/y mice and increased repetitive behaviors in SNScre/Fmr1f/y mice. Although SNScre/Mecp2f/y and SNScre/Fmr1f/y mice displayed normal baseline pain, formalin-evoked acute and subacute pain sensation, CFA-evoked persistent inflammatory pain was impaired, especially less thermal hyperalgesia. Consistently, neuroinflammation and neural CGRP expression in SNScre/Mecp2f/y and SNScre/Fmr1f/y mice was reduced in response to CFA-injection. CONCLUSIONS Absent Mecp2 or Fmr1 in primary nociceptive neurons plays role in the pathogenesis of ASD and that their expression in primary nociceptors is crucial for the maintenance of chronic inflammatory pain by reducing neuroinflammation and CGRP expression in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Peng-Bo Jing
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Yin-Wei Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Feng-Ming Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Yi Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Ni Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Huan Xu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Hua Cao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Na Chang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiang Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
2
|
Monteiro-Fernandes D, Charles I, Guerreiro S, Cunha-Garcia D, Pereira-Sousa J, Oliveira S, Teixeira-Castro A, Varney MA, Kleven MS, Newman-Tancredi A, P Sheikh Abdala A, Duarte-Silva S, Maciel P. Rescue of respiratory and cognitive impairments in Rett Syndrome mice using NLX-101, a selective 5-HT 1A receptor biased agonist. Biomed Pharmacother 2025; 186:117989. [PMID: 40121895 DOI: 10.1016/j.biopha.2025.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene encoding the methyl-CpG-binding protein 2 (MECP2). Impaired function of this transcriptional regulator leads to profound neurological defects, among which respiratory distress, motor function and cognitive disorders are prominent. Despite great advances in understanding RTT neurobiology, therapies that can meaningfully improve patients' symptoms are still needed. Here, we focused on 5-HT1A receptor-mediated serotonergic signaling as a potential therapeutical route for RTT. We report the effects of a drug candidate, NLX-101, a highly selective, biased agonist of 5-HT1A post-synaptic receptors at brainstem and cortical regions, on key phenotypes of RTT. Unrestrained whole-body plethysmography studies confirmed and extended the previous observation that single i.p. administration of NLX-101 dose-dependently reduced the occurrence and length of apneic events in Mecp2tm1.1Bird heterozygous female mice and largely corrected respiratory irregularity. Although no preservation of motor function was observed, early onset chronic administration of NLX-101 entirely prevented the cognitive deficits of the Mecp2tm1.1Bird mice both in the short and the long-term memory paradigms of the Novel Object Recognition upon 10 weeks of treatment, an effect that was maintained throughout animals' age. Similar effects were observed in the Fear Conditioning paradigm, with treated Rett mice performing as well as wild-type controls, highlighting the procognitive properties of NLX-101. This work provides compelling evidence of the therapeutic potential of targeting post-synaptic 5-HT1A receptors to improve cognitive function in patients with RTT while supporting its respiratory-rescue properties.
Collapse
Affiliation(s)
- Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Ian Charles
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sara Guerreiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Stéphanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | | | | | | | - Ana P Sheikh Abdala
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
3
|
Tamaoki Y, Kroon SL, Williams BM, Riley JR, Engineer CT. Early neural dysfunction reflected in degraded auditory cortex responses in pre-regression heterozygous Mecp2 rats. Neurobiol Dis 2025:106926. [PMID: 40262725 DOI: 10.1016/j.nbd.2025.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025] Open
Abstract
Rett syndrome, a genetic disorder caused by mutations in the X-linked Mecp2 gene, is characterized by typical early development followed by rapid developmental regression between 6 and 18 months of age. Affected individuals exhibit seizures, cognitive impairments, motor deficits, and difficulties in speech-language processing. Post-regression rodent models of Rett syndrome have been observed to follow similar regression, presenting sensory processing difficulties during auditory discrimination tasks, as well as degraded auditory cortical responses. However, little is known about the auditory processing prior to the onset of regression symptoms. This study documents primary auditory cortex responses to sounds in pre-regression heterozygous Mecp2 rats compared to age-matched wild-type controls. Pre-regression Mecp2 rats exhibited weaker and delayed cortical responses to speech sounds, alterations in the temporal processing of rapidly presented sounds, and an overrepresentation of high-frequency tones in conjunction with a reduction in the cortical representation of low-frequency tones. Despite these impairments, pre-regression Mecp2 rats demonstrated intact neural classifier performance for consonant discrimination, which is consistent with the high accuracy these pre-regression Mecp2 rats exhibit for a behavioral consonant discrimination task. These findings reveal that cortical deficits in Mecp2 rats emerge before behavioral regression. Insights derived from this study expand upon the current understanding of the progression of sensory processing deficits in Rett syndrome and other neurodevelopmental disorders and lay the groundwork for the development of therapeutics for this population.
Collapse
Affiliation(s)
- Yuko Tamaoki
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA.
| | - Samantha L Kroon
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Brendan M Williams
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
4
|
Li R, Anzai M, Shibata A, Ito-Ishida A. Synaptic disturbance in neurodevelopmental disorders: Perspectives from fragile X and Rett syndromes. Brain Dev 2025; 47:104358. [PMID: 40228442 DOI: 10.1016/j.braindev.2025.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Neurodevelopmental disorders (NDDs) are often referred to as "synaptopathies" because many of their behavioral symptoms arise from impaired synaptic development and function. However, the mechanisms that connect synaptic dysfunction to neurological symptoms remain unclear, mainly due to the wide variety of genetic and environmental factors involved in these disorders. Fragile X syndrome and Rett syndrome, two extensively studied monogenic NDDs, provide a unique opportunity to explore these mechanisms at molecular, cellular, and synaptic levels. This review summarizes the current understanding of how synaptic alterations contribute to the neurological symptoms observed in fragile X and Rett syndromes. A comparison of findings from mouse models indicates that an imbalance in local and distal connectivity may serve as a common feature of both disorders.
Collapse
Affiliation(s)
- Ruixiang Li
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan; Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Mai Anzai
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Shibata
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Aya Ito-Ishida
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
5
|
Ross PD, Gadalla KKE, Thomson SR, Selfridge J, Bahey NG, Benito J, Burstein SR, McMinn R, Bolon B, Hector RD, Cobb SR. Self-regulating gene therapy ameliorates phenotypes and overcomes gene dosage sensitivity in a mouse model of Rett syndrome. Sci Transl Med 2025; 17:eadq3614. [PMID: 40173263 DOI: 10.1126/scitranslmed.adq3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Conventional methods of gene transfer lead to inconsistent transgene expression within cells. This variability can be problematic, particularly in conditions like Rett syndrome (RTT), a neurological disorder caused by mutations in the MECP2 (methyl-CpG binding protein 2) gene, because overexpression of MECP2 can also cause adverse effects. To address these challenges, we devised a gene regulation system called Expression Attenuation via Construct Tuning (EXACT), which uses a self-contained, microRNA-based feed-forward loop that not only ensures more consistent transgene expression but also protects against excessive expression. Through cell-based screening assays, we demonstrated the ability of the EXACT circuit to modulate the expression of full-length human MeCP2. Compared with a conventional construct, an EXACT-MECP2 construct exhibited a narrower range of cellular protein abundance. Furthermore, the degree of regulation by the EXACT circuit increased with higher transgene doses in vitro and in wild-type mice and mice modeling RTT. On the basis of cellular and in vivo testing, we identified an optimal configuration for the adeno-associated virus serotype 9 (AAV9) construct for self-regulated MECP2 gene therapy, designated NGN-401. Delivery of NGN-401 to neonatal male Mecp2-/y hemizygous mice via intracerebroventricular injection resulted in prolonged survival and amelioration of RTT-like phenotypes compared with vehicle-treated animals. NGN-401 was also well tolerated by female Mecp2+/- mice and healthy juvenile nonhuman primates, in contrast with a conventional construct, which caused toxicity. The results from these studies underpin a first-in-human pediatric trial of NGN-401 in RTT (ClinicalTrials.gov, NCT05898620).
Collapse
Affiliation(s)
- Paul D Ross
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kamal K E Gadalla
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sophie R Thomson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jim Selfridge
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Noha G Bahey
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | | | | | | | - Ralph D Hector
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Neurogene Inc., New York, NY 10011, USA
| |
Collapse
|
6
|
Llontop N, Mancilla C, Ojeda-Provoste P, Torres AK, Godoy A, Tapia-Rojas C, Kerr B. The methyl-CpG-binding protein 2 (Mecp2) regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism. Life Sci 2025; 366-367:123478. [PMID: 39983816 DOI: 10.1016/j.lfs.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE The neuroepigenetic factor Mecp2 regulates gene expression and is thought to play a crucial role in energy homeostasis. Body weight is regulated at the hypothalamic level, where mitochondrial energy metabolism is necessary for its proper functioning, allowing the hypothalamus to respond to peripheral signals to maintain energy balance and modulate energy expenditure through the sympathetic nervous system. Since the mechanism by which genetic and environmental factors contribute to regulating energy balance is unclear, this study aims to understand the contribution of gene-environment interaction to maintaining energy balance and how its disruption alters hypothalamic cellular energy production, impacting the control of systemic metabolism. METHODS We used a mouse model of epigenetic disruption (Mecp2-null) to evaluate the impact of Mecp2 deletion on systemic and hypothalamic metabolism using physiological and cellular approaches. RESULTS Our study shows that the previously reported body weight gain in mice lacking the expression of Mecp2 is preceded by a hypothalamic mitochondrial dysfunction that disrupts hypothalamic function, leading to a dysfunctional communication between the hypothalamus and adipose tissue, thus impairing lipid metabolism. Our study has revealed three crucial aspects of the contribution of this critical epigenetic factor pivotal for a proper gene-environment interaction: i) Mecp2 drives a molecular mechanism to maintain cellular energy homeostasis, which is necessary for the proper functioning of the hypothalamus. ii) Mecp2 is necessary to maintain lipid metabolism in adipose tissue. iii) Mecp2 is a molecular bridge linking hypothalamic cellular energy metabolism and adipose tissue lipid metabolism. CONCLUSIONS Our results show that Mecp2 regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism and probably alters the communication between these two tissues, which is critical for corporal energy homeostasis maintenance.
Collapse
Affiliation(s)
- Nuria Llontop
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | | | | | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile
| | - Alejandro Godoy
- Laboratory of Endocrinology and Tumor Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile.
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile.
| |
Collapse
|
7
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Pozzer D, Indrigo M, Breccia M, Florio E, Franchino CA, De Rocco G, Maltecca F, Fadda A, Rossato M, Aramini A, Allegretti M, Frasca A, De Filippis L, Landsberger N. Clinical-grade intranasal NGF fuels neurological and metabolic functions of Mecp2-deficient mice. Brain 2025; 148:845-860. [PMID: 39300821 PMCID: PMC11884770 DOI: 10.1093/brain/awae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
MECP2 deficiency causes a broad spectrum of neuropsychiatric disorders that can affect both genders. Rett syndrome is the most common and is characterized by an apparently normal growth period followed by a regression phase in which patients lose most of their previously acquired skills. After this dramatic period, various symptoms progressively appear, including severe intellectual disability, epilepsy, apraxia, breathing abnormalities and motor deterioration. MECP2 encodes for an epigenetic transcription factor that is particularly abundant in the brain; consequently, several transcriptional defects characterize the Rett syndrome brain. The well-known deficiency of several neurotrophins and growth factors, together with the positive effects exerted by trofinetide, a synthetic analogue of insulin-like growth factor 1, in Rett patients and in mouse models of Mecp2 deficiency, prompted us to investigate the therapeutic potential of nerve growth factor. Initial in vitro studies demonstrated a healing effect of recombinant human GMP-grade NGF (rhNGF) on neuronal maturation and activity in cultured Mecp2-null neurons. Subsequently, we designed in vivo studies with clear translational potential using intranasally administered rhNGF already used in the clinic. The efficacy of rhNGF in vivo in Mecp2-null hemizygous male mice and heterozygous female mice was assessed. General well-being was evaluated by a conventional phenotypic score and motor performance through the Pole and Beam Walking tests, while cognitive function and interaction with the environment were measured by the Novel Object Recognition test and the Marble Burying test, respectively. At the end of the treatment, mouse cortices were dissected and bulk RNA sequencing was performed to identify the molecular pathways involved in the protective effects of rhNGF. In both male and female mouse models of Rett syndrome, rhNGF exerted positive effects on cognitive and motor functions. In male hemizygous mice, which suffer from significantly more severe and rapidly advancing symptoms, the drug's ability to slow the disease's progression was more pronounced. The unbiased research for the molecular mechanisms triggering the observed benefits revealed a strong positive effect on gene sets related to oxidative phosphorylation, mitochondrial structure and function. These results were validated by demonstrating the drug's ability to improve mitochondrial structure and respiration in Mecp2-null cerebral cortices. Furthermore, Gene Ontology analyses indicated that NGF exerted the expected improvement in neuronal maturation. We conclude that intranasal administration of rhNGF is a non-invasive and effective route of administration for the treatment of Rett syndrome and possibly for other neurometabolic disorders with overt mitochondrial dysfunction.
Collapse
Affiliation(s)
- Diego Pozzer
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
| | - Marzia Indrigo
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | - Elena Florio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | | | - Giuseppina De Rocco
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | - Francesca Maltecca
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
| | - Antonio Fadda
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona 37134, Italy
- Genartis s.r.l., Verona 37126, Italy
| | - Andrea Aramini
- R&D Dompé Farmaceutici SpA, Via Campo di Pile, 67100, L'Aquila, Italy
| | | | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| | | | - Nicoletta Landsberger
- Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan I-20132, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan) I-20054, Italy
| |
Collapse
|
9
|
Carisi MC, Shamber C, Bishop M, Sangster M, Chandrachud U, Meyerink B, Pilaz LJ, Grishchuk Y. AAV-Mediated Gene Transfer of WDR45 Corrects Neurological Deficits in the Mouse Model of Beta-Propeller Protein-Associated Neurodegeneration. Hum Gene Ther 2025; 36:637-652. [PMID: 39978419 DOI: 10.1089/hum.2024.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is an ultra-rare, X-linked dominant, neurodevelopmental, and neurodegenerative disease caused by loss-of-function mutations in the WDR45 gene. It manifests in neurodevelopmental delay and seizures followed by secondary neurological decline with dystonia/parkinsonism and dementia in adolescence and early adulthood and is characterized by progressive accumulation of iron in the basal ganglia. WDR45 encodes β-propeller-shaped scaffold protein, or WD repeat domain phosphoinositide-interacting protein 4 (WIPI4), which plays an important role in autophagosome formation. While the mechanisms of how WIPI4 loss of function results in neurological decline and brain pathology have not yet been established, findings of lower autophagic activity provide a direct link between impaired autophagy and neurological disease in BPAN. Here we performed phenotypical characterization of a novel mouse model of BPAN, Wdr45_ex9+1g>a mouse. We identified hyperactive behavior and reduction of autophagy markers in brain tissue in Wdr45_ex9+1g>a hemizygous males as early as at 2 months of age. Given the early onset and spectrum of neurological symptoms such as hyper-arousal and attention deficits in human patients, this model presents a disease-relevant phenotype and can be used in preclinical studies. We used this mouse model for a proof-of-concept study to evaluate whether adeno-associated virus (AAV)-mediated central nervous system (CNS)-targeted gene transfer of WDR45 can provide therapeutic benefit and be considered a therapeutic paradigm for BPAN. We observed successful expression of human WDR45 transcripts and WIPI4 protein in the brain tissue, rescue of hyperactive behavior, and correction of autophagy markers. These data demonstrate that WDR45 gene transfer can be a promising therapeutic strategy for BPAN.
Collapse
Affiliation(s)
- Maria Carla Carisi
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Shamber
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Martha Bishop
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madison Sangster
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Uma Chandrachud
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research Institute, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis Jean Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research Institute, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Liu S, Wang CY, Zheng P, Jia BB, Zemke NR, Ren P, Park HL, Ren B, Zhuang X. Cell type-specific 3D-genome organization and transcription regulation in the brain. SCIENCE ADVANCES 2025; 11:eadv2067. [PMID: 40009678 PMCID: PMC11864200 DOI: 10.1126/sciadv.adv2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
3D organization of the genome plays a critical role in regulating gene expression. How 3D-genome organization differs among different cell types and relates to cell type-dependent transcriptional regulation remains unclear. Here, we used genome-scale DNA and RNA imaging to investigate 3D-genome organization in transcriptionally distinct cell types in the mouse cerebral cortex. We uncovered a wide spectrum of differences in the nuclear architecture and 3D-genome organization among different cell types, ranging from the size of the cell nucleus to higher-order chromosome structures and radial positioning of chromatin loci within the nucleus. These cell type-dependent variations in nuclear architecture and chromatin organization exhibit strong correlations with both the total transcriptional activity of the cell and transcriptional regulation of cell type-specific marker genes. Moreover, we found that the methylated DNA binding protein MeCP2 promotes active-inactive chromatin segregation and regulates transcription in a nuclear radial position-dependent manner that is highly correlated with its function in modulating active-inactive chromatin compartmentalization.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Cosmos Yuqi Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Bojing Blair Jia
- Bioinformatics and Systems Biology Graduate Program, Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Peter Ren
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Hannah L. Park
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Jeong Y, Kim MW, Lee SG, Park S, Jeong KS, Lee YH, Lee S, Chung HM, Kim J, Kim CY. Therapeutic effects of CGS21680, a selective A 2A receptor agonist, via BDNF-related pathways in R106W mutation Rett syndrome model. Biomed Pharmacother 2025; 183:117821. [PMID: 39813786 DOI: 10.1016/j.biopha.2025.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A2A receptor (A2AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an A2AR agonist, through in vitro and in vivo studies using R106W RTT model. CGS21680 restored neurite outgrowth, the number of SYN1+/MAP2+ puncta pairs, genes related to the BDNF-TrkB signaling pathway (Bdnf, TrkB, and Mtor) and neural development (Tuj1 and Syn1), and electrophysiological functions in in vitro RTT primary neurons. Additionally, CGS21680 alleviated neurobehavioral impairments and modulated gene expression in an RTT in vivo model. Our findings suggest that activation of A2AR via CGS21680 enhances BDNF-TrkB signaling, which in turn activates downstream pathways, ultimately increasing neurite outgrowth and synaptic plasticity, and restoring neurobehavioral clinical symptoms. This is the first study to report the therapeutic effect of CGS21680 in R106W point mutation RTT models, both in vitro and in vivo. These research results suggest that CGS21680 could be a promising therapeutic candidate for the treatment of RTT.
Collapse
Affiliation(s)
- Youngin Jeong
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seul-Gi Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, College of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Dentel B, Angeles-Perez L, Flores AY, Lei K, Ren C, Sanchez AP, Tsai PT. Neuronal cell type specific roles for Nprl2 in neurodevelopmental disorder-relevant behaviors. Neurobiol Dis 2025; 205:106790. [PMID: 39765274 DOI: 10.1016/j.nbd.2025.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and Neurodevelopmental Disorders (NDDs) (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al., 2018; Dentel et al., 2022); however, studies focused on understanding mechanisms contributing to NDD-relevant behaviors are lacking, especially studies understanding the contributions of GATOR1's critical GAP catalytic subunit, nitrogen permease regulator like-2 (Nprl2). Given the clinical phenotypes observed in patients with Nprl2 mutations, in this study, we sought to investigate the neuronal cell type contributions of Nprl2 to NDD behaviors. We conditionally deleted Nprl2 broadly in most neurons (Synapsin1cre), in inhibitory neurons only (Vgatcre), and in Purkinje cells within the cerebellum (L7cre). Broad neuronal deletion of Nprl2 resulted in seizures, social and learning deficits, and hyperactivity. In contrast, deleting Nprl2 from inhibitory neurons led to increased motor learning, hyperactive behavior, in addition to social and learning deficits. Lastly, Purkinje cell (PC) loss of Nprl2 also led to learning and social deficits but did not affect locomotor activity. These phenotypes enhance understanding of the spectrum of disease found in human populations with GATOR1 loss of function and highlight the significance of distinct cellular populations to NDD-related behaviors. SIGNIFICANCE STATEMENT: We aim to elucidate the neuronal-specific contributions of nitrogen permease regulator like-2 (Nprl2) to its neurodevelopmental disorder (NDD)-relevant phenotypes. We conditionally deleted Nprl2 broadly in neurons (Syn1cre), in inhibitory neurons (Vgatcre), and in cerebellar Purkinje cells (L7cre). We identify seizures only in the Syn1cre conditional mutant (cKO); hyperactivity, learning difficulties, social deficits, and impulsivity in the Syn1cre and Vgatcre cKOs; and social deficits, and fear learning deficits in L7cre cKOs. To our knowledge, we are the first to describe the behavioral contributions of Nprl2's function across multiple cell types. Our findings highlight both critical roles for Nprl2 in learning and behavior and also distinct contributions of select neuronal populations to these NDD-relevant behaviors.
Collapse
Affiliation(s)
- Brianne Dentel
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Lidiette Angeles-Perez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Abigail Y Flores
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Katherine Lei
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Chongyu Ren
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Andrea Pineda Sanchez
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America
| | - Peter T Tsai
- The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience; O'Donnell Brain Institute, Dallas, TX, United States of America.
| |
Collapse
|
13
|
Gioiosa S, Gasparini S, Presutti C, Rinaldi A, Castrignanò T, Mannironi C. Integrated gene expression and alternative splicing analysis in human and mouse models of Rett syndrome. Sci Rep 2025; 15:2778. [PMID: 39843543 PMCID: PMC11754816 DOI: 10.1038/s41598-025-86114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Mutations of the MECP2 gene lead to Rett syndrome (RTT), a rare developmental disease causing severe intellectual and physical disability. How the loss or defective function of MeCP2 mediates RTT is still poorly understood. MeCP2 is a global gene expression regulator, acting at transcriptional and post-transcriptional levels. Little attention has been given so far to the contribution of alternative splicing (AS) dysregulation to RTT pathophysiology. To perform a comparative analysis of publicly available RNA sequencing (RNA-seq) studies and generate novel data resources for AS, we explored 100 human datasets and 130 mouse datasets from Mecp2-mutant models, processing data for gene expression and alternative splicing. Our comparative analysis across studies indicates common species-specific differentially expressed genes (DEGs) and differentially alternatively spliced (DAS) genes. Human and mouse dysregulated genes are involved in two main functional categories: cell-extracellular matrix adhesion regulation and synaptic functions, the first category more significantly enriched in human datasets. Our extensive bioinformatics study indicates, for the first time, a significant dysregulation of AS in human RTT datasets, suggesting the crucial contribution of altered RNA processing to the pathophysiology of RTT.
Collapse
Affiliation(s)
- Silvia Gioiosa
- CINECA, SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185, Rome, Italy.
| | - Silvia Gasparini
- Institute of Molecular Biology and Pathology, National Research Council, 00185, Rome, Italy
| | - Carlo Presutti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Research in Neurobiology "D. Bovet", University of Tuscia, Sapienza University of Rome, 00185, Rome, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100, Viterbo, Italy
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology, National Research Council, 00185, Rome, Italy.
| |
Collapse
|
14
|
Mishra GP, Sun EX, Chin T, Eckhardt M, Greenberg ME, Stroud H. Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex. Nat Neurosci 2025; 28:62-71. [PMID: 39578572 DOI: 10.1038/s41593-024-01808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/25/2024] [Indexed: 11/24/2024]
Abstract
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome. MeCP2 is thought to regulate gene transcription by binding to methylated DNA broadly across the genome. Here, using cleavage under target and release under nuclease (CUT&RUN) assays in the adult mouse cortex, we show that MeCP2 strongly binds to specific gene enhancers that we call MeCP2-binding hotspots (MBHs). Unexpectedly, we find that MeCP2 binding to MBHs occurs in a DNA methylation-independent manner at MBHs. Multiple MBH sites surrounding genes mediate the transcriptional repression of genes enriched for neuronal functions. We show that MBHs regulate genes irrespective of genic methylation levels, suggesting that MeCP2 controls transcription via an intragenic methylation-independent mechanism. Hence, disruption of intragenic methylation-independent gene regulation by MeCP2 may in part underlie Rett syndrome.
Collapse
Affiliation(s)
- Gyan Prakash Mishra
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Eric X Sun
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Chin
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mandy Eckhardt
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Hume Stroud
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Dominguez G, Wu Y, Zhou J. Epigenetic Regulation and Neurodevelopmental Disorders: From MeCP2 to the TCF20/PHF14 Complex. Genes (Basel) 2024; 15:1653. [PMID: 39766920 PMCID: PMC11728296 DOI: 10.3390/genes15121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies. Recently, the TCF20/PHF14 chromatin complex was identified in the mammalian brain, expanding the list of chromatin regulatory remodelers implicated in NDDs. This complex-which includes MeCP2, RAI1, TCF20, PHF14, and HMG20A-plays a vital role in epigenetic and transcriptional regulation. METHODS We review and summarize current research and clinical reports pertaining to the different components of the MeCP2-interacting TCF20/PHF14 complex. We examine the NDDs associated with the TCF20/PHF14 complex, explore the molecular and neuronal functions of its components, and discuss emerging therapeutic strategies targeting this complex to mitigate symptoms, with broader applicability to other NDDs. RESULTS Mutations in the genes encoding the components of the MeCP2-interacting TCF20/PHF14 complex have been linked to various NDDs, underscoring its critical contribution to brain development and NDD pathogenesis. CONCLUSIONS The MeCP2-interacting TCF20/PHF14 complex and its associated NDDs could serve as a model system to provide insight into the interplay between epigenetic regulation and NDD pathogenesis.
Collapse
Affiliation(s)
- Gaea Dominguez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Yongji Wu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Jian Zhou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Vanderplow AM, Dodis GE, Rhee Y, Cikowski JJ, Gonzalez S, Smith ML, Gogliotti RG. Site-blocking antisense oligonucleotides as a mechanism to fine-tune MeCP2 expression. RNA (NEW YORK, N.Y.) 2024; 30:1554-1571. [PMID: 39379106 PMCID: PMC11571808 DOI: 10.1261/rna.080220.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Despite its severe phenotypes, studies in mouse models suggest that restoring MeCP2 levels can reverse RTT symptomology. Nevertheless, traditional gene therapy approaches are hindered by MeCP2's narrow therapeutic window, complicating the safe delivery of viral constructs without overshooting the threshold for toxicity. The 3' untranslated region (3' UTR) plays a key role in gene regulation, where factors like miRNAs bind to pre-mRNA and fine-tune expression. Given that each miRNA's contribution is modest, blocking miRNA binding may represent a potential therapeutic strategy for diseases with high dosage sensitivity, like RTT. Here, we present a series of site-blocking antisense oligonucleotides (sbASOs) designed to outcompete repressive miRNA binding at the MECP2 3' UTR. This strategy aims to increase MeCP2 levels in patients with missense or late-truncating mutations, where the hypomorphic nature of the protein can be offset by enhanced abundance. Our results demonstrate that sbASOs can elevate MeCP2 levels in a dose-dependent manner in SH-SY5Y and patient fibroblast cell lines, plateauing at levels projected to be safe. Confirming in vivo functionality, sbASO administration in wild-type mice led to significant Mecp2 upregulation and the emergence of phenotypes associated with Mecp2 overexpression. In a T158M neural stem cell model of RTT, sbASO treatment significantly increased MeCP2 expression and levels of the downstream effector protein brain-derived neurotrophic factor (BDNF). These findings highlight the potential of sbASO-based therapies for MeCP2-related disorders and advocate for their continued development.
Collapse
Affiliation(s)
- Amanda M Vanderplow
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Grace E Dodis
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Yewon Rhee
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Jakub J Cikowski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sonia Gonzalez
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Mackenzie L Smith
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Rocco G Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| |
Collapse
|
17
|
Bajikar SS, Sztainberg Y, Trostle AJ, Tirumala HP, Wan YW, Harrop CL, Bengtsson JD, Carvalho CMB, Pehlivan D, Suter B, Neul JL, Liu Z, Jafar-Nejad P, Rigo F, Zoghbi HY. Modeling antisense oligonucleotide therapy in MECP2 duplication syndrome human iPSC-derived neurons reveals gene expression programs responsive to MeCP2 levels. Hum Mol Genet 2024; 33:1986-2001. [PMID: 39277796 PMCID: PMC11555823 DOI: 10.1093/hmg/ddae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Genomic copy-number variations (CNVs) that can cause neurodevelopmental disorders often encompass many genes, which complicates our understanding of how individual genes within a CNV contribute to pathology. MECP2 duplication syndrome (MDS or MRXSL in OMIM; OMIM#300260) is one such CNV disorder caused by duplications spanning methyl CpG-binding protein 2 (MECP2) and other genes on Xq28. Using an antisense oligonucleotide (ASO) to normalize MECP2 dosage is sufficient to rescue abnormal neurological phenotypes in mouse models overexpressing MECP2 alone, implicating the importance of increased MECP2 dosage within CNVs of Xq28. However, because MDS CNVs span MECP2 and additional genes, we generated human neurons from multiple MDS patient-derived induced pluripotent cells (iPSCs) to evaluate the benefit of using an ASO against MECP2 in a MDS human neuronal context. Importantly, we identified a signature of genes that is partially and qualitatively modulated upon ASO treatment, pinpointed genes sensitive to MeCP2 function, and altered in a model of Rett syndrome, a neurological disorder caused by loss of MeCP2 function. Furthermore, the signature contained genes that are aberrantly altered in unaffected control human neurons upon MeCP2 depletion, revealing gene expression programs qualitatively sensitive to MeCP2 levels in human neurons. Lastly, ASO treatment led to a partial rescue of abnormal neuronal morphology in MDS neurons. All together, these data demonstrate that ASOs targeting MECP2 benefit human MDS neurons. Moreover, our study establishes a paradigm by which to evaluate the contribution of individual genes within a CNV to pathogenesis and to assess their potential as a therapeutic target.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, United States
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22903, United States
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Harini P Tirumala
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Caroline L Harrop
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, United States
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - Davut Pehlivan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
| | - Bernhard Suter
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, 110 Magnolia Circle, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Paymaan Jafar-Nejad
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
18
|
Gold WA, Percy AK, Neul JL, Cobb SR, Pozzo-Miller L, Issar JK, Ben-Zeev B, Vignoli A, Kaufmann WE. Rett syndrome. Nat Rev Dis Primers 2024; 10:84. [PMID: 39511247 DOI: 10.1038/s41572-024-00568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT) is a severe, progressive, neurodevelopmental disorder, which affects predominantly females. In most cases, RTT is associated with pathogenic variants in MECP2. MeCP2, the protein product of MECP2, is known to regulate gene expression and is highly expressed in the brain. RTT is characterized by developmental regression of spoken language and hand use that, with hand stereotypies and impaired ambulation, constitute the four core diagnostic features. Affected individuals may present multiple other neurological impairments and comorbidities, such as seizures, breathing irregularities, anxiety and constipation. Studies employing neuroimaging, neuropathology, neurochemistry and animal models show reductions in brain size and global decreases in neuronal size, as well as alterations in multiple neurotransmitter systems. Management of RTT is mainly focused on preventing the progression of symptoms, currently improved by guidelines based on natural history studies. Animal and cellular models of MeCP2 deficiency have helped in understanding the pathophysiology of RTT and guided the development of trofinetide, an IGF1-related compound, which is an approved drug for RTT, as well as of other drugs and gene therapies currently under investigation.
Collapse
Affiliation(s)
- Wendy A Gold
- Molecular Neurobiology Research Laboratory, Kids Research and Kids Neuroscience Centre, The Children's Hospital at Westmead, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Alan K Percy
- Department of Pediatrics (Neurology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Edinburgh, UK
| | - Lucas Pozzo-Miller
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jasmeen K Issar
- Molecular Neurobiology Research Laboratory, Kids Research and Kids Neuroscience Centre, The Children's Hospital at Westmead, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology & Psychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Kalani L, Kim BH, de Chavez AR, Roemer A, Mikhailov A, Merritt JK, Good KV, Chow RL, Delaney KR, Hendzel MJ, Zhou Z, Neul JL, Vincent JB, Ausió J. Testing the PEST hypothesis using relevant Rett mutations in MeCP2 E1 and E2 isoforms. Hum Mol Genet 2024; 33:1833-1845. [PMID: 39137370 PMCID: PMC11540922 DOI: 10.1093/hmg/ddae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Mutations in methyl-CpG binding protein 2 (MeCP2), such as the T158M, P152R, R294X, and R306C mutations, are responsible for most Rett syndrome (RTT) cases. These mutations often result in altered protein expression that appears to correlate with changes in the nuclear size; however, the molecular details of these observations are poorly understood. Using a C2C12 cellular system expressing human MeCP2-E1 isoform as well as mouse models expressing these mutations, we show that T158M and P152R result in a decrease in MeCP2 protein, whereas R306C has a milder variation, and R294X resulted in an overall 2.5 to 3 fold increase. We also explored the potential involvement of the MeCP2 PEST domains in the proteasome-mediated regulation of MeCP2. Finally, we used the R294X mutant to gain further insight into the controversial competition between MeCP2 and histone H1 in the chromatin context. Interestingly, in R294X, MeCP2 E1 and E2 isoforms were differently affected, where the E1 isoform contributes to much of the overall protein increase observed, while E2 decreases by half. The modes of MeCP2 regulation, thus, appear to be differently regulated in the two isoforms.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Alberto Ruiz de Chavez
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Anastasia Roemer
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave, Edmonton, AB T6G 2H7, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Jonathan K Merritt
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - Katrina V Good
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Michael J Hendzel
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave, Edmonton, AB T6G 2H7, Canada
| | - Zhaolan Zhou
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 27 King College Cir, Toronto, ON M5T 1R8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
20
|
Esposito A, Seri T, Breccia M, Indrigo M, De Rocco G, Nuzzolillo F, Denti V, Pappacena F, Tartaglione G, Serrao S, Paglia G, Murru L, de Pretis S, Cioni JM, Landsberger N, Guarnieri FC, Palmieri M. Unraveling autophagic imbalances and therapeutic insights in Mecp2-deficient models. EMBO Mol Med 2024; 16:2795-2826. [PMID: 39402139 PMCID: PMC11555085 DOI: 10.1038/s44321-024-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 11/13/2024] Open
Abstract
Loss-of-function mutations in MECP2 are associated to Rett syndrome (RTT), a severe neurodevelopmental disease. Mainly working as a transcriptional regulator, MeCP2 absence leads to gene expression perturbations resulting in deficits of synaptic function and neuronal activity. In addition, RTT patients and mouse models suffer from a complex metabolic syndrome, suggesting that related cellular pathways might contribute to neuropathogenesis. Along this line, autophagy is critical in sustaining developing neuron homeostasis by breaking down dysfunctional proteins, lipids, and organelles.Here, we investigated the autophagic pathway in RTT and found reduced content of autophagic vacuoles in Mecp2 knock-out neurons. This correlates with defective lipidation of LC3B, probably caused by a deficiency of the autophagic membrane lipid phosphatidylethanolamine. The administration of the autophagy inducer trehalose recovers LC3B lipidation, autophagosomes content in knock-out neurons, and ameliorates their morphology, neuronal activity and synaptic ultrastructure. Moreover, we provide evidence for attenuation of motor and exploratory impairment in Mecp2 knock-out mice upon trehalose administration. Overall, our findings open new perspectives for neurodevelopmental disorders therapies based on the concept of autophagy modulation.
Collapse
Affiliation(s)
- Alessandro Esposito
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Tommaso Seri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | - Marzia Indrigo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppina De Rocco
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | | | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesca Pappacena
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Tartaglione
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Serrao
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Luca Murru
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | - Fabrizia Claudia Guarnieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- CNR Institute of Neuroscience, Vedano al Lambro, Italy.
| | - Michela Palmieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
21
|
Fazzari M, Lunghi G, Carsana EV, Valsecchi M, Spiombi E, Breccia M, Casati SR, Pedretti S, Mitro N, Mauri L, Ciampa MG, Sonnino S, Landsberger N, Frasca A, Chiricozzi E. GM1 Oligosaccharide Ameliorates Rett Syndrome Phenotypes In Vitro and In Vivo via Trk Receptor Activation. Int J Mol Sci 2024; 25:11555. [PMID: 39519108 PMCID: PMC11547101 DOI: 10.3390/ijms252111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology. Moreover, altered glycosphingolipid metabolism has been reported in RTT. GM1 ganglioside is a known regulator of the nervous system, and growing evidence indicates its importance in maintaining neuronal homeostasis via its oligosaccharide chain, coded as GM1-OS. GM1-OS directly interacts with the Trk receptors on the cell surface, triggering neurotrophic and neuroprotective pathways in neurons. In this study, we demonstrate that GM1-OS ameliorates RTT deficits in the Mecp2-null model. GM1-OS restored synaptogenesis and reduced mitochondrial oxidative stress of Mecp2-knock-out (ko) cortical neurons. When administered in vivo, GM1-OS mitigated RTT-like symptoms. Our findings indicate that GM1-OS effects were mediated by Trk receptor activation on the neuron's plasma membrane. Overall, our results highlight GM1-OS as a promising candidate for RTT treatment.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| |
Collapse
|
22
|
Cillari N, Neri G, Pisanti N, Milazzo P, Borello U. RettDb: the Rett syndrome omics database to navigate the Rett syndrome genomic landscape. Database (Oxford) 2024; 2024:baae109. [PMID: 39414258 PMCID: PMC11482253 DOI: 10.1093/database/baae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder occurring almost exclusively in females and leading to a variety of impairments and disabilities from mild to severe. In >95% cases, RTT is due to mutations in the X-linked gene MECP2, but the molecular mechanisms determining RTT are unknown at present, and the complexity of the system is challenging. To facilitate and provide guidance to the unraveling of those mechanisms, we developed a database resource for the visualization and analysis of the genomic landscape in the context of wild-type or mutated Mecp2 gene in the mouse model. Our resource allows for the exploration of differential dynamics of gene expression and the prediction of new potential MECP2 target genes to decipher the RTT disorder molecular mechanisms. Database URL: https://biomedinfo.di.unipi.it/rett-database/.
Collapse
Affiliation(s)
- Nico Cillari
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| | - Giuseppe Neri
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| | - Nadia Pisanti
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
| | - Paolo Milazzo
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
| | - Ugo Borello
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| |
Collapse
|
23
|
Sharifi O, Haghani V, Neier KE, Fraga KJ, Korf I, Hakam SM, Quon G, Johansen N, Yasui DH, LaSalle JM. Sex-specific single cell-level transcriptomic signatures of Rett syndrome disease progression. Commun Biol 2024; 7:1292. [PMID: 39384967 PMCID: PMC11464704 DOI: 10.1038/s42003-024-06990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo a poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating that wild-type-expressing cells normalize transcriptional homeostasis. These results advance our understanding of RTT progression and treatment.
Collapse
Affiliation(s)
- Osman Sharifi
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Viktoria Haghani
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Kari E Neier
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Keith J Fraga
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ian Korf
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sophia M Hakam
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Nelson Johansen
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Santistevan NJ, Ford CT, Gilsdorf CS, Grinblat Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32981. [PMID: 38551133 DOI: 10.1002/ajmg.b.32981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here, we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish mecp2 mutants from 5 to 7 days post-fertilization (dpf). We show that zebrafish mecp2 function is required for normal thigmotaxis but is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for mecp2 in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires mecp2 function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2's function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.
Collapse
Affiliation(s)
- Nicholas J Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Colby T Ford
- School of Data Science, University of North Carolina, Charlotte, North Carolina, USA
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
- Tuple, LLC, Charlotte, North Carolina, USA
| | - Cole S Gilsdorf
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
26
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
27
|
Mesci P, LaRock CN, Jeziorski JJ, Nakashima H, Chermont N, Ferrasa A, Herai RH, Ozaki T, Saleh A, Snethlage CE, Sanchez S, Goldberg G, Trujillo CA, Nakashima K, Nizet V, Muotri AR. Human microglial cells as a therapeutic target in a neurodevelopmental disease model. Stem Cell Reports 2024; 19:1074-1091. [PMID: 39059378 PMCID: PMC11368698 DOI: 10.1016/j.stemcr.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells (MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The co-culture of healthy MGLs with MECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.
Collapse
Affiliation(s)
- Pinar Mesci
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA.
| | - Christopher N LaRock
- Department of Pediatrics, University of California San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92037, USA; Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Jacob J Jeziorski
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Natalia Chermont
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Research Department, Lico Kaesemodel Institute (ILK), Curitiba, Paraná, Brazil
| | - Tomoka Ozaki
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Aurian Saleh
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Cedric E Snethlage
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Sandra Sanchez
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Gabriela Goldberg
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Cleber A Trujillo
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92037, USA
| | - Alysson R Muotri
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; University of California, San Diego, Kavli Institute for Brain and Mind, Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Peters SU, Shelton AR, Malow BA, Neul JL. A clinical-translational review of sleep problems in neurodevelopmental disabilities. J Neurodev Disord 2024; 16:41. [PMID: 39033100 PMCID: PMC11265033 DOI: 10.1186/s11689-024-09559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Sleep disorders are very common across neurodevelopmental disorders and place a large burden on affected children, adolescents, and their families. Sleep disturbances seem to involve a complex interplay of genetic, neurobiological, and medical/environmental factors in neurodevelopmental disorders. In this review, we discuss animal models of sleep problems and characterize their presence in two single gene disorders, Rett Syndrome, and Angelman Syndrome and two more commonly occurring neurodevelopmental disorders, Down Syndrome, and autism spectrum disorders. We then discuss strategies for novel methods of assessment using wearable sensors more broadly for neurodevelopmental disorders in general, including the importance of analytical validation. An increased understanding of the mechanistic contributions and potential biomarkers of disordered sleep may offer quantifiable targets for interventions that improve overall quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA.
| | - Althea Robinson Shelton
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Beth A Malow
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
| |
Collapse
|
29
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Sonn JY, Kim W, Iwanaszko M, Aoi Y, Li Y, Parkitny L, Brissette JL, Weiner L, Al-Ramahi I, Botas J, Shilatifard A, Zoghbi HY. MeCP2 Interacts with the Super Elongation Complex to Regulate Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601446. [PMID: 39005382 PMCID: PMC11244860 DOI: 10.1101/2024.06.30.601446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Loss-of-function mutations in methyl-CpG binding protein 2 ( MECP2 ) cause Rett syndrome, a postnatal neurodevelopmental disorder that occurs in ∼1/10,000 live female births. MeCP2 binds to methylated cytosines across genomic DNA and recruits various partners to regulate gene expression. MeCP2 has been shown to repress transcription in vitro and interacts with co-repressors such as the Sin3A and NCoR complexes. Based on these observations, MeCP2 has been largely considered as a repressor of transcription. However, a mouse model of RTT displays many down-regulated genes, and those same genes are up-regulated in a MECP2 duplication mouse model. Furthermore, TCF20, which has been associated with transcriptional activation, have recently been identified as a protein interactor of MeCP2. These data broaden the potential functions of MeCP2 as a regulator of gene expression. Yet, the molecular mechanisms underlying MeCP2-dependent gene regulation remain largely unknown. Here, using a human MECP2 gain-of-function Drosophila model, we screened for genetic modifiers of MECP2 -induced phenotypes. Our approach identified several subunits of the Drosophila super elongation complex, a P-TEFb containing RNA polymerase II (RNA pol II) elongation factor required for the release of promoter-proximally paused RNA pol II, as genetic interactors of MECP2 . We discovered that MeCP2 physically interacts with the SEC in human cells and in the mouse brain. Furthermore, we found that MeCP2 directly binds AFF4, the scaffold of the SEC, via the transcriptional repression domain. Finally, loss of MeCP2 in the mouse cortex caused reduced binding of AFF4 specifically on a subset of genes involved in the regulation of synaptic function, which also displayed the strongest decrease in RNA pol II binding in the genebody. Taken together, our study reveals a previously unrecognized mechanism through which MeCP2 regulates transcription, providing a new dimension to its regulatory role in gene expression.
Collapse
|
31
|
Liu Y, Flamier A, Bell GW, Diao AJ, Whitfield TW, Wang HC, Wu Y, Schulte F, Friesen M, Guo R, Mitalipova M, Liu XS, Vos SM, Young RA, Jaenisch R. MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Neuron 2024; 112:1943-1958.e10. [PMID: 38697112 DOI: 10.1016/j.neuron.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in the methyl-DNA-binding protein MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). How MECP2 contributes to transcriptional regulation in normal and disease states is unresolved; it has been reported to be an activator and a repressor. We describe here the first integrated CUT&Tag, transcriptome, and proteome analyses using human neurons with wild-type (WT) and mutant MECP2 molecules. MECP2 occupies CpG-rich promoter-proximal regions in over four thousand genes in human neurons, including a plethora of autism risk genes, together with RNA polymerase II (RNA Pol II). MECP2 directly interacts with RNA Pol II, and genes occupied by both proteins showed reduced expression in neurons with MECP2 patient mutations. We conclude that MECP2 acts as a positive cofactor for RNA Pol II gene expression at many neuronal genes that harbor CpG islands in promoter-proximal regions and that RTT is due, in part, to the loss of gene activity of these genes in neurons.
Collapse
Affiliation(s)
- Yi Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Annette Jun Diao
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Hao-Che Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yizhe Wu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ruisi Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Maisam Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Feng Y, Wang J, Liu J, Zhou Y, Jiang Y, Zhou W, Wu F, Liu X, Luo L. Mecp2 Deficiency in Peripheral Sensory Neuron Improves Cognitive Function by Enhancing Hippocampal Dendritic Spine Densities in Mice. Cells 2024; 13:988. [PMID: 38891120 PMCID: PMC11171598 DOI: 10.3390/cells13110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong 226001, China; (Y.F.); (J.W.); (J.L.); (Y.Z.); (Y.J.); (W.Z.); (F.W.)
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong 226001, China; (Y.F.); (J.W.); (J.L.); (Y.Z.); (Y.J.); (W.Z.); (F.W.)
| |
Collapse
|
33
|
Audouard E, Khefif N, Gillet-Legrand B, Nobilleau F, Bouazizi O, Stanga S, Despres G, Alves S, Lamazière A, Cartier N, Piguet F. Modulation of Brain Cholesterol Metabolism through CYP46A1 Overexpression for Rett Syndrome. Pharmaceutics 2024; 16:756. [PMID: 38931878 PMCID: PMC11207948 DOI: 10.3390/pharmaceutics16060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder caused by mutation in the X-linked gene methyl-CpG-binding protein 2 (Mecp2), a ubiquitously expressed transcriptional regulator. RTT results in mental retardation and developmental regression that affects approximately 1 in 10,000 females. Currently, there is no curative treatment for RTT. Thus, it is crucial to develop new therapeutic approaches for children suffering from RTT. Several studies suggested that RTT is linked with defects in cholesterol homeostasis, but for the first time, therapeutic evaluation is carried out by modulating this pathway. Moreover, AAV-based CYP46A1 overexpression, the enzyme involved in cholesterol pathway, has been demonstrated to be efficient in several neurodegenerative diseases. Based on these data, we strongly believe that CYP46A1 could be a relevant therapeutic target for RTT. Herein, we evaluated the effects of intravenous AAVPHP.eB-hCYP46A1-HA delivery in male and female Mecp2-deficient mice. The applied AAVPHP.eB-hCYP46A1 transduced essential neurons of the central nervous system (CNS). CYP46A1 overexpression alleviates behavioral alterations in both male and female Mecp2 knockout mice and extends the lifespan in Mecp2-deficient males. Several parameters related to cholesterol pathway are improved and correction of mitochondrial activity is demonstrated in treated mice, which highlighted the clear therapeutic benefit of CYP46A1 through the neuroprotection effect. IV delivery of AAVPHP.eB-CYP46A1 is perfectly well tolerated with no inflammation observed in the CNS of the treated mice. Altogether, our results strongly suggest that CYP46A1 is a relevant target and overexpression could alleviate the phenotype of Rett patients.
Collapse
Affiliation(s)
- Emilie Audouard
- TIDU GENOV, Institut du Cerveau, ICM, F-75013 Paris, France;
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Nicolas Khefif
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Béatrix Gillet-Legrand
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Fanny Nobilleau
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Ouafa Bouazizi
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Orbassano, Italy
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
| | - Gaëtan Despres
- Saint Antoine Research Center, INSERM UMR 938, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP Sorbonne Université, F-75013 Paris, France
| | - Sandro Alves
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Antonin Lamazière
- Saint Antoine Research Center, INSERM UMR 938, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP Sorbonne Université, F-75013 Paris, France
| | - Nathalie Cartier
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| | - Françoise Piguet
- TIDU GENOV, Institut du Cerveau, ICM, F-75013 Paris, France;
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France (B.G.-L.); (S.A.)
| |
Collapse
|
34
|
Sharifi O, Haghani V, Neier KE, Fraga KJ, Korf I, Hakam SM, Quon G, Johansen N, Yasui DH, LaSalle JM. Sex-specific single cell-level transcriptomic signatures of Rett syndrome disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594595. [PMID: 38798575 PMCID: PMC11118571 DOI: 10.1101/2024.05.16.594595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time, and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating wild-type-expressing cells normalizing transcriptional homeostasis. These results improve understanding of RTT progression and treatment.
Collapse
Affiliation(s)
- Osman Sharifi
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Viktoria Haghani
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Kari E. Neier
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Keith J. Fraga
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Ian Korf
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Sophia M. Hakam
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Gerald Quon
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Nelson Johansen
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Dag H. Yasui
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Janine M. LaSalle
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| |
Collapse
|
35
|
Jagadeeswaran I, Oh J, Sinnett SE. Preclinical Milestones in MECP2 Gene Transfer for Treating Rett Syndrome. Dev Neurosci 2024; 47:147-156. [PMID: 38723617 PMCID: PMC11965835 DOI: 10.1159/000539267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity. SUMMARY The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer. KEY MESSAGE This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone. BACKGROUND Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity. SUMMARY The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer. KEY MESSAGE This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.
Collapse
Affiliation(s)
- Indumathy Jagadeeswaran
- Department of Pediatrics, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA,
| | - Jiyoung Oh
- Department of Pediatrics, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
| | - Sarah E Sinnett
- Department of Pediatrics, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center (UTSWMC), Dallas, Texas, USA
| |
Collapse
|
36
|
Pantier R, Brown M, Han S, Paton K, Meek S, Montavon T, Shukeir N, McHugh T, Kelly DA, Hochepied T, Libert C, Jenuwein T, Burdon T, Bird A. MeCP2 binds to methylated DNA independently of phase separation and heterochromatin organisation. Nat Commun 2024; 15:3880. [PMID: 38719804 PMCID: PMC11079052 DOI: 10.1038/s41467-024-47395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.
Collapse
Affiliation(s)
- Raphaël Pantier
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Megan Brown
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Sicheng Han
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Katie Paton
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Stephen Meek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Thomas Montavon
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Toni McHugh
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Tino Hochepied
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Tom Burdon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
37
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
38
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Tasnim A, Alkislar I, Hakim R, Turecek J, Abdelaziz A, Orefice LL, Ginty DD. The developmental timing of spinal touch processing alterations predicts behavioral changes in genetic mouse models of autism spectrum disorders. Nat Neurosci 2024; 27:484-496. [PMID: 38233682 PMCID: PMC10917678 DOI: 10.1038/s41593-023-01552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Altered somatosensory reactivity is frequently observed among individuals with autism spectrum disorders (ASDs). Here, we report that although multiple mouse models of ASD exhibit aberrant somatosensory behaviors in adulthood, some models exhibit altered tactile reactivity as early as embryonic development, whereas in others, altered reactivity emerges later in life. Additionally, tactile overreactivity during neonatal development is associated with anxiety-like behaviors and social behavior deficits in adulthood, whereas tactile overreactivity that emerges later in life is not. The locus of circuit disruption dictates the timing of aberrant tactile behaviors, as altered feedback or presynaptic inhibition of peripheral mechanosensory neurons leads to abnormal tactile reactivity during neonatal development, whereas disruptions in feedforward inhibition in the spinal cord lead to touch reactivity alterations that manifest later in life. Thus, the developmental timing of aberrant touch processing can predict the manifestation of ASD-associated behaviors in mouse models, and differential timing of sensory disturbance onset may contribute to phenotypic diversity across individuals with ASD.
Collapse
Affiliation(s)
- Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ilayda Alkislar
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Richard Hakim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Zito A, Lee JT. Variable expression of MECP2, CDKL5, and FMR1 in the human brain: Implications for gene restorative therapies. Proc Natl Acad Sci U S A 2024; 121:e2312757121. [PMID: 38386709 PMCID: PMC10907246 DOI: 10.1073/pnas.2312757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.
Collapse
Affiliation(s)
- Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| |
Collapse
|
42
|
Cao Z, Min X, Xie X, Huang M, Liu Y, Sun W, Xu G, He M, He K, Li Y, Yuan J. RIPK1 activation in Mecp2-deficient microglia promotes inflammation and glutamate release in RTT. Proc Natl Acad Sci U S A 2024; 121:e2320383121. [PMID: 38289948 PMCID: PMC10861890 DOI: 10.1073/pnas.2320383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (Mecp2) gene. Here, we found that inhibition of Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) kinase ameliorated progression of motor dysfunction after onset and prolonged the survival of Mecp2-null mice. Microglia were activated early in myeloid Mecp2-deficient mice, which was inhibited upon inactivation of RIPK1 kinase. RIPK1 inhibition in Mecp2-deficient microglia reduced oxidative stress, cytokines production and induction of SLC7A11, SLC38A1, and GLS, which mediate the release of glutamate. Mecp2-deficient microglia release high levels of glutamate to impair glutamate-mediated excitatory neurotransmission and promote increased levels of GluA1 and GluA2/3 proteins in vivo, which was reduced upon RIPK1 inhibition. Thus, activation of RIPK1 kinase in Mecp2-deficient microglia may be involved both in the onset and progression of RTT.
Collapse
Affiliation(s)
- Ze Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xingxing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Maoqing Huang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yingying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Weimin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
| | - Miao He
- Institutes of Brain Science, Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
43
|
Pramanik S, Bala A, Pradhan A. Zebrafish in understanding molecular pathophysiology, disease modeling, and developing effective treatments for Rett syndrome. J Gene Med 2024; 26:e3677. [PMID: 38380785 DOI: 10.1002/jgm.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the mecp2 gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, Assam, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
44
|
Asgarihafshejani A, Raveendran VA, Pressey JC, Woodin MA. LTP is Absent in the CA1 Region of the Hippocampus of Male and Female Rett Syndrome Mouse Models. Neuroscience 2024; 537:189-204. [PMID: 38036056 DOI: 10.1016/j.neuroscience.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rett syndrome (RTT) is a debilitating neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, resulting in severe deficits in learning and memory. Alterations in synaptic plasticity have been reported in RTT, however most electrophysiological studies have been performed in male mice only, despite the fact that RTT is primarily found in females. In addition, most studies have focused on excitation, despite the emerging evidence for the important role of inhibition in learning and memory. Here, we performed an electrophysiological characterization in the CA1 region of the hippocampus in both males and females of RTT mouse models with a focus on neurogliaform (NGF) interneurons, given that they are the most abundant dendrite-targeting interneuron subtype in the hippocampus. We found that theta-burst stimulation (TBS) failed to induce long-term potentiation (LTP) in either pyramidal neurons or NGF interneurons in male or female RTT mice, with no apparent changes in short-term plasticity (STP). This failure to induce LTP was accompanied by excitation/inhibition (E/I) imbalances and altered excitability, in a sex- and cell-type specific manner. Specifically, NGF interneurons of male RTT mice displayed increased intrinsic excitability, a depolarized resting membrane potential, and decreased E/I balance, while in female RTT mice, the resting membrane potential was depolarized. Understanding the role of NGF interneurons in RTT animal models is crucial for developing targeted treatments to improve cognition in individuals with this disorder.
Collapse
Affiliation(s)
| | | | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Sadhu C, Lyons C, Oh J, Jagadeeswaran I, Gray SJ, Sinnett SE. The Efficacy of a Human-Ready mini MECP2 Gene Therapy in a Pre-Clinical Model of Rett Syndrome. Genes (Basel) 2023; 15:31. [PMID: 38254921 PMCID: PMC10815157 DOI: 10.3390/genes15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inactivating mutations and the duplication of methyl-CpG binding protein 2 (MeCP2), respectively, mediate Rett syndrome (RTT) and MECP2 duplication syndrome. These disorders underscore the conceptual dose-dependent risk posed by MECP2 gene therapy for mosaic RTT patients. Recently, a miRNA-Responsive Autoregulatory Element (miRARE) mitigated the dose-dependent toxicity posed by self-complementary adeno-associated viral vector serotype 9 (AAV9) miniMECP2 gene therapy (scAAV9/miniMECP2-myc) in mice. Here, we report an efficacy assessment for the human-ready version of this regulated gene therapy (TSHA-102) in male Mecp2-/y knockout (KO) mice after intracerebroventricular (ICV) administration at postnatal day 2 (P2) and after intrathecal (IT) administration at P7, P14 (±immunosuppression), and P28 (±immunosuppression). We also report qPCR studies on KO mice treated at P7-P35; protein analyses in KO mice treated at P38; and a survival safety study in female adult Mecp2-/+ mice. In KO mice, TSHA-102 improved respiration, weight, and survival across multiple doses and treatment ages. TSHA-102 significantly improved the front average stance and swing times relative to the front average stride time after P14 administration of the highest dose for that treatment age. Viral genomic DNA and miniMECP2 mRNA were present in the CNS. MiniMeCP2 protein expression was higher in the KO spinal cord compared to the brain. In female mice, TSHA-102 permitted survivals that were similar to those of vehicle-treated controls. In all, these pivotal data helped to support the regulatory approval to initiate a clinical trial for TSHA-102 in RTT patients (clinical trial identifier number NCT05606614).
Collapse
Affiliation(s)
- Chanchal Sadhu
- Formerly of Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Christopher Lyons
- Formerly of the Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Jiyoung Oh
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Indumathy Jagadeeswaran
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Sarah E. Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| |
Collapse
|
46
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Hum Mol Genet 2023; 33:12-32. [PMID: 37712894 PMCID: PMC10729867 DOI: 10.1093/hmg/ddad154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Chelsea E Lee
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Kaela Singleton
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Bicentennial Way, Middlebury, VT 05753, United States
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Joseph Martin Dalloul
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - William Li-Yun Liu
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Anupam Patgiri
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Daniel Tarquinio
- Center for Rare Neurological Diseases, 5600 Oakbrook Pkwy, Norcross, GA 30093, United States
| | - Randall Carpenter
- Rett Syndrome Research Trust, 67 Under Cliff Rd, Trumbull, CT 06611, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| |
Collapse
|
47
|
Whitaker-Fornek JR, Jenkins PM, Levitt ES. Inhibitory synaptic transmission is impaired in the Kölliker-Fuse of male, but not female, Rett syndrome mice. J Neurophysiol 2023; 130:1578-1587. [PMID: 37965930 PMCID: PMC11068392 DOI: 10.1152/jn.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that mainly affects females due to silencing mutations in the X-linked MECP2 gene. One of the most troubling symptoms of RTT is breathing irregularity, including apneas, breath-holds, and hyperventilation. Mice with silencing mutations in Mecp2 exhibit breathing abnormalities similar to human patients and serve as useful models for studying mechanisms underlying breathing problems in RTT. Previous work implicated the pontine, respiratory-controlling Kölliker-Fuse (KF) in the breathing problems in RTT. The goal of this study was to test the hypothesis that inhibitory synaptic transmission is deficient in KF neurons from symptomatic male and female RTT mice. We performed whole cell voltage-clamp recordings from KF neurons in acute brain slices to examine spontaneous and electrically evoked inhibitory post-synaptic currents (IPSCs) in RTT mice and age- and sex-matched wild-type mice. The frequency of spontaneous IPSCs was reduced in KF neurons from male RTT mice but surprisingly not in female RTT mice. In addition, electrically evoked IPSCs were less reliable in KF neurons from male, but not female, RTT mice, which was positively correlated with paired-pulse facilitation, indicating decreased probability of release. KF neurons from male RTT mice were also more excitable and exhibited shorter-duration action potentials. Increased excitability of KF neurons from male mice was not explained by changes in axon initial segment length. These findings indicate impaired inhibitory neurotransmission and increased excitability of KF neurons in male but not female RTT mice and suggest that sex-dependent mechanisms contribute to breathing problems in RTT.NEW & NOTEWORTHY Kölliker-Fuse (KF) neurons in acute brain slices from male Rett syndrome (RTT) mice receive reduced inhibitory synaptic inputs compared with wild-type littermates. In female RTT mice, inhibitory transmission was not different in KF neurons compared with controls. The results from this study show that sex-specific alterations in synaptic transmission occur in the KF of RTT mice.
Collapse
Affiliation(s)
- Jessica R Whitaker-Fornek
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Erica S Levitt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
48
|
Siqueira E, Kim BH, Reser L, Chow R, Delaney K, Esteller M, Ross MM, Shabanowitz J, Hunt DF, Guil S, Ausió J. Analysis of the interplay between MeCP2 and histone H1 during in vitro differentiation of human ReNCell neural progenitor cells. Epigenetics 2023; 18:2276425. [PMID: 37976174 PMCID: PMC10769555 DOI: 10.1080/15592294.2023.2276425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
An immortalized neural cell line derived from the human ventral mesencephalon, called ReNCell, and its MeCP2 knock out were used. With it, we characterized the chromatin compositional transitions undergone during differentiation, with special emphasis on linker histones. While the WT cells displayed the development of dendrites and axons the KO cells did not, despite undergoing differentiation as monitored by NeuN. ReNCell expressed minimal amounts of histone H1.0 and their linker histone complement consisted mainly of histone H1.2, H1.4 and H1.5. The overall level of histone H1 exhibited a trend to increase during the differentiation of MeCP2 KO cells. The phosphorylation levels of histone H1 proteins decreased dramatically during ReNCell's cell differentiation independently of the presence of MeCP2. Immunofluorescence analysis showed that MeCP2 exhibits an extensive co-localization with linker histones. Interestingly, the average size of the nucleus decreased during differentiation but in the MeCP2 KO cells, the smaller size of the nuclei at the start of differentiation increased by almost 40% after differentiation by 8 days (8 DIV). In summary, our data provide a compelling perspective on the dynamic changes of H1 histones during neural differentiation, coupled with the intricate interplay between H1 variants and MeCP2.Abbreviations: ACN, acetonitrile; A230, absorbance at 230 nm; bFGF, basic fibroblast growth factor; CM, chicken erythrocyte histone marker; CNS, central nervous system; CRISPR, clustered regulated interspaced short palindromic repeatsDAPI, 4,'6-diaminidino-2-phenylindole; DIV, days in vitro (days after differentiation is induced); DMEM, Dulbecco's modified Eagle medium; EGF, epidermal growth factor; ESC, embryonic stem cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic proteinHPLC, high-performance liquid chromatography; IF, immunofluorescence; iPSCs, induced pluripotent stem cells; MAP2, microtubule-associated protein 2; MBD, methyl-binding domain; MeCP2, methyl-CpG binding protein 2; MS, mass spectrometry; NCP, nucleosome core particle; NeuN, neuron nuclear antigen; NPC, neural progenitor cellPAGE, polyacrylamide gel electrophoresis; PBS, phosphate buffered saline; PFA, paraformaldehyde; PTM, posttranslational modification; RP-HPLC, reversed phase HPLC; ReNCells, ReNCells VM; RPLP0, ribosomal protein lateral stalk subunit P0; RT-qPCR, reverse transcription quantitative polymerase-chain reaction; RTT, Rett Syndrome; SDS, sodium dodecyl sulphate; TAD, topologically associating domain; Triple KO, triple knockout.
Collapse
Affiliation(s)
- Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- National Council for Scientific and Technological Development (CNPq), Brasilia, Federal District, Brazil
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Robert Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Kerry Delaney
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mark M. Ross
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- GermansTrias i Pujol Health Science Research Institute, Badalona, Barcelona, Catalonia, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
49
|
Miranda-Lourenço C, Rosa J, Rei N, Belo RF, Lopes AL, Silva D, Vieira C, Magalhães-Cardoso T, Viais R, Correia-de-Sá P, Sebastião AM, Diógenes MJ. Adenosinergic System and BDNF Signaling Changes as a Cross-Sectional Feature of RTT: Characterization of Mecp2 Heterozygous Mouse Females. Int J Mol Sci 2023; 24:16249. [PMID: 38003438 PMCID: PMC10671708 DOI: 10.3390/ijms242216249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Rett Syndrome is an X-linked neurodevelopmental disorder (RTT; OMIM#312750) associated to MECP2 mutations. MeCP2 dysfunction is seen as one cause for the deficiencies found in brain-derived neurotrophic factor (BDNF) signaling, since BDNF is one of the genes under MeCP2 jurisdiction. BDNF signaling is also dependent on the proper function of the adenosinergic system. Indeed, both BDNF signaling and the adenosinergic system are altered in Mecp2-null mice (Mecp2-/y), a representative model of severe manifestation of RTT. Considering that symptoms severity largely differs among RTT patients, we set out to investigate the BDNF and ADO signaling modifications in Mecp2 heterozygous female mice (Mecp2+/-) presenting a less severe phenotype. Symptomatic Mecp2+/- mice have lower BDNF levels in the cortex and hippocampus. This is accompanied by a loss of BDNF-induced facilitation of hippocampal long-term potentiation (LTP), which could be restored upon selective activation of adenosine A2A receptors (A2AR). While no differences were observed in the amount of adenosine in the cortex and hippocampus of Mecp2+/- mice compared with healthy littermates, the density of the A1R and A2AR subtype receptors was, respectively, upregulated and downregulated in the hippocampus. Data suggest that significant changes in BDNF and adenosine signaling pathways are present in an RTT model with a milder disease phenotype: Mecp2+/- female animals. These features strengthen the theory that boosting adenosinergic activity may be a valid therapeutic strategy for RTT patients, regardless of their genetic penetrance.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Jéssica Rosa
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F. Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Lopes
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Diogo Silva
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ricardo Viais
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
50
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|