1
|
Tanigawa M, Liu M, Sekiguchi M, Goda K, Kato C, Ono T, Uesaka N. Nasal obstruction during development leads to defective synapse elimination, hypersynchrony, and impaired cerebellar function. Commun Biol 2024; 7:1381. [PMID: 39443666 PMCID: PMC11500345 DOI: 10.1038/s42003-024-07095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Nasal respiratory disorders are linked to craniofacial anomalies and systemic dysfunctions. However, the implications of nasal respiratory disorders on brain development and their subsequent impact on brain functionalization remain largely unknown. Here, we describe that nasal obstruction from postnatal developmental stages in mice precipitates deficits in cerebellum-associated behaviors and compromised refinement and maturation of neural circuits in the cerebellum. We show that mice with nasal obstruction during developmental phases exhibit marked impairments in motor function and exhibit increased immobility time in forced swimming test. Additionally, we identified critical periods during which nasal respiration is essential for optimizing motor function and preserving mental health. Our study also reveals that nasal obstruction in mice disrupts the typical developmental process of synapse elimination in the cerebellum and hinders the normal transition of activity patterns in cerebellar Purkinje cell populations during development. Through comparing activity patterns in mouse models subjected to nasal obstruction at various stages, we suggest that the maturation of specific activity pattern among Purkinje cell populations is fundamental to the functional integrity of the cerebellum. Our findings highlight the indispensable role of adequate nasal respiration during development for the establishment and functional integrity of neural circuits, thereby significantly affecting brain function.
Collapse
Affiliation(s)
- Moe Tanigawa
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mengke Liu
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mariko Sekiguchi
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kyosuke Goda
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Welch JF, Mitchell GS. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective. Exp Physiol 2024; 109:1217-1237. [PMID: 38551996 PMCID: PMC11291877 DOI: 10.1113/ep091506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 08/02/2024]
Abstract
During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.
Collapse
Affiliation(s)
- Joseph F. Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Hansel C, Yuste R. Neural ensembles: role of intrinsic excitability and its plasticity. Front Cell Neurosci 2024; 18:1440588. [PMID: 39144154 PMCID: PMC11322048 DOI: 10.3389/fncel.2024.1440588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Synaptic connectivity defines groups of neurons that engage in correlated activity during specific functional tasks. These co-active groups of neurons form ensembles, the operational units involved in, for example, sensory perception, motor coordination and memory (then called an engram). Traditionally, ensemble formation has been thought to occur via strengthening of synaptic connections via long-term potentiation (LTP) as a plasticity mechanism. This synaptic theory of memory arises from the learning rules formulated by Hebb and is consistent with many experimental observations. Here, we propose, as an alternative, that the intrinsic excitability of neurons and its plasticity constitute a second, non-synaptic mechanism that could be important for the initial formation of ensembles. Indeed, enhanced neural excitability is widely observed in multiple brain areas subsequent to behavioral learning. In cortical structures and the amygdala, excitability changes are often reported as transient, even though they can last tens of minutes to a few days. Perhaps it is for this reason that they have been traditionally considered as modulatory, merely supporting ensemble formation by facilitating LTP induction, without further involvement in memory function (memory allocation hypothesis). We here suggest-based on two lines of evidence-that beyond modulating LTP allocation, enhanced excitability plays a more fundamental role in learning. First, enhanced excitability constitutes a signature of active ensembles and, due to it, subthreshold synaptic connections become suprathreshold in the absence of synaptic plasticity (iceberg model). Second, enhanced excitability promotes the propagation of dendritic potentials toward the soma and allows for enhanced coupling of EPSP amplitude (LTP) to the spike output (and thus ensemble participation). This permissive gate model describes a need for permanently increased excitability, which seems at odds with its traditional consideration as a short-lived mechanism. We propose that longer modifications in excitability are made possible by a low threshold for intrinsic plasticity induction, suggesting that excitability might be on/off-modulated at short intervals. Consistent with this, in cerebellar Purkinje cells, excitability lasts days to weeks, which shows that in some circuits the duration of the phenomenon is not a limiting factor in the first place. In our model, synaptic plasticity defines the information content received by neurons through the connectivity network that they are embedded in. However, the plasticity of cell-autonomous excitability could dynamically regulate the ensemble participation of individual neurons as well as the overall activity state of an ensemble.
Collapse
Affiliation(s)
- Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Pali E, D’Angelo E, Prestori F. Understanding Cerebellar Input Stage through Computational and Plasticity Rules. BIOLOGY 2024; 13:403. [PMID: 38927283 PMCID: PMC11200477 DOI: 10.3390/biology13060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
A central hypothesis concerning brain functioning is that plasticity regulates the signal transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, the granular layer has been shown to control the gain of signals transmitted through the mossy fiber pathway. Until now, the impact of plasticity on incoming activity patterns has been analyzed by combining electrophysiological recordings in acute cerebellar slices and computational modeling, unraveling a broad spectrum of different forms of synaptic plasticity in the granular layer, often accompanied by forms of intrinsic excitability changes. Here, we attempt to provide a brief overview of the most prominent forms of plasticity at the excitatory synapses formed by mossy fibers onto primary neuronal components (granule cells, Golgi cells and unipolar brush cells) in the granular layer. Specifically, we highlight the current understanding of the mechanisms and their functional implications for synaptic and intrinsic plasticity, providing valuable insights into how inputs are processed and reconfigured at the cerebellar input stage.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
- Digital Neuroscience Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| |
Collapse
|
6
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Ramaswamy S. Data-driven multiscale computational models of cortical and subcortical regions. Curr Opin Neurobiol 2024; 85:102842. [PMID: 38320453 DOI: 10.1016/j.conb.2024.102842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Data-driven computational models of neurons, synapses, microcircuits, and mesocircuits have become essential tools in modern brain research. The goal of these multiscale models is to integrate and synthesize information from different levels of brain organization, from cellular properties, dendritic excitability, and synaptic dynamics to microcircuits, mesocircuits, and ultimately behavior. This article surveys recent advances in the genesis of data-driven computational models of mammalian neural networks in cortical and subcortical areas. I discuss the challenges and opportunities in developing data-driven multiscale models, including the need for interdisciplinary collaborations, the importance of model validation and comparison, and the potential impact on basic and translational neuroscience research. Finally, I highlight future directions and emerging technologies that will enable more comprehensive and predictive data-driven models of brain function and dysfunction.
Collapse
Affiliation(s)
- Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
8
|
Geminiani A, Casellato C, Boele HJ, Pedrocchi A, De Zeeuw CI, D’Angelo E. Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning. PLoS Comput Biol 2024; 20:e1011277. [PMID: 38574161 PMCID: PMC11060558 DOI: 10.1371/journal.pcbi.1011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/30/2024] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Neuroscience Institute, Princeton University, Washington Road, Princeton, New Jersey, United States of America
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
9
|
Li GG, Xu YH, Sun MZ, Bing YH, Jin WZ, Qiu DL. Etomidate enhances cerebellar CF-PC synaptic plasticity through CB1 receptor/PKA cascade in vitro in mice. Neurosci Lett 2024; 826:137733. [PMID: 38492880 DOI: 10.1016/j.neulet.2024.137733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.
Collapse
Affiliation(s)
- Guang-Gao Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province 133002, China; Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province 133000, China
| | - Ying-Han Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province 133002, China; Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province 133000, China
| | - Ming-Ze Sun
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province 133002, China; Institute of Brain Science, Jilin Medical University, Jilin City, Jilin Province 132013, China
| | - Yan-Hua Bing
- Functional Experiment Center, College of Medicine, Yanbian University, Yanji City, Jilin Province 133000, China
| | - Wen-Zhe Jin
- Department of Pain, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province 133000, China
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province 133002, China; Institute of Brain Science, Jilin Medical University, Jilin City, Jilin Province 132013, China; Department of Physiology, College of Basic Medicine, Jilin Meidcal University, Jilin City, Jilin Province 132013, China.
| |
Collapse
|
10
|
Kakizawa S, Park JJ, Tonoki A. Biology of cognitive aging across species. Geriatr Gerontol Int 2024; 24 Suppl 1:15-24. [PMID: 38126240 DOI: 10.1111/ggi.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Aging is associated with cognitive decline, which can critically affect quality of life. Examining the biology of cognitive aging across species will lead to a better understanding of the fundamental mechanisms involved in this process, and identify potential interventions that could help to improve cognitive function in aging individuals. This minireview aimed to explore the mechanisms and processes involved in cognitive aging across a range of species, from flies to rodents, and covers topics, such as the role of reactive oxygen species and autophagy/mitophagy in cognitive aging. Overall, this literature provides a comprehensive overview of the biology of cognitive aging across species, highlighting the latest research findings and identifying potential avenues for future research. Geriatr Gerontol Int 2024; 24: 15-24.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Lee J, Kim SH, Jang DC, Jang M, Bak MS, Shim HG, Lee YS, Kim SJ. Intrinsic plasticity of Purkinje cell serves homeostatic regulation of fear memory. Mol Psychiatry 2024; 29:247-256. [PMID: 38017229 DOI: 10.1038/s41380-023-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Two forms of plasticity, synaptic and intrinsic, are neural substrates for learning and memory. Abnormalities in homeostatic plasticity cause severe neuropsychiatric diseases, such as schizophrenia and autism. This suggests that the balance between synaptic transmission and intrinsic excitability is important for physiological function in the brain. Despite the established role of synaptic plasticity between parallel fiber (PF) and Purkinje cell (PC) in fear memory, its relationship with intrinsic plasticity is not well understood. Here, patch clamp recording revealed depression of intrinsic excitability in PC following auditory fear conditioning (AFC). Depressed excitability balanced long-term potentiation of PF-PC synapse to serve homeostatic regulation of PF-evoked PC firing. We then optogenetically manipulated PC excitability during the early consolidation period resulting in bidirectional regulation of fear memory. Fear conditioning-induced synaptic plasticity was also regulated following optogenetic manipulation. These results propose intrinsic plasticity in PC as a novel mechanism of fear memory and elucidate that decreased intrinsic excitability in PC counterbalances PF-PC synaptic potentiation to maintain fear memory in a normal range.
Collapse
Affiliation(s)
- Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
12
|
Zang Y, De Schutter E. Recent data on the cerebellum require new models and theories. Curr Opin Neurobiol 2023; 82:102765. [PMID: 37591124 DOI: 10.1016/j.conb.2023.102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
The cerebellum has been a popular topic for theoretical studies because its structure was thought to be simple. Since David Marr and James Albus related its function to motor skill learning and proposed the Marr-Albus cerebellar learning model, this theory has guided and inspired cerebellar research. In this review, we summarize the theoretical progress that has been made within this framework of error-based supervised learning. We discuss the experimental progress that demonstrates more complicated molecular and cellular mechanisms in the cerebellum as well as new cell types and recurrent connections. We also cover its involvement in diverse non-motor functions and evidence of other forms of learning. Finally, we highlight the need to explain these new experimental findings into an integrated cerebellar model that can unify its diverse computational functions.
Collapse
Affiliation(s)
- Yunliang Zang
- Academy of Medical Engineering and Translational Medicine, Medical Faculty, Tianjin University, Tianjin 300072, China; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan. https://twitter.com/DeschutterOIST
| |
Collapse
|
13
|
Corti C, Oldrati V, Papini M, Strazzer S, Poggi G, Romaniello R, Borgatti R, Urgesi C, Bardoni A. Randomized clinical trial on the effects of a computerized cognitive training for pediatric patients with acquired brain injury or congenital malformation. Sci Rep 2023; 13:14559. [PMID: 37666983 PMCID: PMC10477344 DOI: 10.1038/s41598-023-41810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Both acquired injuries and congenital malformations often cause lifelong disabilities in children, with a significant impact on cognitive abilities. Remote computerized cognitive training (CCT) may be delivered in ecological settings to favour rehabilitation continuity. This randomized clinical trial (RCT) evaluated the efficacy of an 8-week multi-domain, home-based CCT in a sample of patients aged 11-16 years with non-progressive acquired brain injury (ABI), brain tumor (BT) and congenital brain malformation (CBM). Following a stepped-wedge research design, patients were randomized into two groups: Training-first group, which started the CCT immediately after baseline assessment and Waiting-first group, which started the CCT after a period of time comparable to that required by the training (8 weeks). Post-training and long-term (6 months) changes were assessed. Both groups improved on visual-spatial working memory after the CCT, with benefits maintained after 6 months, while no other changes in cognitive or psychological measures were found. These findings suggest that a multi-domain CCT can generate benefits in visual-spatial working memory, in accordance with data from extant literature reporting that computer games heavily engage visuo-spatial abilities. We speculate that is tapping on the same cognitive ability with a prolonged training that may generate the greatest change after a CCT.
Collapse
Affiliation(s)
- Claudia Corti
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Viola Oldrati
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | - Marta Papini
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sandra Strazzer
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Geraldina Poggi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | | | - Renato Borgatti
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | | |
Collapse
|
14
|
Najac M, McLean DL, Raman IM. Synaptic variance and action potential firing of cerebellar output neurons during motor learning in larval zebrafish. Curr Biol 2023; 33:3299-3311.e3. [PMID: 37421952 PMCID: PMC10527510 DOI: 10.1016/j.cub.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
The cerebellum regulates both reflexive and acquired movements. Here, by recording voltage-clamped synaptic currents and spiking in cerebellar output (eurydendroid) neurons in immobilized larval zebrafish, we investigated synaptic integration during reflexive movements and throughout associative motor learning. Spiking coincides with the onset of reflexive fictive swimming but precedes learned swimming, suggesting that eurydendroid signals may facilitate the initiation of acquired movements. Although firing rates increase during swimming, mean synaptic inhibition greatly exceeds mean excitation, indicating that learned responses cannot result solely from changes in synaptic weight or upstream excitability that favor excitation. Estimates of spike threshold crossings based on measurements of intrinsic properties and the time course of synaptic currents demonstrate that noisy excitation can transiently outweigh noisy inhibition enough to increase firing rates at swimming onset. Thus, the millisecond-scale variance of synaptic currents can regulate cerebellar output, and the emergence of learned cerebellar behaviors may involve a time-based code.
Collapse
Affiliation(s)
- Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Pham T, Hansel C. Intrinsic threshold plasticity: cholinergic activation and role in the neuronal recognition of incomplete input patterns. J Physiol 2023; 601:3221-3239. [PMID: 35879872 PMCID: PMC9873838 DOI: 10.1113/jp283473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Activity-dependent changes in membrane excitability are observed in neurons across brain areas and represent a cell-autonomous form of plasticity (intrinsic plasticity; IP) that in itself does not involve alterations in synaptic strength (synaptic plasticity; SP). Non-homeostatic IP may play an essential role in learning, e.g. by changing the action potential threshold near the soma. A computational problem, however, arises from the implication that such amplification does not discriminate between synaptic inputs and therefore may reduce the resolution of input representation. Here, we investigate consequences of IP for the performance of an artificial neural network in (a) the discrimination of unknown input patterns and (b) the recognition of known/learned patterns. While negative changes in threshold potentials in the output layer indeed reduce its ability to discriminate patterns, they benefit the recognition of known but incompletely presented patterns. An analysis of thresholds and IP-induced threshold changes in published sets of physiological data obtained from whole-cell patch-clamp recordings from L2/3 pyramidal neurons in (a) the primary visual cortex (V1) of awake macaques and (b) the primary somatosensory cortex (S1) of mice in vitro, respectively, reveals a difference between resting and threshold potentials of ∼15 mV for V1 and ∼25 mV for S1, and a total plasticity range of ∼10 mV (S1). The most efficient activity pattern to lower threshold is paired cholinergic and electric activation. Our findings show that threshold reduction promotes a shift in neural coding strategies from accurate faithful representation to interpretative assignment of input patterns to learned object categories. KEY POINTS: Intrinsic plasticity may change the action potential threshold near the soma of neurons (threshold plasticity), thus altering the input-output function for all synaptic inputs 'upstream' of the plasticity location. A potential problem arising from this shared amplification is that it may reduce the ability to discriminate between different input patterns. Here, we assess the performance of an artificial neural network in the discrimination of unknown input patterns as well as the recognition of known patterns subsequent to changes in the spike threshold. We observe that negative changes in threshold potentials do reduce discrimination performance, but at the same time improve performance in an object recognition task, in particular when patterns are incompletely presented. Analysis of whole-cell patch-clamp recordings from pyramidal neurons in the primary somatosensory cortex (S1) of mice reveals that negative threshold changes preferentially result from electric stimulation of neurons paired with the activation of muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Tuan Pham
- Committee on Computational Neuroscience, The University of Chicago
| | - Christian Hansel
- Committee on Computational Neuroscience, The University of Chicago
- Department of Neurobiology, The University of Chicago
| |
Collapse
|
16
|
Osório C, White JJ, Lu H, Beekhof GC, Fiocchi FR, Andriessen CA, Dijkhuizen S, Post L, Schonewille M. Pre-ataxic loss of intrinsic plasticity and motor learning in a mouse model of SCA1. Brain 2023; 146:2332-2345. [PMID: 36352508 PMCID: PMC10232256 DOI: 10.1093/brain/awac422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 12/29/2023] Open
Abstract
Spinocerebellar ataxias are neurodegenerative diseases, the hallmark symptom of which is the development of ataxia due to cerebellar dysfunction. Purkinje cells, the principal neurons of the cerebellar cortex, are the main cells affected in these disorders, but the sequence of pathological events leading to their dysfunction is poorly understood. Understanding the origins of Purkinje cells dysfunction before it manifests is imperative to interpret the functional and behavioural consequences of cerebellar-related disorders, providing an optimal timeline for therapeutic interventions. Here, we report the cascade of events leading to Purkinje cells dysfunction before the onset of ataxia in a mouse model of spinocerebellar ataxia 1 (SCA1). Spatiotemporal characterization of the ATXN1[82Q] SCA1 mouse model revealed high levels of the mutant ATXN1[82Q] weeks before the onset of ataxia. The expression of the toxic protein first caused a reduction of Purkinje cells intrinsic excitability, which was followed by atrophy of Purkinje cells dendrite arborization and aberrant glutamatergic signalling, finally leading to disruption of Purkinje cells innervation of climbing fibres and loss of intrinsic plasticity of Purkinje cells. Functionally, we found that deficits in eyeblink conditioning, a form of cerebellum-dependent motor learning, precede the onset of ataxia, matching the timeline of climbing fibre degeneration and reduced intrinsic plasticity. Together, our results suggest that abnormal synaptic signalling and intrinsic plasticity during the pre-ataxia stage of spinocerebellar ataxias underlie an aberrant cerebellar circuitry that anticipates the full extent of the disease severity. Furthermore, our work indicates the potential for eyeblink conditioning to be used as a sensitive tool to detect early cerebellar dysfunction as a sign of future disease.
Collapse
Affiliation(s)
- Catarina Osório
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Heiling Lu
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Gerrit C Beekhof
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | | | | | - Stephanie Dijkhuizen
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| |
Collapse
|
17
|
Pham NC, Kim YG, Kim SJ, Kim CH. Effect of a differential training paradigm with varying frequencies and amplitudes on adaptation of vestibulo-ocular reflex in mice. Exp Brain Res 2023; 241:1299-1308. [PMID: 37000203 DOI: 10.1007/s00221-023-06601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The vestibulo-ocular reflex (VOR) functions to maintain eye stability during head movement, and VOR gain can be dynamically increased or decreased by gain-up or gain-down adaptation. In this study, we investigated the impact of a differential training paradigm with varying frequencies and amplitudes on the level of VOR adaptation in mice. Training for gain-up (out of phase) or gain-down (in phase) VOR adaptation was applied for 60 min using two protocols: (1) oscillation of a drum and turntable with fixed frequency and differing amplitudes (0.5 Hz/2.5°, 0.5 Hz/5° and 0.5 Hz/10°). (2) Oscillation of a drum and turntable with fixed amplitude and a differing frequency (0.25 Hz/5°, 0.5 Hz/5° and 1 Hz/5°). VOR adaptation occurred distinctively in gain-up and gain-down learning. In gain-up VOR adaptation, the learned increase in VOR gain was greatest when trained with the same frequency and amplitude as the test stimulation, and VOR gain decreased after gain-up training with too high a frequency or amplitude. In gain-down VOR adaptation, the decrease in VOR gain increased as the training frequency or amplitude increased. These results suggest that different mechanisms are, at least in part, involved in gain-up and gain-down VOR adaptation.
Collapse
Affiliation(s)
- Ngoc Chien Pham
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
18
|
Ohtsuki G, Kim T, Sun P, Chen Y, Ugo D'Angelo E. Editorial: Cerebellum-related learning and psychiatric diseases. Front Cell Neurosci 2023; 17:1132286. [PMID: 36860375 PMCID: PMC9969138 DOI: 10.3389/fncel.2023.1132286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Affiliation(s)
- Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan,*Correspondence: Gen Ohtsuki ✉
| | - Taegon Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea,Taegon Kim ✉
| | - Peng Sun
- Department of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, China,Peng Sun ✉
| | - Yongjun Chen
- Research Institute for Acupuncture and Moxibustion, Shangdong University of Traditional Chinese Medicine, Jinan, China,Yongjun Chen ✉
| | - Egidio Ugo D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Egidio Ugo D'Angelo ✉
| |
Collapse
|
19
|
Tamura K, Yamamoto Y, Kobayashi T, Kuriyama R, Yamazaki T. Discrimination and learning of temporal input sequences in a cerebellar Purkinje cell model. Front Cell Neurosci 2023; 17:1075005. [PMID: 36816857 PMCID: PMC9932327 DOI: 10.3389/fncel.2023.1075005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Temporal information processing is essential for sequential contraction of various muscles with the appropriate timing and amplitude for fast and smooth motor control. These functions depend on dynamics of neural circuits, which consist of simple neurons that accumulate incoming spikes and emit other spikes. However, recent studies indicate that individual neurons can perform complex information processing through the nonlinear dynamics of dendrites with complex shapes and ion channels. Although we have extensive evidence that cerebellar circuits play a vital role in motor control, studies investigating the computational ability of single Purkinje cells are few. Methods We found, through computer simulations, that a Purkinje cell can discriminate a series of pulses in two directions (from dendrite tip to soma, and from soma to dendrite), as cortical pyramidal cells do. Such direction sensitivity was observed in whatever compartment types of dendrites (spiny, smooth, and main), although they have dierent sets of ion channels. Results We found that the shortest and longest discriminable sequences lasted for 60 ms (6 pulses with 10 ms interval) and 4,000 ms (20 pulses with 200 ms interval), respectively. and that the ratio of discriminable sequences within the region of the interesting parameter space was, on average, 3.3% (spiny), 3.2% (smooth), and 1.0% (main). For the direction sensitivity, a T-type Ca2+ channel was necessary, in contrast with cortical pyramidal cells that have N-methyl-D-aspartate receptors (NMDARs). Furthermore, we tested whether the stimulus direction can be reversed by learning, specifically by simulated long-term depression, and obtained positive results. Discussion Our results show that individual Purkinje cells can perform more complex information processing than is conventionally assumed for a single neuron, and suggest that Purkinje cells act as sequence discriminators, a useful role in motor control and learning.
Collapse
Affiliation(s)
- Kaaya Tamura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Yuki Yamamoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taira Kobayashi
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Rin Kuriyama
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan,*Correspondence: Tadashi Yamazaki ✉
| |
Collapse
|
20
|
Ricci M, Kim J, Johansson F. A computational passage-of-time model of the cerebellar Purkinje cell in eyeblink conditioning. Front Comput Neurosci 2023; 17:1108346. [PMID: 36950506 PMCID: PMC10025386 DOI: 10.3389/fncom.2023.1108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cerebellar Purkinje cell controlling eyeblinks can learn, remember, and reproduce the interstimulus interval in a classical conditioning paradigm. Given temporally separated inputs, the cerebellar Purkinje cell learns to pause its tonic inhibition of a motor pathway with high temporal precision so that an overt blink occurs at the right time. Most models place the passage-of-time representation in upstream network effects. Yet, bypassing the upstream network and directly stimulating the Purkinje cell's pre-synaptic fibers during conditioning still causes acquisition of a well-timed response. Additionally, while network models are sensitive to variance in the temporal structure of probe stimulation, in vivo findings suggest that the acquired Purkinje cell response is not. Such findings motivate alternative approaches to modeling neural function. Here, we present a proof-of-principle model of the passage-of-time which is internal to the Purkinje cell and is invariant to probe structure. The model is consistent with puzzling findings, accurately recapitulates Purkinje cell firing during classical conditioning and makes testable electrophysiological predictions.
Collapse
Affiliation(s)
- Matthew Ricci
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Junkyung Kim
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Fredrik Johansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Fredrik Johansson
| |
Collapse
|
21
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
22
|
Fruzzetti L, Kalidindi HT, Antonietti A, Alessandro C, Geminiani A, Casellato C, Falotico E, D’Angelo E. Dual STDP processes at Purkinje cells contribute to distinct improvements in accuracy and speed of saccadic eye movements. PLoS Comput Biol 2022; 18:e1010564. [PMID: 36194625 PMCID: PMC9565489 DOI: 10.1371/journal.pcbi.1010564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/14/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Saccadic eye-movements play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. However, the neural processes governing saccades adaptation are not fully understood. Saccades, due to the short-time of execution (20-100 ms) and the absence of sensory information for online feedback control, must be controlled in a ballistic manner. Incomplete measurements of the movement trajectory, such as the visual endpoint error, are supposedly used to form internal predictions about the movement kinematics resulting in predictive control. In order to characterize the synaptic and neural circuit mechanisms underlying predictive saccadic control, we have reconstructed the saccadic system in a digital controller embedding a spiking neural network of the cerebellum with spike timing-dependent plasticity (STDP) rules driving parallel fiber-Purkinje cell long-term potentiation and depression (LTP and LTD). This model implements a control policy based on a dual plasticity mechanism, resulting in the identification of the roles of LTP and LTD in regulating the overall quality of saccade kinematics: it turns out that LTD increases the accuracy by decreasing visual error and LTP increases the peak speed. The control policy also required cerebellar PCs to be divided into two subpopulations, characterized by burst or pause responses. To our knowledge, this is the first model that explains in mechanistic terms the visual error and peak speed regulation of ballistic eye movements in forward mode exploiting spike-timing to regulate firing in different populations of the neuronal network. This elementary model of saccades could be extended and applied to other more complex cases in which single jerks are concatenated to compose articulated and coordinated movements.
Collapse
Affiliation(s)
- Lorenzo Fruzzetti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hari Teja Kalidindi
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- * E-mail: (HK); (EF)
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- * E-mail: (HK); (EF)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
23
|
Simmons DH, Busch SE, Titley HK, Grasselli G, Shih J, Du X, Wei C, Gomez CM, Piochon C, Hansel C. Sensory Over-responsivity and Aberrant Plasticity in Cerebellar Cortex in a Mouse Model of Syndromic Autism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:450-459. [PMID: 36324646 PMCID: PMC9616247 DOI: 10.1016/j.bpsgos.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Patients with autism spectrum disorder often show altered responses to sensory stimuli as well as motor deficits, including an impairment of delay eyeblink conditioning, which involves integration of sensory signals in the cerebellum. Here, we identify abnormalities in parallel fiber (PF) and climbing fiber (CF) signaling in the mouse cerebellar cortex that may contribute to these pathologies. Methods We used a mouse model for the human 15q11-13 duplication (patDp/+) and studied responses to sensory stimuli in Purkinje cells from awake mice using two-photon imaging of GCaMP6f signals. Moreover, we examined synaptic transmission and plasticity using in vitro electrophysiological, immunohistochemical, and confocal microscopic techniques. Results We found that spontaneous and sensory-evoked CF-calcium transients are enhanced in patDp/+ Purkinje cells, and aversive movements are more severe across sensory modalities. We observed increased expression of the synaptic organizer NRXN1 at CF synapses and ectopic spread of these synapses to fine dendrites. CF-excitatory postsynaptic currents recorded from Purkinje cells are enlarged in patDp/+ mice, while responses to PF stimulation are reduced. Confocal measurements show reduced PF+CF-evoked spine calcium transients, a key trigger for PF long-term depression, one of several plasticity types required for eyeblink conditioning learning. Long-term depression is impaired in patDp/+ mice but is rescued on pharmacological enhancement of calcium signaling. Conclusions Our findings suggest that this genetic abnormality causes a pathological inflation of CF signaling, possibly resulting from enhanced NRXN1 expression, with consequences for the representation of sensory stimuli by the CF input and for PF synaptic organization and plasticity.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Silas E Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Department of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genoa, Italy.,IRCC Ospedale Policlinico San Martino, Genoa, Italy
| | - Justine Shih
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, Illinois
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, Illinois
| | | | - Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model. Front Syst Neurosci 2022; 16:919761. [PMID: 35782305 PMCID: PMC9243665 DOI: 10.3389/fnsys.2022.919761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. Although dystonia is traditionally associated with basal ganglia dysfunction, recent evidence has been pointing to a role of the cerebellum, a brain area involved in motor control and learning. Cerebellar abnormalities have been correlated with dystonia but their potential causative role remains elusive. Here, we simulated the cerebellar input-output relationship with high-resolution computational modeling. We used a data-driven cerebellar Spiking Neural Network and simulated a cerebellum-driven associative learning task, Eye-Blink Classical Conditioning (EBCC), which is characteristically altered in relation to cerebellar lesions in several pathologies. In control simulations, input stimuli entrained characteristic network dynamics and induced synaptic plasticity along task repetitions, causing a progressive spike suppression in Purkinje cells with consequent facilitation of deep cerebellar nuclei cells. These neuronal processes caused a progressive acquisition of eyelid Conditioned Responses (CRs). Then, we modified structural or functional local neural features in the network reproducing alterations reported in dystonic mice. Either reduced olivocerebellar input or aberrant Purkinje cell burst-firing resulted in abnormal learning curves imitating the dysfunctional EBCC motor responses (in terms of CR amount and timing) of dystonic mice. These behavioral deficits might be due to altered temporal processing of sensorimotor information and uncoordinated control of muscle contractions. Conversely, an imbalance of excitatory and inhibitory synaptic densities on Purkinje cells did not reflect into significant EBCC deficit. The present work suggests that only certain types of alterations, including reduced olivocerebellar input and aberrant PC burst-firing, are compatible with the EBCC changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in the pathogenesis of symptoms.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Aurimas Mockevičius
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Antonietti A, Geminiani A, Negri E, D'Angelo E, Casellato C, Pedrocchi A. Brain-Inspired Spiking Neural Network Controller for a Neurorobotic Whisker System. Front Neurorobot 2022; 16:817948. [PMID: 35770277 PMCID: PMC9234954 DOI: 10.3389/fnbot.2022.817948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
It is common for animals to use self-generated movements to actively sense the surrounding environment. For instance, rodents rhythmically move their whiskers to explore the space close to their body. The mouse whisker system has become a standard model for studying active sensing and sensorimotor integration through feedback loops. In this work, we developed a bioinspired spiking neural network model of the sensorimotor peripheral whisker system, modeling trigeminal ganglion, trigeminal nuclei, facial nuclei, and central pattern generator neuronal populations. This network was embedded in a virtual mouse robot, exploiting the Human Brain Project's Neurorobotics Platform, a simulation platform offering a virtual environment to develop and test robots driven by brain-inspired controllers. Eventually, the peripheral whisker system was adequately connected to an adaptive cerebellar network controller. The whole system was able to drive active whisking with learning capability, matching neural correlates of behavior experimentally recorded in mice.
Collapse
Affiliation(s)
- Alberto Antonietti
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- *Correspondence: Alberto Antonietti
| | - Alice Geminiani
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Edoardo Negri
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Egidio D'Angelo
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alessandra Pedrocchi
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
26
|
Janacsek K, Evans TM, Kiss M, Shah L, Blumenfeld H, Ullman MT. Subcortical Cognition: The Fruit Below the Rind. Annu Rev Neurosci 2022; 45:361-386. [PMID: 35385670 DOI: 10.1146/annurev-neuro-110920-013544] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cognitive neuroscience has highlighted the cerebral cortex while often overlooking subcortical structures. This cortical proclivity is found in basic and translational research on many aspects of cognition, especially higher cognitive domains such as language, reading, music, and math. We suggest that, for both anatomical and evolutionary reasons, multiple subcortical structures play substantial roles across higher and lower cognition. We present a comprehensive review of existing evidence, which indeed reveals extensive subcortical contributions in multiple cognitive domains. We argue that the findings are overall both real and important. Next, we advance a theoretical framework to capture the nature of (sub)cortical contributions to cognition. Finally, we propose how new subcortical cognitive roles can be identified by leveraging anatomical and evolutionary principles, and we describe specific methods that can be used to reveal subcortical cognition. Altogether, this review aims to advance cognitive neuroscience by highlighting subcortical cognition and facilitating its future investigation. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karolina Janacsek
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Charlottesville, Virginia, USA
| | - Mariann Kiss
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Leela Shah
- School of Education and Human Development, University of Virginia, Charlottesville, Virginia, USA
| | - Hal Blumenfeld
- Departments of Neurology, Neuroscience and Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael T Ullman
- Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington, DC, USA;
| |
Collapse
|
27
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
28
|
Brinkman BAW, Yan H, Maffei A, Park IM, Fontanini A, Wang J, La Camera G. Metastable dynamics of neural circuits and networks. APPLIED PHYSICS REVIEWS 2022; 9:011313. [PMID: 35284030 PMCID: PMC8900181 DOI: 10.1063/5.0062603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
Cortical neurons emit seemingly erratic trains of action potentials or "spikes," and neural network dynamics emerge from the coordinated spiking activity within neural circuits. These rich dynamics manifest themselves in a variety of patterns, which emerge spontaneously or in response to incoming activity produced by sensory inputs. In this Review, we focus on neural dynamics that is best understood as a sequence of repeated activations of a number of discrete hidden states. These transiently occupied states are termed "metastable" and have been linked to important sensory and cognitive functions. In the rodent gustatory cortex, for instance, metastable dynamics have been associated with stimulus coding, with states of expectation, and with decision making. In frontal, parietal, and motor areas of macaques, metastable activity has been related to behavioral performance, choice behavior, task difficulty, and attention. In this article, we review the experimental evidence for neural metastable dynamics together with theoretical approaches to the study of metastable activity in neural circuits. These approaches include (i) a theoretical framework based on non-equilibrium statistical physics for network dynamics; (ii) statistical approaches to extract information about metastable states from a variety of neural signals; and (iii) recent neural network approaches, informed by experimental results, to model the emergence of metastable dynamics. By discussing these topics, we aim to provide a cohesive view of how transitions between different states of activity may provide the neural underpinnings for essential functions such as perception, memory, expectation, or decision making, and more generally, how the study of metastable neural activity may advance our understanding of neural circuit function in health and disease.
Collapse
Affiliation(s)
| | - H. Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | | | | | | - J. Wang
- Authors to whom correspondence should be addressed: and
| | - G. La Camera
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
29
|
Loschky SS, Spano GM, Marshall W, Schroeder A, Nemec KM, Schiereck SS, de Vivo L, Bellesi M, Banningh SW, Tononi G, Cirelli C. Ultrastructural effects of sleep and wake on the parallel fiber synapses of the cerebellum. eLife 2022; 11:84199. [PMID: 36576248 PMCID: PMC9797193 DOI: 10.7554/elife.84199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses. However, whether these synapses are affected by sleep and wake is unknown. Here, we used serial block face scanning electron microscopy to obtain the full 3D reconstruction of more than 7000 spines and their parallel fiber synapses in the mouse posterior vermis. This analysis was done in mice whose cortical and hippocampal synapses were previously measured, revealing that average synaptic size was lower after sleep compared to wake with no major changes in synapse number. Here, instead, we find that while the average size of parallel fiber synapses does not change, the number of branched synapses is reduced in half after sleep compared to after wake, corresponding to ~16% of all spines after wake and ~8% after sleep. Branched synapses are harbored by two or more spines sharing the same neck and, as also shown here, are almost always contacted by different parallel fibers. These findings suggest that during wake, coincidences of firing over parallel fibers may translate into the formation of synapses converging on the same branched spine, which may be especially effective in driving Purkinje cells to fire. By contrast, sleep may promote the off-line pruning of branched synapses that were formed due to spurious coincidences.
Collapse
Affiliation(s)
- Sophia S Loschky
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - William Marshall
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States,Department of Mathematics and Statistics, Brock UniversitySt. CatharinesCanada
| | - Andrea Schroeder
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Kelsey Marie Nemec
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
30
|
Pierce JE, Péron JA. Reward-Based Learning and Emotional Habit Formation in the Cerebellum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:125-140. [DOI: 10.1007/978-3-030-99550-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Kim SY, Lim W. Influence of various temporal recoding on pavlovian eyeblink conditioning in the cerebellum. Cogn Neurodyn 2021; 15:1067-1099. [PMID: 34790271 DOI: 10.1007/s11571-021-09673-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022] Open
Abstract
We consider the Pavlovian eyeblink conditioning (EBC) via repeated presentation of paired conditioned stimulus (tone) and unconditioned stimulus (US; airpuff). In an effective cerebellar ring network, we change the connection probability p c from Golgi to granule (GR) cells, and make a dynamical classification of various firing patterns of the GR cells. Individual GR cells are thus found to show various well- and ill-matched firing patterns relative to the US timing signal. Then, these variously-recoded signals are fed into the Purkinje cells (PCs) through the parallel-fibers (PFs). Based on such unique dynamical classification of various firing patterns, we make intensive investigations on the influence of various temporal recoding (i.e., firing patterns) of the GR cells on the synaptic plasticity of the PF-PC synapses and the subsequent learning process for the EBC. We first note that the variously-recoded PF signals are effectively depressed by the (error-teaching) instructor climbing-fiber (CF) signals from the inferior olive neuron. In the case of well-matched PF signals, they are strongly depressed through strong long-term depression (LTD) by the instructor CF signals due to good association between the in-phase PF and the instructor CF signals. On the other hand, practically no LTD occurs for the ill-matched PF signals because most of them have no association with the instructor CF signals. This kind of "effective" depression at the PF-PC synapses coordinates firings of PCs effectively, which then makes effective inhibitory coordination on the cerebellar nucleus neuron [which elicits conditioned response (CR; eyeblink)]. When the learning trial passes a threshold, acquisition of CR begins. In this case, the timing degree T d of CR becomes good due to presence of the ill-matched firing group which plays a role of protection barrier for the timing. With further increase in the number of trials, strength S of CR (corresponding to the amplitude of eyelid closure) increases due to strong LTD in the well-matched firing group, while its timing degree T d decreases. In this way, the well- and the ill-matched firing groups play their own roles for the strength and the timing of CR, respectively. Thus, with increasing the number of learning trials, the (overall) learning efficiency degree L e (taking into consideration both timing and strength of CR) for the CR is increased, and eventually it becomes saturated. Finally, we also discuss dependence of the variety degree for firing patterns of the GR cells and the saturated learning efficiency degree L e of the CR on p c and their relations.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
32
|
Sjöström PJ. Grand Challenge at the Frontiers of Synaptic Neuroscience. Front Synaptic Neurosci 2021; 13:748937. [PMID: 34759809 PMCID: PMC8575031 DOI: 10.3389/fnsyn.2021.748937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- P. Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
33
|
Zhu JW, Jia WQ, Zhou H, Li YF, Zou MM, Wang ZT, Wu BS, Xu RX. Deficiency of TRIM32 Impairs Motor Function and Purkinje Cells in Mid-Aged Mice. Front Aging Neurosci 2021; 13:697494. [PMID: 34421574 PMCID: PMC8377415 DOI: 10.3389/fnagi.2021.697494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Proper functioning of the cerebellum is crucial to motor balance and coordination in adult mammals. Purkinje cells (PCs), the sole output neurons of the cerebellar cortex, play essential roles in cerebellar motor function. Tripartite motif-containing protein 32 (TRIM32) is an E3 ubiquitin ligase that is involved in balance activities of neurogenesis in the subventricular zone of the mammalian brain and in the development of many nervous system diseases, such as Alzheimer's disease, autism spectrum disorder, attention deficit hyperactivity disorder. However, the role of TRIM32 in cerebellar motor function has never been examined. In this study we found that motor balance and coordination of mid-aged TRIM32 deficient mice were poorer than those of wild-type littermates. Immunohistochemical staining was performed to assess cerebella morphology and TRIM32 expression in PCs. Golgi staining showed that the extent of dendritic arborization and dendritic spine density of PCs were decreased in the absence of TRIM32. The loss of TRIM32 was also associated with a decrease in the number of synapses between parallel fibers and PCs, and in synapses between climbing fibers and PCs. In addition, deficiency of TRIM32 decreased Type I inositol 1,4,5-trisphosphate 5-phosphatase (INPP5A) levels in cerebellum. Overall, this study is the first to elucidate a role of TRIM32 in cerebellar motor function and a possible mechanism, thereby highlighting the importance of TRIM32 in the cerebellum.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Qiang Jia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhou
- Department of Pediatrics, Chengdu Children Special Hospital, Chengdu, China
| | - Yi-Fei Li
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ming-Ming Zou
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Tao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Shan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Nagaraja RY, Sherry DM, Fessler JL, Stiles MA, Li F, Multani K, Orock A, Ahmad M, Brush RS, Anderson RE, Agbaga MP, Deák F. W246G Mutant ELOVL4 Impairs Synaptic Plasticity in Parallel and Climbing Fibers and Causes Motor Defects in a Rat Model of SCA34. Mol Neurobiol 2021; 58:4921-4943. [PMID: 34227061 PMCID: PMC8497303 DOI: 10.1007/s12035-021-02439-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - David M Sherry
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Jennifer L Fessler
- Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Megan A Stiles
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Feng Li
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Karanpreet Multani
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Albert Orock
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Reynolds Center on Aging, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Mohiuddin Ahmad
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Richard S Brush
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Robert E Anderson
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Martin-Paul Agbaga
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.
| | - Ferenc Deák
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Reynolds Center on Aging, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Dept. of Neuroscience & Regenerative Medicine, Medical College of Georgia, 1120 15th Str, CA4010, Augusta, GA, 30912, USA.
| |
Collapse
|
35
|
Lisberger SG. The Rules of Cerebellar Learning: Around the Ito Hypothesis. Neuroscience 2021; 462:175-190. [PMID: 32866603 PMCID: PMC7914257 DOI: 10.1016/j.neuroscience.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
As a tribute to Masao Ito, we propose a model of cerebellar learning that incorporates and extends his original model. We suggest four principles that align well with conclusions from multiple cerebellar learning systems. (1) Climbing fiber inputs to the cerebellum drive early, fast, poorly-retained learning in the parallel fiber to Purkinje cell synapse. (2) Learned Purkinje cell outputs drive late, slow, well-retained learning in non-Purkinje cell inputs to neurons in the cerebellar nucleus, transferring learning from the cortex to the nucleus. (3) Recurrent feedback from Purkinje cells to the inferior olive, through interneurons in the cerebellar nucleus, limits the magnitude of fast, early learning in the cerebellar cortex. (4) Functionally different inputs are subjected to plasticity in the cerebellar cortex versus the cerebellar nucleus. A computational neural circuit model that is based on these principles mimics a large amount of neural and behavioral data obtained from the smooth pursuit eye movements of monkeys.
Collapse
Affiliation(s)
- Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
36
|
Calcium Channel-Dependent Induction of Long-Term Synaptic Plasticity at Excitatory Golgi Cell Synapses of Cerebellum. J Neurosci 2021; 41:3307-3319. [PMID: 33500277 DOI: 10.1523/jneurosci.3013-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.
Collapse
|
37
|
Palacios ER, Houghton C, Chadderton P. Accounting for uncertainty: inhibition for neural inference in the cerebellum. Proc Biol Sci 2021; 288:20210276. [PMID: 33757352 PMCID: PMC8059656 DOI: 10.1098/rspb.2021.0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sensorimotor coordination is thought to rely on cerebellar-based internal models for state estimation, but the underlying neural mechanisms and specific contribution of the cerebellar components is unknown. A central aspect of any inferential process is the representation of uncertainty or conversely precision characterizing the ensuing estimates. Here, we discuss the possible contribution of inhibition to the encoding of precision of neural representations in the granular layer of the cerebellar cortex. Within this layer, Golgi cells influence excitatory granule cells, and their action is critical in shaping information transmission downstream to Purkinje cells. In this review, we equate the ensuing excitation-inhibition balance in the granular layer with the outcome of a precision-weighted inferential process, and highlight the physiological characteristics of Golgi cell inhibition that are consistent with such computations.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- School of Physiology Pharmachology and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| | - Conor Houghton
- School of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Paul Chadderton
- School of Physiology Pharmachology and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
38
|
Daou A, Margoliash D. Intrinsic plasticity and birdsong learning. Neurobiol Learn Mem 2021; 180:107407. [PMID: 33631346 DOI: 10.1016/j.nlm.2021.107407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Although information processing and storage in the brain is thought to be primarily orchestrated by synaptic plasticity, other neural mechanisms such as intrinsic plasticity are available. While a number of recent studies have described the plasticity of intrinsic excitability in several types of neurons, the significance of non-synaptic mechanisms in memory and learning remains elusive. After reviewing plasticity of intrinsic excitation in relation to learning and homeostatic mechanisms, we focus on the intrinsic properties of a class of basal-ganglia projecting song system neurons in zebra finch, how these related to each bird's unique learned song, how these properties change over development, and how they are maintained dynamically to rapidly change in response to auditory feedback perturbations. We place these results in the broader theme of learning and changes in intrinsic properties, emphasizing the computational implications of this form of plasticity, which are distinct from synaptic plasticity. The results suggest that exploring reciprocal interactions between intrinsic and network properties will be a fruitful avenue for understanding mechanisms of birdsong learning.
Collapse
Affiliation(s)
- Arij Daou
- University of Chicago, United States
| | | |
Collapse
|
39
|
Gilbert M, Chris Miall R. How and Why the Cerebellum Recodes Input Signals: An Alternative to Machine Learning. Neuroscientist 2021; 28:206-221. [PMID: 33559532 PMCID: PMC9136479 DOI: 10.1177/1073858420986795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mossy fiber input to the cerebellum is received by granule cells where it is thought to be recoded into internal signals received by Purkinje cells, which alone carry the output of the cerebellar cortex. In any neural network, variables are contained in groups of signals as well as signals themselves—which cells are active and how many, for example, and statistical variables coded in rates, such as the mean and range, and which rates are strongly represented, in a defined population. We argue that the primary function of recoding is to confine translation to an effect of some variables and not others—both where input is recoded into internal signals and the translation downstream of internal signals into an effect on Purkinje cells. The cull of variables is harsh. Internal signaling is group coded. This allows coding to exploit statistics for a reliable and precise effect despite needing to work with high-dimensional input which is a highly unpredictably variable. An important effect is to normalize eclectic input signals, so that the basic, repeating cerebellar circuit, preserved across taxa, does not need to specialize (within regional variations). With this model, there is no need to slavishly conserve or compute data coded in single signals. If we are correct, a learning algorithm—for years, a mainstay of cerebellar modeling—would be redundant.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamism in the cerebellum. Nat Neurosci 2021; 24:160-167. [PMID: 33288911 DOI: 10.1038/s41593-020-00754-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
The past several years have brought revelations and paradigm shifts in research on the cerebellum. Historically viewed as a simple sensorimotor controller with homogeneous architecture, the cerebellum is increasingly implicated in cognitive functions. It possesses an impressive diversity of molecular, cellular and circuit mechanisms, embedded in a dynamic, recurrent circuit architecture. Recent insights about the diversity and dynamism of the cerebellum provide a roadmap for the next decade of cerebellar research, challenging some old concepts, reinvigorating others and defining major new research directions.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Sciences (KNAW), Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Zhao Y, Zeng Y, Qiao G. Brain-inspired classical conditioning model. iScience 2021; 24:101980. [PMID: 33490893 PMCID: PMC7808924 DOI: 10.1016/j.isci.2020.101980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Classical conditioning plays a critical role in the learning process of biological brains, and many computational models have been built to reproduce the related classical experiments. However, these models can reproduce and explain only a limited range of typical phenomena in classical conditioning. Based on existing biological findings concerning classical conditioning, we build a brain-inspired classical conditioning (BICC) model. Compared with other computational models, our BICC model can reproduce as many as 15 classical experiments, explaining a broader set of findings than other models have, and offers better computational explainability for both the experimental phenomena and the biological mechanisms of classical conditioning. Finally, we validate our theoretical model on a humanoid robot in three classical conditioning experiments (acquisition, extinction, and reacquisition) and a speed generalization experiment, and the results show that our model is computationally feasible as a foundation for brain-inspired robot classical conditioning. Classical conditioning (CC) is crucial in biological and embodied robot learning A spiking neural network incorporates existing biological findings of CC in one model BICC can explain a broader set of findings than other existing computational models BICC ensures a robot gets similar biological behavior and speed generalization capability
Collapse
Affiliation(s)
- Yuxuan Zhao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Corresponding author
| | - Guang Qiao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Gating by Functionally Indivisible Cerebellar Circuits: a Hypothesis. THE CEREBELLUM 2021; 20:518-532. [PMID: 33464470 PMCID: PMC8360902 DOI: 10.1007/s12311-020-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
The attempt to understand the cerebellum has been dominated for years by supervised learning models. The central idea is that a learning algorithm modifies transmission strength at repeatedly co-active synapses, creating memories stored as finely calibrated synaptic weights. As a result, Purkinje cells, usually the de facto output cells of these models, acquire a modified response to input in a remembered pattern. This paper proposes an alternative model of pattern memory in which the function of a match is permissive, allowing but not driving output, and accordingly controlling the timing of output but not the rate of firing by Purkinje cells. Learning does not result in graded synaptic weights. There is no supervised learning algorithm or memory of individual patterns, which, like graded weights, are unnecessary to explain the evidence. Instead, patterns are classed as simply either known or not, at the level of input to a functional population of 100s of Purkinje cells (a microzone). The standard is strict. If only a handful of Purkinje cells receive a mismatch output of the whole circuit is blocked. Only if there is a full and accurate match are projection neurons in deep nuclei, which carry the output of most circuits, released from default inhibitory restraint. Purkinje cell firing at those times is a linear function of input rates. There is no effect of modification of synaptic transmission except to either allow or block output.
Collapse
|
43
|
Alkadhi KA. NMDA receptor-independent LTP in mammalian nervous system. Prog Neurobiol 2021; 200:101986. [PMID: 33400965 DOI: 10.1016/j.pneurobio.2020.101986] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a form of activity-dependent synaptic plasticity that exists at most synapses in the nervous system. In the central nervous system (CNS), LTP has been recorded at numerous synapses and is a prime candidate mechanism associating activity-dependent plasticity with learning and memory. LTP involves long-lasting increase in synaptic strength with various underlying mechanisms. In the CNS, the predominant type of LTP is believed to be dependent on activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR), which is highly calcium-permeable. However, various forms of NMDAR-independent LTP have been identified in diverse areas of the nervous system. The NMDAR-independent LTP may require activation of glutamate metabotropic receptors (mGluR) or ionotropic receptors other than NMDAR such as nicotinic acetylcholine receptor (α7-nAChR), serotonin 5-HT3 receptor or calcium-permeable AMPA receptor (CP-AMPAR). In this review, NMDAR-independent LTP of various areas of the central and peripheral nervous systems are discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
44
|
He L, Chen Z, Peng L, Tang B, Jiang H. Human stem cell models of polyglutamine diseases: Sources for disease models and cell therapy. Exp Neurol 2020; 337:113573. [PMID: 33347831 DOI: 10.1016/j.expneurol.2020.113573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Polyglutamine (polyQ) diseases are a group of neurodegenerative disorders involving expanded CAG repeats in pathogenic genes that are translated into extended polyQ tracts and lead to progressive neuronal degeneration in the affected brain. To date, there is no effective therapy for these diseases. Due to the complex pathologic mechanisms of these diseases, intensive research on the pathogenesis of their progression and potential treatment strategies is being conducted. However, animal models cannot recapitulate all aspects of neuronal degeneration. Pluripotent stem cells (PSCs), such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), can be used to study the pathological mechanisms of polyQ diseases, and the ability of autologous stem cell transplantation to treat these diseases. Differentiated PSCs, neuronal precursor cells/neural progenitor cells (NPCs) and mesenchymal stem cells (MSCs) are valuable resources for preclinical and clinical cell transplantation therapies. Here, we discuss diverse stem cell models and their ability to generate neurons involved in polyQ diseases, such as medium spiny neurons (MSNs), cortical neurons, cerebellar Purkinje cells (PCs) and motor neurons. In addition, we discuss potential therapeutic approaches, including stem cell replacement therapy and gene therapy.
Collapse
Affiliation(s)
- Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 2020; 134:173-204. [PMID: 33316723 DOI: 10.1016/j.neunet.2020.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
We consider a cerebellar ring network for the optokinetic response (OKR), and investigate the effect of diverse recoding of granule (GR) cells on OKR by varying the connection probability pc from Golgi to GR cells. For an optimal value of pc∗(=0.06), individual GR cells exhibit diverse spiking patterns which are in-phase, anti-phase, or complex out-of-phase with respect to their population-averaged firing activity. Then, these diversely-recoded signals via parallel fibers (PFs) from GR cells are effectively depressed by the error-teaching signals via climbing fibers from the inferior olive which are also in-phase ones. Synaptic weights at in-phase PF-Purkinje cell (PC) synapses of active GR cells are strongly depressed via strong long-term depression (LTD), while those at anti-phase and complex out-of-phase PF-PC synapses are weakly depressed through weak LTD. This kind of "effective" depression (i.e., strong/weak LTD) at the PF-PC synapses causes a big modulation in firings of PCs, which then exert effective inhibitory coordination on the vestibular nucleus (VN) neuron (which evokes OKR). For the firing of the VN neuron, the learning gain degree Lg, corresponding to the modulation gain ratio, increases with increasing the learning cycle, and it saturates at about the 300th cycle. By varying pc from pc∗, we find that a plot of saturated learning gain degree Lg∗ versus pc forms a bell-shaped curve with a peak at pc∗ (where the diversity degree in spiking patterns of GR cells is also maximum). Consequently, the more diverse in recoding of GR cells, the more effective in motor learning for the OKR adaptation.
Collapse
|
46
|
Smeets CJLM, Ma KY, Fisher SE, Verbeek DS. Cerebellar developmental deficits underlie neurodegenerative disorder spinocerebellar ataxia type 23. Brain Pathol 2020; 31:239-252. [PMID: 33043513 PMCID: PMC7983976 DOI: 10.1111/bpa.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/10/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022] Open
Abstract
Spinocerebellar ataxia type 23 (SCA23) is a late‐onset neurodegenerative disorder characterized by slowly progressive gait and limb ataxia, for which there is no therapy available. It is caused by pathogenic variants in PDYN, which encodes prodynorphin (PDYN). PDYN is processed into the opioid peptides α‐neoendorphin and dynorphins (Dyn) A and B; inhibitory neurotransmitters that function in pain signaling, stress‐induced responses and addiction. Variants causing SCA23 mostly affect Dyn A, leading to loss of secondary structure and increased peptide stability. PDYNR212W mice express human PDYN containing the SCA23 variant p.R212W. These mice show progressive motor deficits from 3 months of age, climbing fiber (CF) deficits from 3 months of age, and Purkinje cell (PC) loss from 12 months of age. A mouse model for SCA1 showed similar CF deficits, and a recent study found additional developmental abnormalities, namely increased GABAergic interneuron connectivity and non‐cell autonomous disruption of PC function. As SCA23 mice show a similar pathology to SCA1 mice in adulthood, we hypothesized that SCA23 may also follow SCA1 pathology during development. Examining PDYNR212W cerebella during development, we uncovered developmental deficits from 2 weeks of age, namely a reduced number of GABAergic synapses on PC soma, possibly leading to the observed delay in early phase CF elimination between 2 and 3 weeks of age. Furthermore, CFs did not reach terminal height, leaving proximal PC dendrites open to be occupied by parallel fibers (PFs). The observed increase in vGlut1 protein—a marker for PF‐PC synapses—indicates that PFs indeed take over CF territory and have increased connectivity with PCs. Additionally, we detected altered expression of several critical Ca2+ channel subunits, potentially contributing to altered Ca2+ transients in PDYNR212W cerebella. These findings indicate that developmental abnormalities contribute to the SCA23 pathology and uncover a developmental role for PDYN in the cerebellum.
Collapse
Affiliation(s)
- Cleo J L M Smeets
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Kai Yu Ma
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Simon E Fisher
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
47
|
Tozzi A, Bellingacci L, Pettorossi VE. Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Front Neurosci 2020; 14:572511. [PMID: 33192257 PMCID: PMC7653679 DOI: 10.3389/fnins.2020.572511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Mounting experimental evidence demonstrate that sex neuroactive steroids (neurosteroids) are essential for memory formation. Neurosteroids have a profound impact on the function and structure of neural circuits and their local synthesis is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and for neural spine formation in different areas of the central nervous system (CNS). Several studies demonstrated that in the hippocampus, 17β-estradiol (E2) is necessary for inducing LTP, while 5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been proven by administering sex neurosteroids in rodent models and by using blocking agents of their synthesis or of their specific receptors. The general opposite role of sex neurosteroids in synaptic plasticity appears to be dependent on their different local availability in response to low or high frequency of synaptic stimulation, allowing the induction of bidirectional synaptic plasticity. The relevant contribution of these neurosteroids to synaptic plasticity has also been described in other brain regions involved in memory processes such as motor learning, as in the case of the vestibular nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the maintenance of a tonic or phasic local steroid synthesis determined by neural activity but might also be influenced by circulating hormones, age, and gender. To disclose the exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic changes and spine remodeling, further investigation is required.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
48
|
Albergaria C, Silva NT, Darmohray DM, Carey MR. Cannabinoids modulate associative cerebellar learning via alterations in behavioral state. eLife 2020; 9:61821. [PMID: 33077026 PMCID: PMC7575324 DOI: 10.7554/elife.61821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids are notorious and profound modulators of behavioral state. In the brain, endocannabinoids act via Type 1-cannabinoid receptors (CB1) to modulate synaptic transmission and mediate multiple forms of synaptic plasticity. CB1 knockout (CB1KO) mice display a range of behavioral phenotypes, in particular hypoactivity and various deficits in learning and memory, including cerebellum-dependent delay eyeblink conditioning. Here we find that the apparent effects of CB1 deletion on cerebellar learning are not due to direct effects on CB1-dependent plasticity, but rather, arise as a secondary consequence of altered behavioral state. Hypoactivity of CB1KO mice accounts for their impaired eyeblink conditioning across both animals and trials. Moreover, learning in these mutants is rescued by walking on a motorized treadmill during training. Finally, cerebellar granule-cell-specific CB1KOs exhibit normal eyeblink conditioning, and both global and granule-cell-specific CB1KOs display normal cerebellum-dependent locomotor coordination and learning. These findings highlight the modulation of behavioral state as a powerful independent means through which individual genes contribute to complex behaviors.
Collapse
Affiliation(s)
- Catarina Albergaria
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - N Tatiana Silva
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Dana M Darmohray
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| |
Collapse
|
49
|
Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep 2020; 28:2923-2938.e8. [PMID: 31509752 DOI: 10.1016/j.celrep.2019.07.078] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/20/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cerebellar dysfunction relates to various psychiatric disorders, including autism spectrum and depressive disorders. However, the physiological aspect is less advanced. Here, we investigate the immune-triggered hyperexcitability in the cerebellum on a wider scope. Activated microglia via exposure to bacterial endotoxin lipopolysaccharide or heat-killed Gram-negative bacteria induce a potentiation of the intrinsic excitability in Purkinje neurons, which is suppressed by microglia-activity inhibitor and microglia depletion. An inflammatory cytokine, tumor necrosis factor alpha (TNF-α), released from microglia via toll-like receptor 4, triggers this plasticity. Our two-photon FRET ATP imaging shows an increase in ATP concentration following endotoxin exposure. Both TNF-α and ATP secretion facilitate synaptic transmission. Region-specific inflammation in the cerebellum in vivo shows depression- and autistic-like behaviors. Furthermore, both TNF-α inhibition and microglia depletion revert such behavioral abnormality. Resting-state functional MRI reveals overconnectivity between the inflamed cerebellum and the prefrontal neocortical regions. Thus, immune activity in the cerebellum induces neuronal hyperexcitability and disruption of psychomotor behaviors in animals.
Collapse
Affiliation(s)
- Masamichi Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Shogoin-Kawaramachi-cho, Sakyo-ward, Kyoto 606-8507, Japan
| | - Minsoo Kim
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Sakyo-ward, Kyoto 606-8501, Japan; Department of Molecular and Cellular Physiology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ward, Kyoto 606-8501, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ward, Kyoto 606-8501, Japan
| | - Yamato Itakura
- Department of Biophysics, Kyoto University Graduate School of Science, Kitashirakawa-Oiwake-cho, Sakyo-ward, Kyoto 606-8502, Japan
| | - Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Sakyo-ward, Kyoto 606-8501, Japan; Department of Biophysics, Kyoto University Graduate School of Science, Kitashirakawa-Oiwake-cho, Sakyo-ward, Kyoto 606-8502, Japan.
| |
Collapse
|
50
|
Neuronal spike-rate adaptation supports working memory in language processing. Proc Natl Acad Sci U S A 2020; 117:20881-20889. [PMID: 32788365 DOI: 10.1073/pnas.2000222117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Language processing involves the ability to store and integrate pieces of information in working memory over short periods of time. According to the dominant view, information is maintained through sustained, elevated neural activity. Other work has argued that short-term synaptic facilitation can serve as a substrate of memory. Here we propose an account where memory is supported by intrinsic plasticity that downregulates neuronal firing rates. Single neuron responses are dependent on experience, and we show through simulations that these adaptive changes in excitability provide memory on timescales ranging from milliseconds to seconds. On this account, spiking activity writes information into coupled dynamic variables that control adaptation and move at slower timescales than the membrane potential. From these variables, information is continuously read back into the active membrane state for processing. This neuronal memory mechanism does not rely on persistent activity, excitatory feedback, or synaptic plasticity for storage. Instead, information is maintained in adaptive conductances that reduce firing rates and can be accessed directly without cued retrieval. Memory span is systematically related to both the time constant of adaptation and baseline levels of neuronal excitability. Interference effects within memory arise when adaptation is long lasting. We demonstrate that this mechanism is sensitive to context and serial order which makes it suitable for temporal integration in sequence processing within the language domain. We also show that it enables the binding of linguistic features over time within dynamic memory registers. This work provides a step toward a computational neurobiology of language.
Collapse
|