1
|
Tavalin SJ. Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J Biol Chem 2024:108147. [PMID: 39732167 DOI: 10.1016/j.jbc.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca2+ entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations. This region bears similarity to a binding motif for calcineurin (CaN), a Ca2+/calmodulin-dependent phosphatase. Interaction assays confirm that APP associates with CaN in native tissue as well as in a heterologous expression system. This capacity to bind CaN extends to APP family members amyloid precursor-like protein 1 and amyloid precursor-like protein 2 (APLP1 and APLP2, respectively). Electrophysiological analysis demonstrates that APP and its family members limit NMDAR activity, in a manner consistent with CaN-dependent regulation of NMDAR desensitization. FAD mutations, in this region of APP, impair this regulation and consequently enhance NMDAR activity. Thus, by altering the landscape for CaN regulation of NMDA receptors, FAD mutations in APP may contribute to faulty information processing by modifying the dynamic range and temporal window of a critical signal for synaptic plasticity.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163.
| |
Collapse
|
2
|
Sell GL, Barrow SL, McAllister AK. Glutamate Signaling and Neuroligin/Neurexin Adhesion Play Opposing Roles That Are Mediated by Major Histocompatibility Complex I Molecules in Cortical Synapse Formation. J Neurosci 2024; 44:e0797242024. [PMID: 39424368 PMCID: PMC11622183 DOI: 10.1523/jneurosci.0797-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation (Verhage et al., 2000; Sando et al., 2017; Sigler et al., 2017; Held et al., 2020), yet glutamate clearly regulates glutamate receptor trafficking (Roche et al., 2001; Nong et al., 2004) and induces spine formation (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Toni et al., 1999; Kwon and Sabatini, 2011; Oh et al., 2016). Using rat and murine culture systems to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing N-methyl-d-aspartate receptor (NMDAR) transport and surface expression as well as cotransport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels in both sexes. Thus, like acetylcholine at the neuromuscular junction, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI, and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
Affiliation(s)
- Gabrielle L Sell
- Center for Neuroscience, University of California, Davis, Davis, California 95618
| | - Stephanie L Barrow
- Center for Neuroscience, University of California, Davis, Davis, California 95618
| | - A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101
| |
Collapse
|
3
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
5
|
Sell GL, Barrow SL, McAllister AK. Glutamate signaling and neuroligin/neurexin adhesion play opposing roles that are mediated by major histocompatibility complex I molecules in cortical synapse formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583626. [PMID: 38496590 PMCID: PMC10942384 DOI: 10.1101/2024.03.05.583626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation 1-4 , yet glutamate clearly regulates glutamate receptor trafficking 5,6 and induces spine formation 7-11 . Using a culture system to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing NMDAR transport and surface expression as well as co-transport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels. Thus, like acetylcholine at the NMJ, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
|
6
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDA Receptor Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577478. [PMID: 38328108 PMCID: PMC10849651 DOI: 10.1101/2024.01.26.577478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Men generally outperform women on encoding spatial components of episodic memory whereas the reverse holds for semantic elements. Here we show that female mice outperform males on tests for non-spatial aspects of episodic memory ("what", "when"), suggesting that the human findings are influenced by neurobiological factors common to mammals. Analysis of hippocampal synaptic plasticity mechanisms and encoding revealed unprecedented, sex-specific contributions of non-classical metabotropic NMDA receptor (NMDAR) functions. While both sexes used non-ionic NMDAR signaling to trigger actin polymerization needed to consolidate long-term potentiation (LTP), NMDAR GluN2B subunit antagonism blocked these effects in males only and had the corresponding sex-specific effect on episodic memory. Conversely, blocking estrogen receptor alpha eliminated metabotropic stabilization of LTP and episodic memory in females only. The results show that sex differences in metabotropic signaling critical for enduring synaptic plasticity in hippocampus have significant consequences for encoding episodic memories.
Collapse
Affiliation(s)
- Aliza A. Le
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Julie C. Lauterborn
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Conor D. Cox
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
- Psychiatry and Human Behavior, University of California; Irvine, 92868, USA
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
- Neurobiology and Behavior, University of California; Irvine, 92697, USA
| |
Collapse
|
7
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
8
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
9
|
NMDA Receptor and Its Emerging Role in Cancer. Int J Mol Sci 2023; 24:ijms24032540. [PMID: 36768862 PMCID: PMC9917092 DOI: 10.3390/ijms24032540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Glutamate is a key player in excitatory neurotransmission in the central nervous system (CNS). The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel which presents several unique features and is involved in various physiological and pathological neuronal processes. Thanks to great efforts in neuroscience, its structure and the molecular mechanisms controlling its localization and functional regulation in neuronal cells are well known. The signaling mediated by NMDAR in neurons is very complex as it depends on its localization, composition, Ca2+ influx, and ion flow-independent conformational changes. Moreover, NMDA receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other membrane receptors and scaffold proteins which determine the receptor function and activation of downstream signaling. Interestingly, a recent paper demonstrates that NMDAR signaling is involved in epithelial cell competition, an evolutionary conserved cell fitness process influencing cancer initiation and progress. The idea that NMDAR signaling is limited to CNS has been challenged in the past two decades. A large body of evidence suggests that NMDAR is expressed in cancer cells outside the CNS and can respond to the autocrine/paracrine release of glutamate. In this review, we survey research on NMDAR signaling and regulation in neurons that can help illuminate its role in tumor biology. Finally, we will discuss existing data on the role of the glutamine/glutamate metabolism, the anticancer action of NMDAR antagonists in experimental models, NMDAR synaptic signaling in tumors, and clinical evidence in human cancer.
Collapse
|
10
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
11
|
Montes de Oca Balderas P. Meeting report: Flux-independent signaling by ionotropic receptors: unforeseen roles, complexities, and challenges. J Biol Chem 2022; 298:102330. [PMID: 35921897 PMCID: PMC9436810 DOI: 10.1016/j.jbc.2022.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Progress in the mechanism of neuronal surface P antigen modulating hippocampal function and implications for autoimmune brain disease. Curr Opin Neurol 2022; 35:436-442. [PMID: 35674087 DOI: 10.1097/wco.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to present a new regulation system in the hippocampus constituted by the neuronal surface P antigen (NSPA) and the tyrosine phosphatase PTPMEG/PTPN4, which provides mechanistic and therapeutic possibilities for cognitive dysfunction driven by antiribosomal P protein autoantibodies in patients with systemic lupus erythematosus (SLE). RECENT FINDINGS Mice models lacking the function of NSPA as an E3 ubiquitin ligase show impaired glutamatergic synaptic plasticity, decreased levels of NMDAR at the postsynaptic density in hippocampus and memory deficits. The levels of PTPMEG/PTPN4 are increased due to lower ubiquitination and proteasomal degradation, resulting in dephosphorylation of tyrosines that control endocytosis in GluN2 NMDAR subunits. Adult hippocampal neurogenesis (AHN) that normally contributes to memory processes is also defective in the absence of NSPA. SUMMARY NSPA function is crucial in memory processes controlling the stability of NMDAR at PSD through the ubiquitination of PTPMEG/PTPN4 and also through AHN. As anti-P autoantibodies reproduce the impairments of glutamatergic transmission, plasticity and memory performance seen in the absence of NSPA, it might be expected to perturb the NSPA/PTPMEG/PTPN4 pathway leading to hypofunction of NMDAR. This neuropathogenic mechanism contrasts with that of anti-NMDAR antibodies also involved in lupus cognitive dysfunction. Testing this hypothesis might open new therapeutic possibilities for cognitive dysfunction in SLE patients bearing anti-P autoantibodies.
Collapse
|
13
|
Park DK, Stein IS, Zito K. Ion flux-independent NMDA receptor signaling. Neuropharmacology 2022; 210:109019. [PMID: 35278420 DOI: 10.1016/j.neuropharm.2022.109019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
NMDA receptors play vital roles in a broad array of essential brain functions, from synaptic transmission and plasticity to learning and memory. Historically, the fundamental roles of NMDARs were attributed to their specialized properties of ion flux. More recently, it has become clear that NMDARs also signal in an ion flux-independent manner. Here, we review these non-ionotropic NMDAR signaling mechanisms that have been reported to contribute to a broad array of neuronal functions and dysfunctions including synaptic transmission and plasticity, cell death and survival, and neurological disorders.
Collapse
Affiliation(s)
- Deborah K Park
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Ivar S Stein
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
14
|
Keith RE, Ogoe RH, Dumas TC. Behind the scenes: Are latent memories supported by calcium independent plasticity? Hippocampus 2022; 32:73-88. [PMID: 33905147 PMCID: PMC8548406 DOI: 10.1002/hipo.23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) can be considered to be the de facto "plasticity" receptors in the brain due to their central role in the activity-dependent modification of neuronal morphology and synaptic transmission. Since the 1980s, research on NMDARs has focused on the second messenger properties of calcium and the downstream signaling pathways that mediate alterations in neural form and function. Recently, NMDARs were shown to drive activity-dependent synaptic plasticity without calcium influx. How this "nonionotropic" plasticity occurs in vitro is becoming clearer, but research on its involvement in behavior and cognition is in its infancy. There is a partial overlap in the downstream signaling molecules that are involved in ionotropic and nonionotropic NMDAR-dependent plasticity. Given this, and prior studies of the cognitive impacts of ionotropic NMDAR plasticity, a preliminary model explaining how NMDAR nonionotropic plasticity affects learning and memory can be established. We hypothesize that nonionotropic NMDAR plasticity takes part in latent memory encoding in immature rodents through nonassociative depression of synaptic efficacy, and possibly shrinking of dendritic spines. Further, the late postnatal alteration in NMDAR composition in the hippocampus appears to reduce nonionotropic signaling and remove a restriction on memory retrieval. This framework substantially alters the canonical model of NMDAR involvement in spatial cognition and hippocampal maturation and provides novel and exciting inroads for future studies.
Collapse
Affiliation(s)
- Rachel E. Keith
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia
| | - Richard H. Ogoe
- Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia,Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| |
Collapse
|
15
|
Wang B, Zou L, Zhou L. Lipid bilayers regulate allosteric signal of NMDA receptor GluN1 C-terminal domain. Biochem Biophys Res Commun 2021; 585:15-21. [PMID: 34781056 DOI: 10.1016/j.bbrc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
NMDAR (N-methyl-d-aspartate receptor) consisted of GluN1 and GluN2, and/or GluN3 subunits. As the obligatory subunit of NMDAR, GluN1 contains variant N-terminal domain (NTD) and C-terminal domain (CTD). The CTD contains allosteric signal and mediates the metabotropic function of NMDAR, which has been confirmed by previous studies. However, the allosteric signaling mechanism of GluN1 CTD has not been studied. In our study, we found that GluN1 CTD could bind to the lipid bilayers and affect the antigen epitope of GluN1 C-terminal antibody, suggesting that membrane binding may determine the allosteric signal of GluN1 CTD. In addition, we discovered that the membrane binding of GluN1 CTD could be regulated by the phosphorylation of GluN1 CTD C1 region.
Collapse
Affiliation(s)
- Busong Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Lu Zou
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
16
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
17
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
18
|
Regulation of the NMDA receptor by its cytoplasmic domains: (How) is the tail wagging the dog? Neuropharmacology 2021; 195:108634. [PMID: 34097949 DOI: 10.1016/j.neuropharm.2021.108634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Excitatory neurotransmission mediated by N-methyl-d-aspartate receptors (NMDARs) is critical for synapse development, function, and plasticity in the brain. NMDARs are tetra-heteromeric cation-channels that mediate synaptic transmission and plasticity. Extensive human studies show the existence of genetic variants in NMDAR subunits genes (GRIN genes) that are associated with neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorders (ASD), epilepsy (EP), intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). NMDAR subunits have a unique modular architecture with four semiautonomous domains. Here we focus on the carboxyl terminal domain (CTD), also known as the intracellular C-tail, which varies in length among the glutamate receptor subunits and is the most diverse domain in terms of amino acid sequence. The CTD shows no sequence homology to any known proteins but encodes short docking motifs for intracellular binding proteins and covalent modifications. Our review will discuss the many important functions of the CTD in regulating NMDA membrane and synaptic targeting, stabilization, degradation targeting, allosteric modulation and metabotropic signaling of the receptor. This article is part of the special issue on 'Glutamate Receptors - NMDA Receptors'.
Collapse
|
19
|
Rajani V, Sengar AS, Salter MW. Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology 2021; 193:108615. [PMID: 34051267 DOI: 10.1016/j.neuropharm.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The Src family kinases (SFKs) are cytoplasmic non-receptor tyrosine kinases involved in multiple signalling pathways. In the central nervous system (CNS), SFKs are key regulators of N-methyl-d-aspartate receptor (NMDAR) function and major points of convergence for neuronal transduction pathways. Physiological upregulation of NMDAR activity by members of the SFKs, namely Src and Fyn, is crucial for induction of plasticity at Schaffer collateral-CA1 synapses of the hippocampus. Aberrant SFK regulation of NMDARs is implicated in several pathological conditions in the CNS including schizophrenia and pain hypersensitivity. Here, evidence is presented to highlight the current understanding of the intermolecular interactions of SFKs within the NMDAR macromolecular complex, the upstream regulators of SFK activity on NMDAR function and the role Src and Fyn have in synaptic plasticity and metaplasticity. The targeting of SFK protein-protein interactions is discussed as a potential therapeutic strategy to restore signalling activity underlying glutamatergic dysregulation in CNS disease pathophysiology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
20
|
Zhou J, Lin Y, Huynh T, Noguchi H, Bush JO, Pleasure SJ. NMDA receptors control development of somatosensory callosal axonal projections. eLife 2021; 10:59612. [PMID: 33661095 PMCID: PMC7959694 DOI: 10.7554/elife.59612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Callosal projections from primary somatosensory cortex (S1) are key for processing somatosensory inputs and integrating sensory-motor information. How the callosal innervation pattern in S1 is formed during early postnatal development is not clear. We found that the normal termination pattern of these callosal projections is disrupted in cortex specific NMDAR mutants. Rather than projecting selectively to the primary/secondary somatosensory cortex (S1/S2) border, axons were uniformly distributed throughout S1. In addition, the density of this projection increased over postnatal life until the mice died by P30. By combining genetic and antibody-mediated loss of function, we demonstrated that it is GluN2B-containing NMDA receptors in target S1 that mediate this guidance phenotype, thus playing a central role in interhemispheric connectivity. Furthermore, we found that this function of NMDA receptors in callosal circuit formation is independent of ion channel function and works with the EPHRIN-B/EPHB system. Thus, NMDAR in target S1 cortex regulates the formation callosal circuits perhaps by modulating EPH-dependent repulsion.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Yong Lin
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Neurological Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Trung Huynh
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Hirofumi Noguchi
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Samuel J Pleasure
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States.,Programs in Neuroscience and Developmental Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, San Francisco, United States
| |
Collapse
|
21
|
Dissociation of functional and structural plasticity of dendritic spines during NMDAR and mGluR-dependent long-term synaptic depression in wild-type and fragile X model mice. Mol Psychiatry 2021; 26:4652-4669. [PMID: 32606374 PMCID: PMC8095717 DOI: 10.1038/s41380-020-0821-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Many neurodevelopmental disorders are characterized by impaired functional synaptic plasticity and abnormal dendritic spine morphology, but little is known about how these are related. Previous work in the Fmr1-/y mouse model of fragile X (FX) suggests that increased constitutive dendritic protein synthesis yields exaggerated mGluR5-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus, but an effect on spine structural plasticity remains to be determined. In the current study, we used simultaneous electrophysiology and time-lapse two photon imaging to examine how spines change their structure during LTD induced by activation of mGluRs or NMDA receptors (NMDARs), and how this plasticity is altered in Fmr1-/y mice. We were surprised to find that mGluR activation causes LTD and AMPA receptor internalization, but no spine shrinkage in either wildtype or Fmr1-/y mice. In contrast, NMDAR activation caused spine shrinkage as well as LTD in both genotypes. Spine shrinkage was initiated by non-ionotropic (metabotropic) signaling through NMDARs, and in wild-type mice this structural plasticity required activation of mTORC1 and new protein synthesis. In striking contrast, NMDA-induced spine plasticity in Fmr1-/y mice was no longer dependent on acute activation of mTORC1 or de novo protein synthesis. These findings reveal that the structural consequences of mGluR and metabotropic NMDAR activation differ, and that a brake on spine structural plasticity, normally provided by mTORC1 regulation of protein synthesis, is absent in FX. Increased constitutive protein synthesis in FX appears to modify functional and structural plasticity induced through different glutamate receptors.
Collapse
|
22
|
Espinoza S, Arredondo SB, Barake F, Carvajal F, Guerrero FG, Segovia-Miranda F, Valenzuela DM, Wyneken U, Rojas-Fernández A, Cerpa W, Massardo L, Varela-Nallar L, González A. Neuronal surface P antigen (NSPA) modulates postsynaptic NMDAR stability through ubiquitination of tyrosine phosphatase PTPMEG. BMC Biol 2020; 18:164. [PMID: 33158444 PMCID: PMC7648380 DOI: 10.1186/s12915-020-00877-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cognitive dysfunction (CD) is common among patients with the autoimmune disease systemic lupus erythematosus (SLE). Anti-ribosomal P autoantibodies associate with this dysfunction and have neuropathogenic effects that are mediated by cross-reacting with neuronal surface P antigen (NSPA) protein. Elucidating the function of NSPA can then reveal CD pathogenic mechanisms and treatment opportunities. In the brain, NSPA somehow contributes to glutamatergic NMDA receptor (NMDAR) activity in synaptic plasticity and memory. Here we analyze the consequences of NSPA absence in KO mice considering its structural features shared with E3 ubiquitin ligases and the crucial role of ubiquitination in synaptic plasticity. Results Electrophysiological studies revealed a decreased long-term potentiation in CA3-CA1 and medial perforant pathway-dentate gyrus (MPP-DG) hippocampal circuits, reflecting glutamatergic synaptic plasticity impairment in NSPA-KO mice. The hippocampal dentate gyrus of these mice showed a lower number of Arc-positive cells indicative of decreased synaptic activity and also showed proliferation defects of neural progenitors underlying less adult neurogenesis. All this translates into poor spatial and recognition memory when NSPA is absent. A cell-based assay demonstrated ubiquitination of NSPA as a property of RBR-type E3 ligases, while biochemical analysis of synaptic regions disclosed the tyrosine phosphatase PTPMEG as a potential substrate. Mice lacking NSPA have increased levels of PTPMEG due to its reduced ubiquitination and proteasomal degradation, which correlated with lower levels of GluN2A and GluN2B NMDAR subunits only at postsynaptic densities (PSDs), indicating selective trafficking of these proteins out of PSDs. As both GluN2A and GluN2B interact with PTPMEG, tyrosine (Tyr) dephosphorylation likely drives their endocytic removal from the PSD. Actually, immunoblot analysis showed reduced phosphorylation of the GluN2B endocytic signal Tyr1472 in NSPA-KO mice. Conclusions NSPA contributes to hippocampal plasticity and memory processes ensuring appropriate levels of adult neurogenesis and PSD-located NMDAR. PTPMEG qualifies as NSPA ubiquitination substrate that regulates Tyr phosphorylation-dependent NMDAR stability at PSDs. The NSPA/PTPMEG pathway emerges as a new regulator of glutamatergic transmission and plasticity and may provide mechanistic clues and therapeutic opportunities for anti-P-mediated pathogenicity in SLE, a still unmet need.
Collapse
Affiliation(s)
- Sofía Espinoza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Sebastián B Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Francisca Barake
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.,Fundación Ciencia y Vida, 7780272, Santiago, Chile
| | - Francisco Carvajal
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330028, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), 6213029, Punta Arenas, Chile
| | - Fernanda G Guerrero
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Fabian Segovia-Miranda
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | | | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de los Andes, 7620001, Santiago, Chile
| | - Alejandro Rojas-Fernández
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330028, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), 6213029, Punta Arenas, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, 8370146, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile. .,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile. .,Fundación Ciencia y Vida, 7780272, Santiago, Chile.
| |
Collapse
|
23
|
Montes de Oca Balderas P, Matus Núñez M, Picones A, Hernández-Cruz A. NMDAR in cultured astrocytes: Flux-independent pH sensor and flux-dependent regulator of mitochondria and plasma membrane-mitochondria bridging. FASEB J 2020; 34:16622-16644. [PMID: 33131132 DOI: 10.1096/fj.202001300r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unidad de Neurobiología Dinámica, Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, México City, México.,Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Mauricio Matus Núñez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
24
|
Wang J, Swanson RA. Superoxide and Non-ionotropic Signaling in Neuronal Excitotoxicity. Front Neurosci 2020; 4:861. [PMID: 33013314 PMCID: PMC7497801 DOI: 10.3389/fnins.2020.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Excitotoxicity is classically attributed to Ca2+ influx through NMDA receptors (NMDAr), leading to production of nitric oxide by neuronal nitric oxide synthase and superoxide by mitochondria, which react to form highly cytotoxic peroxynitrite. More recent observations warrant revision of the classic view and help to explain some otherwise puzzling aspects of excitotoxic cell injury. Studies using pharmacological and genetic approaches show that superoxide produced by NMDAr activation originates primarily from NADPH oxidase rather than from mitochondria. As NADPH oxidase is localized to the plasma membrane, this also provides an explanation for the extracellular release of superoxide and cell-to-cell "spread" of excitotoxic injury observed in vitro and in vivo. The signaling pathway linking NMDAr to NADPH oxidase involves Ca2+ influx, phosphoinositol-3-kinase, and protein kinase Cζ, and interventions at any of these steps can prevent superoxide production and excitotoxic injury. Ca2+ influx specifically through NMDAr is normally required to induce excitotoxicity, through a mechanism presumed to involve privileged Ca2+ access to local signaling domains. However, experiments using selective blockade of the NMDAr ion channel and artificial reconstitution of Ca2+ by other routes indicate that the special effects of NMDAr activation are attributable instead to concurrent non-ionotropic NMDAr signaling by agonist binding to NMDAr. The non-ionotropic signaling driving NADPH oxidase activation is mediated in part by phosphoinositol-3-kinase binding to the C-terminal domain of GluN2B receptor subunits. These more recently identified aspects of excitotoxicity expand our appreciation of the complexity of excitotoxic processes and suggest novel approaches for limiting neuronal injury.
Collapse
Affiliation(s)
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
25
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
26
|
Warnet XL, Bakke Krog H, Sevillano-Quispe OG, Poulsen H, Kjaergaard M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 2020; 54:6713-6739. [PMID: 32464691 DOI: 10.1111/ejn.14842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023]
Abstract
NMDA receptors are part of the ionotropic glutamate receptor family, and are crucial for neurotransmission and memory. At the cellular level, the effects of activating these receptors include long-term potentiation (LTP) or depression (LTD). The NMDA receptor is a stringently gated cation channel permeable to Ca2+ , and it shares the molecular architecture of a tetrameric ligand-gated ion channel with the other family members. Its subunits, however, have uniquely long cytoplasmic C-terminal domains (CTDs). While the molecular gymnastics of the extracellular domains have been described in exquisite detail, much less is known about the structure and function of these CTDs. The CTDs vary dramatically in length and sequence between receptor subunits, but they all have a composition characteristic of intrinsically disordered proteins. The CTDs affect channel properties, trafficking and downstream signalling output from the receptor, and these functions are regulated by alternative splicing, protein-protein interactions, and post-translational modifications such as phosphorylation and palmitoylation. Here, we review the roles of the CTDs in synaptic plasticity with a focus on biochemical mechanisms. In total, the CTDs play a multifaceted role as a modifier of channel function, a regulator of cellular location and abundance, and signalling scaffold control the downstream signalling output.
Collapse
Affiliation(s)
- Xavier L Warnet
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Helle Bakke Krog
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Oscar G Sevillano-Quispe
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Hayashi T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br J Pharmacol 2020; 178:784-797. [PMID: 32159240 DOI: 10.1111/bph.15050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the mammalian CNS, glutamate is the major excitatory neurotransmitter. Ionotropic glutamate receptors (iGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Regulation of glutamatergic synapses is critical for higher brain functions including neural communication, memory formation, learning, emotion, and behaviour. Many previous studies have shown that post-translational protein S-palmitoylation, the only reversible covalent attachment of lipid to protein, regulates synaptic expression, intracellular localization, and membrane trafficking of iGluRs and their scaffolding proteins in neurons. This modification mechanism is extremely conserved in the vertebrate lineages. The failure of appropriate palmitoylation-dependent regulation of iGluRs leads to hyperexcitability that reduces the maintenance of network stability, resulting in brain disorders, such as epileptic seizures. This review summarizes advances in the study of palmitoylation of iGluRs, especially AMPA receptors and NMDA receptors, and describes the current understanding of palmitoylation-dependent regulation of excitatory glutamatergic synapses. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takashi Hayashi
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
28
|
Bowers MS, Cacheaux LP, Sahu SU, Schmidt ME, Sennello JA, Leaderbrand K, Khan MA, Kroes RA, Moskal JR. NYX-2925 induces metabotropic N-methyl-d-aspartate receptor (NMDAR) signaling that enhances synaptic NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. J Neurochem 2020; 152:523-541. [PMID: 31376158 PMCID: PMC7065110 DOI: 10.1111/jnc.14845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediate both physiological and pathophysiological processes, although selective ligands lack broad clinical utility. NMDARs are composed of multiple subunits, but N-methyl-d-aspartate receptor subunit 2 (GluN2) is predominately responsible for functional heterogeneity. Specifically, the GluN2A- and GluN2B-containing subtypes are enriched in adult hippocampus and cortex and impact neuronal communication via dynamic trafficking into and out of the synapse. We sought to understand if ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3,4]octan-2-yl) butanamide (NYX-2925), a novel NMDAR modulator, alters synaptic levels of GluN2A- or GluN2B-containing NMDARs. Low-picomolar NYX-2925 increased GluN2B colocalization with the excitatory post-synaptic marker post-synaptic density protein 95 (PSD-95) in rat primary hippocampal neurons within 30 min. Twenty-four hours following oral administration, 1 mg/kg NYX-2925 increased GluN2B in PSD-95-associated complexes ex vivo, and low-picomolar NYX-2925 regulated numerous trafficking pathways in vitro. Because the NYX-2925 concentration that increases synaptic GluN2B was markedly below that which enhances long-term potentiation (mid-nanomolar), we sought to elucidate the basis of this effect. Although NMDAR-dependent, NYX-2925-mediated colocalization of GluN2B with PSD-95 occurred independent of ion flux, as colocalization increased in the presence of either the NMDAR channel blocker (5R,10S)-(-)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate or glycine site antagonist 7-chlorokynurenic acid. Moreover, while mid-nanomolar NYX-2925 concentrations, which do not increase synaptic GluN2B, enhanced calcium transients, functional plasticity was only enhanced by picomolar NYX-2925. Thus, NYX-2925 concentrations that increase synaptic GluN2B facilitated the chemical long-term potentiation induced insertion of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunit levels. Basal (unstimulated by chemical long-term potentiation) levels of synaptic GluA1 were only increased by mid-nanomolar NYX-2925. These data suggest that NYX-2925 facilitates homeostatic plasticity by initially increasing synaptic GluN2B via metabotropic-like NMDAR signaling. Cover Image for this issue: doi: 10.1111/jnc.14735.
Collapse
Affiliation(s)
- M. Scott Bowers
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Aptinyx, Inc.EvanstonIllinoisUSA
| | | | - Srishti U. Sahu
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | | | | | | | | | - Roger A. Kroes
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Aptinyx, Inc.EvanstonIllinoisUSA
| | - Joseph R. Moskal
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Aptinyx, Inc.EvanstonIllinoisUSA
| |
Collapse
|
29
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
30
|
Rajani V, Sengar AS, Salter MW. Tripartite signalling by NMDA receptors. Mol Brain 2020; 13:23. [PMID: 32070387 PMCID: PMC7029596 DOI: 10.1186/s13041-020-0563-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are excitatory glutamatergic receptors that are fundamental for many neuronal processes, including synaptic plasticity. NMDARs are comprised of four subunits derived from heterogeneous subunit families, yielding a complex diversity in NMDAR form and function. The quadruply-liganded state of binding of two glutamate and two glycine molecules to the receptor drives channel gating, allowing for monovalent cation flux, Ca2+ entry and the initiation of Ca2+-dependent signalling. In addition to this ionotropic function, non-ionotropic signalling can be initiated through the exclusive binding of glycine or of glutamate to the NMDAR. This binding may trigger a transmembrane conformational change of the receptor, inducing intracellular protein-protein signalling between the cytoplasmic domain and secondary messengers. In this review, we outline signalling cascades that can be activated by NMDARs and propose that the receptor transduces signalling through three parallel streams: (i) signalling via both glycine and glutamate binding, (ii) signalling via glycine binding, and (iii) signalling via glutamate binding. This variety in signal transduction mechanisms and downstream signalling cascades complements the widespread prevalence and rich diversity of NMDAR activity throughout the central nervous system and in disease pathology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
31
|
Wang JJ, Liu F, Yang F, Wang YZ, Qi X, Li Y, Hu Q, Zhu MX, Xu TL. Disruption of auto-inhibition underlies conformational signaling of ASIC1a to induce neuronal necroptosis. Nat Commun 2020; 11:475. [PMID: 31980622 PMCID: PMC6981194 DOI: 10.1038/s41467-019-13873-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
We reported previously that acid-sensing ion channel 1a (ASIC1a) mediates acidic neuronal necroptosis via recruiting receptor-interacting protein kinase 1 (RIPK1) to its C terminus (CT), independent of its ion-conducting function. Here we show that the N-terminus (NT) of ASIC1a interacts with its CT to form an auto-inhibition that prevents RIPK1 recruitment/activation under resting conditions. The interaction involves glutamate residues at distal NT and is disrupted by acidosis. Expression of mutant ASIC1a bearing truncation or glutamate-to-alanine substitutions at distal NT causes constitutive cell death. The NT-CT interaction is further disrupted by N-ethylmaleimide-sensitive fusion ATPase (NSF), which associates with ASIC1a-NT under acidosis, facilitating RIPK1 interaction with ASIC1a-CT. Importantly, a membrane-penetrating synthetic peptide representing the distal 20 ASIC1a NT residues, NT1–20, reduced neuronal damage in both in vitro model of acidotoxicity and in vivo mouse model of ischemic stroke, demonstrating the therapeutic potential of targeting the auto-inhibition of ASIC1a for neuroprotection against acidotoxicity. Acid-sensing ion channel 1a (ASIC1a) mediates acidic neuronal necroptosis via recruiting receptor-interacting protein kinase 1 (RIPK1). Here authors show that auto-inhibition of ASICa prevents RIPK1 recruitment and demonstrate that targeting the auto-inhibition has therapeutic potential to prevent acidotoxicity.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhi Wang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Qi
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Hu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Schneider A, Sari AT, Alhaddad H, Sari Y. Overview of Therapeutic Drugs and Methods for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2020; 19:195-206. [PMID: 32448109 DOI: 10.2174/1871527319666200525011110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease involving degeneration of dopaminergic neurons of the nigrostriatal pathways. Over the past decades, most of the medications for the treatment of PD patients have been used to modulate dopamine concentrations in the basal ganglia. This includes levodopa and its inhibitory metabolizing enzymes. In addition to modulating dopamine concentrations in the brain, there are D2-like dopamine receptor agonists that mimic the action of dopamine to compensate for the deficit in dopamine found in PD patients. Muscarinic antagonists' drugs are used rarely due to some side effects. Monoamine oxidase inhibitors are among the first in line, and are considered popular drugs that reduce the metabolism of dopamine in PD patients. Furthermore, we discussed in this review the existence of certain glutamate receptor antagonists for the treatment of PD. Alternatively, we further discussed the potential therapeutic role of adenosine (2A) receptor antagonists, such as tozadenant and istradefylline in the treatment of PD. We also discussed the important role of serotonin1A receptor agonist, adrenergic autoreceptors (α2) antagonists and calcium channel blockers in the treatment of PD. Finally, neurotrophic factors, such as glial cell line-derived neurotrophic growth factor and brain-derived neurotrophic factor are considered the primary factors for neuroprotection in PD.
Collapse
Affiliation(s)
- Andrew Schneider
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Adam T Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| |
Collapse
|
33
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
34
|
A Single Session of Aerobic Exercise Mediates Plasticity-Related Phosphorylation in both the Rat Motor Cortex and Hippocampus. Neuroscience 2019; 412:160-174. [PMID: 31181370 DOI: 10.1016/j.neuroscience.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022]
Abstract
A single session of aerobic exercise may offer one means to "prime" motor regions to be more receptive to the acquisition of a motor skill; however, the mechanisms whereby this priming may occur are not clear. One possible explanation may be related to the post-translational modification of plasticity-related receptors and their associated intracellular signaling molecules, given that these proteins are integral to the development of synaptic plasticity. In particular, phosphorylation governs the biophysical properties (e.g., Ca2+ conductance) and the migratory patterns (i.e., trafficking) of plasticity-related receptors by altering the relative density of specific receptor subunits at synapses. We hypothesized that a single session of exercise would alter the subunit phosphorylation of plasticity-related receptors (AMPA receptors, NMDA receptors) and signaling molecules (PKA, CaMKII) in a manner that would serve to prime motor cortex. Young, male Sprague-Dawley rats (n = 24) were assigned to either exercise (Moderate, Exhaustion), or non-exercising (Sedentary) groups. Immediately following a single session of treadmill exercise, whole tissue homogenates were prepared from both the motor cortex and hippocampus. We observed a robust (1.2-2.0× greater than sedentary) increase in tyrosine phosphorylation of AMPA (GluA1,2) and NMDA (GluN2A,B) receptor subunits, and a clear indication that exercise preferentially affects pPKA over pCaMKII. The changes were found, specifically, following moderate, but not maximal, acute aerobic exercise in both motor cortex and hippocampus. Given the requirement for these proteins during the early phases of plasticity induction, the possibility exists that exercise-induced priming may occur by altering the phosphorylation of plasticity-related proteins.
Collapse
|
35
|
He YT, Duan XL, Guo Z, Li HL, Suo ZW, Yang X, Zhang MY, Hu XD. A synthetic peptide disturbing GluN2A/SHP1 interaction in dorsal root ganglion attenuated pathological pain. Eur J Pharmacol 2019; 854:62-69. [PMID: 30951721 DOI: 10.1016/j.ejphar.2019.03.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Src Homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) interacts specifically with GluN2A subunit of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors in spinal cord dorsal horn. This molecular interaction is involved in the development of GluN2A-dependent spinal sensitization of nociceptive behaviors. Intrathecal application of a GluN2A-derived polypeptide (short for pep-GluN2A) has been shown to disturb spinal GluN2A/SHP1 interaction and inhibit inflammatory pain. Here we found that SHP1 was also located at dorsal root ganglion (DRG) neurons and formed complexes with GluN2A subunit. Peripheral inflammation activated SHP1 in DRG neurons, which promoted GluN2A tyrosine phosphorylation. The SHP1 binding to GluN2A facilitated the glutamate release from primary afferent fibers and exaggerated nociceptive synaptic transmission onto postsynaptic spinal cord neurons. Our data showed that intradermal application of pep-GluN2A disrupted GluN2A/SHP1 interaction in DRG neurons, attenuated the ability of GluN2A subunit-containing NMDA receptors to regulate the presynaptic glutamate release and more importantly, alleviated the pain hypersensitivity caused by carrageenan, complete Freund's adjuvant and formalin. The neuropathic pain induced by spared nerve injury was also ameliorated by intradermal pep-GluN2A application. These data suggested that disruption of GluN2A/SHP1 interaction in DRG neurons generated an effective analgesic action against pathological pain.
Collapse
Affiliation(s)
- Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Meng-Yuan Zhang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
36
|
Keith RE, Azcarate JM, Keith MJ, Hung CW, Badakhsh MF, Dumas TC. Direct Intracellular Signaling by the Carboxy terminus of NMDA Receptor GluN2 Subunits Regulates Dendritic Morphology in Hippocampal CA1 Pyramidal Neurons. Neuroscience 2019; 396:138-153. [PMID: 30471357 PMCID: PMC6311441 DOI: 10.1016/j.neuroscience.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are glutamatergic receptors that take part in excitatory synaptic transmission and drive functional and structural neuronal plasticity, including activity-dependent changes in dendritic morphology. Forebrain NMDARs contribute to neuronal plasticity in at least two ways: through calcium-mediated processes or via direct intracellular postsynaptic signaling. Both properties are regulated by the GluN2 subunits. However, the separate contributions of these properties to the regulation of dendritic morphology are unknown. We created transgenic mice that express chimeric GluN2 subunits and examined the impact on pyramidal cell dendritic morphology in hippocampal region CA1. Golgi-Cox impregnation and transgenic expression of green fluorescent protein were employed to visualize dendritic arbors. In adult mice with a predominantly native GluN2A background, overexpression of the GluN2B carboxy terminus increased the total path of the dendritic arbor without affecting branch number or tortuosity. Overexpressing the amino terminus and transmembrane domains of GluN2B had little effect. It may be inferred from these results that NMDAR-dependent intracellular signaling regulates dendritic morphology of hippocampal pyramidal cells more so than calcium conductance dynamics. The findings add to the understanding of NMDAR-mediated signaling in hippocampal neurons and support re-investigation of the molecular underpinnings of NMDAR involvement in postnatal dendrite maturation.
Collapse
Affiliation(s)
- Rachel E Keith
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, United States; Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA 22030, United States
| | - Jessica M Azcarate
- Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA 22030, United States
| | - Matthew J Keith
- Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA 22030, United States
| | - Carey W Hung
- Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA 22030, United States
| | - Maryam F Badakhsh
- Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA 22030, United States
| | - Theodore C Dumas
- Psychology Department, George Mason University, Fairfax, VA 22030, United States; Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, United States; Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA 22030, United States.
| |
Collapse
|
37
|
Minnella AM, Zhao JX, Jiang X, Jakobsen E, Lu F, Wu L, El-Benna J, Gray JA, Swanson RA. Excitotoxic superoxide production and neuronal death require both ionotropic and non-ionotropic NMDA receptor signaling. Sci Rep 2018; 8:17522. [PMID: 30504838 PMCID: PMC6269523 DOI: 10.1038/s41598-018-35725-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
NMDA-type glutamate receptors (NMDAR) trigger superoxide production by neuronal NADPH oxidase-2 (NOX2), which if sustained leads to cell death. This process involves Ca2+ influx through NMDAR channels. By contrast, comparable Ca2+ influx by other routes does not induce NOX2 activation or cell death. This contrast has been attributed to site-specific effects of Ca2+ flux through NMDAR. Here we show instead that it stems from non-ionotropic signaling by NMDAR GluN2B subunits. To evaluate non-ionotropic effects, mouse cortical neurons were treated with NMDA together with 7-chlorokynurenate, L-689,560, or MK-801, which block Ca2+ influx through NMDAR channels but not NMDA binding. NMDA-induced superoxide formation was prevented by the channel blockers, restored by concurrent Ca2+ influx through ionomycin or voltage-gated calcium channels, and not induced by the Ca2+ influx in the absence of NMDAR ligand binding. Neurons expressing either GluN2B subunits or chimeric GluN2A/GluN2B C-terminus subunits exhibited NMDA-induced superoxide production, whereas neurons expressing chimeric GluN2B/GluN2A C-terminus subunits did not. Neuronal NOX2 activation requires phosphoinositide 3-kinase (PI3K), and NMDA binding to NMDAR increased PI3K association with NMDA GluN2B subunits independent of Ca2+ influx. These findings identify a non-ionotropic signaling pathway that links NMDAR to NOX2 activation through the C-terminus domain of GluN2B.
Collapse
Affiliation(s)
- Angela M Minnella
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94122, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Jerry X Zhao
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94122, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Xiangning Jiang
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Fuxin Lu
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Long Wu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94122, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - John A Gray
- Center for Neuroscience and Department of Neurology, University of California Davis, Davis, CA, 95618, USA
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94122, USA. .,San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA.
| |
Collapse
|
38
|
Sapkota K, Dore K, Tang K, Irvine M, Fang G, Burnell ES, Malinow R, Jane DE, Monaghan DT. The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochem Pharmacol 2018; 159:140-153. [PMID: 30503374 DOI: 10.1016/j.bcp.2018.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) have multiple prominent roles in CNS function but their excessive or insufficient activity contributes to neuropathological/psychiatric disorders. Consequently, a variety of positive and negative allosteric modulators (PAMs and NAMs, respectively) have recently been developed. Although these modulators bind to extracellular domains, in the present report we find that the NMDAR's intracellular C-terminal domains (CTDs) significantly influence PAM/NAM activity. GluN2 CTD deletion robustly affected NAM and PAM activity with both enhancing and inhibiting effects that were compound-specific and NMDAR subunit-specific. In three cases, individual PAMs became NAMs at specific GluN2-truncated receptors. In contrast to GluN2, GluN1 CTD removal only reduced PAM activity of UBP684 and CIQ, and did not affect NAM activity. Consistent with these findings, agents altering phosphorylation state or intracellular calcium levels displayed receptor-specific and compound-specific effects on PAM activity. It is possible that the GluN2's M4 domain transmits intracellular modulatory signals from the CTD to the M1/M4 channel gating machinery and that this site is a point of convergence in the direct or indirect actions of several PAMs/NAMs thus rendering them sensitive to CTD status. Thus, allosteric modulators are likely to have a marked and varied sensitivity to post-translational modifications, protein-protein associations, and intracellular ions. The interaction between PAM activity and NMDAR CTDs appears reciprocal. GluN1 CTD-deletion eliminated UBP684, but not pregnenolone sulfate (PS), PAM activity. And, in the absence of agonists, UBP684, but not PS, was able to promote movement of fluorescently-tagged GluN1-CTDs. Thus, it may be possible to pharmacologically target NMDAR metabotropic activity in the absence of channel activation.
Collapse
Affiliation(s)
- Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093-0634, USA
| | - Kang Tang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mark Irvine
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Guangyu Fang
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Erica S Burnell
- School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093-0634, USA
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
39
|
Montes de Oca Balderas P. Flux-Independent NMDAR Signaling: Molecular Mediators, Cellular Functions, and Complexities. Int J Mol Sci 2018; 19:ijms19123800. [PMID: 30501045 PMCID: PMC6321296 DOI: 10.3390/ijms19123800] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
The glutamate (Glu) N-methyl-d-aspartate (NMDA) receptor (NMDAR) plays a critical role in synaptic communication given mainly by its ionotropic function that permeates Ca2+. This in turn activates calmodulin that triggers CaMKII, MAPK, CREB, and PI3K pathways, among others. However, NMDAR signaling is more complex. In the last two decades several groups have shown that the NMDAR also elicits flux-independent signaling (f-iNMDARs). It has been demonstrated that agonist (Glu or NMDA) or co-agonist (Glycine or d-Serine) bindings initiate intracellular events, including conformational changes, exchange of molecular interactions, release of second messengers, and signal transduction, that result in different cellular events including endocytosis, LTD, cell death, and neuroprotection, among others. Interestingly, f-iNMDARs has also been observed in pathological conditions and non-neuronal cells. Here, the molecular and cellular events elicited by these flux-independent actions (non-canonical or metabotropic-like) of the NMDAR are reviewed. Considering the NMDAR complexity, it is possible that these flux-independent events have a more relevant role in intracellular signaling that has been disregarded for decades. Moreover, considering the wide expression and function of the NMDAR in non-neuronal cells and other tissues beyond the nervous system and some evolutionary traits, f-iNMDARs calls for a reconsideration of how we understand the biology of this complex receptor.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Av. Universidad 3000, C.U. Coyoacán, Ciudad de México. C.P. 04510, Mexico.
- Unidad de Neurobiología Dinámica, Departamento de Neuroquímica, INNN. Av. Insurgentes Sur #3877 Col. La Fama, Ciudad de México. C.P. 14269, Mexico.
| |
Collapse
|
40
|
Yang L, Bai HH, Zhang ZY, Liu JP, Suo ZW, Yang X, Hu XD. Disruption of SHP1/NMDA receptor signaling in spinal cord dorsal horn alleviated inflammatory pain. Neuropharmacology 2018; 137:104-113. [DOI: 10.1016/j.neuropharm.2018.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/08/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
41
|
Cyclin-dependent kinase 5 modulates the P2X2a receptor channel gating through phosphorylation of C-terminal threonine 372. Pain 2018; 158:2155-2168. [PMID: 28809765 DOI: 10.1097/j.pain.0000000000001021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate-gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (TPKH), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.
Collapse
|
42
|
Sanders EM, Nyarko-Odoom AO, Zhao K, Nguyen M, Liao HH, Keith M, Pyon J, Kozma A, Sanyal M, McHail DG, Dumas TC. Separate functional properties of NMDARs regulate distinct aspects of spatial cognition. ACTA ACUST UNITED AC 2018; 25:264-272. [PMID: 29764972 PMCID: PMC5959228 DOI: 10.1101/lm.047290.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling).
Collapse
Affiliation(s)
- Erin M Sanders
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Akua O Nyarko-Odoom
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Kevin Zhao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Michael Nguyen
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Hong Hong Liao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Matthew Keith
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Jane Pyon
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Alyssa Kozma
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Mohima Sanyal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.,Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
43
|
Wei IH, Chen KT, Tsai MH, Wu CH, Lane HY, Huang CC. Acute Amino Acid d-Serine Administration, Similar to Ketamine, Produces Antidepressant-like Effects through Identical Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10792-10803. [PMID: 29161812 DOI: 10.1021/acs.jafc.7b04217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
d-Serine is an amino acid and can work as an agonist at the glycine sites of N-methyl-d-aspartate receptor (NMDAR). Interestingly, both types of glutamatergic modulators, NMDAR enhancers and blockers, can improve depression through common targets, namely alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptors (AMPARs) and mammalian target of rapamycin (mTOR). To elucidate the cellular signaling pathway underlying this counterintuitive observation, we activated NMDARs in rats by using d-serine. Saline, ketamine (NMDAR antagonist), and desipramine (tricyclic antidepressant) were used as controls. The antidepressant-like effects of all agents were evaluated using the forced swim test. The activation of the AMPAR-mTOR signaling pathway, release of brain-derived neurotrophic factor (BDNF), and alteration of AMPAR and NMDAR trafficking in the hippocampus of rats were examined. A single high dose of d-serine exerted an antidepressant-like effect that was mediated by rapid AMPAR-induced mTOR signaling pathway and increased BDNF proteins, identical to that of ketamine. Furthermore, in addition to the increased protein kinase A phosphorylation of the AMPAR subunit GluR1 (an indicator of AMPAR insertion in neurons), treatment with individual optimal doses of d-serine and ketamine also increased adaptin β2-NMDAR association (an indicator of the intracellular endocytic machinery and subsequent internalization of NMDARs). Desipramine did not influence these processes. Our study is the first to demonstrate an association between d-serine and ketamine; following adaptative regulation of AMPAR and NMDAR may lead to common changes of them. These findings provide novel targets for safer antidepressant agents with mechanisms similar to those of ketamine.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsiang Wu
- Department of Anatomy, College of Medicine, Taipei Medical University , 110 Taipei, Taiwan
| | - Hsien-Yuan Lane
- Brain Disease Research Center & Department of Psychiatry, China Medical University Hospital , 404 Taichung, Taiwan
| | - Chih-Chia Huang
- Brain Disease Research Center & Department of Psychiatry, China Medical University Hospital , 404 Taichung, Taiwan
| |
Collapse
|
44
|
Unconventional NMDA Receptor Signaling. J Neurosci 2017; 37:10800-10807. [PMID: 29118208 DOI: 10.1523/jneurosci.1825-17.2017] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
In the classical view, NMDA receptors (NMDARs) are stably expressed at the postsynaptic membrane, where they act via Ca2+ to signal coincidence detection in Hebbian plasticity. More recently, it has been established that NMDAR-mediated transmission can be dynamically regulated by neural activity. In addition, NMDARs have been found presynaptically, where they cannot act as conventional coincidence detectors. Unexpectedly, NMDARs have also been shown to signal metabotropically, without the need for Ca2+ This review highlights novel findings concerning these unconventional modes of NMDAR action.
Collapse
|
45
|
Lohman AW, Weilinger NL, Santos SM, Bialecki J, Werner AC, Anderson CL, Thompson RJ. Regulation of pannexin channels in the central nervous system by Src family kinases. Neurosci Lett 2017; 695:65-70. [PMID: 28911820 DOI: 10.1016/j.neulet.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silva Mf Santos
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bialecki
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Allison C Werner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
46
|
Chimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains. J Neurosci 2017; 36:8815-25. [PMID: 27559165 DOI: 10.1523/jneurosci.0345-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED NMDA receptors are ligand-gated ion channels that underlie transmission at excitatory synapses and play an important role in regulating synaptic strength and stability. Functional NMDA receptors require two copies of the GluN1 subunit coassembled with GluN2 (and/or GluN3) subunits into a heteromeric tetramer. A diverse array of allosteric modulators can upregulate or downregulate NMDA receptor activity. These modulators include both synthetic compounds and endogenous modulators, such as cis-unsaturated fatty acids, 24(S)-hydroxycholesterol, and various neurosteroids. To evaluate the structural requirements for the formation and allosteric modulation of NMDA receptor pores, we have replaced portions of the rat GluN1, GluN2A, and GluN2B subunits with homologous segments from the rat GluK2 kainate receptor subunit. Our results with these chimeric constructs show that the NMDA receptor transmembrane domain is sufficient to account for most pore properties, but that regulation by some allosteric modulators requires additional cytoplasmic or extracellular domains. SIGNIFICANCE STATEMENT Glutamate receptors mediate excitatory synaptic transmission by forming cation channels through the membrane that open upon glutamate binding. Although many compounds have been identified that regulate glutamate receptor activity, in most cases the detailed mechanisms that underlie modulation are poorly understood. To identify what parts of the receptor are essential for pore formation and sensitivity to allosteric modulators, we generated chimeric subunits that combined segments from NMDA and kainate receptors, subtypes with distinct pharmacological profiles. Surprisingly, our results identify separate domain requirements for allosteric potentiation of NMDA receptor pores by pregnenolone sulfate, 24(S)-hydroxycholesterol, and docosahexaenoic acid, three endogenous modulators derived from membrane constituents. Understanding where and how these compounds act on NMDA receptors should aid in designing better therapeutic agents.
Collapse
|
47
|
Valbuena S, Lerma J. Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. Neuron 2017; 92:316-329. [PMID: 27764665 DOI: 10.1016/j.neuron.2016.10.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
Neurotransmitter receptors are responsible for the transfer of information across the synapse. While ionotropic receptors form ion channels and mediate rapid membrane depolarization, so-called metabotropic receptors exert their action though slower, less direct intracellular signaling pathways. Glutamate, GABA, and acetylcholine can activate both ionotropic and metabotropic receptors, yet the distinction between these "canonical" signaling systems has become less clear since ionotropic receptors were proposed to also activate second messenger systems, defining a "non-canonical" signaling pathway. How these alternative pathways affect neuronal circuit activity is not well understood, and their influence could be more significant than previously anticipated. In this review, we examine the evidence available that supports the existence of parallel and unsuspected signaling pathways used by ionotropic neurotransmitter receptors.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
48
|
Chen J, Hu R, Liao H, Zhang Y, Lei R, Zhang Z, Zhuang Y, Wan Y, Jin P, Feng H, Wan Q. A non-ionotropic activity of NMDA receptors contributes to glycine-induced neuroprotection in cerebral ischemia-reperfusion injury. Sci Rep 2017; 7:3575. [PMID: 28620235 PMCID: PMC5472592 DOI: 10.1038/s41598-017-03909-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/05/2017] [Indexed: 01/01/2023] Open
Abstract
NMDA receptor (NMDAR) is known for its ionotropic function. But recent evidence suggests that NMDAR also has a non-ionotropic property. To determine the role of non-ionotropic activity of NMDARs in clinical relevant conditions, we tested the effect of glycine, a co-agonist of NMDARs, in rat middle cerebral artery occlusion (MCAO), an animal model of cerebral ischemia-reperfusion injury after the animals were injected with the NMDAR channel blocker MK-801 and the glycine receptor antagonist strychnine. We show that glycine reduces the infarct volume in the brain of ischemic stroke animals pre-injected with MK-801 and strychnine. The effect of glycine is sensitive to the antagonist of glycine-GluN1 binding site and blocked by Akt inhibition. In the neurobehavioral tests, glycine improves the functional recovery of stroke animals pre-injected with MK-801 and strychnine. This study suggests that glycine-induced neuroprotection is mediated in part by the non-ionotropic activity of NMDARs via Akt activation in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China. .,Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, 26 Shengli Street, Wuhan, 430014, China.
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Chongqing, 400038, China
| | - Huabao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Ruixue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Zhifeng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Yu Wan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Ping Jin
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, 26 Shengli Street, Wuhan, 430014, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Chongqing, 400038, China
| | - Qi Wan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China. .,Institute of Neuroregeneration & Neurorehabilitation, Qingdao University School of Medicine, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
49
|
Niere F, Raab-Graham KF. mTORC1 Is a Local, Postsynaptic Voltage Sensor Regulated by Positive and Negative Feedback Pathways. Front Cell Neurosci 2017; 11:152. [PMID: 28611595 PMCID: PMC5447718 DOI: 10.3389/fncel.2017.00152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) serves as a regulator of mRNA translation. Recent studies suggest that mTORC1 may also serve as a local, voltage sensor in the postsynaptic region of neurons. Considering biochemical, bioinformatics and imaging data, we hypothesize that the activity state of mTORC1 dynamically regulates local membrane potential by promoting and repressing protein synthesis of select mRNAs. Our hypothesis suggests that mTORC1 uses positive and negative feedback pathways, in a branch-specific manner, to maintain neuronal excitability within an optimal range. In some dendritic branches, mTORC1 activity oscillates between the "On" and "Off" states. We define this as negative feedback. In contrast, positive feedback is defined as the pathway that leads to a prolonged depolarized or hyperpolarized resting membrane potential, whereby mTORC1 activity is constitutively on or off, respectively. We propose that inactivation of mTORC1 increases the expression of voltage-gated potassium alpha (Kv1.1 and 1.2) and beta (Kvβ2) subunits, ensuring that the membrane resets to its resting membrane potential after experiencing increased synaptic activity. In turn, reduced mTORC1 activity increases the protein expression of syntaxin-1A and promotes the surface expression of the ionotropic glutamate receptor N-methyl-D-aspartate (NMDA)-type subunit 1 (GluN1) that facilitates increased calcium entry to turn mTORC1 back on. Under conditions such as learning and memory, mTORC1 activity is required to be high for longer periods of time. Thus, the arm of the pathway that promotes syntaxin-1A and Kv1 protein synthesis will be repressed. Moreover, dendritic branches that have low mTORC1 activity with increased Kv expression would balance dendrites with constitutively high mTORC1 activity, allowing for the neuron to maintain its overall activity level within an ideal operating range. Finally, such a model suggests that recruitment of more positive feedback dendritic branches within a neuron is likely to lead to neurodegenerative disorders.
Collapse
Affiliation(s)
- Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| |
Collapse
|
50
|
Tavalin SJ, Colbran RJ. CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner. Mol Cell Neurosci 2016; 79:45-52. [PMID: 27998718 DOI: 10.1016/j.mcn.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Some forms of long-term synaptic plasticity require docking of Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) to residues 1290-1309 within the intracellular C-terminal tail of the N-methyl-d-aspartate (NMDA) receptor GluN2B subunit. The phosphorylation of Ser1303 within this region destabilizes CaMKII binding. Interestingly, Ser1303 is a substrate for CaMKII itself, as well as PKC and DAPK1, but these kinases have been reported to have contradictory effects on the activity of GluN2B-containing NMDA receptors. Here, we re-assessed the effect of CaMKII on NMDA receptor desensitization in heterologous cells, as measured by the ratio of steady-state to peak currents induced during 3s agonist applications. CaMKIIα co-expression or infusion of constitutively active CaMKII limits the extent of desensitization and preserves current amplitude with repeated stimulation of recombinant GluN1A/GluN2B when examined using low intracellular chloride (Cl-) levels, characteristic of neurons beyond the first postnatal week. In contrast, CaMKIIα enhances the acute rate and extent of desensitization when intracellular Cl- concentrations are high. The apparent dependence of CaMKIIα effects on NMDA receptor desensitization on Cl- concentrations is consistent with the presence of a Ca2+-activated Cl- conductance endogenous to HEK 293 cells, which was confirmed by photolysis of caged-Ca2+. However, Ca2+-activated Cl- conductances are unaffected by CaMKIIα expression, indicating that CaMKII affects agonist-induced whole cell currents via modulation of the NMDA receptor. In support of this idea, CaMKIIα modulation of GluN2B-NMDA receptors is abrogated by the phospho-null mutation of Ser1303 in GluN2B to alanine and occluded by phospho-mimetic mutation of Ser1303 to aspartate regardless of intracellular Cl- concentration. Thus, CaMKII-mediated phosphorylation of GluN2B-containing NMDA receptors reduces desensitization at physiological (low) intracellular Cl-, perhaps serving as a feed-forward mechanism to sustain NMDA-mediated Ca2+ entry and continued CaMKII activation during learning and memory.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| | - Roger J Colbran
- Department of Molecular Physiology & Biophysics, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, 37232-0615, United States
| |
Collapse
|