1
|
Chen Z, Shang Y, Yuan Y, Ji X, Gong S, Zeng Q, Xiang X. Aged mice-derived bronchial epithelial cells regulate Th17 cell differentiation in asthma via the MBD2-sICOSL axis. Cell Immunol 2025; 411-412:104954. [PMID: 40252480 DOI: 10.1016/j.cellimm.2025.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Th17 cells are involved in the pathogenesis of elderly asthma. Bronchial epithelial cells (BECs) can act as antigen-presenting cells, and our previous studies have shown that methyl-CPG binding domain protein 2 (MBD2) in BECs can promote Th17 cell differentiation in asthma. However, the effect of BECs from different age groups (young and old) on Th17 cells remains unclear. In this study, BECs were co-cultured with CD4+ T cells, and it was found that BECs from young mice promoted the biased differentiation of Th2 cells, while BECs from older mice facilitated the biased differentiation of Th17 cells. Interestingly, MBD2 was highly expressed in BECs from older mice compared to BECs from young mice. MBD2 silencing induced inhibition of Th17 cell differentiation, while MBD2 overexpression reversed this change and promoted Th cell differentiation into Th17 cells. Soluble inducible T cell costimulator ligand (sICOSL) is mainly involved in the regulation of T cells after activation. In this study, we found that sICOSL levels were lower in BECs of old mice compared to BECs of young mice. Mechanistically, sICOSL levels increased with MBD2 silencing and decreased with MBD2 overexpression. As expected, the addition of anti-sICOSL antibodies significantly enhanced Th17 cell differentiation and suppressed Th2 cell differentiation, while exogenous sICOSL supplementation promoted Th2 cell differentiation and inhibited Th17 cell differentiation. However, neither anti-sICOSL nor exogenous sICOSL affected the expression of MBD2. Taken together, these results suggest that BECs from older mice regulate Th17 cell differentiation via the MBD2-sICOSL axis. These findings provide new insights into the pathogenesis of Th17-activated asthma in elderly patients.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, 30 Pinghu Avenue, Zigui, Hubei 443600, China
| | - Yu Yuan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, Guizhou 550004, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People's Hospital, 50 Yuelu Avenue, Longshan, Hunan 416800, China.
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Luo Y, Li H, Fang H, Gong T, Zhao Y, Cao W, Yu M, Wang T, Lin H, Zhong M. ICOS+ CD4+ T cells promote antitumor immunity through Akt/STAT1/T-bet axis in MSS/pMMR colorectal cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf040. [PMID: 40235079 DOI: 10.1093/jimmun/vkaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/06/2025] [Indexed: 04/17/2025]
Abstract
Inducible Co-Stimulator (ICOS), as a T-cell-specific costimulatory receptor that enhances T-cell responses to foreign antigens, plays a crucial role in cancer immunity. However, its role in MSS/pMMR colorectal cancer (CRC) remains unclear. In this study, we demonstrated that ICOS expression decreases as the tumor stages advance and that high ICOS expression is associated with a favorable prognosis in MSS/pMMR CRC. Mechanistically, ICOS promoted the secretion of IFN-γ, TNF-α, and IL-12 in CD4+ T cells through the Akt/STAT1/T-bet axis, leading to the inhibition of MSS/pMMR-CRC-cell proliferation. Importantly, ICOS+ CD4+ T cells enhanced tumor responses to anti-PD-1 therapy in MSS/pMMR CRC. In conclusion, this study revealed that ICOS mediates antitumor immunity by promoting the secretion of cancer-suppressive cytokines. It also suggests that activation of ICOS serves a potential therapeutic strategy for MSS/pMMR CRC.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tingyue Gong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongheng Zhao
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Cao
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingfeng Wang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
| | - Haiping Lin
- Department of Hepatopancreatobiliary Surgery, Jinhua Central Hospital, Teaching Hospital of Mathematical Medicine College, Zhejiang Normal University, Zhejiang, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Preddy I, Nandoliya K, Miska J, Ahmed AU. Checkpoint: Inspecting the barriers in glioblastoma immunotherapies. Semin Cancer Biol 2022; 86:473-481. [PMID: 35150865 PMCID: PMC9363531 DOI: 10.1016/j.semcancer.2022.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Despite an aggressive standard of care involving radiation therapy, temozolomide-based chemotherapy, and surgical resection, glioblastoma multiforme (GBM) continues to exhibit very high recurrence and mortality rates partly due to the highly plastic and heterogenous nature of the tumor. In recent years, activation of the immune system has emerged as a promising strategy in cancer therapies. However, despite recent successes in other fields, immunotherapeutic approaches continue to encounter challenges in GBM. In this review, we first discuss immunotherapies targeting the most well-studied immune checkpoint proteins, CTLA-4 and PD-1, followed by discussions on therapies targeting immune-stimulatory molecules and secreted metabolic enzymes. Finally, we address the major challenges with immunotherapy in GBM and the potential for combination and neoadjuvant immunotherapies to tip the scales in the fight against glioblastoma.
Collapse
Affiliation(s)
- Isabelle Preddy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States
| | - Khizar Nandoliya
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, United States
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
4
|
Yu L, Sun M, Zhang Q, Zhou Q, Wang Y. Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy. Front Immunol 2022; 13:982026. [PMID: 36159789 PMCID: PMC9498063 DOI: 10.3389/fimmu.2022.982026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the goal of harnessing the host's immune system to provide long-lasting remission and cures for various cancers, the advent of immunotherapy revolutionized the cancer therapy field. Among the current immunotherapeutic strategies, immune checkpoint blockades have greatly improved the overall survival rates in certain patient populations. Of note, CTLA4 and PD-1/PD-L1 are two major non-redundant immune checkpoints implicated in promoting cancer immune evasion, and ultimately lead to relapse. Antibodies or inhibitors targeting these two c+heckpoints have achieved some encouraging clinical outcomes. Further, beyond the canonical immune checkpoints, more inhibitory checkpoints have been identified. Herein, we will summarize recent progress in immune checkpoint blockade therapies, with a specific focus on key pre-clinical and clinical results of new immune checkpoint therapies for cancer. Given the crucial roles of immune checkpoint blockade in oncotherapy, drugs targeting checkpoint molecules expressed by both cancer and immune cells are in clinical trials, which will be comprehensively summarized in this review. Taken together, investigating combinatorial therapies targeting immune checkpoints expressed by cancer cells and immune cells will greatly improve immunotherapies that enhance host elimination of tumors.
Collapse
Affiliation(s)
- Lu Yu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Hodgson R, Christiansen D, Ierino F, Sandrin M. Inducible Co-Stimulator (ICOS) in transplantation: A review. Transplant Rev (Orlando) 2022; 36:100713. [PMID: 35878486 DOI: 10.1016/j.trre.2022.100713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Prevention of T cell activation is one of the goals of successful organ and tissue transplantation. Blockade of T cell co-stimulation, particularly of the CD28:B7 interaction, has been shown to prolong graft survival. Inducible Co-Stimulator (ICOS) is the third member of the B7 family and here we review the literature on ICOS, its receptor (B7RP-1), and blockade of this pathway in transplant models. ICOS:B7RP-1 are a single receptor:ligand pair with a loss of function of either being implicated in some autoimmune diseases. ICOS has multiple functions, related to its constitutive expression on B cells and activated T cells. In in vitro transplant models, ICOS:B7RP-1 blockade has produced mixed results as to its ability to modulate lymphocyte proliferation. Several in vivo transplant models demonstrate varying degrees of success in prolonging graft survival. Timing and dose of treatment appear important, and combination with other immunosuppressive treatments may also be of benefit. As ICOS has multiple functions, it may be that the observed variable results are due to inadvertent inactivation of graft protective functions. If these barriers can be overcome, ICOS:B7RP-1 blockade could provide an important target for future immunosuppression regimens.
Collapse
Affiliation(s)
- Russell Hodgson
- Department of Surgery, University of Melbourne, Heidelberg, Australia; Division of Surgery, Northern Health, Epping, Australia.
| | - Dale Christiansen
- Department of Surgery, University of Melbourne, Heidelberg, Australia
| | - Francesco Ierino
- Department of Surgery, University of Melbourne, Heidelberg, Australia; Department of Nephrology, St Vincent's Hospital, Fitzroy, Australia
| | - Mauro Sandrin
- Department of Surgery, University of Melbourne, Heidelberg, Australia
| |
Collapse
|
6
|
Orvain C, Cauvet A, Prudent A, Guignabert C, Thuillet R, Ottaviani M, Tu L, Duhalde F, Nicco C, Batteux F, Avouac J, Wang N, Seaberg MA, Dillon SR, Allanore Y. Acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, demonstrates efficacy in systemic sclerosis preclinical mouse models. Arthritis Res Ther 2022; 24:13. [PMID: 34986869 PMCID: PMC8728910 DOI: 10.1186/s13075-021-02709-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Uncontrolled immune response with T cell activation has a key role in the pathogenesis of systemic sclerosis (SSc), a disorder that is characterized by generalized fibrosis affecting particularly the lungs and skin. Costimulatory molecules are key players during immune activation, and recent evidence supports a role of CD28 and ICOS in the development of fibrosis. We herein investigated the efficacy of acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, in two complementary SSc-related mouse models recapitulating skin fibrosis, interstitial lung disease, and pulmonary hypertension. Methods Expression of circulating soluble ICOS and skin-expressed ICOS was investigated in SSc patients. Thereafter, acazicolcept was evaluated in the hypochlorous acid (HOCL)-induced dermal fibrosis mouse model and in the Fra-2 transgenic (Tg) mouse model. In each model, mice received 400 μg of acazicolcept or a molar-matched dose of an Fc control protein twice a week for 6 weeks. After 6 weeks, skin and lung were evaluated. Results ICOS was significantly increased in the sera from SSc patients and in SSc skin biopsies as compared to samples from healthy controls. Similar body weight changes were observed between Fc control and acazicolcept groups in both HOCL and Fra-2 Tg mice suggesting a good tolerance of acazicolcept treatment. In mice challenged with HOCL, acazicolcept induced a significant decrease in dermal thickness, collagen content, myofibroblast number, and inflammatory infiltrates characterized by B cells, T cells, neutrophils, and macrophages. In the Fra-2 Tg mouse model, acazicolcept treatment reduced lung collagen content, fibrillar collagen, histological fibrosis score, and right ventricular systolic pressure (RVSP). A reduction in frequency of CD4+ and T effector memory cells and an increase in the percentage of CD4+ T naïve cells in spleen and lung of acazicolcept-treated Fra-2 Tg mice was observed as compared to Fc control-treated Fra-2 Tg mice. Moreover, acazicolcept reduced CD69 and PD-1 expression on CD4+ T cells from the spleen and the lung. Target engagement by acazicolcept was demonstrated by blockade of CD28 and ICOS detection by flow cytometry in treated mice. Conclusions Our results confirm the importance of costimulatory molecules in inflammatory-driven fibrosis. Our data highlight a key role of ICOS and CD28 in SSc. Using complementary models, we demonstrated that dual ICOS/CD28 blockade by acazicolcept decreased dermal and pulmonary fibrosis and alleviated pulmonary hypertension. These results pave the way for subsequent research on ICOS/CD28-targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02709-2.
Collapse
Affiliation(s)
- Cindy Orvain
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Anne Cauvet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Alexis Prudent
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mina Ottaviani
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Fanny Duhalde
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Carole Nicco
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Frédéric Batteux
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Service d'immunologie biologique (Professeur Batteux), Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital 27 rue du Faubourg Saint-Jacques, Cochin, 75014, Paris, France
| | | | | | | | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital 27 rue du Faubourg Saint-Jacques, Cochin, 75014, Paris, France.
| |
Collapse
|
7
|
Zhang X, Hu X, Tian T, Pang W. The role of ICOS in allergic disease: Positive or Negative? Int Immunopharmacol 2021; 103:108394. [PMID: 34922247 DOI: 10.1016/j.intimp.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
With the rapid increase in the incidence of allergic diseases, the mechanisms underlying the development of these diseases have received a great deal of attention, and this is particularly true in regard to the role of ICOS in allergic diseases. Current studies have revealed that ICOS affects the functional activity of multiple immune cells that modulate the adaptive immune system. Additionally, ICOS also plays a crucial role in mediating cellular immunity and coordinating the response of the entire immune system, and thus, it plays a role in allergic reactions. However, the ICOS/ICOS-ligand (ICOS-L) axis functions in a dual role during the development of multiple allergic diseases. In this review, we explore the role of ICOS/ICOSL in the context of different immune cells that function in allergic diseases, and we summarize recent advances in their contribution to these diseases.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianyang Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tengfei Tian
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wenhui Pang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
9
|
Jacquelot N, Ghaedi M, Warner K, Chung DC, Crome SQ, Ohashi PS. Immune Checkpoints and Innate Lymphoid Cells-New Avenues for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5967. [PMID: 34885076 PMCID: PMC8657134 DOI: 10.3390/cancers13235967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
10
|
Shen X, Zhang H, Xie H, Chen L, Li S, Zheng J, Chai R, Wang Z, Zang Y, He S. Reduced CCR6 +IL-17A +Treg Cells in Blood and CCR6-Dependent Accumulation of IL-17A +Treg Cells in Lungs of Patients With Allergic Asthma. Front Immunol 2021; 12:710750. [PMID: 34497608 PMCID: PMC8419235 DOI: 10.3389/fimmu.2021.710750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human regulatory T (Treg) cells play a central role in controlling allergic inflammation in the airways. A reduced number of peripheral Treg cells and decreased suppressive function have been previously reported in the pathogenesis of allergic asthma. However, the characteristic role of specific Treg cell subsets and their mechanisms in the pathogenesis of allergic asthma remain unclear. In this study, we examined the proportion of different Treg cell subsets in both healthy subjects and patients with allergic asthma using flow cytometry and single-cell RNA sequencing. The migration function of the cells was compared using cell sorting and Transwell experiments. Furthermore, two allergen-challenged mouse models and a cell transfer experiment were used to examine the role of these Treg subsets. We found that the proportion of CD25+Foxp3+CD127- Treg cells in the peripheral blood of patients with allergic asthma was lower than in those of healthy subjects. Furthermore, the circulating Treg cells expressed lower levels of CCR6 and IL-17 compared with healthy subjects. The chemokine from the airway mucosa, CCL20, was abundantly expressed, and Transwell experiments further proved that this chemokine promoted CCR6+ Treg cell migration in vitro. A mouse model induced by house dust mite (HDM) revealed that the number of CCR6+ Treg cells in the lung tissue increased remarkably. The incidence of allergic asthma may be related to an increase in Treg cells secreting IL-17 in the lung tissue. Recruited CCR6+ Treg cells are likely to differentiate into Th17-like cells under the Th17 environment present in the lungs. IL-17 derived from Th17-like cells could be associated with the pathology of allergic asthma by promoting Th17 responses, thereby favoring HDM-induced asthma exacerbations.
Collapse
Affiliation(s)
- Xiaokun Shen
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huiyun Zhang
- Institute of Translation Medicine, Shenyang Medical College, Shenyang, China
| | - Hua Xie
- People's Liberation Army (PLA) Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Liping Chen
- Respiratory Medicine Department, Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Shinan Li
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junjuan Zheng
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ruonan Chai
- People's Liberation Army (PLA) Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Zhao Wang
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanyan Zang
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shaoheng He
- Institute of Translation Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Institute of Translation Medicine, Shenyang Medical College, Shenyang, China
| |
Collapse
|
11
|
Jiang M, Cai R, Wang J, Li Z, Xu D, Jing J, Zhang F, Li F, Ding J. ILC2 Cells Promote Th2 Cell Differentiation in AECOPD Through Activated Notch-GATA3 Signaling Pathway. Front Immunol 2021; 12:685400. [PMID: 34354706 PMCID: PMC8329850 DOI: 10.3389/fimmu.2021.685400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
This study is to investigate the capacity of type 2 innate lymphoid cells (ILC2s) in regulating the Th2 type adaptive immune response of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The study enrolled healthy people, stable chronic obstructive pulmonary disease (COPD) patients, and AECOPD patients. Flow cytometry was used to detect Th2 and ILC2 cells in the peripheral blood. In addition, ILC2s from the peripheral blood of AECOPD patients were stimulated with PBS, IL-33, Jagged1, DAPT, IL-33+Jagged1, IL-33+DAPT, and IL-33+Jagged-1+DAP in vitro. The levels of cytokines in the culture supernatant were detected by ELISA and the culture supernatant was used to culture CD4 + T cells. The mRNA and protein levels of Notch1, hes1, GATA3, RORα, and NF-κB of ILC2s were detected by real-time PCR and Western blot. The proportion of Th2 and ILC2s was significantly increased in the peripheral blood of AECOPD patients, alone with the increased Notch1, hes1, and GATA3 mRNA levels. In vitro results showed that the mRNA and protein levels of Notch1, hes1, GATA3 and NF-κB were significantly increased after stimulation with Notch agonist, meanwhile, the level of type 2 cytokines were increased in the supernatant of cells stimulated with Notch agonist, and significantly promoted differentiation of Th2 cells in vitro. Disruption of Notch pathway weakened GATA3 expression and cytokine production, and ultimately affected the differentiation of Th2 cells. In conclusion, our results suggest that ILC2s can promote Th2 cell differentiation in AECOPD via activated Notch-GATA3 signal pathway.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Ren Cai
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jing Jing
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
12
|
Boutin RCT, Petersen C, Woodward SE, Serapio-Palacios A, Bozorgmehr T, Loo R, Chalanuchpong A, Cirstea M, Lo B, Huus KE, Barcik W, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Sears MR, Subbarao P, McNagny KM, Turvey SE, Finlay BB. Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life. eLife 2021; 10:e67740. [PMID: 33876729 PMCID: PMC8075585 DOI: 10.7554/elife.67740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial members of the infant gut microbiota and bacterial-derived short-chain fatty acids (SCFAs) have been shown to be protective against childhood asthma, but a role for the fungal microbiota in asthma etiology remains poorly defined. We recently reported an association between overgrowth of the yeast Pichia kudriavzevii in the gut microbiota of Ecuadorian infants and increased asthma risk. In the present study, we replicated these findings in Canadian infants and investigated a causal association between early life gut fungal dysbiosis and later allergic airway disease (AAD). In a mouse model, we demonstrate that overgrowth of P. kudriavzevii within the neonatal gut exacerbates features of type-2 and -17 inflammation during AAD later in life. We further show that P. kudriavzevii growth and adherence to gut epithelial cells are altered by SCFAs. Collectively, our results underscore the potential for leveraging inter-kingdom interactions when designing putative microbiota-based asthma therapeutics.
Collapse
Affiliation(s)
- Rozlyn CT Boutin
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Charisse Petersen
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Sarah E Woodward
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | | | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Rachelle Loo
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Alina Chalanuchpong
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Mihai Cirstea
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Bernard Lo
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
| | - Kelsey E Huus
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Weronika Barcik
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Meghan B Azad
- Children’s Hospital Research Institute of Manitoba and Department of Pediatrics and Child Health, University of ManitobaWinnipegMBCanada
| | - Allan B Becker
- Children’s Hospital Research Institute of Manitoba and Department of Pediatrics and Child Health, University of ManitobaWinnipegMBCanada
| | - Piush J Mandhane
- Department of Pediatrics, University of AlbertaEdmontonCanada
- School of Public Health, University of AlbertaEdmontonCanada
| | | | | | - Padmaja Subbarao
- The Hospital for Sick ChildrenTorontoCanada
- Department of Pediatrics, University of TorontoTorontoCanada
| | - Kelly M McNagny
- Department of Biomedical Engineering, University of British ColumbiaVancouverCanada
- Department of Medical Genetics University of British ColumbiaVancouverCanada
| | - Stuart E Turvey
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Department of Pediatrics, University of British ColumbiaVancouverCanada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouverCanada
| |
Collapse
|
13
|
Bao H, Zhou Q, Li Q, Niu M, Chen S, Yang P, Liu Z, Xia L. Differentially expressed circular RNAs in a murine asthma model. Mol Med Rep 2020; 22:5412-5422. [PMID: 33173985 PMCID: PMC7647044 DOI: 10.3892/mmr.2020.11617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023] Open
Abstract
Allergic asthma is one of the most common allergic diseases; however, the mechanisms underlying its development have yet to be fully elucidated. Although allergic diseases are inheritable, genetic variance alone cannot explain the notable increase in the prevalence of allergic diseases over a short period of time in recent decades. Recently, research focus has been shifting to epigenetic factors, such as non-coding RNAs. Circular RNAs (circRNAs) are involved in the pathogenesis of various diseases. The aim of the present study was to further elucidate the etiology of allergic asthma by analyzing aberrantly expressed circRNAs in a murine asthma model. A mouse model of house dust mite allergen-induced asthma was established, and the qualified libraries were sequenced using next-generation sequencing. The expression levels of circRNAs were validated by reverse transcription-quantitative PCR (RT-qPCR) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for biological pathway classification and enrichment analysis of the aberrantly expressed circRNAs. In addition, the interaction network of the differentially expressed circRNAs and microRNAs (miRNAs) was constructed using Cytoscape. By next-generation sequencing, a total of 150 circRNAs were revealed to be upregulated and 130 were downregulated in the murine asthma model group compared with in the control group. GO and KEGG analyses demonstrated that the differentially expressed circRNAs were mainly involved in processes such as ‘autoimmune disease’, ‘cell adhesion molecules (CAMs)’ and ‘endocytosis’, among others. The expression levels of six circRNAs, namely three upregulated (circ_0000909, circ_0000629 and circ_0000455) and three downregulated (circ_0001454, circ_0000723 and circ_0001389) circRNAs, were validated by RT-qPCR. In conclusion, the analyses suggested that circRNAs performed critical functions via endocytosis (such as macrophage endocytosis), cell adhesion molecules and lipid metabolism in allergic asthma. The interaction network revealed that certain miRNAs that may serve a role in asthma could be regulated by the differentially expressed circRNAs.
Collapse
Affiliation(s)
- Hui Bao
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Qiuyan Zhou
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Qiuju Li
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Mengmeng Niu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Sanfeng Chen
- Department of Internal Medicine, Aged Care Hospital of Hangzhou, Hangzhou, Zhejiang 310015, P.R. China
| | - Pingchang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Zhigang Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Lixin Xia
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
14
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
15
|
Preite S, Gomez-Rodriguez J, Cannons JL, Schwartzberg PL. T and B-cell signaling in activated PI3K delta syndrome: From immunodeficiency to autoimmunity. Immunol Rev 2020; 291:154-173. [PMID: 31402502 DOI: 10.1111/imr.12790] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3 kinases (PI3K) are a family of lipid kinases that are activated by a variety of cell-surface receptors, and regulate a wide range of downstream readouts affecting cellular metabolism, growth, survival, differentiation, adhesion, and migration. The importance of these lipid kinases in lymphocyte signaling has recently been highlighted by genetic analyses, including the recognition that both activating and inactivating mutations of the catalytic subunit of PI3Kδ, p110δ, lead to human primary immunodeficiencies. In this article, we discuss how studies on the human genetic disorder "Activated PI3K-delta syndrome" and mouse models of this disease (Pik3cdE1020K/+ mice) have provided fundamental insight into pathways regulated by PI3Kδ in T and B cells and their contribution to lymphocyte function and disease, including responses to commensal bacteria and the development of autoimmunity and tumors. We highlight critical roles of PI3Kδ in T follicular helper cells and the orchestration of the germinal center reaction, as well as in CD8+ T-cell function. We further present data demonstrating the ability of the AKT-resistant FOXO1AAA mutant to rescue IgG1 class switching defects in Pik3cdE1020K/+ B cells, as well as data supporting a role for PI3Kδ in promoting multiple T-helper effector cell lineages.
Collapse
Affiliation(s)
- Silvia Preite
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Julio Gomez-Rodriguez
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Voskamp AL, Kormelink TG, van Wijk RG, Hiemstra PS, Taube C, de Jong EC, Smits HH. Modulating local airway immune responses to treat allergic asthma: lessons from experimental models and human studies. Semin Immunopathol 2020; 42:95-110. [PMID: 32020335 PMCID: PMC7066288 DOI: 10.1007/s00281-020-00782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
With asthma affecting over 300 million individuals world-wide and estimated to affect 400 million by 2025, developing effective, long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and 50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in subclasses of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This review highlights the current understanding of the contribution of local innate immune elements in the development and maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for future therapeutics.
Collapse
Affiliation(s)
- A L Voskamp
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands
| | - T Groot Kormelink
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - R Gerth van Wijk
- Department of Internal Medicine, Section Allergology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Taube
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrklinik, Essen, Germany
| | - E C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
17
|
Role of Co-stimulatory Molecules in T Helper Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:153-177. [PMID: 31758534 DOI: 10.1007/978-981-32-9717-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD4+ T cells play a central role in orchestrating the immune response to a variety of pathogens but also regulate autoimmune responses, asthma, allergic responses, as well as tumor immunity. To cover this broad spectrum of responses, naïve CD4+ T cells differentiate into one of several lineages of T helper cells, including Th1, Th2, Th17, and TFH, as defined by their cytokine pattern and function. The fate decision of T helper cell differentiation integrates signals delivered through the T cell receptor, cytokine receptors, and the pattern of co-stimulatory signals received. In this review, we summarize the contribution of co-stimulatory and co-inhibitory receptors to the differentiation and maintenance of T helper cell responses.
Collapse
|
18
|
Lei A, Zhou J. Cell-surface molecule-mediated cell-cell interactions in the regulation of ILC2-driven allergic inflammation. Cell Mol Life Sci 2019; 76:4503-4510. [PMID: 31312878 PMCID: PMC11105661 DOI: 10.1007/s00018-019-03228-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a subset of innate immune cells that do not express antigen receptors. ILC2-mediated type 2 responses, which are mainly characterized by the production of interleukin (IL)-5 and IL-13, play key roles in inducing inflammation, protecting against infection, and maintaining tissue homeostasis. Although recent years have largely enhanced our understanding of the transcriptional networks and soluble mediators that regulate ILC2 development or function, emerging evidence suggests that ILC2s express a variety of cell-surface molecules and interact with themselves or other immune cells. These cell-cell interactions are essential in the modulation of ILC2 number and their type 2 cytokine production during ILC2-driven allergic inflammation. In this review, we summarize the extensive array of cell-surface molecules on ILC2s that mediate cell-cell interactions and their role in regulating ILC2 generation or function in the context of ILC2-induced allergic inflammation.
Collapse
Affiliation(s)
- Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
19
|
Singh BK, Lu W, Schmidt Paustian AM, Ge MQ, Koziol-White CJ, Flayer CH, Killingbeck SS, Wang N, Dong X, Riese MJ, Deshpande DA, Panettieri RA, Haczku A, Kambayashi T. Diacylglycerol kinase ζ promotes allergic airway inflammation and airway hyperresponsiveness through distinct mechanisms. Sci Signal 2019; 12:12/597/eaax3332. [PMID: 31481522 DOI: 10.1126/scisignal.aax3332] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (TH2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks TH2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms. Targeted deletion of DGKζ in T cells decreased type 2 inflammation without reducing AHR. In contrast, loss of DGKζ in airway smooth muscle cells decreased AHR but not airway inflammation. T cell-specific enhancement of ERK signaling was only sufficient to limit type 2 airway inflammation, not AHR. Pharmacological inhibition of DGK diminished both airway inflammation and AHR in mice and also reduced bronchoconstriction of human airway samples in vitro. These data suggest that DGK is a previously unrecognized therapeutic target for asthma and reveal that the inflammatory and AHR components of asthma are not as interdependent as generally believed.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen Lu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda M Schmidt Paustian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moyar Q Ge
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cameron H Flayer
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Sara S Killingbeck
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Nadan Wang
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Matthew J Riese
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Angela Haczku
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Yan J, Zhang X, Sun S, Yang T, Yang J, Wu G, Qiu Y, Yin Y, Xu W. miR-29b Reverses T helper 1 cells/T helper 2 cells Imbalance and Alleviates Airway Eosinophils Recruitment in OVA-Induced Murine Asthma by Targeting Inducible Co-Stimulator. Int Arch Allergy Immunol 2019; 180:182-194. [PMID: 31412349 DOI: 10.1159/000501686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Asthma is a complex chronic disease and the pathogenesis is still not entirely clear. In this study, we aimed to clarify the role and mechanism of miR-29b in the development of asthma. We observed that miR-29b levels were decreased in the lung and spleen of OVA-induced asthmatic mice. Reverse transcription-quantitative polymerase chain reaction and flow cytometry demonstrated that the inducible co-stimulator (ICOS) expression at mRNA and protein levels was elevated in the lung of asthmatic mice, and miR-29b expression in the lung of asthmatic mice was negatively associated with ICOS mRNA levels by Pearson Correlation analysis. Additional, flow cytometry showed that the percentage of CD4+ICOS+ T cells in the lung and spleen was regulated by miR-29b, and dual luciferase reporter assay confirmed ICOS was a target gene of miR-29b. Furthermore, miR-29b overexpression in asthmatic mice was induced with miR-29b agomir by intranasal administration; miR-29b alleviated total inflammatory cell infiltration and CCL24 levels, decreased IL-5 levels in bronchoalveolar lavage fluid and serum, and upregulated IFN-γ expression in serum. This study demonstrates that miR-29b targets ICOS, thereby reverses the imbalance of T helper 1 cells (Th1)/Th2 responses and decreases eosinophils recruitment in the airway, which are key features of allergic airway inflammation. Therefore, miR-29b might be an attractive candidate target for asthma treatment.
Collapse
Affiliation(s)
- Jurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Si Sun
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Guangying Wu
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China,
| |
Collapse
|
21
|
Programmed Cell Death-1 Receptor (PD-1)-Mediated Regulation of Innate Lymphoid Cells. Int J Mol Sci 2019; 20:ijms20112836. [PMID: 31212601 PMCID: PMC6601034 DOI: 10.3390/ijms20112836] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023] Open
Abstract
Programmed cell death-1 (PD-1) is a cell surface receptor that dampens adaptive immune responses. PD-1 is activated by the engagement of its ligands PDL-1 or PDL-2. This results in the inhibition of T cell proliferation, differentiation, cytokine secretion, and cytolytic function. Although a great deal is known about PD-1 mediated regulation of CD4+ and CD8+ T cells, its expression and function in innate lymphoid cells (ILCs) are yet to be fully deciphered. This review summarizes the role of PD-1 in (1) modulating ILC development, (2) ILC function, and (3) PD-1 signaling in ILC. Finally, we explore how PD-1 based immunotherapies may be beneficial in boosting ILC responses in cancer, infections, and other immune-related disorders.
Collapse
|
22
|
Van DV, Bauer L, Kroczek RA, Hutloff A. ICOS Costimulation Differentially Affects T Cells in Secondary Lymphoid Organs and Inflamed Tissues. Am J Respir Cell Mol Biol 2019; 59:437-447. [PMID: 29676593 DOI: 10.1165/rcmb.2017-0309oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
B-cell interaction with follicular helper T cells and subsequent differentiation of B cells into high-affinity APCs normally takes place in secondary lymphoid organs. The costimulator ICOS plays a key role in this process and is therefore considered as an attractive target to modulate exaggerated B-cell responses in autoimmune or allergic diseases. Inflamed tissues were recently recognized as additional sites of active T-cell/B-cell interaction. To analyze whether ICOS costimulation is also important there, we employed a mouse airway inflammation model that allows direct comparison of immune reactions in the lung-draining lymph node and the lung tissue as well as assessment of the relative importance of dendritic cells versus B cells as APCs. In both organs, ICOS regulated the pool size of antigen-specific T and B cells and B-cell differentiation into germinal center(-like) cells but not into antibody-secreting cells. In the lymph node, lack of ICOS costimulation drastically reduced the frequency of T follicular helper cells but did not affect production of T-helper cell type 2 (Th2) cytokines. Vice versa in the lung tissue, ICOS did not change PD-1 expression on infiltrating T cells but regulated Th2 cytokine production, a process for which ICOS ligand expression on B cells was of particular importance. Taken together, the results of this study show that ICOS differentially regulates effector T cells in secondary lymphoid organs and inflamed tissues but that blockade of the ICOS pathway is suitable to target T cell-dependent B cell responses at both sites.
Collapse
Affiliation(s)
- Dana Vu Van
- 1 Chronic Immune Reactions, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany; and.,2 Molecular Immunology, Robert Koch Institute, Berlin, Germany
| | - Laura Bauer
- 1 Chronic Immune Reactions, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany; and.,2 Molecular Immunology, Robert Koch Institute, Berlin, Germany
| | | | - Andreas Hutloff
- 1 Chronic Immune Reactions, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany; and.,2 Molecular Immunology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
23
|
Uwadiae FI, Pyle CJ, Walker SA, Lloyd CM, Harker JA. Targeting the ICOS/ICOS-L pathway in a mouse model of established allergic asthma disrupts T follicular helper cell responses and ameliorates disease. Allergy 2019; 74:650-662. [PMID: 30220084 PMCID: PMC6492018 DOI: 10.1111/all.13602] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Background Allergic asthma is characterized by chronic inflammation and remodelling of the airways, associated with dysregulated type 2 immune responses and allergen‐specific IgE. T follicular helper cells (TFH) are crucial in T‐dependent B‐cell responses and have been implicated in allergic airway disease (AAD). TFH, unlike other CD4+ T cells, are uniquely reliant on continuous ICOS signalling to maintain their phenotype after T‐cell priming; therefore, disrupting this signal can impair TFH responses. However, the contribution of TFH to disease during chronic aero‐allergen exposure and the therapeutic potential of targeting these cells have not been evaluated. Methods To establish AAD, female BALB/c mice were repeatedly exposed to house dust mite or Alternaria alternata three times a week for up to 5 weeks. To examine the impact of TFH on AAD, mice were allergen exposed for 5 weeks and co‐administered anti‐ICOS Ligand‐targeted antibodies, three times a week for the last 2 weeks. Results TFH were first observed in the lung‐draining lymph nodes and with further exposure were also found locally within the lungs. TFH accumulated with sustained allergen exposure, alongside germinal centre (GC) B cells. Blockade of ICOS signalling after AAD establishment successfully depleted TFH but did not affect the differentiation of other CD4+ T‐cell subsets. This reduced GC responses, allergen‐specific IgE, inflammation, pulmonary IL‐13 and airway hyper‐responsiveness. Conclusions TFH are crucial in the regulation of AAD and the ICOS/ICOS‐L pathway could represent a novel therapeutic target in allergic asthma.
Collapse
Affiliation(s)
- Faith I. Uwadiae
- Inflammation, Repair and Development Section National Heart and Lung Institute Imperial College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Chloe J. Pyle
- Inflammation, Repair and Development Section National Heart and Lung Institute Imperial College London London UK
| | - Simone A. Walker
- Inflammation, Repair and Development Section National Heart and Lung Institute Imperial College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Clare M. Lloyd
- Inflammation, Repair and Development Section National Heart and Lung Institute Imperial College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - James A. Harker
- Inflammation, Repair and Development Section National Heart and Lung Institute Imperial College London London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| |
Collapse
|
24
|
Gurram RK, Zhu J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell Mol Immunol 2019; 16:225-235. [PMID: 30792500 DOI: 10.1038/s41423-019-0210-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
The type 2 immune response is critical for host defense against large parasites such as helminths. On the other hand, dysregulation of the type 2 immune response may cause immunopathological conditions, including asthma, atopic dermatitis, rhinitis, and anaphylaxis. Thus, a balanced type 2 immune response must be achieved to mount effective protection against invading pathogens while avoiding immunopathology. The classical model of type 2 immunity mainly involves the differentiation of type 2 T helper (Th2) cells and the production of distinct type 2 cytokines, including interleukin-4 (IL-4), IL-5, and IL-13. Group 2 innate lymphoid cells (ILC2s) were recently recognized as another important source of type 2 cytokines. Although eosinophils, mast cells, and basophils can also express type 2 cytokines and participate in type 2 immune responses to various degrees, the production of type 2 cytokines by the lymphoid lineages, Th2 cells, and ILC2s in particular is the central event during the type 2 immune response. In this review, we discuss recent advances in our understanding of how ILC2s and Th2 cells orchestrate type 2 immune responses through direct and indirect interactions.
Collapse
Affiliation(s)
- Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Preite S, Huang B, Cannons JL, McGavern DB, Schwartzberg PL. PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity. Front Immunol 2019; 9:3079. [PMID: 30666254 PMCID: PMC6330320 DOI: 10.3389/fimmu.2018.03079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency “Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses.
Collapse
Affiliation(s)
- Silvia Preite
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L Cannons
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Shamsdin SA, Karimi MH, Hosseini SV, Geramizadeh B, Fattahi MR, Mehrabani D, Moravej A. Associations of ICOS and PD.1 Gene Variants with Colon Cancer Risk in The Iranian Population. Asian Pac J Cancer Prev 2018; 19:693-698. [PMID: 29580042 PMCID: PMC5980843 DOI: 10.22034/apjcp.2018.19.3.693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Positive and negative co-stimulatory molecules are important factors determining the outcome of immune responses to the presence of tumors. Since co-stimulatory molecule expression may be affected by gene polymorphisms, we aimed to investigate associations between variants of PD.1 and ICOS and susceptibility to colon cancer. Material and methods: ICOS (-693A/G), ICOS (+1720C/T) and PD.1 (-538G/A) gene polymorphisms were evaluated by the PCR-RFLP method in 76 colon cancer patients and 73 healthy controls. Results: The frequencies of the GG genotype and the G allele at position -693 of the ICOS gene were significantly higher in the patient group (P=0.014 and p=0.0002), while the AA genotype was significantly more common in controls (P=0.0016). At position -538 of PD.1, GG genotype and G allele frequencies were higher in the patient group (P<0.0001and P<0.0001). Again, AA and also AG genotypes significantly predominated in controls (P<0.0001 and P=0.012). Regarding genotypes and alleles of ICOS at position +1720. Frequencies of GCG and GTG haplotypes were higher in patients compared to those of controls (P=0.016 and P<0.0001), while, frequencies of GTA, ATA and ATG haplotypes were higher in controls (P=0.0017, P<0.0001 and P=0.015). GTG/GTG and GTG/GCG double haplotypes were more frequent in patients compared to controls (P=0.0147 and P=0.0071). Conclusion: Our study clarified that PD.1 (-538G/A) and ICOS (-693A/G) gene polymorphisms can be considered as genetic risk factors for the development of colon cancer among Iranian patients.
Collapse
Affiliation(s)
- Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | | | | | |
Collapse
|
27
|
Blom RAM, Amacker M, van Dijk RM, Moser C, Stumbles PA, Blank F, von Garnier C. Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4 + T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen. Front Immunol 2017; 8:359. [PMID: 28439267 PMCID: PMC5383731 DOI: 10.3389/fimmu.2017.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
Pulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments. Both virosomes and liposomes were captured by pulmonary macrophages and dendritic cells alike and induced activation in particle-bearing cells by upregulation of costimulatory markers such as CD40, CD80, CD86, PD-L1, PD-L2, and ICOS-L. Though antigen processing and accumulation of both coupled and soluble antigen was similar between virosomes and liposomes, only ovalbumin-coupled virosomes generated a strong antigen-specific CD4+ T cell proliferation. Pulmonary administrated antigen-coupled virosomes therefore effectively induced adaptive immune responses and may be utilized in novel preventive or therapeutic approaches in the respiratory tract.
Collapse
Affiliation(s)
- Rebecca A M Blom
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | - Christian Moser
- Swiss Federal Institute of Intellectual Property, Bern, Switzerland
| | - Philip A Stumbles
- School of Veterinary and Life Sciences, Medical and Molecular Sciences, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia
| | - Fabian Blank
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Christophe von Garnier
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, Sharpe AH, Soroosh P, Akbari O. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J Allergy Clin Immunol 2016; 139:1468-1477.e2. [PMID: 27717665 DOI: 10.1016/j.jaci.2016.08.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. OBJECTIVE In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. METHODS ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. RESULTS We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. CONCLUSION These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma.
Collapse
Affiliation(s)
- Diamanda Rigas
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Gavin Lewis
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif; Janssen Research and Development, San Diego, Calif
| | - Jennifer L Aron
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Bowen Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | | | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Richard Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Mass
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
30
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
31
|
Follicular helper T cells mediate IgE antibody response to airborne allergens. J Allergy Clin Immunol 2016; 139:300-313.e7. [PMID: 27325434 DOI: 10.1016/j.jaci.2016.04.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND TH2 cells have long been believed to play a pivotal role in allergic immune responses, including IgE antibody production and type 2 cytokine-mediated inflammation and pathology. A new T-cell subset, follicular helper T (TFH) cells, is specialized in supporting B-cell maturation and antibody production. OBJECTIVE We sought to investigate the roles of TFH cells in allergic immune responses. METHODS Naive mice were exposed to cytokines or natural allergens through the airways. Development of allergic immune responses was analyzed by collecting draining lymph nodes and sera and by challenging the animals. Cytokine reporter mice and gene-deficient mice were used to dissect the immunologic mechanisms. RESULTS We observed the development of IL-4-producing TFH cells and TH2 cells in draining lymph nodes after airway exposure to IL-1 family cytokines or natural allergens. TFH and TH2 cells demonstrated unique phenotypes, tissue localization, and cytokine responses. TFH cells supported the sustained production of IgE antibody in vivo in the absence of other T-cell subsets or even when TH2 cell functions were severely compromised. Conversely, conditional deficiency of the master regulator Bcl6 in CD4+ T cells resulted in a marked reduction in TFH cell numbers and IgE antibody levels, but type 2 cytokine responses and eosinophilic inflammation in the airways remained unaffected. CONCLUSION TFH cells play critical roles in the regulation of IgE antibody production. Allergic immune responses to airborne allergens likely involve 2 distinct subsets of IL-4-producing CD4+ T cells, namely TFH and Th2 cells.
Collapse
|
32
|
Sullivan BA, Tsuji W, Kivitz A, Peng J, Arnold GE, Boedigheimer MJ, Chiu K, Green CL, Kaliyaperumal A, Wang C, Ferbas J, Chung JB. Inducible T-cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus. Lupus Sci Med 2016; 3:e000146. [PMID: 27099766 PMCID: PMC4836284 DOI: 10.1136/lupus-2016-000146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/24/2022]
Abstract
Objectives To evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of single-dose and multiple-dose administration of AMG 557, a human anti-inducible T cell co-stimulator ligand (ICOSL) monoclonal antibody, in subjects with systemic lupus erythematosus (SLE). Methods Patients with mild, stable SLE (n=112) were enrolled in two clinical trials to evaluate the effects of single (1.8–210 mg subcutaneous or 18 mg intravenous) and multiple (6 –210 mg subcutaneous every other week (Q2W)×7) doses of AMG 557. Subjects received two 1 mg intradermal injections 28 days apart of keyhole limpet haemocyanin (KLH), a neoantigen, to assess PD effects of AMG 557. Safety, PK, target occupancy, anti-KLH antibody responses, lymphocyte subset analyses and SLE-associated biomarkers and clinical outcomes were assessed. Results AMG 557 demonstrated an acceptable safety profile. The PK properties were consistent with an antibody directed against a cell surface target, with non-linear PK observed at lower concentrations and linear PK at higher concentrations. Target occupancy by AMG 557 was dose dependent and reversible, and maximal occupancy was achieved in the setting of this trial. Anti-AMG 557 antibodies were observed, but none were neutralising and without impact on drug levels. A significant reduction in the anti-KLH IgG response was observed with AMG 557 administration without discernible changes in the anti-KLH IgM response or on the overall IgG levels. No discernible changes were seen in lymphocyte subsets or in SLE-related biomarkers and clinical measures. Conclusions The selective reduction in anti-KLH IgG demonstrates a PD effect of AMG 557 in subjects with SLE consistent with the biology of the ICOS pathway and supports further studies of AMG 557 as a potential therapeutic for autoimmune diseases. Trial registration numbers NCT02391259 and NCT00774943.
Collapse
Affiliation(s)
- B A Sullivan
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - W Tsuji
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - A Kivitz
- The Altoona Arthritis & Osteoporosis Center , Duncansville, Pennsylvania , USA
| | - J Peng
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - G E Arnold
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - M J Boedigheimer
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - K Chiu
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - C L Green
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - A Kaliyaperumal
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - C Wang
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - J Ferbas
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| | - J B Chung
- Department of Medical Sciences , Amgen Inc., One Amgen Center Drive , Thousand Oaks, California , USA
| |
Collapse
|
33
|
Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun 2015; 463:739-45. [PMID: 26049110 DOI: 10.1016/j.bbrc.2015.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are newly identified, potent producers of type 2 cytokines, such as IL-5 and IL-13, and contribute to the development of allergic lung inflammation induced by cysteine proteases. Although it has been shown that inducible costimulator (ICOS), a costimulatory molecule, is expressed on ILC2s, the role of ICOS in ILC2 responses is largely unknown. In the present study, we investigated whether the interaction of ICOS with its ligand B7-related protein-1 (B7RP-1) can promote ILC2 activation. Cytokine production in ILC2s purified from mouse lungs was significantly increased by coculture with B7RP-1-transfected cells, and increased cytokine production was inhibited by monoclonal antibody-mediated blocking of the ICOS/B7RP-1 interaction. ILC2 expansion and eosinophil influx induced by papain, a cysteine protease antigen, in mouse lungs were significantly abrogated by blocking the ICOS/B7RP-1 interaction. Dendritic cells (DCs) in the lungs expressed B7RP-1 and the number of DCs markedly increased with papain administration. B7RP-1 expression on lung DCs was reduced after papain administration. This downregulation of B7RP-1 expression may be an indication of ICOS/B7RP-1 binding. These results indicate that ILC2s might interact with B7RP-1-expressing DCs in allergic inflammatory lung, and ICOS signaling can positively regulate the protease allergen-induced ILC2 activation followed by eosinophil infiltration into the lungs.
Collapse
Affiliation(s)
- Fumitaka Kamachi
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Takuma Isshiki
- Division of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hisaya Akiba
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
34
|
Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH, Akbari O. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 2015; 42:538-51. [PMID: 25769613 DOI: 10.1016/j.immuni.2015.02.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/12/2014] [Accepted: 12/24/2014] [Indexed: 11/27/2022]
Abstract
Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis.
Collapse
Affiliation(s)
- Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Nisheel Patel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Yuzo Suzuki
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Diamanda Rigas
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Pejman Soroosh
- Janssen Research and Development, San Diego, California 92121, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA.
| |
Collapse
|
35
|
Wang B, Liang S, Wang Y, Zhu XQ, Gong W, Zhang HQ, Li Y, Xia CM. Th17 down-regulation is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice. PLoS Negl Trop Dis 2015; 9:e0003434. [PMID: 25590646 PMCID: PMC4295877 DOI: 10.1371/journal.pntd.0003434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Granulomatous and fibrosing inflammation in response to parasite eggs is the main pathology that occurs during infection with Schistosoma spp. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis,and coordinate many types of immune cells that contribute to fibrosis. ICOSL plays an important role in controlling specific aspects of T cell activation, differentiation, and function. Previous work has suggested that ICOS is essential for Th17 cell development. However, the immunopathogenesis of this pathway in schistosomiasis fibrosisis still unclear. Methodology/Principal Findings Using models of schistosomiasis in ICOSL KO and the C57BL/6 WT mice, we studied the role of the ICOSL/ICOS interaction in the mediation of the Th17 response in host granulomatous inflammation, particularly in liver fibrosis during S. japonicum infection, and investigated the immune responses and pathology of ICOSL KO mice in these models. The results showed that ICOSL KO mice exhibited improved survival, reduced liver granulomatous inflammation around parasite eggs, markedly inhibited hepatic fibrosis development, lower levels of Th17-related cytokines (IL-17/IL-21), Th2-related cytokines (IL-4/IL-6/IL-10), a pro-fibrotic cytokine (IL-13), and TGF-β1, but higher level of Th1-related cytokine (IFN-γ) compared to wild-type (WT) mice. The reduced progression of fibrogenesis was correlated with the down-regulation of Th17 and Th2 and the elimination of ICOSL/ICOS interactions. Conclusions/Significance Our findings suggest that IL-17-producing cells contribute to the hepatic granulomatous inflammation and subsequent fibrosis. Importantly, there was a clearly positive correlation between the presence of IL-17-producing cells and ICOS expression in ICOSL KO mice, and additional results indicated that Th17 was involved in the pathological tissue remodeling in liver fibrosis induced by schistosomiasis. The full activation and differentiation of T cells into Th1, Th2 or Th17 cells requires costimulatory molecules and cytokines. ICOS has also been implicated in chronic inflammation and is critical for Th17 cell development. CD4+ IL-17-secreting T cells have been shown to contribute to pathology in some models of liver fibrosis. However, neither the significance nor the immunopathogenesis of this pathway have been elucidated in schistosomiasis fibrosis. The present study used the ICOSL KO mice to assess the role of the ICOSL/ICOS interaction in the mediation of the Th17 response in host granulomatous inflammation, particularly in liver fibrosis during S.japonicum infection. This study further clarifies the immune regulatory mechanism of fibrosis and sheds light on the understanding of the immunopathogenesis of Schistosoma-induced fibrosis. It might reveal new therapeutic targets that interfere with Th17 cell migration or differentiation in granulomas and the subsequent fibrosis following infection with S. japonicum.
Collapse
Affiliation(s)
- Bo Wang
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
| | - Song Liang
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
| | - Yu Wang
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, The Peoples Republic of China
| | - Wei Gong
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
| | - Hui-Qin Zhang
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
| | - Ying Li
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
| | - Chao-Ming Xia
- Department of Parasitology, Medical College of Soochow University, Suzhou,Jiangsu Province, The Peoples Republic of China
- * E-mail: ;
| |
Collapse
|
36
|
Shen C, Hupin C, Froidure A, Detry B, Pilette C. Impaired ICOSL in human myeloid dendritic cells promotes Th2 responses in patients with allergic rhinitis and asthma. Clin Exp Allergy 2015; 44:831-41. [PMID: 24661627 DOI: 10.1111/cea.12308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Myeloid dendritic cells (mDCs) and costimulatory molecules such as ICOSL/B7H2 play a pivotal role in murine experimental asthma, while little is known in human allergic disease. The aim of this study was to characterize the phenotype and ICOSL expression of mDCs from allergic rhinitis patients (AR) and their functional correlates on mDC regulation of T cell responses. METHODS Human blood myeloid, CD1c(+) DCs were isolated from AR or healthy controls. Expression of costimulatory molecules inducible costimulatory ligand (ICOSL) and programmed death ligand 1 (PD-L1) was analysed in blood mDCs by flow cytometry and in nasal tissue biopsies by dual immunostaining. Blood mDCs were cocultured with (allogeneic) CD4(+) T cells before immunoassays for cytokine responses. RESULTS mDCs from AR patients expressed a lower level of ICOSL, in both blood and nasal tissue. mDCs from AR were constitutively primed to induce Th2 cytokines and TNF in allogeneic CD4(+) T cells, while no difference was observed for IFN-γ or IL-10. Production of IL-10 and IL-12 did not differ between AR and control mDCs. Blockade of ICOSL in control DCs up-regulated IL-13 but not IFN-γ in cocultures with T cells, while PD-L1 blockade up-regulated both IL-13 and IFN-γ. CONCLUSIONS Our data show that mDCs from patients with AR display impaired expression of ICOSL, and this defect licenses mDCs to promote aberrant IL-13- and IL-5-producing Th2 cell responses.
Collapse
Affiliation(s)
- C Shen
- Pôle Pneumologie, ORL & Dermatologie, Institut de Recherche Expérimentale & Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium; Institute for Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Cliniques Universitaires St-Luc, Brussels, Belgium
| | | | | | | | | |
Collapse
|
37
|
Mayer A, Debuisson D, Denanglaire S, Eddahri F, Fievez L, Hercor M, Triffaux E, Moser M, Bureau F, Leo O, Andris F. Antigen presenting cell-derived IL-6 restricts Th2-cell differentiation. Eur J Immunol 2014; 44:3252-62. [PMID: 25092208 DOI: 10.1002/eji.201444646] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/23/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022]
Abstract
The identification of DC-derived signals orchestrating activation of Th1 and Th17 immune responses has advanced our understanding on how these inflammatory responses develop. However, whether specific signals delivered by DCs also participate in the regulation of Th2 immune responses remains largely unknown. In this study, we show that administration of antigen-loaded, IL-6-deficient DCs to naïve mice induced an exacerbated Th2 response, characterized by the differentiation of GATA-3-expressing T lymphocytes secreting high levels of IL-4, IL-5, and IL-13. Coinjection of wild type and IL-6-deficient bone marrow-derived dendritic cells (BMDCs) confirmed that IL-6 exerted a dominant, negative influence on Th2-cell development. This finding was confirmed in vitro, where exogenously added IL-6 was found to limit IL-4-induced Th2-cell differentiation. iNKT cells were required for optimal Th2-cell differentiation in vivo although their activation occurred independently of IL-6 secretion by the BMDCs. Collectively, these observations identify IL-6 secretion as a major, unsuspected, mechanism whereby DCs control the magnitude of Th2 immunity.
Collapse
Affiliation(s)
- Alice Mayer
- Laboratoire d'Immunobiologie, Institut de Biologie et de Médecine Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cabrera CM, Urra JM, Alfaya T, Roca FDL, Feo-Brito F. Expression of Th1, Th2, lymphocyte trafficking and activation markers on CD4+ T-cells of Hymenoptera allergic subjects and after venom immunotherapy. Mol Immunol 2014; 62:178-85. [PMID: 25004111 DOI: 10.1016/j.molimm.2014.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
Systemic reactions to Hymenoptera stings can be fatal and represent a reduction in the quality of life. The immune mechanisms involved in venom allergic subjects are barely known. Nevertheless, a shift towards a Th1-type response with an increase in IFNγ levels has been observed after venom immunotherapy (VIT). There is currently no information available about the expression of markers on CD4+ T-cells or their involvement in venom allergy, nor following VIT. For this, we have studied the expression of Th1 and Th2-cell markers, homing receptors and activation markers on CD4+ T-cells of subjects who presented systemic allergic reactions, mainly to Polistes dominulus, and after receiving a 4-month conventional VIT protocol. The markers studied were: CD26 (Th1), CD30 (Th2), CXCR4, CXCR3 (Th1), CCR4 (Th2), CD154 (CD40L), CD152 (CTLA-A), and ICOS. We also determined the IL-4 (Th2) and IFNγ (Th1) intracellular cytokine levels in T-cells and carried out a basophil activation test (BAT). Comparing venom allergic subjects with non-allergic healthy controls, we have found up-regulation of CD26, CXCR4, CXCR3, CD154 and ICOS. Conversely, a down-regulation of CD30, CD154 and CD152 occurred upon immune intervention, whereas the remaining markers were not affected. Equally, VIT has been shown to be effective, as evidenced by the decrease of basophil degranulation and increase of IFNγ levels in T-cells after the fourth month of treatment. These new findings highlight the possible application of these surface molecules as markers to distinguish between symptomatic and asymptomatic subjects sensitized to Hymenoptera venom, as well as revealing information about the immune changes associated with VIT.
Collapse
Affiliation(s)
- Carmen M Cabrera
- Immunology Section, Servicio de Análisis Clínicos, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - José M Urra
- Immunology Section, Servicio de Análisis Clínicos, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Teresa Alfaya
- Allergy Section, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Federico De La Roca
- Allergy Section, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Francisco Feo-Brito
- Allergy Section, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
39
|
Maltzman JS, Turka LA. T-cell costimulatory blockade in organ transplantation. Cold Spring Harb Perspect Med 2013; 3:a015537. [PMID: 24296352 DOI: 10.1101/cshperspect.a015537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Before it became possible to derive T-cell lines and clones, initial experimentation on the activation requirements of T lymphocytes was performed on transformed cell lines, such as Jurkat. These studies, although technically correct, proved misleading as most transformed T cells can be activated by stimulation of the clonotypic T-cell receptor (TCR) alone. In contrast, once it became possible to study nontransformed T cells, it quickly became clear that TCR stimulation by itself is insufficient for optimal activation of naïve T cells, but in fact, induces a state of anergy. It then became clear that functional activation of T cells requires not only recognition of major histocompatibility complex (MHC) and peptide by the TCR, but also requires ligation of costimulatory receptors expressed on the cell surface.
Collapse
Affiliation(s)
- Jonathan S Maltzman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
40
|
Guibas GV, Makris M, Papadopoulos NG. Key Regulators of Sensitization and Tolerance: GM-CSF, IL-10, TGF-β and the Notch Signaling Pathway in Adjuvant-Free Experimental Models of Respiratory Allergy. Int Rev Immunol 2013; 32:307-23. [DOI: 10.3109/08830185.2013.794457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Deppong CM, Green JM. Experimental advances in understanding allergic airway inflammation. Front Biosci (Schol Ed) 2013; 5:167-80. [PMID: 23277043 DOI: 10.2741/s364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is largely an inflammatory disease, with the development of T cell mediated inflammation in the lung following exposure to allergen or other precipitating factors. Currently, the major therapies for this disease are directed either at relief of bronchoconstriction (ie beta-agonists) or are non-specific immunomodulators (ie, corticosteroids). While much attention has been paid to factors that regulate the initiation of an inflammatory response, chronic inflammation may also be due to defects in regulatory mechanisms that limit or terminate immune responses. In this review, we explore the elements controlling both the recruitment of T cells to the lung and their function. Possibilities for future therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Pace E, Di Sano C, La Grutta S, Ferraro M, Albeggiani G, Liotta G, Di Vincenzo S, Uasuf CG, Bousquet J, Gjomarkaj M. Multiple in vitro and in vivo regulatory effects of budesonide in CD4+ T lymphocyte subpopulations of allergic asthmatics. PLoS One 2012; 7:e48816. [PMID: 23251336 PMCID: PMC3521011 DOI: 10.1371/journal.pone.0048816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Increased activation and increased survival of T lymphocytes characterise bronchial asthma. OBJECTIVES In this study the effect of budesonide on T cell survival, on inducible co-stimulator T cells (ICOS), on Foxp3 and on IL-10 molecules in T lymphocyte sub-populations was assessed. METHODS Cell survival (by annexin V binding) and ICOS in total lymphocytes, in CD4+/CD25+ and in CD4+/CD25- and Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25-cells was evaluated, by cytofluorimetric analysis, in mild intermittent asthmatics (n = 19) and in controls (n = 15). Allergen induced T lymphocyte proliferation and the in vivo effects of budesonide in mild persistent asthmatics (n = 6) were also explored. RESULTS Foxp3 was reduced in CD4+/CD25- and in CD4+/CD25+ cells and ICOS was reduced in CD4+/CD25+ cells but it was increased in CD4+CD25-in asthmatics when compared to controls. In asthmatics, in vitro, budesonide was able to: 1) increase annexin V binding and to reduce ICOS in total lymphocytes; 2) increase annexin V binding and Foxp3 and to reduce ICOS in CD4+/CD25- cells; 3) reduce annexin V binding and to increase IL-10 and ICOS in CD4+/CD25+ cells; 4) reduce cell allergen induced proliferation. In vivo, budesonide increased ICOS in CD4+/CD25+ while it increased Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25- cells. CONCLUSIONS Budesonide modulates T cell survival, ICOS, Foxp3 and IL-10 molecules differently in T lymphocyte sub-populations. The findings provided shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation.
Collapse
Affiliation(s)
- Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare, Unità di Immunopatologia e Farmacologia Clinica e Sperimentale dell'Apparato Respiratorio, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Watanabe M, Nakajima S, Ohnuki K, Ogawa S, Yamashita M, Nakayama T, Murakami Y, Tanabe K, Abe R. AP-1 is involved in ICOS gene expression downstream of TCR/CD28 and cytokine receptor signaling. Eur J Immunol 2012; 42:1850-62. [PMID: 22585681 DOI: 10.1002/eji.201141897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been proposed that sustained ICOS expression in chronic inflammatory immune conditions, such as autoimmunity and allergy, contributes to symptom exacerbation. Therefore modulation of ICOS gene expression could be a potential therapeutic strategy for such immune diseases. However, the precise molecular mechanisms controlling ICOS gene expression remain poorly understood. In this study, we explored transcription factors involving in ICOS gene expression and examined their roles in a physiological situation. Microarray analysis revealed that one AP-1 molecule, Fos-related antigen-2 (Fra2), was highly correlated with ICOS expression. Ectopic expression of Fra2 and other AP-1 molecules upregulated ICOS expression on T cells. We identified an AP-1-responsive site (AP1-RE) within the ICOS promoter region and demonstrated AP-1 actually binds to AP1-RE upon TCR/CD28 stimulation. Meanwhile, we found several cytokines could upregulate ICOS expression on both naïve and effector T cells in a manner independent of TCR/CD28 stimulation. These cytokine stimuli induced AP-1 binding to AP1-RE. Together, our results indicate AP-1 transcription factors are involved in ICOS gene expression downstream of both TCR/CD28 signaling and cytokine receptor signaling, and suggest AP-1 activation via cytokine receptor signaling may be one of the mechanisms maintaining high level ICOS expression in chronic inflammatory immune responses.
Collapse
Affiliation(s)
- Masashi Watanabe
- Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Selection of Single Chain Variable Fragments Specific for the Human-Inducible Costimulator Using Ribosome Display. Appl Biochem Biotechnol 2012; 168:967-79. [DOI: 10.1007/s12010-012-9800-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/03/2012] [Indexed: 12/13/2022]
|
45
|
Busse M, Krech M, Meyer-Bahlburg A, Hennig C, Hansen G. ICOS Mediates the Generation and Function of CD4+CD25+Foxp3+ Regulatory T Cells Conveying Respiratory Tolerance. THE JOURNAL OF IMMUNOLOGY 2012; 189:1975-82. [DOI: 10.4049/jimmunol.1103581] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Larimore K, Liang L, Bakkour S, Sha WC. B7h-expressing dendritic cells and plasma B cells mediate distinct outcomes of ICOS costimulation in T cell-dependent antibody responses. BMC Immunol 2012; 13:29. [PMID: 22686515 PMCID: PMC3477010 DOI: 10.1186/1471-2172-13-29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/22/2012] [Indexed: 12/11/2022] Open
Abstract
Background The ICOS-B7h costimulatory receptor-ligand pair is required for germinal center formation, the production of isotype-switched antibodies, and antibody affinity maturation in response to T cell-dependent antigens. However, the potentially distinct roles of regulated B7h expression on B cells and dendritic cells in T cell-dependent antibody responses have not been defined. Results We generated transgenic mice with lineage-restricted B7h expression to assess the cell-type specific roles of B7h expression on B cells and dendritic cells in regulating T cell-dependent antibody responses. Our results show that endogenous B7h expression is reduced on B cells after activation in vitro and is also reduced in vivo on antibody-secreting plasma B cells in comparison to both naïve and germinal center B cells from which they are derived. Increasing the level of B7h expression on activated and plasma B cells in B-B7hTg mice led to an increase in the number of antibody-secreting plasma cells generated after immunization and a corresponding increase in the concentration of antigen-specific high affinity serum IgG antibodies of all isotypes, without affecting the number of responding germinal center B cells. In contrast, ICOS costimulation mediated by dendritic cells in DC-B7hTg mice contributed to germinal center formation and selectively increased IgG2a production without affecting the overall magnitude of antibody responses. Conclusions Using transgenic mice with lineage-restricted B7h expression, we have revealed distinct roles of ICOS costimulation mediated by dendritic cells and B cells in the regulation of T cell-dependent antibody responses.
Collapse
Affiliation(s)
- Kevin Larimore
- Immunology Division, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | | | | | |
Collapse
|
47
|
Wang B, Cheng H, Wang L, Zhou H, Wang J. Expression of ICOSLG on Mouse Hematologic Neoplasm Cell Lines and Their Influence on Cytotoxicity in Allogeneic Mixed Lymphocyte Reactions. Leuk Lymphoma 2012; 53:674-80. [DOI: 10.3109/10428194.2011.625577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Smeets RL, Fleuren WWM, He X, Vink PM, Wijnands F, Gorecka M, Klop H, Bauerschmidt S, Garritsen A, Koenen HJPM, Joosten I, Boots AMH, Alkema W. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling. BMC Immunol 2012; 13:12. [PMID: 22413885 PMCID: PMC3355027 DOI: 10.1186/1471-2172-13-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/14/2012] [Indexed: 12/13/2022] Open
Abstract
Background T lymphocytes are orchestrators of adaptive immunity. Naïve T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. Results Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNγ, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCθ are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCθ in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCθ dependent IFNγ production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. Conclusions This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell activation. PMA/CD3 stimulation enhances a Th1-like response in an Lck and PKCθ dependent fashion, whereas PMA/CD28 stimulation results in a Th2-like phenotype independent of the proximal TCR-tyrosine kinase Lck. This approach offers a robust and fast translational in vitro system for skewed T helper cell responses in Jurkat T cells, primary human CD4+ Tcells and in a more complex matrix such as human whole blood.
Collapse
Affiliation(s)
- Ruben L Smeets
- Department of Immune Therapeutics, Merck Research Laboratories-MRL, MSD, Oss, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pletinckx K, Stijlemans B, Pavlovic V, Laube R, Brandl C, Kneitz S, Beschin A, De Baetselier P, Lutz MB. Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses. Eur J Immunol 2011; 41:3479-94. [PMID: 21928284 DOI: 10.1002/eji.201141631] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022]
Abstract
DCs represent the major cell type leading to polarized T-helper (Th) cell responses in vivo. Here, we asked whether the instruction of murine Th2 responses by DCs matured with the proinflammatory cytokine TNF is qualitatively different from maturation by different types of TLR4/MyD88-dependent variant-specific surface glycoproteins (VSGs) of Trypanosoma brucei (T. brucei). The results obtained by analyzing DC surface markers, Notch ligand mRNA, cytokines, asthma, and experimental autoimmune encephalomyelitis (EAE) models as well as performing microarrays indicate that both types of stimuli induce similar inflammatory, semi-mature DC profiles. DCs matured by TNF or VSG treatment expressed a common inflammatory signature of 24 genes correlating with their Th2-polarization capacity. However, the same 24 genes and 4498 additional genes were expressed by DCs treated with LPS that went on to induce Th1 cells. These findings support the concept of a default pathway for Th2-cell induction in DCs matured under suboptimal or inflammatory conditions, independent of the surface receptors and signaling pathways involved. Our data also indicate that quantitative differences in DC maturation might direct Th2- vs Th1-cell responses, since suboptimally matured inflammatory DCs induce default Th2-cell maturation, whereas fully mature DCs induce Th1-cell maturation.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu F, Li D, Zhang Q, Fu Z, Zhang J, Yuan W, Chen S, Pang D, Li D. ICOS gene polymorphisms are associated with sporadic breast cancer: a case-control study. BMC Cancer 2011; 11:392. [PMID: 21917182 PMCID: PMC3185281 DOI: 10.1186/1471-2407-11-392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/15/2011] [Indexed: 01/05/2023] Open
Abstract
Background Inducible costimulator (ICOS), a costimulatory molecular of the CD28 family, provides positive signal to enhance T cell proliferation. Its abnormal expression can disturb the immune response and entail an increased risk of cancer. To investigate whether single nucleotide polymorphisms (SNPs) in the ICOS gene are associated with sporadic breast cancer susceptibility and progression in Chinese women, a case-control study was conducted. Methods In the study cohort, we genotyped five SNPs (rs11889031, rs10932029, rs4675374, rs10183087 and rs10932037) in ICOS gene among 609 breast cancer patients and 665 age-matched healthy controls. Furthermore, the positive results were replicated in an independent validation cohort of 619 patients and 682 age-matched healthy controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotypes. Results In rs10932029, compared with TT genotype and T allele, the CT genotype and C allele showed a significantly increased risk of breast cancer (P = 0.030, OR = 1.467, 95% CI 1.037-2.077; P = 0.017, OR = 1.481, 95% CI 1.070-2.049, respectively), and the associations were also significant in the validation cohort (P = 0.002, OR = 1.693, 95% CI 1.211-2.357; P = 0.003, OR = 1.607, 95% CI 1.171-2.204, respectively). Haplotype analysis showed that CTCAC haplotype containing rs10932029 T allele had a lower frequency in cases than in controls (P = 0.015), whereas haplotype CCCAC containing rs10932029 C allele was more common in cases than in controls (P = 0.013). In the analysis of clinicopathologic features, rs11889031 CT genotype and T allele were associated with progesterone receptor (PR) status and lymph node metastasis, which were further supported by our validation cohort. Moreover, some haplotypes were associated with estrogen receptor (ER) and PR statuses. Conclusions These results indicate that ICOS gene polymorphisms may affect the risk of breast cancer and show that some SNPs are associated with breast cancer characteristics in a northern Chinese population.
Collapse
Affiliation(s)
- Fengyan Xu
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | |
Collapse
|