1
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Höyhtyä M, Haaramo A, Nikkonen A, Ventin-Holmberg R, Agrawal N, Ritari J, Hickman B, Partanen J, Alapulli H, Tuokkola J, Salonen A, de Vos WM, Kolho KL. Fecal microbiota and genetics in pediatric-onset orofacial granulomatosis and Crohn´s disease. Sci Rep 2025; 15:6020. [PMID: 39972069 PMCID: PMC11839994 DOI: 10.1038/s41598-025-90243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Orofacial granulomatosis (OFG) is a rare chronic inflammatory condition. It is under debate, whether it is a condition of its own or merely a subtype of Crohn's disease (CD). We aimed to search for markers characteristic of patients with pediatric-onset OFG compared to patients with pediatric-onset CD. We recruited young patients with OFG (with or without CD, n = 29), CD (n = 24), and healthy controls (n = 20). All participants provided a fecal sample for microbiota and calprotectin analyses and saliva for DNA analysis of genes associated with OFG and kept a 3-day food diary. Oral disease activity was evaluated using The Oral Disease Activity Score by an otorhinolaryngologist and a dentist. We observed decreased relative abundance in class Clostridia and increased relative abundances of classes Actinobacteria and Bacilli in the feces of patients with OFG when compared to patients with CD and healthy controls. The relative abundances of Bifidobacterium adolescentis increased and Faecalibacterium prausnitzii decreased along with the increase in the Oral Disease Activity Score. We found the NOD2 gene rs8057341 allele A to be enriched in patients with OFG compared to patients with CD. These findings support the theory that OFG is a distinct disease phenotype.
Collapse
Affiliation(s)
- Miikka Höyhtyä
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Haaramo
- Department of Otorhinolaryngology, Head and Neck Surgery, Helsinki University Hospital HUS and University of Helsinki, Helsinki, Finland
| | - Anne Nikkonen
- Children´S Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Rebecka Ventin-Holmberg
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Nitin Agrawal
- Fin-HIT Research Group, Folkhälsan Research Center, Department of Public Health, Helsinki, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Heikki Alapulli
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital HUS, Helsinki, Finland
| | - Jetta Tuokkola
- Clinical Nutrition Unit, Internal Medicine and Rehabilitation, Institute of Public Health, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Nutrition, Kuopio and Department of Medicine, Endocrinology and Clinical Nutrition, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Kaija-Leena Kolho
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children´S Hospital, University of Helsinki and HUS, Helsinki, Finland.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Buffet-Bataillon S, Durão G, Le Huërou-Luron I, Rué O, Le Cunff Y, Cattoir V, Bouguen G. Gut microbiota dysfunction in Crohn's disease. Front Cell Infect Microbiol 2025; 15:1540352. [PMID: 40007605 PMCID: PMC11850416 DOI: 10.3389/fcimb.2025.1540352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Crohn's disease (CD) results from alterations in the gut microbiota and the immune system. However, the exact metabolic dysfunctions of the gut microbiota during CD are still unclear. Here, we investigated metagenomic functions using PICRUSt2 during the course of CD to better understand microbiota-related disease mechanisms and provide new insights for novel therapeutic strategies. Methods We performed 16S rRNA-based microbial profiling of 567 faecal samples collected from a cohort of 383 CD patients, including 291 remissions (CR), 177 mild-moderate (CM) and 99 severe (CS) disease states. Gene and pathway composition was assessed using PICRUSt2 analyses of 16S data. Results As expected, changes in alpha and beta diversity, in interaction networks and increases in Proteobacteria abundance were associated with disease severity. However, microbial function was more consistently disrupted than composition from CR, to CM and then to CS. Major shifts in oxidative stress pathways and reduced carbohydrate and amino acid metabolism in favour of nutrient transport were identified in CS compared to CR. Virulence factors involved in host invasion, host evasion and inflammation were also increased in CS. Conclusions This functional metagenomic information provides new insights into community-wide microbial processes and pathways associated with CD pathogenesis. This study paves the way for new advanced strategies to rebalance gut microbiota and/or eliminate oxidative stress, and biofilm to downregulate gut inflammation.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
- Institut NUMECAN, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Gabriela Durão
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | | | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | | | - Vincent Cattoir
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | | |
Collapse
|
4
|
Chen L, Peng J, Wang Y, Liu Y, Fu X, Li J. FMT Combined with Vedolizumab for the Treatment of Refractory Ulcerative Colitis. Dig Dis Sci 2024; 69:4006-4008. [PMID: 39460881 DOI: 10.1007/s10620-024-08666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Lanfang Chen
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, 278# Bao guang Avenue, Xindu District, Chengdu, Sichuan, 610000, People's Republic of China
| | - Juan Peng
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, 278# Bao guang Avenue, Xindu District, Chengdu, Sichuan, 610000, People's Republic of China
| | - Yanwei Wang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, 278# Bao guang Avenue, Xindu District, Chengdu, Sichuan, 610000, People's Republic of China
| | - Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, 278# Bao guang Avenue, Xindu District, Chengdu, Sichuan, 610000, People's Republic of China.
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, 278# Bao guang Avenue, Xindu District, Chengdu, Sichuan, 610000, People's Republic of China
| |
Collapse
|
5
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, Akanyibah FA, Mao F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed Pharmacother 2024; 179:117302. [PMID: 39163678 DOI: 10.1016/j.biopha.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex disorder with an unknown cause. However, the dysbiosis of the gut microbiome has been found to play a role in IBD etiology, including exacerbated immune responses and defective intestinal barrier integrity. The gut microbiome can also be a potential biomarker for several diseases, including IBD. Currently, conventional treatments targeting pro-inflammatory cytokines and pathways in IBD-associated dysbiosis do not yield effective results. Other therapies that directly target the dysbiotic microbiome for effective outcomes are emerging. We review the role of the gut microbiome in health and IBD and its potential as a diagnostic, prognostic, and therapeutic target for IBD. This review also explores emerging therapeutic advancements that target gut microbiome-associated alterations in IBD, such as nanoparticle or encapsulation delivery, fecal microbiota transplantation, nutritional therapies, microbiome/probiotic engineering, phage therapy, mesenchymal stem cells (MSCs), gut proteins, and herbal formulas.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Jianhua Peng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Peipei Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, China
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
7
|
Qusty N, Sarhan A, Taha M, Alshanqiti A, Almuteb AM, Alfaraidi AT, Alkhairi HA, Alzahrani MM, Alamry AHA, Alomry TQB, Bannan OA, Almaashi MS. The Role of Gut Microbiota in the Efficacy and Side Effect Profile of Biologic Therapies for Autoimmune Diseases. Cureus 2024; 16:e71111. [PMID: 39525264 PMCID: PMC11548951 DOI: 10.7759/cureus.71111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The role of gut microbiota in influencing the efficacy and side effect profile of biological therapies for autoimmune diseases has gained increasing attention. Understanding these interactions is crucial for optimizing treatment outcomes and minimizing adverse events associated with biological therapies. This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We comprehensively analyzed studies involving human subjects with autoimmune diseases treated with biological therapies. Data on gut microbiota composition, therapeutic efficacy, and side effect profiles were extracted and synthesized to assess the impact of microbiota on treatment outcomes. Our review identified a significant relationship between gut microbiota composition and the efficacy of biological therapies. Specific bacterial taxa, such as Clostridiales and Roseburia inulinivorans, were associated with improved therapeutic responses, while alterations in microbiota were linked to increased adverse events. The predictive potential was demonstrated with microbiota signatures correlating with treatment success and side effects, highlighting the relevance of microbial profiles in therapeutic outcomes. The findings suggest that gut microbiota plays a pivotal role in modulating the efficacy and side effect profile of biological therapies for autoimmune diseases. Integrating microbiota assessments into clinical practice could enhance personalized treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Naeem Qusty
- Department of Clinical Laboratory Sciences, Umm Al-Qura University, Makkah, SAU
| | - Anas Sarhan
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Medhat Taha
- Department of Anatomy, Umm Al-Qura University, Al-Qunfudhah, SAU
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bacsur P, Resál T, Farkas B, Jójárt B, Gyuris Z, Jaksa G, Pintér L, Takács B, Pál S, Gácser A, Szántó KJ, Rutka M, Bor R, Fábián A, Farkas K, Maléth J, Szepes Z, Molnár T, Bálint A. Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn's Disease. Biomedicines 2024; 12:2100. [PMID: 39335613 PMCID: PMC11429102 DOI: 10.3390/biomedicines12092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alterations to intestinal microbiota are assumed to occur in the pathogenesis of inflammatory bowel disease (IBD). This study aims to analyze the association of fecal microbiota composition, body composition, and lipid characteristics in patients with Crohn's disease (CD). In our cross-sectional study, patients with CD were enrolled and blood and fecal samples were collected. Clinical and endoscopic disease activity and body composition were assessed and laboratory tests were made. Fecal bacterial composition was analyzed using the shotgun method. Microbiota alterations based on obesity, lipid parameters, and disease characteristics were analyzed. In this study, 27 patients with CD were analyzed, of which 37.0% were obese based on visceral fat area (VFA). Beta diversities were higher in non-obese patients (p < 0.001), but relative abundances did not differ. C. innocuum had a higher abundance at a high cholesterol level than Bacillota (p = 0.001, p = 0.0034). Adlercreutzia, B. longum, and Blautia alterations were correlated with triglyceride levels. Higher Clostridia (p = 0.009) and B. schinkii (p = 0.032) and lower Lactobacillus (p = 0.035) were connected to high VFA. Disease activity was coupled with dysbiotic elements. Microbiota alterations in obesity highlight the importance of gut microbiota in diseases with a similar inflammatory background and project therapeutic options.
Collapse
Affiliation(s)
- Péter Bacsur
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- HCEMM-USZ Translational Colorectal Research Group, H-6725 Szeged, Hungary
| | - Tamás Resál
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Bernadett Farkas
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Boldizsár Jójárt
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- Momentum Epithelial Cell Signaling and Secretion Research Group, Hungarian Academy of Science, University of Szeged, H-6720 Szeged, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, H-6720 Szeged, Hungary
| | | | | | | | - Bertalan Takács
- Mutagenesis and Carcinogenesis Research Group, Hungarian Centre of Excellence of Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Sára Pál
- HCEMM-USZ Pathogen Fungi Research Group, H-6726 Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Pathogen Fungi Research Group, H-6726 Szeged, Hungary
| | - Kata Judit Szántó
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Mariann Rutka
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Renáta Bor
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Anna Fábián
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Klaudia Farkas
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- HCEMM-USZ Translational Colorectal Research Group, H-6725 Szeged, Hungary
| | - József Maléth
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- Momentum Epithelial Cell Signaling and Secretion Research Group, Hungarian Academy of Science, University of Szeged, H-6720 Szeged, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, H-6720 Szeged, Hungary
| | - Zoltán Szepes
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Tamás Molnár
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Anita Bálint
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Koleva P, He J, Dunsmore G, Bozorgmehr N, Lu J, Huynh M, Tollenaar S, Huang V, Walter J, Way SS, Elahi S. CD71 + erythroid cells promote intestinal symbiotic microbial communities in pregnancy and neonatal period. MICROBIOME 2024; 12:142. [PMID: 39080725 PMCID: PMC11290123 DOI: 10.1186/s40168-024-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 06/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The establishment of microbial communities in neonatal mammals plays a pivotal role in shaping their immune responses to infections and other immune-related conditions. This process is influenced by a combination of endogenous and exogenous factors. Previously, we reported that depletion of CD71 + erythroid cells (CECs) results in an inflammatory response to microbial communities in newborn mice. RESULTS Here, we systemically tested this hypothesis and observed that the small intestinal lamina propria of neonatal mice had the highest frequency of CECs during the early days of life. This high abundance of CECs was attributed to erythropoiesis niches within the small intestinal tissues. Notably, the removal of CECs from the intestinal tissues by the anti-CD71 antibody disrupted immune homeostasis. This disruption was evident by alteration in the expression of antimicrobial peptides (AMPs), toll-like receptors (TLRs), inflammatory cytokines/chemokines, and resulting in microbial dysbiosis. Intriguingly, these alterations in microbial communities persisted when tested 5 weeks post-treatment, with a more notable effect observed in female mice. This illustrates a sex-dependent association between CECs and neonatal microbiome modulation. Moreover, we extended our studies on pregnant mice, observing that modulating CECs substantially alters the frequency and diversity of their microbial communities. Finally, we found a significantly lower proportion of CECs in the cord blood of pre-term human newborns, suggesting a potential role in dysregulated immune responses to microbial communities in the gut. CONCLUSIONS Our findings provide novel insights into pivotal role of CECs in immune homeostasis and swift adaptation of microbial communities in newborns. Despite the complexity of the cellular biology of the gut, our findings shed light on the previously unappreciated role of CECs in the dialogue between the microbiota and immune system. These findings have significant implications for human health. Video Abstract.
Collapse
Affiliation(s)
- Petya Koleva
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Jia He
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Garett Dunsmore
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Julia Lu
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Maia Huynh
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food & Nutritional Sciences, Edmonton, University of Alberta, Edmonton, Canada
| | - Vivian Huang
- Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Sciences, Edmonton, University of Alberta, Edmonton, Canada
- School of Microbiology and Department of Medicine, APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Sing Sing Way
- Centre for Inflammation and Tolerance, Cincinnati Childrens Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.
- Alberta Transplant Institute, Edmonton, AB, Canada.
- 7020G Katz Group Centre for Pharmacology and Health Research, 11361-87Th Ave NW, Edmonton, AB, T6G2E1, Canada.
| |
Collapse
|
10
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Rodríguez-Moranta F, Argüelles-Arias F, Hinojosa Del Val J, Iborra Colomino M, Martín-Arranz MD, Menchén Viso L, Muñoz Núñez F, Ricart Gómez E, Sánchez-Hernández JG, Valdés-Delgado T, Guardiola Capón J, Barreiro-de Acosta M, Mañosa Ciria M, Zabana Abdo Y, Gutiérrez Casbas A. Therapeutic drug monitoring in inflammatory bowel diseases. Position statement of the Spanish Working Group on Crohn's Disease and Ulcerative Colitis. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:522-552. [PMID: 38311005 DOI: 10.1016/j.gastrohep.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The treatment of inflammatory bowel disease has undergone a significant transformation following the introduction of biologic drugs. Thanks to these drugs, treatment goals have evolved from clinical response and remission to more ambitious objectives, such as endoscopic or radiologic remission. However, even though biologics are highly effective, a significant percentage of patients will not achieve an initial response or may lose it over time. We know that there is a direct relationship between the trough concentrations of the biologic and its therapeutic efficacy, with more demanding therapeutic goals requiring higher drug levels, and inadequate exposure being common. Therapeutic drug monitoring of biologic medications, along with pharmacokinetic models, provides us with the possibility of offering a personalized approach to treatment for patients with IBD. Over the past few years, relevant information has accumulated regarding its utility during or after induction, as well as in the maintenance of biologic treatment, in reactive or proactive strategies, and prior to withdrawal or treatment de-escalation. The aim of this document is to establish recommendations regarding the utility of therapeutic drug monitoring of biologics in patients with inflammatory bowel disease, in different clinical practice scenarios, and to identify areas where its utility is evident, promising, or controversial.
Collapse
Affiliation(s)
- Francisco Rodríguez-Moranta
- Servicio de Aparato Digestivo, Hospital Universitario de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, España.
| | - Federico Argüelles-Arias
- Servicio de Aparato Digestivo, Hospital Universitario Virgen Macarena, Sevilla, España; Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | | | - Marisa Iborra Colomino
- Servicio de Aparato Digestivo, Hospital Universitario y Politécnico de La Fe, Valencia, España
| | - M Dolores Martín-Arranz
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Facultad de Medicina de la UAM, Fundación para la investigación del Hospital Universitario la Paz (IDIPAZ), Madrid, España
| | - Luis Menchén Viso
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-IiSGM, Madrid, España; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| | - Fernando Muñoz Núñez
- Servicio de Aparato Digestivo, Hospital Universitario de Salamanca, Salamanca, España
| | - Elena Ricart Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), H. Clínic Barcelona, Barcelona, IDIBAPS, Barcelona, España
| | | | - Teresa Valdés-Delgado
- Servicio de Aparato Digestivo, Hospital Universitario Virgen Macarena, Sevilla, España
| | - Jordi Guardiola Capón
- Servicio de Gastroenterología, Hospital Universitario de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, España
| | - Manuel Barreiro-de Acosta
- Servicio de Gastroenterología, Hospital Clínico Universitario de Santiago, A Coruña, España; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), A Coruña, España
| | - Míriam Mañosa Ciria
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, España; Unidad de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| | - Yamile Zabana Abdo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, España; Unidad de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, Hospital Mútua de Terrassa (HMT), Terrassa, Barcelona, España
| | - Ana Gutiérrez Casbas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, España; Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, España
| |
Collapse
|
12
|
Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiol Res 2024; 282:127660. [PMID: 38442454 DOI: 10.1016/j.micres.2024.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
13
|
Sun M, Ju J, Xu H, Luo M, Li Z, Wang Y. Antibiotics influence the risk of anti-drug antibody formation during anti-TNF therapy in Chinese inflammatory bowel disease patients. Front Pharmacol 2024; 15:1360835. [PMID: 38655181 PMCID: PMC11035825 DOI: 10.3389/fphar.2024.1360835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Aims: The formation of anti-drug antibodies (ADAs) during anti-tumor necrosis factor (anti-TNF) therapy is reported to lead to reducing serum drug levels, which may bring about a loss of response to treatment. Previous research has suggested an association between specific antibiotic classes and ADA formation during anti-TNF therapy. However, there are few studies specifically examining this association in Chinese inflammatory bowel disease (IBD) patients. Therefore, our study aimed to evaluate the possible effect of antibiotic use on ADA formation to anti-TNF therapy in Chinese patients with IBD. Methods: A total of 166 patients with IBD, including 149 with Crohn's disease (CD) and 17 with ulcerative colitis (UC), were included in this retrospective analysis. These patients were initially treated with anti-TNF therapy (infliximab or adalimumab) after January 2018 and reviewed with available ADA levels before October 2023. After univariable analysis of all the variables, a multivariate Cox proportional hazards model was used to assess the association between antibiotic use and ADA development. Results: Among 166 IBD patients treated with infliximab (108/166, 65.1%) or adalimumab (58/166, 34.9%), 31 patients (18.7%) were measured as positive ADA levels. Cox proportional hazard model demonstrated an increased risk of ADA formation in IBD patients who used β-lactam-β-lactamase inhibitor combinations (BL-BLIs) (HR = 5.143, 95%CI 1.136-23.270, p = 0.033), or nitroimidazoles (HR = 4.635, 95%CI 1.641-13.089, p = 0.004) during 12 months before the ADA test. On the contrary, a reduced risk was noted in patients treated with fluoroquinolones (HR = 0.258, 95% CI 0.072-0.924, p = 0.037). Moreover, the median serum infliximab or adalimumab concentration in patients with positive ADA levels was significantly lower than that in patients with negative ADA levels (infliximab: 0.30 vs. 1.85 μg/mL, p < 0.0001; adalimumab: 0.45 vs. 7.55 μg/mL, p = 0.0121). Conclusion: ADA development is associated with various antibiotic classes. BL-BLIs and nitroimidazoles might increase the risk of ADA formation during anti-TNF therapy in Chinese IBD patients, while the treatment with fluoroquinolones could probably reduce such risk. There were certain limitations in the retrospective analysis of the study, therefore, the results are just for reference, and other studies are needed to further confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufang Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Lin K, Zheng W, Guo M, Zhou R, Zhang M, Liu T. The intestinal microbial metabolite acetyl l-carnitine improves gut inflammation and immune homeostasis via CADM2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167089. [PMID: 38369215 DOI: 10.1016/j.bbadis.2024.167089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Intestinal symbiotic bacteria play a key role in the regulation of immune tolerance in inflammatory bowel disease (IBD) hosts. However, the bacterial strains directly involved in this regulation and their related metabolites are largely unknown. We sought to investigate the effects of intestinal microbial metabolites on intestinal epithelium and to elucidate their therapeutic potential in regulating intestinal mucosal inflammation and immune homeostasis. Here, we used metagenomic data from Crohn's disease (CD) patients to analyze the composition of intestinal flora and identify metabolite profiles associated with disease behavior, and used the mouse model of dextran sodium sulfate (DSS)-induced colitis to characterize the therapeutic effects of the flora metabolite acetyl l-carnitine (ALC) on DSS-induced colitis. We found that intraperitoneal injection of ALC treatment could significantly alleviate the symptoms of DSS-induced colitis in mice, including prevention of weight loss, reduction in disease activity index (DAI) scores, increasing of colonic length, reduction in histological scores, and improvement in intestinal barrier function. Further, transcriptome sequencing analysis and gene silencing experiments revealed that the absence of CADM2 abolished the inhibitory effect of ALC on the TLR-MyD88 pathway in colonic epithelial cells, thereby reducing the release of inflammatory factors in colon epithelial cells. And we confirmed a significant downregulation of CADM2 expression in intestinal tissues of CD patients compared to healthy people in a population cohort. In addition, we also found that ALC increased the ratio of Treg cells in colon, and decreased the ratio of Th17 cells and macrophages, thereby improving the immune tolerance of the organism. The proposed study could be a potential approach for the treatment of CD.
Collapse
Affiliation(s)
- Kai Lin
- Medical Research Center, Peking Union Medical College Hospital, Beijing, China.
| | - Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Mingyue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Runing Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Mengmeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Tingting Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
15
|
Samaey A, Vázquez-Castellanos JF, Caenepeel C, Evenepoel P, Vermeire S, Raes J, Knops N. Effects of fecal microbiota transplantation for recurrent Clostridium difficile infection in children on kidney replacement therapy: a pilot study. Pediatr Nephrol 2024; 39:1201-1212. [PMID: 37775582 DOI: 10.1007/s00467-023-06168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Recurrent Clostridium difficile infection (rCDI) is a rising problem in children with chronic diseases. Fecal microbiota transplantation (FMT) is a recent alternative for rCDI patients who do not respond to conventional treatment. FMT could have an additional positive effect on the intestinal dysbiosis and accumulation of uremic retention molecules (URM) associated with chronic kidney disease (CKD). Our aim was to investigate the clinical efficacy of FMT for rCDI in children with CKD together with the effect on dysbiosis and URM levels. METHODS We analyzed stool and blood samples before and until 3 months after FMT in 3 children between 4 and 8 years old with CKD and rCDI. The microbiome was analyzed by 16 s rRNA sequencing. URM were analyzed with ultra-performance liquid chromatography-tandem mass spectrometry. CRP and fecal calprotectin were analyzed as parameters for systemic and gut inflammation, respectively. RESULTS CDI resolved after FMT in all three without adverse events; one patient needed a second FMT. No significant effect on CRP and calprotectin was observed. Stool samples demonstrated a reduced richness and bacterial diversity which did not improve after FMT. We did observe a trend in the decrease of specific URM up to 3 months after FMT. CONCLUSION FMT is an effective treatment for rCDI in patients with CKD. Analysis of the microbiome showed an important intestinal dysbiosis that, besides a significant reduction in Clostridium difficile, did not significantly change after FMT. A trend for reduction was seen in some of the measured URM after FMT.
Collapse
Affiliation(s)
- An Samaey
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium.
| | - Jorge Francisco Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Louvain, Belgium
| | - Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), UZ Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology &, Hepatology University Hospitals Leuven, and Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium
- Department of Pediatrics, Groene Hart Ziekenhuis, Gouda, the Netherlands
| |
Collapse
|
16
|
Nichols B, Briola A, Logan M, Havlik J, Mascellani A, Gkikas K, Milling S, Ijaz UZ, Quince C, Svolos V, Russell RK, Hansen R, Gerasimidis K. Gut metabolome and microbiota signatures predict response to treatment with exclusive enteral nutrition in a prospective study in children with active Crohn's disease. Am J Clin Nutr 2024; 119:885-895. [PMID: 38569785 PMCID: PMC11007740 DOI: 10.1016/j.ajcnut.2023.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Predicting response to exclusive enteral nutrition (EEN) in active Crohn's disease (CD) could lead to therapy personalization and pretreatment optimization. OBJECTIVES This study aimed to explore the ability of pretreatment parameters to predict fecal calprotectin (FCal) levels at EEN completion in a prospective study in children with CD. METHODS In children with active CD, clinical parameters, dietary intake, cytokines, inflammation-related blood proteomics, and diet-related metabolites, metabolomics and microbiota in feces, were measured before initiation of 8 wk of EEN. Prediction of FCal levels at EEN completion was performed using machine learning. Data are presented with medians (IQR). RESULTS Of 37 patients recruited, 15 responded (FCal < 250 μg/g) to EEN (responders) and 22 did not (nonresponders). Clinical and immunological parameters were not associated with response to EEN. Responders had lesser (μmol/g) butyrate [responders: 13.2 (8.63-18.4) compared with nonresponders: 22.3 (12.0-32.0); P = 0.03], acetate [responders: 49.9 (46.4-68.4) compared with nonresponders: 70.4 (57.0-95.5); P = 0.027], phenylacetate [responders: 0.175 (0.013-0.611) compared with nonresponders: 0.943 (0.438-1.35); P = 0.021], and a higher microbiota richness [315 (269-347) compared with nonresponders: 243 (205-297); P = 0.015] in feces than nonresponders. Responders consumed (portions/1000 kcal/d) more confectionery products [responders: 0.55 (0.38-0.72) compared with nonresponders: 0.19 (0.01-0.38); P = 0.045]. A multicomponent model using fecal parameters, dietary data, and clinical and immunological parameters predicted response to EEN with 78% accuracy (sensitivity: 80%; specificity: 77%; positive predictive value: 71%; negative predictive value: 85%). Higher taxon abundance from Ruminococcaceae, Lachnospiraceae, and Bacteroides and phenylacetate, butyrate, and acetate were the most influential variables in predicting lack of response to EEN. CONCLUSIONS We identify microbial signals and diet-related metabolites in feces, which could comprise targets for pretreatment optimization and personalized nutritional therapy in pediatric CD.
Collapse
Affiliation(s)
- Ben Nichols
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Anny Briola
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Michael Logan
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Anna Mascellani
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Konstantinos Gkikas
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Simon Milling
- School of Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Umer Zeeshan Ijaz
- Civil Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - Vaios Svolos
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children and Young People, Edinburgh, United Kingdom
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, Glasgow, United Kingdom; Department of Child Health, Division of Clinical and Molecular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom.
| |
Collapse
|
17
|
Kumar M, Murugesan S, Ibrahim N, Elawad M, Al Khodor S. Predictive biomarkers for anti-TNF alpha therapy in IBD patients. J Transl Med 2024; 22:284. [PMID: 38493113 PMCID: PMC10943853 DOI: 10.1186/s12967-024-05058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition characterized by severe gut inflammation, commonly presenting as Crohn's disease, ulcerative colitis or categorized as IBD- unclassified. While various treatments have demonstrated efficacy in adult IBD patients, the advent of anti-TNF therapies has significantly revolutionized treatment outcomes and clinical management. These therapies have played a pivotal role in achieving clinical and endoscopic remission, promoting mucosal healing, averting disease progression, and diminishing the necessity for surgery. Nevertheless, not all patients exhibit positive responses to these therapies, and some may experience a loss of responsiveness over time. This review aims to present a comprehensive examination of predictive biomarkers for monitoring the therapeutic response to anti-TNF therapy in IBD patients. It will explore their limitations and clinical utilities, paving the way for a more personalized and effective therapeutic approach.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Nazira Ibrahim
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
18
|
Xu C, Shao J. High-throughput omics technologies in inflammatory bowel disease. Clin Chim Acta 2024; 555:117828. [PMID: 38355001 DOI: 10.1016/j.cca.2024.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing intestinal disease. Elucidation of the pathogenic mechanisms of IBD requires high-throughput technologies (HTTs) to effectively obtain and analyze large amounts of data. Recently, HTTs have been widely used in IBD, including genomics, transcriptomics, proteomics, microbiomics, metabolomics and single-cell sequencing. When combined with endoscopy, the application of these technologies can provide an in-depth understanding on the alterations of intestinal microbe diversity and abundance, the abnormalities of signaling pathway-mediated immune responses and functionality, and the evaluation of therapeutic effects, improving the accuracy of early diagnosis and treatment of IBD. This review comprehensively summarizes the development and advancement of HTTs, and also highlights the challenges and future directions of these technologies in IBD research. Although HTTs have made striking breakthrough in IBD, more standardized methods and large-scale dataset processing are still needed to achieve the goal of personalized medicine.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
19
|
Caenepeel C, Falony G, Machiels K, Verstockt B, Goncalves PJ, Ferrante M, Sabino J, Raes J, Vieira-Silva S, Vermeire S. Dysbiosis and Associated Stool Features Improve Prediction of Response to Biological Therapy in Inflammatory Bowel Disease. Gastroenterology 2024; 166:483-495. [PMID: 38096956 DOI: 10.1053/j.gastro.2023.11.304] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND & AIMS Dysbiosis of the gut microbiota is considered a key contributor to inflammatory bowel disease (IBD) etiology. Here, we investigated potential associations between microbiota composition and the outcomes to biological therapies. METHODS The study prospectively recruited 296 patients with active IBD (203 with Crohn's disease, 93 with ulcerative colitis) initiating biological therapy. Quantitative microbiome profiles of pretreatment and posttreatment fecal samples were obtained combining flow cytometry with 16S amplicon sequencing. Therapeutic response was assessed by endoscopy, patient-reported outcomes, and changes in fecal calprotectin. The effect of therapy on microbiome variation was evaluated using constrained ordination methods. Prediction of therapy outcome was performed using logistic regression with 5-fold cross-validation. RESULTS At baseline, 65.9% of patients carried the dysbiotic Bacteroides2 (Bact2) enterotype, with a significantly higher prevalence among patients with ileal involvement (76.8%). Microbiome variation was associated with the choice of biological therapy rather than with therapeutic outcome. Only anti-tumor necrosis factor-α treatment resulted in a microbiome shift away from Bact2, concomitant with an increase in microbial load and butyrogen abundances and a decrease in potentially opportunistic Veillonella. Remission rates for patients hosting Bact2 at baseline were significantly higher with anti-tumor necrosis factor-α than with vedolizumab (65.1% vs 35.2%). A prediction model, based on anthropometrics and clinical data, stool features (microbial load, moisture, and calprotectin), and Bact2 detection predicted treatment outcome with 73.9% accuracy for specific biological therapies. CONCLUSION Fecal characterization based on microbial load, moisture content, calprotectin concentration, and enterotyping may aid in the therapeutic choice of biological therapy in IBD.
Collapse
Affiliation(s)
- Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium; Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium; Pfizer Biopharmaceuticals, Brussels, Belgium
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Pedro J Goncalves
- Machine Learning in Science, Excellence Cluster "Machine Learning," Tübingen University, Tübingen, Germany
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - João Sabino
- Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium; Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Arosa L, Camba-Gómez M, Golubnitschaja O, Conde-Aranda J. Predictive, preventive and personalised approach as a conceptual and technological innovation in primary and secondary care of inflammatory bowel disease benefiting affected individuals and populations. EPMA J 2024; 15:111-123. [PMID: 38463620 PMCID: PMC10923750 DOI: 10.1007/s13167-024-00351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a global health burden which carries lifelong morbidity affecting all age groups in populations with the disease-specific peak of the age groups ranging between 15 and 35 years, which are of great economic importance for the society. An accelerating incidence of IBD is reported for newly industrialised countries, whereas stabilising incidence but increasing prevalence is typical for countries with a Westernised lifestyle, such as the European area and the USA. Although the aetiology of IBD is largely unknown, the interplay between the genetic, environmental, immunological, and microbial components is decisive for the disease manifestation, course, severity and individual outcomes. Contextually, the creation of an individualised patient profile is crucial for the cost-effective disease management in primary and secondary care of IBD. The proposed pathomechanisms include intestinal pathoflora and dysbiosis, chronic inflammation and mitochondrial impairments, amongst others, which collectively may reveal individual molecular signatures defining IBD subtypes and leading to clinical phenotypes, patient stratification and cost-effective protection against health-to-disease transition and treatments tailored to individualised patient profiles-all the pillars of an advanced 3PM approach. The paradigm change from reactive medical services to predictive diagnostics, cost-effective targeted prevention and treatments tailored to individualised patient profiles in overall IBD management holds a promise to meet patient needs in primary and secondary care, to increase the life-quality of affected individuals and to improve health economy in the area of IBD management. This article analyses current achievements and provides the roadmap for future developments in the area in the context of 3P medicine benefiting society at large.
Collapse
Affiliation(s)
- Laura Arosa
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Laboratory 15, Trav. Choupana S/N, Building C, Level -2, 15706 Santiago de Compostela, Spain
| | - Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Laboratory 15, Trav. Choupana S/N, Building C, Level -2, 15706 Santiago de Compostela, Spain
| | - Olga Golubnitschaja
- 3P Medicine Research Unit, University Hospital, Rheinische Friedrich-Wilhelms Universität Bonn, 53127 Bonn, Germany
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Laboratory 15, Trav. Choupana S/N, Building C, Level -2, 15706 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Hurych J, Mascellani Bergo A, Lerchova T, Hlinakova L, Kubat M, Malcova H, Cebecauerova D, Schwarz J, Karaskova E, Hecht T, Vyhnanek R, Toukalkova L, Dotlacil V, Greinerova K, Cizkova A, Horvath R, Bronsky J, Havlik J, Hradsky O, Cinek O. Faecal Bacteriome and Metabolome Profiles Associated with Decreased Mucosal Inflammatory Activity Upon Anti-TNF Therapy in Paediatric Crohn's Disease. J Crohns Colitis 2024; 18:106-120. [PMID: 37527838 PMCID: PMC10821711 DOI: 10.1093/ecco-jcc/jjad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND AIMS Treatment with anti-tumour necrosis factor α antibodies [anti-TNF] changes the dysbiotic faecal bacteriome in Crohn's disease [CD]. However, it is not known whether these changes are due to decreasing mucosal inflammatory activity or whether similar bacteriome reactions might be observed in gut-healthy subjects. Therefore, we explored changes in the faecal bacteriome and metabolome upon anti-TNF administration [and therapeutic response] in children with CD and contrasted those to anti-TNF-treated children with juvenile idiopathic arthritis [JIA]. METHODS Faecal samples collected longitudinally before and during anti-TNF therapy were analysed with regard to the bacteriome by massively parallel sequencing of the 16S rDNA [V4 region] and the faecal metabolome by 1H nuclear magnetic resonance imaging. The response to treatment by mucosal healing was assessed by the MINI index at 3 months after the treatment started. We also tested several representative gut bacterial strains for in vitro growth inhibition by infliximab. RESULTS We analysed 530 stool samples from 121 children [CD 54, JIA 18, healthy 49]. Bacterial community composition changed on anti-TNF in CD: three members of the class Clostridia increased on anti-TNF, whereas the class Bacteroidia decreased. Among faecal metabolites, glucose and glycerol increased, whereas isoleucine and uracil decreased. Some of these changes differed by treatment response [mucosal healing] after anti-TNF. No significant changes in the bacteriome or metabolome were noted upon anti-TNF in JIA. Bacterial growth was not affected by infliximab in a disc diffusion test. CONCLUSIONS Our findings suggest that gut mucosal healing is responsible for the bacteriome and metabolome changes observed in CD, rather than any general effect of anti-TNF.
Collapse
Affiliation(s)
- Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech Univesity of Life Sciences, Prague, Czechia
| | - Tereza Lerchova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Lucie Hlinakova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Michal Kubat
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Hana Malcova
- Department of Pediatric and Adult Rheumatology, Motol University Hospital, Prague, Czechia
| | - Dita Cebecauerova
- Department of Pediatric and Adult Rheumatology, Motol University Hospital, Prague, Czechia
| | - Jan Schwarz
- Department of Paediatrics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Czechia
| | - Eva Karaskova
- Department of Paediatrics, Faculty of Medicine, Palacky University Olomouc and University Hospital Olomouc, Czechia
| | - Tomas Hecht
- Department of Paediatrics, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Radim Vyhnanek
- Department of Paediatrics, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | | | - Vojtech Dotlacil
- Department of Paediatric Surgery, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | | | | | - Rudolf Horvath
- Department of Pediatric and Adult Rheumatology, Motol University Hospital, Prague, Czechia
| | - Jiri Bronsky
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech Univesity of Life Sciences, Prague, Czechia
| | - Ondrej Hradsky
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Ondrej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
22
|
Ananthakrishnan AN. Precision medicine in inflammatory bowel diseases. Intest Res 2024; 22:8-14. [PMID: 37939722 PMCID: PMC10850693 DOI: 10.5217/ir.2023.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel diseases comprising Crohn's disease and ulcerative colitis have emerged as global diseases. Multiple distinct therapeutic mechanisms have allowed us to increase our rates of achieving remission and reducing permanent disease-related morbidity. However, there is limited data to inform relative positioning of different therapies. This review will summarize existing literature on use of clinical decision models to inform relative efficacy of one therapeutic mechanism compared to the other given individual patient characteristics. It will also demonstrate the value of serologic, transcriptomic (from biopsies), and microbiome-based biomarkers in identifying which therapy is most likely to work for a given patient. We will review the existing gaps in the literature in this field and suggest a path forward for future studies to better inform patient care, incorporating the principles of precision medicine in the management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Pinto S, Benincà E, Galazzo G, Jonkers D, Penders J, Bogaards JA. Heterogeneous associations of gut microbiota with Crohn's disease activity. Gut Microbes 2024; 16:2292239. [PMID: 38105519 PMCID: PMC10730216 DOI: 10.1080/19490976.2023.2292239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The multi-factorial involvement of gut microbiota with Crohn's disease (CD) necessitates robust analysis to uncover possible associations with particular microbes. CD has been linked to specific bacteria, but reported associations vary widely across studies. This inconsistency may result from heterogeneous associations across individual patients, resulting in no apparent or only weak relationships with the means of bacterial abundances. We investigated the relationship between bacterial relative abundances and disease activity in a longitudinal cohort of CD patients (n = 57) and healthy controls (n = 15). We applied quantile regression, a statistical technique that allows investigation of possible relationships outside the mean response. We found several significant and mostly negative associations with CD, especially in lower quantiles of relative abundance on family or genus level. Associations found by quantile regression deviated from the mean response in relative abundances of Coriobacteriaceae, Pasteurellaceae, Peptostreptococcaceae, Prevotellaceae, and Ruminococcaceae. For the family Streptococcaceae we found a significant elevation in relative abundance for patients experiencing an exacerbation relative to those who remained without self-reported symptoms or measurable inflammation. Our analysis suggests that specific bacterial families are related to CD and exacerbation, but associations vary between patients due to heterogeneity in disease course, medication history, therapy response, gut microbiota composition and historical contingency. Our study underscores that microbial diversity is reduced in the gut of CD patients, but suggests that the process of diversity loss is rather irregular with respect to specific taxonomic groups. This novel insight may advance our ecological understanding of this complex disease.
Collapse
Affiliation(s)
- Susanne Pinto
- Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Elisa Benincà
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gianluca Galazzo
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht UMC, Maastricht, Netherlands
| | - Daisy Jonkers
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Gastroenterology-Hepatology, Maastricht UMC, Maastricht, Netherlands
| | - John Penders
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht UMC, Maastricht, Netherlands
| | - Johannes A. Bogaards
- Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Infection and Immunity (AII), Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
24
|
Prins FM, Hidding IJ, Klaassen MA, Collij V, Schultheiss JP, Uniken Venema WT, Bangma A, Aardema JB, Jansen BH, Mares WG, Witteman BJ, Festen EA, Dijkstra G, Visschedijk MC, Fidder HH, Vich Vila A, Oldenburg B, Gacesa R, Weersma RK. Limited predictive value of the gut microbiome and metabolome for response to biological therapy in inflammatory bowel disease. Gut Microbes 2024; 16:2391505. [PMID: 39167702 PMCID: PMC11340771 DOI: 10.1080/19490976.2024.2391505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Emerging evidence suggests the gut microbiome's potential in predicting response to biologic treatments in patients with inflammatory bowel disease (IBD). In this prospective study, we aimed to predict treatment response to vedolizumab and ustekinumab, integrating clinical data, gut microbiome profiles based on metagenomic sequencing, and untargeted fecal metabolomics. We aimed to identify predictive biomarkers and attempted to replicate microbiome-based signals from previous studies. We found that the predictive utility of the gut microbiome and fecal metabolites for treatment response was marginal compared to clinical features alone. Testing our identified microbial ratios in an external cohort reinforced the lack of predictive power of the microbiome. Additionally, we could not confirm previously published predictive signals observed in similar sized cohorts. Overall, these findings highlight the importance of external validation and larger sample sizes, to better understand the microbiome's impact on therapy outcomes in the setting of biologicals in IBD before potential clinical implementation.
Collapse
Affiliation(s)
- Femke M. Prins
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Iwan J. Hidding
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolein A.Y. Klaassen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes P.D. Schultheiss
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Werna T.C. Uniken Venema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amber Bangma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jurne B. Aardema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernadien H. Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wout G.N. Mares
- Gastroenterology and Hepatology Department, Hospital Gelderse Vallei, Ede, The Netherlands
| | - Ben J.M. Witteman
- Gastroenterology and Hepatology Department, Hospital Gelderse Vallei, Ede, The Netherlands
| | - Eleonora A.M. Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C. Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herma H. Fidder
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arnau Vich Vila
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Li H, Wang K, Hao M, Liu Y, Liang X, Yuan D, Ding L. The role of intestinal microecology in inflammatory bowel disease and colorectal cancer: A review. Medicine (Baltimore) 2023; 102:e36590. [PMID: 38134100 PMCID: PMC10735145 DOI: 10.1097/md.0000000000036590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Intestinal microecology is a dominant and complex microecological system in human body. Generally, intestinal microecosystem consists of normal symbiotic flora and its living environment (including intestinal epithelial tissue and intestinal mucosal immune system). Commensal flora is the core component of microecology. Both structures of intestinal mucosa and functions of immune system are essential to maintain homeostasis of intestinal microecosystem. Under normal conditions, intestinal microorganisms and intestinal mucosa coordinate with each other to promote host immunity. When certain factors in the intestine are altered, such as disruption of the intestinal barrier causing dysbiosis of the intestinal flora, the immune system of the host intestinal mucosa makes a series of responses, which leads to the development of intestinal inflammation and promotes colorectal cancer. In this review, to further understand the relationship between intestinal microecology and intestinal diseases, we systematically elaborate the composition of the intestinal mucosal immune system, analyze the relationship between intestinal flora and mucosal immune system, and the role of intestinal flora on intestinal inflammatory diseases and colorectal cancer.
Collapse
Affiliation(s)
- Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Dajin Yuan
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
26
|
Meade S, Liu Chen Kiow J, Massaro C, Kaur G, Squirell E, Bressler B, Lunken G. Gut microbiome-associated predictors as biomarkers of response to advanced therapies in inflammatory bowel disease: a systematic review. Gut Microbes 2023; 15:2287073. [PMID: 38044504 PMCID: PMC10730146 DOI: 10.1080/19490976.2023.2287073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Loss of response to therapy in inflammatory bowel disease (IBD) has led to a surge in research focusing on precision medicine. Three systematic reviews have been published investigating the associations between gut microbiota and disease activity or IBD therapy. We performed a systematic review to investigate the microbiome predictors of response to advanced therapy in IBD. Unlike previous studies, our review focused on predictors of response to therapy; so the included studies assessed microbiome predictors before the proposed time of response or remission. We also provide an update of the available data on mycobiomes and viromes. We highlight key themes in the literature that may serve as future biomarkers of treatment response: the abundance of fecal SCFA-producing bacteria and opportunistic bacteria, metabolic pathways related to butyrate synthesis, and non-butyrate metabolomic predictors, including bile acids (BAs), amino acids, and lipids, as well as mycobiome predictors of response.
Collapse
Affiliation(s)
- Susanna Meade
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Jeremy Liu Chen Kiow
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Cristian Massaro
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Gurpreet Kaur
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
| | - Elizabeth Squirell
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Genelle Lunken
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
27
|
Zeng Z, Jiang M, Li X, Yuan J, Zhang H. Precision medicine in inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2023; 6:pbad033. [PMID: 38638127 PMCID: PMC11025389 DOI: 10.1093/pcmedi/pbad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 04/20/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable disease characterized by remission-relapse cycles throughout its course. Both Crohn's disease (CD) and ulcerative colitis (UC), the two main forms of IBD, exhibit tendency to develop complications and substantial heterogeneity in terms of frequency and severity of relapse, thus posing great challenges to the clinical management for IBD. Current treatment strategies are effective in different ways in induction and maintenance therapies for IBD. Recent advances in studies of genetics, pharmacogenetics, proteomics and microbiome provide a strong driving force for identifying molecular markers of prognosis and treatment response, which should help clinicians manage IBD patients more effectively, and then, improve clinical outcomes and reduce treatment costs of patients. In this review, we summarize and discuss precision medicine in IBD, focusing on predictive markers of disease course and treatment response, and monitoring indices during therapeutic drug monitoring.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Li
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Wong PY, Yip C, Lemberg DA, Day AS, Leach ST. Evolution of a Pathogenic Microbiome. J Clin Med 2023; 12:7184. [PMID: 38002796 PMCID: PMC10672640 DOI: 10.3390/jcm12227184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The process of microbiome development arguably begins before birth. Vertical transmission of bacteria from the mother to the infant is a keystone event in microbiome development. Subsequent to birth, the developing microbiome is vulnerable to influence from a wide range of factors. Additionally, the microbiome can influence the health and development of the host infant. This intricate interaction of the gastrointestinal microbiome and the host has been described as both symbiotic and dysbiotic. Defining these terms, a symbiotic microbiome is where the microbiome and host provide mutual benefit to each other. A pathogenic microbiome, or more precisely a gastrointestinal microbiome associated with disease, is increasing described as dysbiotic. This review seeks to investigate the factors that contribute to evolving a disease-causing or 'dysbiotic' microbiome. This review covers the development of the gastrointestinal microbiome in infants, the interaction of the microbiome with the host, and its contribution to host immunity and investigates specific features of the gastrointestinal microbiome that are associated with disease.
Collapse
Affiliation(s)
- Pui Yin Wong
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
| | - Carmen Yip
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
| | - Daniel A. Lemberg
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia;
| | - Andrew S. Day
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia;
- Department of Paediatrics, University of Otago, Christchurch 8011, New Zealand
| | - Steven T. Leach
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
| |
Collapse
|
29
|
Elzayat H, Mesto G, Al-Marzooq F. Unraveling the Impact of Gut and Oral Microbiome on Gut Health in Inflammatory Bowel Diseases. Nutrients 2023; 15:3377. [PMID: 37571313 PMCID: PMC10421146 DOI: 10.3390/nu15153377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disorder characterized by chronic inflammation of the gastrointestinal tract (GIT). IBD mainly includes two distinct diseases, namely Crohn's disease and ulcerative colitis. To date, the precise etiology of these conditions is not fully elucidated. Recent research has shed light on the significant role of the oral and gut microbiome in the development and progression of IBD and its collective influence on gut health. This review aims to investigate the connection between the oral and gut microbiome in the context of IBD, exploring the intricate interplay between these microbial communities and their impact on overall gut health. Recent advances in microbiome research have revealed a compelling link between the oral and gut microbiome, highlighting their pivotal role in maintaining overall health. The oral cavity and GIT are two interconnected ecosystems that harbor complex microbial communities implicated in IBD pathogenesis in several ways. Reduction in diversity and abundance of beneficial bacterial species with the colonization of opportunistic pathogens can induce gut inflammation. Some of these pathogens can arise from oral origin, especially in patients with oral diseases such as periodontitis. It is essential to discern the mechanisms of microbial transmission, the impact of oral health on the gut microbiome, and the potential role of dysbiosis in disease development. By elucidating this relationship, we can enhance our understanding of IBD pathogenesis and identify potential therapeutic avenues for managing the disease. Furthermore, innovative strategies for modulating the oral and gut microbiome can promote health and prevent disease occurrence and progression.
Collapse
Affiliation(s)
- Hala Elzayat
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ghaidaa Mesto
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
30
|
Raychaudhuri S, Shahinozzaman M, Subedi U, Fan S, Ogedengbe O, Obanda DN. The Vegetable 'Kale' Protects against Dextran-Sulfate-Sodium-Induced Acute Inflammation through Moderating the Ratio of Proinflammatory and Anti-Inflammatory LPS-Producing Bacterial Taxa and Augmenting the Gut Barrier in C57BL6 Mice. Nutrients 2023; 15:3222. [PMID: 37513639 PMCID: PMC10383939 DOI: 10.3390/nu15143222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Kale (Brassica oleracea var. acephala), a food rich in bioactive phytochemicals, prevents diet-induced inflammation and gut dysbiosis. We hypothesized that the phytochemicals protect against the lipopolysaccharide (LPS)-induced acute inflammation which results from gut dysbiosis and loss of gut barrier integrity. We designed this study to test the protective effects of the whole vegetable by feeding C57BL/6J mice a rodent high-fat diet supplemented with or without 4.5% kale (0.12 g per 30 g mouse) for 2 weeks before administering 3% dextran sulfate sodium (DSS) via drinking water. After one week, DSS increased the representation of proinflammatory LPS (P-LPS)-producing genera Enterobacter and Klebsiella in colon contents, reduced the representation of anti-inflammatory LPS (A-LPS)-producing taxa from Bacteroidales, reduced the expression of tight junction proteins, increased serum LPS binding protein, upregulated molecular and histopathological markers of inflammation in the colon and shortened the colons. Mice fed kale for 2 weeks before the DSS regime had a significantly reduced representation of Enterobacter and Klebsiella and instead had increased Bacteroidales and Gram-positive taxa and enhanced expression of tight junction proteins. Downstream positive effects of dietary kale were lack of granuloma in colon samples, no shortening of the colon and prevention of inflammation; the expression of F4/80, TLR4 and cytokines 1L-1b, IL-6, TNF-a and iNOS was not different from that of the control group. We conclude that through reducing the proliferation of P-LPS-producing bacteria and augmenting the integrity of the gut barrier, kale protects against DSS-induced inflammation.
Collapse
Affiliation(s)
- Samnhita Raychaudhuri
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA
| | - Md Shahinozzaman
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ujjwol Subedi
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA
| | - Si Fan
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA
| | - Opeyemi Ogedengbe
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA
| | - Diana N Obanda
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
31
|
Cozzi G, Scagnellato L, Lorenzin M, Savarino E, Zingone F, Ometto F, Favero M, Doria A, Vavricka SR, Ramonda R. Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00984-8. [PMID: 37386288 DOI: 10.1038/s41584-023-00984-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Spondyloarthritis (SpA) encompasses a heterogeneous group of chronic inflammatory diseases that can affect both axial and peripheral joints, tendons and entheses. Among the extra-articular manifestations, inflammatory bowel disease (IBD) is associated with considerable morbidity and effects on quality of life. In everyday clinical practice, treatment of these conditions requires a close collaboration between gastroenterologists and rheumatologists to enable early detection of joint and intestinal manifestations during follow-up and to choose the most effective therapeutic regimen, implementing precision medicine for each patient's subtype of SpA and IBD. The biggest issue in this field is the dearth of drugs that are approved for both diseases, as only TNF inhibitors are currently approved for the treatment of full-spectrum SpA-IBD. Janus tyrosine kinase inhibitors are among the most promising drugs for the treatment of peripheral and axial SpA, as well as for intestinal manifestations. Other therapies such as inhibitors of IL-23 and IL-17, phosphodiesterase 4 inhibitor, α4β7 integrin blockers and faecal microbiota transplantation seem to only be able to control some disease domains, or require further studies. Given the growing interest in the development of novel drugs to treat both conditions, it is important to understand the current state of the art and the unmet needs in the management of SpA-IBD.
Collapse
Affiliation(s)
- Giacomo Cozzi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Laura Scagnellato
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Francesca Ometto
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zürich and Center for Gastroenterology and Hepatology, Zürich, Switzerland
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy.
| |
Collapse
|
32
|
Bacsur P, Rutka M, Asbóth A, Resál T, Szántó K, Jójárt B, Bálint A, Ari E, Ajibola W, Kintses B, Fehér T, Pigniczki D, Bor R, Fábián A, Maléth J, Szepes Z, Farkas K, Molnár T. Effects of bowel cleansing on the composition of the gut microbiota in inflammatory bowel disease patients and healthy controls. Therap Adv Gastroenterol 2023; 16:17562848231174298. [PMID: 37324319 PMCID: PMC10265323 DOI: 10.1177/17562848231174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 06/17/2023] Open
Abstract
Background In patients with inflammatory bowel disease (IBD), Crohn's disease (CD), and ulcerative colitis (UC), numerous cases of exacerbations could be observed after colonoscopy, raising the possible pathogenetic effect of colonic microbiota alterations in IBD flare. Objectives We aimed to investigate the changes in the fecal microbiota composition in IBD patients influenced by the bowel preparation with sodium picosulfate. Design We enrolled patients with IBD undergoing bowel preparation for colonoscopy in the prospective cohort study. The control group (Con) comprised non-IBD patients who underwent colonoscopy. Clinical data, blood, and stool samples were collected before colonoscopy (timepoint A), 3 days later (timepoint B), and 4 weeks later (timepoint C). Methods Disease activity and gut microbiota changes were assessed at each timepoint. Fecal microbiota structure - at family level - was determined by sequencing the V4 region of the 16S rRNA gene. Statistical analysis included differential abundance analysis and Mann-Whitney tests. Results Forty-one patients (9 CD, 13 UC, and 19 Con) were included. After bowel preparation, alpha diversity was lower in the CD group than in the UC (p = 0.01) and Con (p = 0.02) groups at timepoint B. Alpha diversity was significantly higher in the UC group than in the CD and Con (p = 0.03) groups at timepoint C. Beta diversity difference differed between the IBD and Con (p = 0.001) groups. Based on the differential abundance analysis, the Clostridiales family was increased, whereas the Bifidobacteriaceae family was decreased in CD patients compared to the Con at timepoint B. Conclusions Bowel preparation may change the fecal microbial composition in IBD patients, which may have a potential role in disease exacerbation after bowel cleansing.
Collapse
Affiliation(s)
- Péter Bacsur
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Mariann Rutka
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - András Asbóth
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Resál
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Kata Szántó
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Boldizsár Jójárt
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
- Hungarian Academy of Science – University of Szeged Momentum Epithelial Cell Signaling and Secretion Research Group, Szeged, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, Szeged, Hungary
| | - Anita Bálint
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Eszter Ari
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Szeged, Hungary
| | - Walliyulahi Ajibola
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
- National Laboratory of Biotechnology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tamás Fehér
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Daniella Pigniczki
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Renáta Bor
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Anna Fábián
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
- Hungarian Academy of Science – University of Szeged Momentum Epithelial Cell Signaling and Secretion Research Group, Szeged, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, Szeged, Hungary
| | - Zoltán Szepes
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Klaudia Farkas
- Department of Medicine, Szent-Györgyi Albert Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Avenue 57, H-6720 Szeged, Hungary
| |
Collapse
|
33
|
Goosen C, Proost S, Baumgartner J, Mallick K, Tito RY, Barnabas SL, Cotton MF, Zimmermann MB, Raes J, Blaauw R. Associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children: a two-way factorial case-control study. J Hum Nutr Diet 2023; 36:819-832. [PMID: 36992541 PMCID: PMC10946596 DOI: 10.1111/jhn.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and iron deficiency (ID) affect many African children. Both HIV and iron status interact with gut microbiota composition and related biomarkers. The study's aim was to determine the associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children. METHODS In this two-way factorial case-control study, 8- to 13-year-old children were enrolled into four groups based on their HIV and iron status: (1) With HIV (HIV+) and ID (n = 43), (2) HIV+ and iron-sufficient nonanaemic (n = 41), (3) without HIV (HIV-) and ID (n = 44) and (4) HIV- and iron-sufficient nonanaemic (n = 38). HIV+ children were virally suppressed (<50 HIV RNA copies/ml) on antiretroviral therapy (ART). Microbial composition of faecal samples (16S rRNA sequencing) and markers of gut inflammation (faecal calprotectin) and gut integrity (plasma intestinal fatty acid-binding protein [I-FABP]) were assessed. RESULTS Faecal calprotectin was higher in ID versus iron-sufficient nonanaemic children (p = 0.007). I-FABP did not significantly differ by HIV or iron status. ART-treated HIV (redundancy analysis [RDA] R2 = 0.009, p = 0.029) and age (RDA R2 = 0.013 p = 0.004) explained the variance in the gut microbiota across the four groups. Probabilistic models showed that the relative abundance of the butyrate-producing genera Anaerostipes and Anaerotruncus was lower in ID versus iron-sufficient children. Fusicatenibacter was lower in HIV+ and in ID children versus their respective counterparts. The prevalence of the inflammation-associated genus Megamonas was 42% higher in children with both HIV and ID versus HIV- and iron-sufficient nonanaemic counterparts. CONCLUSIONS In our sample of 8- to 13-year-old virally suppressed HIV+ and HIV- children with or without ID, ID was associated with increased gut inflammation and changes in the relative abundance of specific microbiota. Moreover, in HIV+ children, ID had a cumulative effect that further shifted the gut microbiota to an unfavourable composition.
Collapse
Affiliation(s)
- Charlene Goosen
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jeannine Baumgartner
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Nutritional SciencesKing's College LondonLondonUK
| | - Kashish Mallick
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Raul Y. Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Shaun L. Barnabas
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Michael B. Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Renée Blaauw
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
34
|
Räisänen L, Agrawal N, Mathew B, Kääriäinen S, Kolho KL, Viljakainen H. Pre-Diagnostic Saliva Microbiota of School-Aged Children Who Developed Type 1 Diabetes or Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24098279. [PMID: 37175985 PMCID: PMC10179007 DOI: 10.3390/ijms24098279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Altered commensal microbiota composition has been associated with pediatric type 1 diabetes mellitus (T1D) and inflammatory bowel diseases (IBD), but the causal relationship is still unclear. To search for potential pre-diagnostic biomarkers for pediatric T1D or IBD, we compared microbiota in saliva samples in a nested case-control design comprising children developing T1D (nchildren = 52) or IBD (nchildren = 21) and controls with a similar age, sex, and residential area (nchildren = 79). The pre-diagnostic saliva microbiota alpha- and beta-diversity of children who would develop T1D (nsamples = 27) or IBD (nsamples = 14) minimally varied from that of controls. The relative abundances of Abiotrophia were higher, while those of Veillonella, Actinomyces, Megasphaera, Butyrivibrio, and Candidatus ancillula were lower in children who would develop T1D. Within 2 years before diagnosis, the metabolic PWY-5677 pathway (converting succinate into butyrate) was lower in pre-T1D samples than in controls (q = 0.034). No significant pre-IBD differences were found. In conclusion, saliva microbiota diversity or composition were not successful predictors for pediatric T1D nor IBD. Intriguingly, the succinate fermentation pathway was predicted to be lowered before the onset of T1D. Thus, investigating functional pathways might provide a better approach in searching for biomarkers for autoimmune disease in the future.
Collapse
Affiliation(s)
- Laura Räisänen
- Faculty of Medicine and Health Technology (MET), Tampere University, 33100 Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, 33520 Tampere, Finland
- Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Nitin Agrawal
- Folkhälsan Research Center, 00250 Helsinki, Finland
- Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Binu Mathew
- Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Sohvi Kääriäinen
- Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Kaija-Leena Kolho
- Faculty of Medicine and Health Technology (MET), Tampere University, 33100 Tampere, Finland
- Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital (HUS), 00290 Helsinki, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, 00250 Helsinki, Finland
- Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| |
Collapse
|
35
|
Benech N, Sokol H. Targeting the gut microbiota in inflammatory bowel diseases: where are we? Curr Opin Microbiol 2023; 74:102319. [PMID: 37062174 DOI: 10.1016/j.mib.2023.102319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023]
Abstract
The gut microbiota is now recognized to be a key driver of mucosal inflammation in inflammatory bowel disease (IBD). Robust functional and compositional alterations of the gut microbiota have been described in IBD with a reduction in bacterial diversity, a reduction in some anti-inflammatory anaerobic bacteria, and an increase in bacteria with pro-inflammatory potential. However, despite 15 years of active research, therapeutical applications are still lacking. Recent studies have shed new light on how targeting the gut microbiota can be beneficial in IBD with fecal microbiota transplantation, next-generation probiotics, and phage therapy. Given the similarities in dysfunction and structure of the gut microbiota between IBD and other chronic conditions associated with intestinal inflammation, such as celiac disease, Familial Mediterranean Fever, or common variable immunodeficiency, common therapeutic strategies targeting the host-microbiota symbiosis may be applied in these different conditions.
Collapse
Affiliation(s)
- Nicolas Benech
- Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France; Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France; French Fecal Transplant Group, France
| | - Harry Sokol
- French Fecal Transplant Group, France; Sorbonne University, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France; Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France; INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.
| |
Collapse
|
36
|
Basal Diet Fed to Recipient Mice Was the Driving Factor for Colitis and Colon Tumorigenesis, despite Fecal Microbiota Transfer from Mice with Severe or Mild Disease. Nutrients 2023; 15:nu15061338. [PMID: 36986068 PMCID: PMC10052649 DOI: 10.3390/nu15061338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consumption of the total Western diet (TWD) in mice has been shown to increase gut inflammation, promote colon tumorigenesis, and alter fecal microbiome composition when compared to mice fed a healthy diet, i.e., AIN93G (AIN). However, it is unclear whether the gut microbiome contributes directly to colitis-associated CRC in this model. The objective of this study was to determine whether dynamic fecal microbiota transfer (FMT) from donor mice fed either the AIN basal diet or the TWD would alter colitis symptoms or colitis-associated CRC in recipient mice, which were fed either the AIN diet or the TWD, using a 2 × 2 factorial experiment design. Time-matched FMT from the donor mice fed the TWD did not significantly enhance symptoms of colitis, colon epithelial inflammation, mucosal injury, or colon tumor burden in the recipient mice fed the AIN diet. Conversely, FMT from the AIN-fed donors did not impart a protective effect on the recipient mice fed the TWD. Likewise, the composition of fecal microbiomes of the recipient mice was also affected to a much greater extent by the diet they consumed than by the source of FMT. In summary, FMT from the donor mice fed either basal diet with differing colitis or tumor outcomes did not shift colitis symptoms or colon tumorigenesis in the recipient mice, regardless of the basal diet they consumed. These observations suggest that the gut microbiome may not contribute directly to the development of disease in this animal model.
Collapse
|
37
|
Räisänen LK, Kääriäinen SE, Sund R, Engberg E, Viljakainen HT, Kolho KL. Antibiotic exposures and the development of pediatric autoimmune diseases: a register-based case-control study. Pediatr Res 2023; 93:1096-1104. [PMID: 35854091 PMCID: PMC10033398 DOI: 10.1038/s41390-022-02188-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antibiotics have been associated with several individual autoimmune diseases (ADs). This study aims to discover whether pre-diagnostic antibiotics are associated with the onset of ADs in general. METHODS From a cohort of 11,407 children, 242 developed ADs (type 1 diabetes, autoimmune thyroiditis, juvenile idiopathic arthritis (JIA), or inflammatory bowel diseases) by a median age of 16 years. Antibiotic purchases from birth until the date of diagnosis (or respective date in the matched controls n = 708) were traced from national registers. RESULTS Total number of antibiotic purchases was not related to the onset of ADs when studied as a group. Of specific diagnoses, JIA was associated with the total number of antibiotics throughout the childhood and with broad-spectrum antibiotics before the age of 3 years. Intriguingly, recent and frequent antibiotic use (within 2 years before diagnosis and ≥3 purchases) was associated with the onset of ADs (OR 1.72, 95% CI 1.08-2.74). Regardless of frequent use in childhood (40% of all antibiotics), penicillin group antibiotics were not related to any ADs. CONCLUSIONS Use of antibiotics was relatively safe regarding the overall development of ADs. However, broad-spectrum antibiotics should be used considerately as they may associate with an increased likelihood of JIA. IMPACT Increasing numbers of antibiotic purchases before the age of 3 years or throughout childhood were not associated with the development of pediatric autoimmune diseases. Broad-spectrum antibiotics were related to the development of autoimmune diseases, especially juvenile idiopathic arthritis in children, while penicillin group antibiotics were not. The use of broad-spectrum antibiotics in children should be cautious as they may carry along a risk for autoimmune disease development.
Collapse
Affiliation(s)
- Laura K Räisänen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | - Reijo Sund
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heli T Viljakainen
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
38
|
Halper-Stromberg A, Dalal SR. The Role of the Microbiome in the Etiology of Inflammatory Bowel Diseases. Clin Colon Rectal Surg 2023; 36:120-126. [PMID: 36844713 PMCID: PMC9946717 DOI: 10.1055/s-0042-1760680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inflammatory bowel diseases (IBDs) result from dysregulated immune responses to environmental and microbial triggers in genetically susceptible hosts. Many clinical observations and animal studies support the role of the microbiome in the pathogenesis of IBD. Restoration of the fecal stream leads to postoperative Crohn's recurrence, while diversion can treat active inflammation. Antibiotics can be effective in prevention of postoperative Crohn's recurrence and in pouch inflammation. Several gene mutations associated with Crohn's risk lead to functional changes in microbial sensing and handling. However, the evidence linking the microbiome to the IBD is largely correlative, given the difficulty in studying the microbiome before disease occurs. Attempts to modify the microbial triggers of inflammation have had modest success to date. Exclusive enteral nutrition can treat Crohn's inflammation though no whole food diet to date has been shown to treat inflammation. Manipulation of the microbiome through fecal microbiota transplant and probiotics have had limited success. Further focus on early changes in the microbiome and functional consequences of microbial changes through the study of metabolomics are needed to help advance the field.
Collapse
Affiliation(s)
- Ariel Halper-Stromberg
- University of Chicago Medicine Inflammatory Bowel Disease Center, Dept of Medicine, Chicago, Illinois
| | - Sushila R. Dalal
- University of Chicago Medicine Inflammatory Bowel Disease Center, Dept of Medicine, Chicago, Illinois
| |
Collapse
|
39
|
Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20:135-154. [PMID: 36352157 DOI: 10.1038/s41575-022-00690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
40
|
Assessing the Relationship between the Gut Microbiota and Inflammatory Bowel Disease Therapeutics: A Systematic Review. Pathogens 2023; 12:pathogens12020262. [PMID: 36839534 PMCID: PMC9965214 DOI: 10.3390/pathogens12020262] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Current inflammatory bowel disease (IBD) treatments including non-biological, biological, and nutritional therapies aim to achieve remission and mucosal healing. Treatment efficacy, however, is highly variable, and there is growing evidence that the gut microbiota influences therapeutic efficacy. The aim of this study was to conduct a systematic review and meta-analysis to define changes in the gut microbiota following IBD treatment and to identify microbial predictors of treatment response. A systematic search using MEDLINE/Embase and PubMed was performed in July 2022. The review was conducted based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Studies were included if they reported longitudinal microbiota analysis (>2 weeks) using next-generation sequencing or high-throughput sequencing of faecal/mucosal samples from IBD patients commencing treatment. Meta-analysis on alpha-diversity changes following infliximab treatment was conducted. Thirty-nine studies met the inclusion criteria, and four studies were included in the meta-analysis. An increase in alpha diversity was observed following treatment with 5-aminosalicylates, corticosteroids, and biological therapies in most studies. Characteristic signatures involving the enrichment of short-chain-fatty-acid-producing bacteria including Faecalibacterium prausnitzii and a reduction of pathogenic bacteria including various Proteobacteria were demonstrated following treatment with specific signatures identified based on treatment outcome. The meta-analysis demonstrated a statistically significant increase in bacterial richness following infliximab treatment (standardised mean difference -1.16 (-1.50, -0.83), p < 0.00001). Conclusion: Distinct microbial signatures are seen following treatment and are associated with treatment response. The interrogation of large longitudinal studies is needed to establish the link between the gut microbiota and IBD therapeutic outcomes.
Collapse
|
41
|
Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. Int J Mol Sci 2023; 24:ijms24031864. [PMID: 36768196 PMCID: PMC9914969 DOI: 10.3390/ijms24031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.
Collapse
|
42
|
Ribeiro BE, Breves J, de Souza HSP. Pathogenesis: Crohn’s disease and ulcerative colitis. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:9-46. [DOI: 10.1016/b978-0-323-99111-7.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Vieujean S, Louis E. Precision medicine and drug optimization in adult inflammatory bowel disease patients. Therap Adv Gastroenterol 2023; 16:17562848231173331. [PMID: 37197397 PMCID: PMC10184262 DOI: 10.1177/17562848231173331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/19/2023] Open
Abstract
Inflammatory bowel diseases (IBD) encompass two main entities including ulcerative colitis and Crohn's disease. Although having a common global pathophysiological mechanism, IBD patients are characterized by a significant interindividual heterogeneity and may differ by their disease type, disease locations, disease behaviours, disease manifestations, disease course as well as treatment needs. Indeed, although the therapeutic armamentarium for these diseases has expanded rapidly in recent years, a proportion of patients remains with a suboptimal response to medical treatment due to primary non-response, secondary loss of response or intolerance to currently available drugs. Identifying, prior to treatment initiation, which patients are likely to respond to a specific drug would improve the disease management, avoid unnecessary side effects and reduce the healthcare expenses. Precision medicine classifies individuals into subpopulations according to clinical and molecular characteristics with the objective to tailor preventative and therapeutic interventions to the characteristics of each patient. Interventions would thus be performed only on those who will benefit, sparing side effects and expense for those who will not. This review aims to summarize clinical factors, biomarkers (genetic, transcriptomic, proteomic, metabolic, radiomic or from the microbiota) and tools that could predict disease progression to guide towards a step-up or top-down strategy. Predictive factors of response or non-response to treatment will then be reviewed, followed by a discussion about the optimal dose of drug required for patients. The time at which these treatments should be administered (or rather can be stopped in case of a deep remission or in the aftermath of a surgery) will also be addressed. IBD remain biologically complex, with multifactorial etiopathology, clinical heterogeneity as well as temporal and therapeutic variabilities, which makes precision medicine especially challenging in this area. Although applied for many years in oncology, it remains an unmet medical need in IBD.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | | |
Collapse
|
44
|
Shin SY, Kim Y, Kim WS, Moon JM, Lee KM, Jung SA, Park H, Huh EY, Kim BC, Lee SC, Choi CH. Compositional changes in fecal microbiota associated with clinical phenotypes and prognosis in Korean patients with inflammatory bowel disease. Intest Res 2023; 21:148-160. [PMID: 35692191 PMCID: PMC9911276 DOI: 10.5217/ir.2021.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS The fecal microbiota of Korean patients with inflammatory bowel disease (IBD) was investigated with respect to disease phenotypes and taxonomic biomarkers for diagnosis and prognosis of IBD. METHODS Fecal samples from 70 ulcerative colitis (UC) patients, 39 Crohn's disease (CD) patients, and 100 healthy control individuals (HC) were collected. The fecal samples were amplified via polymerase chain reaction and sequenced using Illumina MiSeq. The relationships between fecal bacteria and clinical phenotypes were analyzed using the EzBioCloud database and 16S microbiome pipeline. RESULTS The alpha-diversity of fecal bacteria was significantly lower in UC and CD (P<0.05) compared to that in HC. Bacterial community compositions in UC and CD were significantly different from that of HC according to Bray-Curtis dissimilarities, and there was also a difference between community composition in UC and CD (P=0.01). In UC, alpha-diversity was further decreased when the disease was more severe and the extent of disease was greater, and community composition significantly differed depending on the extent of the disease. We identified 9 biomarkers of severity and 6 biomarkers of the extent of UC. We also identified 5 biomarkers of active disease and 3 biomarkers of ileocolonic involvement in CD. Lachnospiraceae and Ruminococcus gnavus were biomarkers for better prognosis in CD. CONCLUSIONS The fecal microbiota profiles of IBD patients were different from those of HC, and several bacterial taxa may be used as biomarkers to determine disease phenotypes and prognosis. These data may also help discover new therapeutic targets for IBD.
Collapse
Affiliation(s)
- Seung Yong Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Min Moon
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kang-Moon Lee
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun Young Huh
- South Texas Center of Emerging Infectious Diseases (STCEID) and Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Byung Chang Kim
- Division of Gastroenterology, Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Soo Chan Lee
- South Texas Center of Emerging Infectious Diseases (STCEID) and Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA,Co-Correspondence to Soo Chan Lee, South Texas Center of Emerging Infectious Diseases (STCEID), Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA. Tel: +1-210-458-5398, E-mail:
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea,Correspondence to Chang Hwan Choi, Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea. Tel: +82-2-6299-1418, Fax: +82-2-6299-2064, E-mail:
| | | |
Collapse
|
45
|
Räisänen L, Viljakainen H, Kolho KL. Exposure to proton pump inhibitors is associated with the development of pediatric autoimmune diseases. Front Pediatr 2023; 11:1157547. [PMID: 37051434 PMCID: PMC10083351 DOI: 10.3389/fped.2023.1157547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Proton pump inhibitors (PPIs) have been associated with decreased gut microbiota diversity. Disrupted gut microbiota composition has been reported in several autoimmune diseases (ADs), such as type 1 diabetes mellitus (DM), autoimmune thyroiditis (AIT), juvenile idiopathic arthritis (JIA), and inflammatory bowel diseases (IBD). We investigated whether PPIs are associated with the development of ADs in children and concluded that PPI exposures could be related to the onset of ADs, especially IBD and potentially AIT as well.
Collapse
Affiliation(s)
- Laura Räisänen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Correspondence: Laura Räisänen Kaija-Leena Kolho
| | - Heli Viljakainen
- Public Health Research Program, Folkhälsan Research Center, Helsinki, Finland
- Children’s Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Kaija-Leena Kolho
- Children’s Hospital, University of Helsinki and HUS, Helsinki, Finland
- Faculty of Medicine and Medical Technology, Tampere University, Tampere, Finland
- Correspondence: Laura Räisänen Kaija-Leena Kolho
| |
Collapse
|
46
|
Zheng J, Sun Q, Zhang J, Ng SC. The role of gut microbiome in inflammatory bowel disease diagnosis and prognosis. United European Gastroenterol J 2022; 10:1091-1102. [PMID: 36461896 PMCID: PMC9752296 DOI: 10.1002/ueg2.12338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated intestinal disease consisting of ulcerative colitis and Crohn's disease. Inflammatory bowel disease is believed to be developed as a result of interactions between environmental, immune-mediated and microbial factors in a genetically susceptible host. Recent advances in high-throughput sequencing technologies have aided the identification of consistent alterations of the gut microbiome in patients with IBD. Preclinical and murine models have also shed light on the role of beneficial and pathogenic bacteria in IBD. These findings have stimulated interest in development of non-invasive microbial and metabolite biomarkers for predicting disease risk, disease progression, recurrence after surgery and responses to therapeutics. This review briefly summarizes the current evidence on the role of gut microbiome in IBD pathogenesis and mainly discusses the latest literature on the utilization of potential microbial biomarkers in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Jiaying Zheng
- Microbiota I-Center (MagIC), Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianru Sun
- Microbiota I-Center (MagIC), Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.,Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Sezgin E, Terlemez G, Bozkurt B, Bengi G, Akpinar H, Büyüktorun İ. Quantitative real-time PCR analysis of bacterial biomarkers enable fast and accurate monitoring in inflammatory bowel disease. PeerJ 2022; 10:e14217. [PMID: 36275453 PMCID: PMC9586115 DOI: 10.7717/peerj.14217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Inflammatory bowel diseases (IBD) affect millions of people worldwide with increasing incidence. Ulcerative colitis (UC) and Crohn's disease (CD) are the two most common IBDs. There is no definite cure for IBD, and response to treatment greatly vary among patients. Therefore, there is urgent need for biomarkers to monitor therapy efficacy, and disease prognosis. We aimed to test whether qPCR analysis of common candidate bacteria identified from a patient's individual fecal microbiome can be used as a fast and reliable personalized microbial biomarker for efficient monitoring of disease course in IBD. Next generation sequencing (NGS) of 16S rRNA gene region identified species level microbiota profiles for a subset of UC, CD, and control samples. Common high abundance bacterial species observed in all three groups, and reported to be associated with IBD are chosen as candidate marker species. These species, and total bacteria amount are quantified in all samples with qPCR. Relative abundance of anti-inflammatory, beneficial Faecalibacterium prausnitzii, Akkermansia muciniphila, and Streptococcus thermophilus was significantly lower in IBD compared to control samples. Moreover, the relative abundance of the examined common species was correlated with the severity of IBD disease. The variance in qPCR data was much lower compared to NGS data, and showed much higher statistical power for clinical utility. The qPCR analysis of target common bacterial species can be a powerful, cost and time efficient approach for monitoring disease status and identify better personalized treatment options for IBD patients.
Collapse
Affiliation(s)
- Efe Sezgin
- Izmir Institute of Technology, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
48
|
Rebane K, Tuomi AK, Kautiainen H, Peltoniemi S, Glerup M, Aalto K. Abdominal pain in Finnish young adults with juvenile idiopathic arthritis. Scand J Gastroenterol 2022; 57:1189-1194. [PMID: 35546660 DOI: 10.1080/00365521.2022.2072691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Abdominal pain (AP) is a common feature in the general population. However, in patients with juvenile idiopathic arthritis (JIA) AP has scantily been studied. Among other reasons, gastrointestinal symptoms may present as side effects due to the medical treatment of JIA. The aim of the study was to explore the frequency of AP and its relationship to disease components and health-related quality of life (HRQoL) among young adults with JIA. METHODS This study included a cohort of 97 Finnish patients belonging to the population-based Nordic JIA cohort at their 17-year follow-up study visit. Mean age of the patients was 23 years. AP, functional status, fatigue, HRQoL, disease characteristics of JIA, and comorbidities were evaluated. AP was classified into three categories according to frequency: (1) never, (2) seldom (one to three times a month) and (3) frequent (at least once a week). RESULTS About 48 (50%) young adults with JIA reported AP. Seldom AP was reported by 37 (38%), and frequent AP by 11 (11%) patients. AP was significantly associated with fatigue, female gender, functional status and arthritis-related pain. Patients having frequent AP reported lower HRQoL. AP was associated with the use of methotrexate and sulfasalazine, but not with nonsteroidal anti-inflammatory drugs (NSAIDs). CONCLUSION AP is an important complaint in young adults with JIA and is associated with fatigue, female gender, methotrexate and sulfasalazine use. Patients with JIA reporting frequent AP with lower functional status and higher arthritis-related pain values have lower HRQoL.
Collapse
Affiliation(s)
- Katariina Rebane
- Paediatric Research Center, New Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Anna-Kaisa Tuomi
- Paediatric Research Center, New Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hannu Kautiainen
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Suvi Peltoniemi
- Helsinki University Central Hospital, HUS Inflammation Center, Rheumatology and University of Helsinki, Finland
| | - Mia Glerup
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Kristiina Aalto
- Paediatric Research Center, New Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases. Dig Dis Sci 2022; 67:4654-4665. [PMID: 35133532 DOI: 10.1007/s10620-022-07382-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Crohn's disease and ulcerative colitis are characterized by chronic inflammatory processes and an imbalanced immune response along the gastrointestinal (GI) tract. Pharmacological treatments have been widely used, although their long-term application has adverse side effects. On the other hand, milks fermented with specific lactic acid bacteria (LAB) have been shown to be useful as alternative or complementary aids. Many metabolites such as peptides, exopolysaccharides, and short-chain fatty acids are produced during milk fermentation. These components have been shown to change the pH of the gastrointestinal lumen, aid intestine mucosal recovery, modulate the microbiota, and reduce the inflammatory response (innate and adaptive immune system), both in vitro and in vivo. Therefore, the objective of the present review is to describe how these bioactive compounds from fermented milk by specific LAB can decrease the deleterious symptoms of inflammatory bowel disease.
Collapse
|
50
|
Höyhtyä M, Korpela K, Saqib S, Junkkari S, Nissilä E, Nikkonen A, Dikareva E, Salonen A, de Vos WM, Kolho KL. Quantitative Fecal Microbiota Profiles Relate to Therapy Response During Induction With Tumor Necrosis Factor α Antagonist Infliximab in Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 29:116-124. [PMID: 36040412 PMCID: PMC9825283 DOI: 10.1093/ibd/izac182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The role of intestinal microbiota in inflammatory bowel diseases is intensively researched. Pediatric studies on the relation between microbiota and treatment response are sparse. We aimed to determine whether absolute abundances of gut microbes characterize the response to infliximab induction in pediatric inflammatory bowel disease. METHODS We recruited pediatric patients with inflammatory bowel disease introduced to infliximab at Children's Hospital, University of Helsinki. Stool samples were collected at 0, 2, and 6 weeks for microbiota and calprotectin analyses. We defined treatment response as fecal calprotectin value <100 µg/g at week 6. Intestinal microbiota were analyzed by 16S ribosomal RNA gene amplicon sequencing using the Illumina MiSeq platform. We analyzed total bacterial counts using quantitative polymerase chain reaction and transformed the relative abundances into absolute abundances based on the total counts. RESULTS At baseline, the intestinal microbiota in the treatment responsive group (n = 10) showed a higher absolute abundance of Bifidobacteriales and a lower absolute abundance of Actinomycetales than nonresponders (n = 19). The level of inflammation according to fecal calprotectin showed no statistically significant association with the absolute abundances of fecal microbiota. The results on relative abundances differed from the absolute abundances. At the genus level, the responders had an increased relative abundance of Anaerosporobacter but a reduced relative abundance of Parasutterella at baseline. CONCLUSIONS High absolute abundance of Bifidobacteriales in the gut microbiota of pediatric patients reflects anti-inflammatory characteristics associated with rapid response to therapy. This warrants further studies on whether modification of pretreatment microbiota might improve the outcomes.
Collapse
Affiliation(s)
- Miikka Höyhtyä
- Address correspondence to: Miikka Höyhtyä, MD, Faculty of Medicine and Health Technology, University of Tampere and Department of Pediatrics, Tampere University Hospital, Medisiinarinkatu 1, 5th Floor, 33520 Tampere, Finland ()
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Schahzad Saqib
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sofia Junkkari
- Departmentof Pediatrics, Tampere University Hospital, Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Eija Nissilä
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Nikkonen
- Children’s Hospital, Department of Pediatric Gastroenteroloy, Helsinki University, Helsinki, Finland
| | - Evgenia Dikareva
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Kaija-Leena Kolho
- Departmentof Pediatrics, Tampere University Hospital, Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Children’s Hospital, Department of Pediatric Gastroenteroloy, Helsinki University, Helsinki, Finland
| |
Collapse
|