1
|
Zhao W, Luo H, Lin Z, Huang L, Pan Z, Chen L, Fan L, Yang S, Tan H, Zhong C, Liu H, Huang C, Wang J, Zhang B. Wogonin mitigates acetaminophen-induced liver injury in mice through inhibition of the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118364. [PMID: 38763368 DOI: 10.1016/j.jep.2024.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (SBG), a widely used traditional Chinese medicine, exhibits anti-inflammatory and antioxidant properties. Wogonin is one of the primary bioactive components of SBG. Acetaminophen (APAP)-induced liver injury (AILI) represents a prevalent form of drug-induced liver damage and is primarily driven by inflammatory responses and oxidative stress. AIM OF STUDY To investigate the therapeutic effects of Wogonin on AILI and the underlying mechanisms. MATERIALS AND METHODS C57BL/6 J mice were pre-treated with Wogonin (1, 2.5, and 5 mg/kg bodyweight) for 3 days, followed by treatment with APAP (300 mg/kg bodyweight). The serum and liver tissue samples were collected at 24 h post-APAP treatment. Bone marrow-derived macrophages and RAW264.7 cells were cultured and pre-treated with Wogonin (5, 10, and 20 μM) for 30 min, followed by stimulation with lipopolysaccharide (LPS; 100 ng/mL) for 3 h. To examine the role of the PI3K/AKT signaling pathway in the therapeutic effect of Wogonin on AILI, mice and cells were treated with LY294002 (a PI3K inhibitor) and MK2206 (an AKT inhibitor). RESULTS Wogonin pre-treatment dose-dependently alleviated AILI in mice. Additionally, Wogonin suppressed oxidative stress and inflammatory responses. Liver transcriptome analysis indicated that Wogonin primarily regulates immune function and cytokines in AILI. Wogonin suppressed inflammatory responses of macrophages by inhibiting the PI3K/AKT signaling pathway. Consistently, Wogonin exerted therapeutic effects on AILI in mice through the PI3K/AKT signaling pathway. CONCLUSIONS Wogonin alleviated AILI and APAP-induced hepatotoxicity in mice through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenyingzi Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Huishan Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Zelong Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Linwen Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Zhaoyu Pan
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Liji Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Longxiu Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Shilong Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Huishi Tan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cailing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chongyang Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment for Refractory Chronic Diseases, China.
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment for Refractory Chronic Diseases, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China.
| |
Collapse
|
2
|
Aldholmi M, Ahmad R, Shaikh MH, Salem AM, Alqurashi M, Alturki M. Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics (Basel) 2024; 13:544. [PMID: 38927210 PMCID: PMC11200997 DOI: 10.3390/antibiotics13060544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Momordica charantia, commonly known as bitter melon, is a fruiting plant that has been used for several diseases including infectious diseases. In this study, we report the antibacterial, antifungal, and antiviral activity of different bitter melon fruit parts originating from India and Saudi Arabia. The in vitro experiments are supported by the molecular docking of karavilosides to verify their role in the bioactivity. The antimicrobial assays revealed activity against Candida albicans, Escherichia coli, and Staphylococcus aureus. The extracts exhibited the potent inhibition of HIV-I reverse transcriptase, with an IC50 of 0.125 mg/mL observed for the pith extract originating from Saudi Arabia and the standard drug doxorubicin. The molecular docking of karavilosides exhibited a significant affinity to reverse transcriptase comparable to Rilpivirine and higher than that of doxorubicin. These outcomes encourage the precious bioactive components of the seed and pith of the Saudi bitter melon fruits to be further studied for isolation and structure elucidation.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad Habeeb Shaikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34224, Saudi Arabia
| | - Ayad Mohammed Salem
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34224, Saudi Arabia
| | - Maher Alqurashi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mansour Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
3
|
Bhise N, Agarwal M, Thakur N, Akshay PS, Cherian S, Lole K. Repurposing of artesunate, an antimalarial drug, as a potential inhibitor of hepatitis E virus. Arch Virol 2023; 168:147. [PMID: 37115342 PMCID: PMC10141844 DOI: 10.1007/s00705-023-05770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Hepatitis E virus (HEV) is endemic in several developing countries of Africa and Asia. It mainly causes self-limiting waterborne infections, in either sporadic or outbreak form. Recently, HEV was shown to cause chronic infections in immunosuppressed individuals. Ribavirin and interferon, the current off-label treatment options for hepatitis E, have several side effects. Hence, there is a need for new drugs. We evaluated the antimalarial drug artesunate (ART) against genotype 1 HEV (HEV-1) and HEV-3 using a virus-replicon-based cell culture system. ART exhibited 59% and 43% inhibition of HEV-1 and HEV-3, respectively, at the highest nontoxic concentration. Computational molecular docking analysis showed that ART can bind to the helicase active site (affinity score, -7.4 kcal/mol), indicating its potential to affect ATP hydrolysis activity. An in vitro ATPase activity assay of the helicase indeed showed 24% and 55% inhibition at 19.5 µM (EC50) and 78 µM concentrations of ART, respectively. Since ATP is a substrate of RNA-dependent RNA polymerase (RdRp) as well, we evaluated the effect of ART on the enzymatic activity of the viral polymerase. Interestingly, ART showed 26% and 40% inhibition of the RdRp polymerase activity at 19.5 µM and 78 µM concentrations of ART, respectively. It could be concluded from these findings that ART inhibited replication of both HEV-1 and HEV-3 by directly targeting the activities of the viral enzymes helicase and RdRp. Considering that ART is known to be safe in pregnant women, we think this antimalarial drug deserves further evaluation in animal models.
Collapse
Affiliation(s)
- Neha Bhise
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - Megha Agarwal
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, Dr. Ambedkar Road, Pune, India
| | - Nidhi Thakur
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - P S Akshay
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, India.
| | - Kavita Lole
- Hepatitis Group, ICMR-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
4
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
5
|
Roy A, Roy M, Gacem A, Datta S, Zeyaullah M, Muzammil K, Farghaly TA, Abdellattif MH, Yadav KK, Simal-Gandara J. Role of bioactive compounds in the treatment of hepatitis: A review. Front Pharmacol 2022; 13:1051751. [PMID: 36618936 PMCID: PMC9810990 DOI: 10.3389/fphar.2022.1051751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| | - Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Shreeja Datta
- Biotechnology Department, Delhi Technological University, Rohini, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, Universidade de Vigo, Ourense, Spain,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| |
Collapse
|
6
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Guo Y, Ma A, Wang X, Yang C, Chen X, Li G, Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem 2022; 10:1005360. [PMID: 36311429 PMCID: PMC9596788 DOI: 10.3389/fchem.2022.1005360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses spread rapidly and are well-adapted to changing environmental events. They can infect the human body readily and trigger fatal diseases. A limited number of drugs are available for specific viral diseases, which can lead to non-efficacy against viral variants and drug resistance, so drugs with broad-spectrum antiviral activity are lacking. In recent years, a steady stream of new viral diseases has emerged, which has prompted development of new antiviral drugs. Natural products could be employed to develop new antiviral drugs because of their innovative structures and broad antiviral activities. This review summarizes the progress of natural products in antiviral research and their bright performance in drug resistance issues over the past 2 decades. Moreover, it fully discusses the effect of different structural types of natural products on antiviral activity in terms of structure–activity relationships. This review could provide a foundation for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjfin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
9
|
Zeng S, Li Y, Zhu W, Luo Z, Wu K, Li X, Fang Y, Qin Y, Chen W, Li Z, Zou L, Liu X, Yi L, Fan S. The Advances of Broad-Spectrum and Hot Anti-Coronavirus Drugs. Microorganisms 2022; 10:microorganisms10071294. [PMID: 35889013 PMCID: PMC9317368 DOI: 10.3390/microorganisms10071294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy. However, the emergence of mutated viruses reduces the effectiveness of vaccines. In addition, vaccine developments often lag behind, making it difficult to put them into use early in the outbreak. Therefore, it is meaningful to screen safe, cheap, and broad-spectrum antiviral agents for coronaviruses. This review systematically summarizes the mechanisms and state of anti-human and porcine coronavirus drugs, in order to provide theoretical support for the development of anti-coronavirus drugs and other antivirals.
Collapse
Affiliation(s)
- Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| |
Collapse
|
10
|
Herrmann L, Yaremenko IA, Çapcı A, Struwe J, Tailor D, Dheeraj A, Hodek J, Belyakova YY, Radulov PS, Weber J, Malhotra SV, Terent'ev AO, Ackermann L, Tsogoeva SB. Synthesis and in vitro Study of Artemisinin/Synthetic Peroxide-Based Hybrid Compounds against SARS-CoV-2 and Cancer. ChemMedChem 2022; 17:e202200005. [PMID: 35187791 PMCID: PMC9086992 DOI: 10.1002/cmdc.202200005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 12/24/2022]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 μm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 μM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Dhanir Tailor
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Arpit Dheeraj
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo namesti 216610PragueCzech Republic
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo namesti 216610PragueCzech Republic
| | - Sanjay V. Malhotra
- Department of CellDevelopmental and Cancer BiologyCenter for Experimental TherapeuticsKnight Cancer InstituteOregon Health and Science University97201PortlandORUSA
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences47 Leninsky prosp.119991MoscowRussian Federation
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- German Center for Cardiovascular Research (DZHK)Potsdamer Str. 5810785BerlinGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-University Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| |
Collapse
|
11
|
Tang Y, Guo C, Yang Z, Wang Y, Zhang Y, Wang D. Identification of a Tumor Immunological Phenotype-Related Gene Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Hepatocellular Carcinoma. Front Immunol 2022; 13:862527. [PMID: 35493471 PMCID: PMC9039265 DOI: 10.3389/fimmu.2022.862527] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant subtype of primary liver cancer and represents a highly heterogeneous disease, making it hard to predict the prognosis and therapy efficacy. Here, we established a novel tumor immunological phenotype-related gene index (TIPRGPI) consisting of 11 genes by Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) algorithm to predict HCC prognosis and immunotherapy response. TIPRGPI was validated in multiple datasets and exhibited outstanding performance in predicting the overall survival of HCC. Multivariate analysis verified it as an independent predictor and a TIPRGPI-integrated nomogram was constructed to provide a quantitative tool for clinical practice. Distinct mutation profiles, hallmark pathways, and infiltration of immune cells in tumor microenvironment were shown between the TIPRGPI high and low-risk groups. Notably, significant differences in tumor immunogenicity and tumor immune dysfunction and exclusion (TIDE) were observed between the two risk groups, suggesting a better response to immune checkpoint blockade (ICB) therapy of the low-risk group. Besides, six potential drugs binding to the core target of the TIPRGPI signature were predicted via molecular docking. Taken together, our study shows that the proposed TIPRGPI was a reliable signature to predict the risk classification, immunotherapy response, and drugs candidate with potential application in the clinical decision and treatment of HCC. The novel "TIP genes"-guided strategy for predicting the survival and immunotherapy efficacy, we reported here, might be also applied to more cancers other than HCC.
Collapse
Affiliation(s)
- Yuqin Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongqiang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D. Anti-viral triterpenes: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1761-1842. [PMID: 35283698 PMCID: PMC8896976 DOI: 10.1007/s11101-022-09808-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/27/2022] [Indexed: 05/07/2023]
Abstract
Triterpenes are naturally occurring derivatives biosynthesized following the isoprene rule of Ruzicka. The triterpenes have been reported to possess a wide range of therapeutic applications including anti-viral properties. In this review, the recent studies (2010-2020) concerning the anti-viral activities of triterpenes have been summarized. The structure activity relationship studies have been described as well as brief biosynthesis of these triterpenes is discussed.
Collapse
Affiliation(s)
- Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Shreya Sen Sarma
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Amit K. Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Rinku Baishya
- Natural Product Chemistry Group, CSIR-North East Institute of Science and Technology (NEIST), NH-37, Pulibor, Jorhat, Assam India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| |
Collapse
|
13
|
Souid I, Korchef A, Souid S. In silico evaluation of Vitis amurensis Rupr. polyphenol compounds for their inhibition potency against CoVID-19 main enzymes Mpro and RdRp. Saudi Pharm J 2022; 30:570-584. [PMID: 35250347 PMCID: PMC8883852 DOI: 10.1016/j.jsps.2022.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid transmission of the pneumonia (COVID-19) emerged as an entire worldwide health concern and it was declared as pandemic by the World Health Organization (WHO) as a consequence of the increasing reported infections number. COVID-19 disease is caused by the novel SARS-CoV-2 virus, and unfortunatly no drugs are currently approved against this desease. Accordingly, it is of outmost importance to review the possible therapeutic effects of naturally-occuring compounds that showed approved antiviral activities. The molecular docking approach offers a rapid prediction of a possible inhibition of the main enzymes Mpro and RdRp that play crucial role in the SARS-CoV-2 replication and transcription. In the present work, we review the anti-viral activities of polyphenol compounds (phenolic acids, flavonoids and stilbene) derived from the traditional Chinese medicinal Vitis amurensis. Recent molecular docking studies reported the possible binding of these polyphenols on SARS-CoV-2 enzymes Mpro and RdRp active sites and showed interesting inhibitory effects. This antiviral activity was explained by the structure-activity relationships of the studied compounds. Also, pharmacokinetic analysis of the studied molecules is simulated in the present work. Among the studied polyphenol compounds, only five, namely caffeic acid, ferulic acid, quercetin, naringenin and catechin have drug-likeness characteristics. These five polyphenols derived from Vitis amurensis are promising drug candidates for the COVID-19 treatment.
Collapse
|
14
|
Kunkeaw T, Suttisansanee U, Trachootham D, Karinchai J, Chantong B, Potikanond S, Inthachat W, Pitchakarn P, Temviriyanukul P. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer's disease. Sci Rep 2021; 11:23796. [PMID: 34893659 PMCID: PMC8664832 DOI: 10.1038/s41598-021-03142-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/26/2021] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aβ), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aβ-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aβ42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.
Collapse
Affiliation(s)
- Thanit Kunkeaw
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Dunyaporn Trachootham
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Boonrat Chantong
- Department of Preclinical Science and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand.
| |
Collapse
|
15
|
Zhou Y, Gilmore K, Ramirez S, Settels E, Gammeltoft KA, Pham LV, Fahnøe U, Feng S, Offersgaard A, Trimpert J, Bukh J, Osterrieder K, Gottwein JM, Seeberger PH. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci Rep 2021. [PMID: 34272426 DOI: 10.1101/2020.10.05.326637v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration-response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7-12 µg/mL), followed by artemether (53-98 µg/mL), A. annua extracts (83-260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Kerry Gilmore
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Settels
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Karen A Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jakob Trimpert
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Klaus Osterrieder
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.
| |
Collapse
|
16
|
Zhou Y, Gilmore K, Ramirez S, Settels E, Gammeltoft KA, Pham LV, Fahnøe U, Feng S, Offersgaard A, Trimpert J, Bukh J, Osterrieder K, Gottwein JM, Seeberger PH. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci Rep 2021; 11:14571. [PMID: 34272426 PMCID: PMC8285423 DOI: 10.1038/s41598-021-93361-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration–response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7–12 µg/mL), followed by artemether (53–98 µg/mL), A. annua extracts (83–260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Kerry Gilmore
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Settels
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Karen A Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jakob Trimpert
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark.,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Klaus Osterrieder
- Institute for Virology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany. .,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Kettegård Alle 30, 2650, Hvidovre, Denmark. .,CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany. .,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.
| |
Collapse
|
17
|
Carsanba E, Pintado M, Oliveira C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals (Basel) 2021; 14:295. [PMID: 33810302 PMCID: PMC8066412 DOI: 10.3390/ph14040295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Collapse
Affiliation(s)
- Erdem Carsanba
- Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
18
|
Komolafe K, Komolafe TR, Fatoki TH, Akinmoladun AC, Brai BIC, Olaleye MT, Akindahunsi AA. Coronavirus Disease 2019 and Herbal Therapy: Pertinent Issues Relating to Toxicity and Standardization of Phytopharmaceuticals. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:142-161. [PMID: 33727754 PMCID: PMC7951132 DOI: 10.1007/s43450-021-00132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information The online version contains supplementary material available at 10.1007/s43450-021-00132-x.
Collapse
Affiliation(s)
- Kayode Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Titilope Ruth Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Toluwase Hezekiah Fatoki
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Bartholomew I. C. Brai
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | | |
Collapse
|
19
|
Aishwarya V, Solaipriya S, Sivaramakrishnan V. Role of ellagic acid for the prevention and treatment of liver diseases. Phytother Res 2020; 35:2925-2944. [PMID: 33368795 DOI: 10.1002/ptr.7001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022]
Abstract
Globally, one of the alarming problems is the prevalence and burden of liver diseases, which accounts for 2 million cases per year. Chronic liver aetiologies such as hepatitis infections, alcoholic or non-alcoholic liver disease, environmental agents, and drug-induced toxicity are invariably responsible for liver fibrosis progression to finally hepatocellular carcinoma. Current treatment options are unable to overwhelm and cure liver diseases. Emerging findings suggest researchers' interest in using evidence-based complementary medicine such as ellagic acid with extensive pharmacological properties. They include antioxidant, anti-inflammatory, anti-hyperlipidaemic, anti-viral, anti-angiogenic, and anticancer activity. The molecular functions elicited by ellagic acid include scavenging of free radicals, regulation of lipid metabolism, the prohibition of fibrogenesis response-mediating proteins, inhibits hepatic stellate cells and myofibroblasts, restrains hepatic viral replication, facilitates suppression of growth factors, regulates transcription factors, proinflammatory cytokines, augments the liver immune response, fosters apoptosis and inhibits cell proliferation in tumorigenic cells. This review will most notably focus on preclinical and clinical information based on currently available evidence to warrant ellagic acid's prospective role in preventing liver diseases.
Collapse
Affiliation(s)
- Venkatasubramanian Aishwarya
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Solairaja Solaipriya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
20
|
Liu X, Ma C, Liu Z, Kang W. Natural Products: Review for Their Effects of Anti-HBV. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3972390. [PMID: 33376721 PMCID: PMC7746453 DOI: 10.1155/2020/3972390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
Hepatitis B is a global infectious disease, seriously endangering human health. Currently, there are mainly interferons and nucleoside analogues treatment of hepatitis B in the clinic, which have certain therapeutic effects on hepatitis B, but their side effects and drug resistance are increasingly prominent. Therefore, it is urgently needed to discover and develop new anti-HBV drugs, especially natural products, which have novel, high efficiency, and low toxicity anti-HBV compounds with novel antiviral mechanisms. In this manuscript, the natural products (polysaccharides and 165 compounds) with the activity of antihepatitis B virus are discussed according to their chemical classes, including 14 phenylpropanoids, 8 flavonoids,12 xanthones, 13 anthroquinones, 47 terpenoids, 6 alkaloids, 15 enediynes, 11 aromatics, 18 phenylalanine dipeptides compounds, and 13 others. In addition, the anti-HBV mechanism and targets of natural product were also discussed. The aim of this review is to report new discoveries about anti-HBV natural products and to provide reference for researchers.
Collapse
Affiliation(s)
- Xuqiang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan Province, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan Province, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng, 475004 Henan Province, China
| |
Collapse
|
21
|
Ren Y, Ma Y, Cherukupalli S, Tavis JE, Menéndez-Arias L, Liu X, Zhan P. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem 2020; 206:112714. [PMID: 32949990 DOI: 10.1016/j.ejmech.2020.112714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Hepatitis B is a vaccine-preventable, but potentially life-threatening liver infection caused by the Hepatitis B virus (HBV). It represents an important health burden, with 257 million active cases globally. Current HBV treatments using nucleos(t)ide analogs and pegylated interferons cannot alleviate the situation completely since they are unable to cure the infection or reduce the amount of viral covalently closed circular DNA (cccDNA). The HBV core protein is a small protein of 183 amino acids that participates in multiple essential functions in the HBV replicative cycle. Capsid assembly modulators that target the core protein are being developed. Sulfonamides are synthetic functional groups, found in several drugs. Herein, we provide a concise report focusing on the sulfamoylbenzamides as HBV capsid modulators, and medicinal chemistry strategies used in their design and development.
Collapse
Affiliation(s)
- Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
22
|
Song DW, Liu GL, Xue MY, Qiu TX, Wang H, Shan LP, Liu L, Chen J. In vitro and in vivo evaluation of antiviral activity of a phenylpropanoid derivative against spring viraemia of carp virus. Virus Res 2020; 291:198221. [PMID: 33152382 DOI: 10.1016/j.virusres.2020.198221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoids, common natural compounds, possess many different biological activities such as antioxidant, anti-inflammatory and antiviral. Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio). However, there are currently no licenced drugs that effectively cure this disease. In this study, we designed and synthesized a phenylpropanoid derivative 4-(4-methoxyphenyl)-3,4-dihydro-2H-chromeno[4,3-d]pyrimidine-2,5(1 H)-dione (E2), and explored the antiviral effect against SVCV in vitro and in vivo. Up to 25 mg/L of E2 significantly inhibited the expression levels of SVCV protein genes in the epithelioma papulosum cyprini (EPC) cell line by a maximum inhibitory rate of >90%. As expected, E2 remarkably declined the apoptotic of SVCV-infected cells and suppressed potential enhancement of the mitochondrial membrane potential (ΔΨm), these data implied that E2 could protect mitochondria from structural damage in response to SVCV. Meanwhile, E2 was added to EPC cells under four different conditions: time-of-addition, time-of-removal, pre-treatment of viruses and pre-treatment of cells indicated that E2 may block the post-entry transport process of the virus. Additionally, the up-regulation of six interferon (IFN)-related genes also demonstrated that E2 indirectly activated IFNs for the clearance of SVCV in common carp. Drug cure effect showed that treatment with E2 at 0.5 d post infection (dpi) is more effective than at 0, 1 or 2 dpi. Most importantly, intraperitoneal therapy of E2 markedly improved common carp survival rate and reduced virus copies in body. Therefore, the E2 has potential to be developed into a novel anti-SVCV agent.
Collapse
Affiliation(s)
- Da-Wei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Guang-Lu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ming-Yang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
23
|
Weber A, Breugst M, Pietruszka J. Experimental and Computational Investigations of the Reactions between α,β-Unsaturated Lactones and 1,3-Dienes by Cooperative Lewis Acid/Brønsted Acid Catalysis. Angew Chem Int Ed Engl 2020; 59:18709-18716. [PMID: 32567075 PMCID: PMC7589441 DOI: 10.1002/anie.202008365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/02/2022]
Abstract
The reactions of α,β-unsaturated δ-lactones with activated dienes such as 1,3-dimethoxy-1-[(trimethylsilyl)oxy]-1,3-butadiene (Brassard's diene) are barely known in literature and show high potential for the synthesis of isocoumarin moieties. An in-depth investigation of this reaction proved a stepwise mechanism via the vinylogous Michael-products. Subsequent cyclisation and oxidation by LHMDS and DDQ, respectively, provided six mellein derivatives (30-84 %) and four angelicoin derivatives (40-78 %) over three steps. DFT-calculations provide insights into the reaction mechanism and support the theory of a stepwise reaction.
Collapse
Affiliation(s)
- Anja Weber
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
| | - Martin Breugst
- Department für ChemieUniversität zu KölnGreinstraße 450939KölnGermany
| | - Jörg Pietruszka
- Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf im Forschungszentrum JülichStetternicher Forst, Geb. 15.852426JülichGermany
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1)Forschungszentrum Jülich GmbH52428JülichGermany
| |
Collapse
|
24
|
Anti-Osteoporotic Effects of the Herbal Mixture of Cornus officinalis and Achyranthes japonica In Vitro and In Vivo. PLANTS 2020; 9:plants9091114. [PMID: 32872183 PMCID: PMC7570351 DOI: 10.3390/plants9091114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a porous bone disease caused by bone density loss, which increases the risk of fractures. Cornus officinalis (CO) and Achyranthes japonica (AJ) have been used as traditional herbal medicine for various disorders in East Asia. Although the anti-osteoporotic effects of single extract of CO and AJ have already been reported, the synergistic effect of a combined mixture has not been studied. In this study, we investigated the effects of a CO and AJ herbal mixture on osteoporosis in in vitro and in vivo models. The results demonstrate that treatment with the CO and AJ mixture significantly promoted osteoblast differentiation of MC3T3-E1 mouse preosteoblasts through the upregulation of osteoblastic differentiation-associated genes such as alkaline phosphatase (Alpl), runt-related transcription factor 2 (Runx2), and bone gamma-carboxyglutamic acid-containing protein (Bglap), while the mixture significantly inhibited differentiation of osteoclasts isolated from primary-cultured mouse monocytes. In addition, oral administration of CO and AJ mixture significantly prevented bone mineral density loss and trabecular bone structures in an ovariectomy-induced osteoporotic mouse model. These results suggest that the combination treatment of CO and AJ mixture might be a beneficial therapy for osteoporosis.
Collapse
|
25
|
Weber A, Breugst M, Pietruszka J. Experimental and Computational Investigations of the Reactions between α,β‐Unsaturated Lactones and 1,3‐Dienes by Cooperative Lewis Acid/Brønsted Acid Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anja Weber
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Germany
| | - Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich Stetternicher Forst, Geb. 15.8 52426 Jülich Germany
- Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1) Forschungszentrum Jülich GmbH 52428 Jülich Germany
| |
Collapse
|
26
|
Wang X, Zheng B, Ashraf U, Zhang H, Cao C, Li Q, Chen Z, Imran M, Chen H, Cao S, Ye J. Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Antiviral Res 2020; 179:104810. [PMID: 32360948 DOI: 10.1016/j.antiviral.2020.104810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
Abstract
Flaviviruses are considered to be major emerging human pathogens globally. Currently available anti-flavivirus approaches are ineffective, thus there is a desperate need for broad-spectrum drugs that can be active against existing and emerging flaviviruses. Artemisinin has been found to cause an antiviral effect against several viruses; however, its antiviral effect against flaviviruses remains unexplored. Here the antiviral activity of artemisinin against flaviviruses such as JEV, DENV, and ZIKV was evaluated by measuring the hallmark features of virus replication both in vitro and in vivo. Mechanistically, the artemisinin-induced antiviral effect was associated with enhanced host type I interferon response. The blocking of interferon signaling inhibited the artemisinin-induced interferon-stimulated genes expression and rescued the artemisinin-suppressed virus replication. This study demonstrated for the first time the antiviral activity of artemisinin against flaviviruses with a novel antiviral mechanism. The therapeutic application of artemisinin may constitute a broad-spectrum approach to cure infections caused by flaviviruses.
Collapse
Affiliation(s)
- Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Bohan Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Chen Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
27
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
28
|
Efficacy of a Peruvian Botanical Remedy (Sabell A4+) for Treating Liver Disease and Protecting Gastric Mucosal Integrity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5486728. [PMID: 31781272 PMCID: PMC6855027 DOI: 10.1155/2019/5486728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/07/2019] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to determine the efficacy of a Peruvian botanical formulation for treating disorders of hepatic function and gastric mucosal integrity. The formulation A4+ (Sabell Corporation) contains extracts of Curcuma longa rhizome, Cordia lutea flower, and Annona muricata leaf. Individually these plants have been used as traditional remedies for liver disease. We report the efficacy of A4+ and its components using a variety of in vitro and in vivo disease models. The methods used included tests for antioxidant, anti-inflammatory, and antiviral activity as well as mouse models of liver disease, including Concanavalin A-induced immune-mediated hepatitis and a bile duct ligation model for evaluating sickness behaviour associated with liver disease. Rat models were used to evaluate the gastric mucosal protective property of A4+ following indomethacin challenge and to evaluate its anti-inflammatory action in an “air pouch” model. In all tests, A4+ proved to be more effective than placebo. A4+ was antioxidant and anti-inflammatory and diminished Hepatitis C virus replication in vitro. In animal models, A4+ was shown to protect the liver from immune-mediated hepatitis, improve behavioural function in animals with late stage liver disease, and protect the rat gastric mucosa from ulceration following NSAID exposure. We conclude that A4+ ameliorated many aspects of liver injury, inhibited hepatitis C virus replication, and protected the gastric mucosa from NSAIDs. These varied beneficial properties appear to result from positive interactions between the three constituent herbs.
Collapse
|
29
|
Pan Y, Ke Z, Ye H, Sun L, Ding X, Shen Y, Zhang R, Yuan J. Saikosaponin C exerts anti-HBV effects by attenuating HNF1α and HNF4α expression to suppress HBV pgRNA synthesis. Inflamm Res 2019; 68:1025-1034. [PMID: 31531682 PMCID: PMC7079752 DOI: 10.1007/s00011-019-01284-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Saikosaponin c (SSc), a compound purified from the traditional Chinese herb of Radix Bupleuri was previously identified to exhibit anti-HBV replication activity. However, the mechanism through which SSc acts against HBV remains unknown. In this study, we investigated the mechanism of SSc mediated anti-HBV activity. Methods HepG2.2.15 cells were cultured at 37 ℃ in the presence of 1–40 μg/mL of SSc or DMSO as a control. The expression profile of HBV markers, cytokines, HNF1α and HNF4α were investigated by real-time quantitative PCR, Elisa, Western blot and Dot blotting. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells was mediated by two small siRNAs specifically targeting HNF1α or HNF4α. Results We found that SSc stimulates IL-6 expression, leading to attenuated HNF1α and HNF4α expression, which further mediates suppression of HBV pgRNA synthesis. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells by RNA interference abrogates SSc’s anti-HBV role. Moreover, SSc is effective to both wild-type and drug-resistant HBV mutants. Conclusion SSc inhibits pgRNA synthesis by targeting HNF1α and HNF4α. These results indicate that SSc acts as a promising compound for modulating pgRNA transcription in the therapeutic strategies against HBV infection. Electronic supplementary material The online version of this article (10.1007/s00011-019-01284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanchao Pan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Zhiyi Ke
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Hong Ye
- Anhui Academy of Medical Sciences, Hefei, 230061, China
| | - Lina Sun
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaoyan Ding
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yun Shen
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Runze Zhang
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jing Yuan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| |
Collapse
|
30
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174' and 2*3*8=6*8 and 'hgwn'='hgwn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
31
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174%' and 2*3*8=6*8 and 'alnw'!='alnw%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
32
|
Li X, Li X, Huang N, Liu R, Sun R. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:73-87. [PMID: 30466994 PMCID: PMC7126585 DOI: 10.1016/j.phymed.2018.09.174] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- School of Advanced Medical Science, Shandong University, 44 Wenhuaxilu road, Jinan, Shandong 250012, China; Department of Microbiology and Immunology, Virginia Commonwealth University, 1217 E Marshall St. KMSB, Richmond, VA 23298, USA
| | - Xiaoyu Li
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong 250355, China
| | - Nana Huang
- School of Advanced Medical Science, Shandong University, 44 Wenhuaxilu road, Jinan, Shandong 250012, China; The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong 250033, China
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, 1217 E Marshall St. KMSB, Richmond, VA 23298, USA.
| | - Rong Sun
- School of Advanced Medical Science, Shandong University, 44 Wenhuaxilu road, Jinan, Shandong 250012, China; The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong 250355, China.
| |
Collapse
|
33
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174" and 2*3*8=6*8 and "mze9"="mze9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
34
|
Lin CK, Tseng CK, Liaw CC, Huang CY, Wei CK, Sheu JH, Lee JC. Lobohedleolide suppresses hepatitis C virus replication via JNK/c-Jun-C/EBP-mediated down-regulation of cyclooxygenase-2 expression. Sci Rep 2018; 8:8676. [PMID: 29875371 PMCID: PMC5989199 DOI: 10.1038/s41598-018-26999-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) chronically infects 2–3% people of the global population, which leads to liver cirrhosis and hepatocellular carcinoma. Drug resistance remains a serious problem that limits the effectiveness of US Food and Drug Administration (FDA)-approved direct-acting antiviral (DAA) drugs against HCV proteins. The objective of our study was to discover new antivirals from natural products to supplement current therapeutics. We demonstrated that lobohedleolide, isolated from the Formosan soft coral Lobophytum crassum, significantly reduced HCV replication in replicon cells and JFH-1 infection system, with EC50 values of 10 ± 0.56 and 22 ± 0.75 μM, respectively, at non-toxic concentrations. We further observed that the inhibitory effect of lobohedleolide on HCV replication is due to suppression of HCV-induced cyclooxygenase-2 (COX-2) expression. Based on deletion-mutant analysis of the COX-2 promoter, we identified CCAAT/enhancer-binding protein (C/EBP) as a key transcription factor for the down-regulation of COX-2 by lobohedleolide, through which lobohedleolide decreased the phosphorylation of c-Jun NH2-terminal protein kinase and c-Jun to suppress HCV-induced C/EBP expression. The combination treatment of lobohedleolide with clinically used HCV drugs synergistically reduced HCV RNA replication, indicating that lobohedleolide exhibited a high biomedical potential to be used as a supplementary therapeutic agent to control HCV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
35
|
Lips S, Frontana-Uribe BA, Dörr M, Schollmeyer D, Franke R, Waldvogel SR. Metal- and Reagent-Free Anodic C-C Cross-Coupling of Phenols with Benzofurans leading to a Furan Metathesis. Chemistry 2018; 24:6057-6061. [PMID: 29493824 DOI: 10.1002/chem.201800919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 01/11/2023]
Abstract
Heterobiaryls consisting of a phenol and a benzofuran motif are of significant importance for pharmaceutical applications. An attractive sustainable, metal- and reagent-free, electrosynthetic, and highly efficient method, that allows access to (2-hydroxyphenyl)benzofurans is presented. Upon the electrochemical dehydrogenative C-C cross-coupling reaction, a metathesis of the benzo moiety at the benzofuran occurs. This gives rise to a substitution pattern at the hydroxyphenyl moiety which would not be compatible by a direct coupling process. The single-step protocol is easy to conduct in an undivided electrolysis cell, therefore scalable, and inherently safe.
Collapse
Affiliation(s)
- Sebastian Lips
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bernardo Antonio Frontana-Uribe
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Instituto de Química, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, C.P, 04510, Mexico, D.F., Mexico
| | - Maurice Dörr
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany.,Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
36
|
Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145:691-716. [PMID: 29353722 DOI: 10.1016/j.ejmech.2018.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Liver diseases are one of the leading causes of death in the world. In spite of tremendous advances in modern drug research, effective and safe hepatoprotective agents are still in urgent demand. Natural products are undoubtedly valuable sources for drug leads. A number of natural triterpenoids were reported to possess pronounced hepatoprotective effects, and triterpenoids have become one of the most important classes of natural products for hepatoprotective agents. However, the significance of natural triterpenoids has been underestimated in the hepatoprotective drug discovery, with only very limited triterpenoids being covered in the reviews of hepatoprotective natural products. In this paper, ca 350 natural triterpenoids with reported hepatoprotective effects in ca 120 references between 1975 and 2016 will be reviewed, and the structure-activity relationships of certain types of natural triterpenoids, if available, will be discussed. Patents are not included.
Collapse
Affiliation(s)
- Guo-Bo Xu
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Yao-Hua Xiao
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qing-Yan Zhang
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Meng Zhou
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550004, Guizhou, China
| | - Shang-Gao Liao
- School of Pharmacy/State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China; Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guian New District, 550025, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550004, Guizhou, China.
| |
Collapse
|
37
|
Arbab AH, Parvez MK, Al-Dosari MS, Al-Rehaily AJ. In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus. Exp Ther Med 2017; 14:626-634. [PMID: 28672977 PMCID: PMC5488430 DOI: 10.3892/etm.2017.4530] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Currently, >35 Saudi Arabian medicinal plants are traditionally used for various liver disorders without a scientific rationale. This is the first experimental evaluation of the anti-hepatitis B virus (HBV) potential of the total ethanolic and sequential organic extracts of 60 candidate medicinal plants. The extracts were tested for toxicity on HepG2.2.15 cells and cytotoxicity concentration (CC50) values were determined. The extracts were further investigated on HepG2.2.15 cells for anti-HBV activities by analyzing the inhibition of HBsAg and HBeAg production in the culture supernatants, and their half maximal inhibitory concentration (IC50) and therapeutic index (TI) values were determined. Of the screened plants, Guiera senegalensis (dichloromethane extract, IC50=10.65), Pulicaria crispa (ethyl acetate extract, IC50=14.45), Coccinea grandis (total ethanol extract, IC50=31.57), Fumaria parviflora (hexane extract, IC50=35.44), Capparis decidua (aqueous extract, IC50=66.82), Corallocarpus epigeus (total ethanol extract, IC50=71.9), Indigofera caerulea (methanol extract, IC50=73.21), Abutilon figarianum (dichloromethane extract, IC50=99.76) and Acacia oerfota (total ethanol extract, IC50=101.46) demonstrated novel anti-HBV activities in a time- and dose-dependent manner. Further qualitative phytochemical analysis of the active extracts revealed the presence of alkaloids, tannins, flavonoids and saponins, which are attributed to antiviral efficacies. In conclusion, P. crispa, G. senegalensis and F. parviflora had the most promising anti-HBV potentials, including those of C. decidua, C. epigeus, A. figarianum, A. oerfota and I. caerulea with marked activities. However, a detailed phytochemical study of these extracts is essential to isolate the active principle(s) responsible for their novel anti-HBV potential.
Collapse
Affiliation(s)
- Ahmed Hassan Arbab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.,Department of Pharmacognosy, College of Pharmacy, Omdurman Islamic University, Omdurman 14415, Republic of the Sudan
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Salem Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Adnan Jathlan Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Zhou YQ, Weng XF, Dou R, Tan XS, Zhang TT, Fang JB, Wu XW. Betulin from Hedyotis hedyotidea ameliorates concanavalin A-induced and T cell-mediated autoimmune hepatitis in mice. Acta Pharmacol Sin 2017; 38:201-210. [PMID: 27796295 DOI: 10.1038/aps.2016.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022]
Abstract
Hedyotis hedyotidea has been used in traditional Chinese medicine for the treatment of autoimmune diseases. However, the mechanisms underlying for the effect remain unknown. We previously showed that, among 11 compounds extracted from H hedyotidea, betulin produced the strongest suppressive effect on T cell activation. Here, we examined the hepatoprotective effects of betulin against acute autoimmune hepatitis in mice and the mechanisms underlying the effects. Freshly isolated mouse splenocytes were stimulated with concanavalin A (Con A, 5 μg/mL) in the presence of betulin, the cell proliferation was assessed with CSFE-dilution assay. Mice were injected with betulin (10, 20 mg·kg-1·d-1, ip) for 3 d. One hour after the last injection, the mice were injected with Con A (15 mg/kg, iv) to induce acute hepatitis. Blood samples and liver tissues were harvested at 10 h after Con A injection, and serum transaminase levels and liver histopathology were detected; serum levels of proinflammatory cytokines, hepatic T lymphocyte ratios, and functional statuses of conventional T and NKT cells were also analyzed. Betulin (16 and 32 μmol/L) dose-dependently suppressed the proliferation of Con A-stimulated mouse splenocytes in vitro. In Con A-challenged mice, preinjection with betulin (20 mg·kg-1·d-1) significantly decreased the levels of proinflammatory cytokines IFN-γ, TNF-α and IL-6, and ameliorated liver injury. Furthermore, pretreatment with betulin (20 mg·kg-1·d-1) significantly inhibited the Con A-induced activation of NKT and conventional T cells, and decreased production of proinflammatory cytokines IFN-γ, TNF-α and IL-6 in these two cell populations. Betulin has immunomodulatory effect on overly activated conventional T and NKT cells and exerts hepatoprotective action in mouse autoimmune hepatitis. The findings provide evidence for the use of H hedyotidea and its constituent betulin in the treatment of autoimmune diseases.
Collapse
|
39
|
Xu T, Xie J, Yang S, Ye S, Luo M, Wu X. First characterization of three cyclophilin family proteins in the oyster, Crassostrea ariakensis Gould. FISH & SHELLFISH IMMUNOLOGY 2016; 55:257-266. [PMID: 27238430 DOI: 10.1016/j.fsi.2016.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
Cyclophilins (CyPs) are a family of proteins that bind the immunosuppressive agent cyclosporin A (CsA) with high-affinity and belong to one of the three superfamilies of peptidyl-prolyl cis-trans isomerases (PPIase). In this report, three cyclophilin genes (Ca-CyPs), including Ca-CyPA, Ca-CyPB and Ca-PPIL3, were identified from oyster, Crassostrea ariakensis Gould in which Ca-CyPA encodes a protein with 165 amino acid sequences, Ca-CyPB encodes a protein with 217 amino acid sequences and Ca-PPIL3 encodes a protein with 162 amino acid sequences. All of the three Ca-CyPs genes contain a typical CyP-PPIase domain with its signature sequences and Ca-CyPB contains an N-signal peptide sequences. Tissue distribution study revealed that Ca-CyPs were ubiquitously expressed in all examined tissues and the highest levels were observed in hemocytes. RLO incubation upregulated the mRNA expression levels of Ca-CyPs, indicating that three Ca-CyPs might be involved in oyster immune response against RLO infection.
Collapse
Affiliation(s)
- Ting Xu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiasong Xie
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shoubao Yang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shigen Ye
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming Luo
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinzhong Wu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Ocean College, Qinzhou University, Qinzhou City, Guangxi, China.
| |
Collapse
|
40
|
Yang D, Zhu Y, Yang N, Jiang Q, Liu R. One-Step Synthesis of Substituted Benzofurans from ortho
- Alkenylphenols via
Palladium-Catalyzed CH Functionalization. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600082] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Zhong JD, Feng Y, Li HM, Xia XS, Li RT. A new flavonoid glycoside from Elsholtzia bodinieri. Nat Prod Res 2016; 30:2278-84. [DOI: 10.1080/14786419.2016.1164698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jin-Dong Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Hong-Mei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Xue-Shan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
42
|
Muniraju C, Rao MV, Rajender A, Rao BV. A common approach to the total synthesis of l-1-deoxyallonojirimycin, l-homo-1-deoxyazaallose and triacetyl derivative of 5-epi hyacinthacine A5. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
44
|
Lin CK, Tseng CK, Chen KH, Wu SH, Liaw CC, Lee JC. Betulinic acid exerts anti-hepatitis C virus activity via the suppression of NF-κB- and MAPK-ERK1/2-mediated COX-2 expression. Br J Pharmacol 2015; 172:4481-4492. [PMID: 26102077 DOI: 10.1111/bph.13233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE This study was designed to evaluate the effect of betulinic acid (BA), extracted from Avicennia marina, on the replication of hepatitis C virus (HCV) and to investigate the mechanism of this BA-mediated anti-HCV activity. EXPERIMENTAL APPROACH HCV replicon and infectious systems were used to evaluate the anti-HCV activity of BA. Exogenous COX-2 or knock-down of COX-2 expression was used to investigate the role of COX-2 in the anti-HCV activity of BA. The effects of BA on the phosphorylation of NF-κB and on kinases in the MAPK signalling pathway were determined. The anti-HCV activity of BA in combination with other HCV inhibitors was also determined to assess its use as an anti-HCV supplement. KEY RESULTS BA inhibited HCV replication in both Ava5 replicon cells and in a cell culture-derived infectious HCV particle system. Treatment with a combination of BA and IFN-α, the protease inhibitor telaprevir or the NS5B polymerase inhibitor sofosbuvir resulted in the synergistic suppression of HCV RNA replication. Exogenous overexpression of COX-2 gradually attenuated the inhibitory effect of BA on HCV replication, suggesting that BA reduces HCV replication by suppressing the expression of COX-2. In particular, BA down-regulated HCV-induced COX-2 expression by reducing the phosphorylation of NF-κB and ERK1/2 of the MAPK signalling pathway. CONCLUSIONS AND IMPLICATIONS BA inhibits HCV replication by suppressing the NF-κB- and ERK1/2-mediated COX-2 pathway and may serve as a promising compound for drug development or as a potential supplement for use in the treatment of HCV-infected patients.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Hsun Chen
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shih-Hsiung Wu
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg Med Chem 2015; 23:5452-8. [PMID: 26260339 DOI: 10.1016/j.bmc.2015.07.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022]
Abstract
New pharmaceutically active compounds can be obtained by modification of existing drugs to access more effective agents in the wake of drug resistance amongst others. To achieve this goal the concept of hybridization was established during the last decade. We employed this concept by coupling two artemisinin-derived precursors to obtain dimers or trimers with increased in vitro activity against Plasmodiumfalciparum 3D7 strain, leukemia cells (CCRF-CEM and multidrug-resistant subline CEM/ADR5000) and human cytomegalovirus (HCMV). Dimer 4 (IC50 of 2.6 nM) possess superior antimalarial activity compared with its parent compound artesunic acid(3) (IC50 of 9.0 nM). Dimer5 and trimers6 and 7 display superior potency against both leukemia cell lines (IC50 up to 0.002 μM for CCRF-CEM and IC50 up to 0.20 μM for CEM/ADR5000) and are even more active than clinically used doxorubicin (IC50 1.61 μM for CEM/ADR5000). With respect to anti-HCMV activity, trimer6 is the most efficient hybrid (IC50 0.04 μM) outperforming ganciclovir (IC50 2.6 μM), dihydroartemisinin(IC50 >10 μM) and artesunic acid (IC50 3.8 μM).
Collapse
|
46
|
New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur J Med Chem 2015; 97:164-72. [DOI: 10.1016/j.ejmech.2015.04.053] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 01/21/2023]
|
47
|
Arbab AH, Parvez MK, Al-Dosari MS, Al-Rehaily AJ, Al-Sohaibani M, Zaroug EE, AlSaid MS, Rafatullah S. Hepatoprotective and antiviral efficacy of Acacia mellifera leaves fractions against hepatitis B virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:929131. [PMID: 25950002 PMCID: PMC4407411 DOI: 10.1155/2015/929131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/25/2015] [Indexed: 01/29/2023]
Abstract
The present study investigated the hepatoprotective and anti-HBV efficacy of Acacia mellifera (AM) leaves extracts. The crude ethanolic-extract, including organic and aqueous fractions, were tested for cytotoxicity on HepG2 and HepG2.2.15 cells (IC50=684 μg/mL). Of these, the ethyl acetate and aqueous fractions showed the most promising, dose-dependent hepatoprotection in DCFH-toxicated cells at 48 h. In CCl4-injured rats, oral administration of AM ethanol extract (250 and 500 mg/kg·bw) for three weeks significantly normalized the sera aminotransferases, alkaline phosphatase, bilirubin, cholesterol, triglycerides, and lipoprotein levels and elevated tissue nonprotein sulphydryl and total protein. The histopathology of dissected livers also revealed that AM cured the tissue lesions. The phytochemical screening of the fractions showed presence of alkaloids, flavonoids, tannins, sterols, and saponins. Further, anti-HBV potential of the fractions was evaluated on HepG2.2.15 cells. Of these, the n-butanol and aqueous fractions exhibited the best inhibitory effects on HBsAg and HBeAg expressions in dose- and time-dependent manner. Taken together, while the ethyl acetate and aqueous fractions exhibited the most promising antioxidant/hepatoprotective and anti-HBV activity, respectively, the n-butanol partition showed both activities. Therefore, the therapeutic potential of AM extracts warrants further isolation of the active principle(s) and its phytochemical as well as biological studies.
Collapse
Affiliation(s)
- Ahmed H. Arbab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Omdurman Islamic University, Khartoum 14415, Sudan
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-Sohaibani
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia
| | - Elwaleed E. Zaroug
- Department of Pharmacognosy, College of Pharmacy, Omdurman Islamic University, Khartoum 14415, Sudan
| | - Mansour S. AlSaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rafatullah
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Iranshahy M, Quinn RJ, Iranshahi M. Biologically active isoquinoline alkaloids with drug-like properties from the genus Corydalis. RSC Adv 2014. [DOI: 10.1039/c3ra47944g] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus. Arch Pharm Res 2014; 37:1117-23. [PMID: 24395532 PMCID: PMC7091366 DOI: 10.1007/s12272-013-0325-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/24/2013] [Indexed: 11/13/2022]
Abstract
Rheum palmatum, Chinese traditional herb, exhibits a great variety of anti-cancer and anti-viruses properties. This study rates antiviral activity of R. palmatum extracts and its components against Japanese encephalitis virus (JEV) in vitro. Methanol extract of R. palmatum contained higher levels of aloe emodin, chrysophanol, rhein, emodin and physcion than water extract. Methanol extract (IC50 = 15.04 μg/ml) exhibited more potent inhibitory effects on JEV plaque reduction than water extract (IC50 = 51.41 μg/ml). Meanwhile, IC50 values determined by plaque reduction assay were 15.82 μg/ml for chrysophanol and 17.39 μg/ml for aloe-emodin, respectively. Virucidal activity of agents correlated with anti-JEV activity, while virucidal IC50 values were 7.58 μg/ml for methanol extract, 17.36 μg/ml for water extract, 0.75 μg/ml for chrysophanol and 0.46 μg/ml for aloe-emodin, respectively. In addition, 10 μg/ml of extract, chrysophanol or aloe emodin caused 90 % inhibition of JEV yields in cells and significantly activated gamma activated sequence-driven promoters. Hence, methanol extract of R. palmatum and chrysophanol with high therapeutic index might be useful for development of antiviral agents against JEV.
Collapse
|
50
|
Bieberich E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. ADVANCES IN NEUROBIOLOGY 2014; 9:47-70. [PMID: 25151374 DOI: 10.1007/978-1-4939-1154-7_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many membrane-resident and secrected proteins, including growth factors and their receptors, are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolichol pyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose, or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review discusses the biology of N-glycoprotein synthesis, processing, and function with specific reference to the physiology and pathophysiology of the nervous system.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, 1120 15th Street Room CA4012, Augusta, GA, 30912, USA,
| |
Collapse
|