1
|
Wu S, Chen J. Is age-related myelinodegenerative change an initial risk factor of neurodegenerative diseases? Neural Regen Res 2026; 21:648-658. [PMID: 40326982 DOI: 10.4103/nrr.nrr-d-24-00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 05/07/2025] Open
Abstract
Myelination, the continuous ensheathment of neuronal axons, is a lifelong process in the nervous system that is essential for the precise, temporospatial conduction of action potentials between neurons. Myelin also provides intercellular metabolic support to axons. Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases. In fact, myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases, including multiple sclerosis and Alzheimer's disease. In the central nervous system, compact myelin sheaths are formed by fully mature oligodendrocytes. However, the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages. In addition to their well-known role in action potential propagation, oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes. Therefore, myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases. Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals. In this review, we investigate the changes in myelin that are associated with aging and their underlying mechanisms. We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent, slow down, or even reverse age-related myelin degeneration. Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuangchan Wu
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, Guangdong Province, China
| | - Jun Chen
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Huang L, Liu M, Li Z, Li B, Wang J, Zhang K. Systematic review of amyloid-beta clearance proteins from the brain to the periphery: implications for Alzheimer's disease diagnosis and therapeutic targets. Neural Regen Res 2025; 20:3574-3590. [PMID: 39820231 PMCID: PMC11974662 DOI: 10.4103/nrr.nrr-d-24-00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
Abstract
Amyloid-beta clearance plays a key role in the pathogenesis of Alzheimer's disease. However, the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels remain unclear. In this study, we conducted meta-analyses and a systematic review using studies from the PubMed, Embase, Web of Science, and Cochrane Library databases, including journal articles published from inception to June 30, 2023. The inclusion criteria included studies comparing the levels of functional proteins associated with amyloid-beta clearance in the blood, cerebrospinal fluid, and brain of healthy controls, patients with mild cognitive impairment, and patients with Alzheimer's disease. Additionally, we analyzed the correlation between these functional proteins and amyloid-beta levels in patients with Alzheimer's disease. The methodological quality of the studies was assessed via the Newcastle‒Ottawa Scale. Owing to heterogeneity, we utilized either a fixed-effect or random-effect model to assess the 95% confidence interval (CI) of the standard mean difference (SMD) among healthy controls, patients with mild cognitive impairment, and patients with Alzheimer's disease. The findings revealed significant alterations in the levels of insulin-degrading enzymes, neprilysin, matrix metalloproteinase-9, cathepsin D, receptor for advanced glycation end products, and P-glycoprotein in the brains of patients with Alzheimer's disease, patients with mild cognitive impairment, and healthy controls. In cerebrospinal fluid, the levels of triggering receptor expressed on myeloid cells 2 and ubiquitin C-terminal hydrolase L1 are altered, whereas the levels of TREM2, CD40, CD40L, CD14, CD22, cathepsin D, cystatin C, and α2 M in peripheral blood differ. Notably, TREM2 and cathepsin D showed changes in both brain (SMD = 0.31, 95% CI: 0.16-0.47, P < 0.001, I2 = 78.4%; SMD = 1.24, 95% CI: 0.01-2.48, P = 0.048, I2 = 90.1%) and peripheral blood (SMD = 1.01, 95% CI: 0.35-1.66, P = 0.003, I2 = 96.5%; SMD = 7.55, 95% CI: 3.92-11.18, P < 0.001, I2 = 98.2%) samples. Furthermore, correlations were observed between amyloid-beta levels and the levels of TREM2 ( r = 0.16, 95% CI: 0.04-0.28, P = 0.009, I2 = 74.7%), neprilysin ( r = -0.47, 95% CI: -0.80-0.14, P = 0.005, I2 = 76.1%), and P-glycoprotein ( r = -0.31, 95% CI: -0.51-0.11, P = 0.002, I2 = 0.0%) in patients with Alzheimer's disease. These findings suggest that triggering receptor expressed on myeloid cells 2 and cathepsin D could serve as potential diagnostic biomarkers for Alzheimer's disease, whereas triggering receptor expressed on myeloid cells 2, neprilysin, and P-glycoprotein may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mingyue Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Ze Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Bing Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Soni U, Singh K, Jain D, Pujari R. Exploring Alzheimer's disease treatment: Established therapies and novel strategies for future care. Eur J Pharmacol 2025; 998:177520. [PMID: 40097131 DOI: 10.1016/j.ejphar.2025.177520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a gradual decline in cognitive function, memory impairment, and alterations in behavior. As the predominant etiology of dementia, AD affects millions of individuals worldwide, with its hallmark pathological feature being the accumulation of amyloid beta (Aβ) plaques, which disrupt neuronal function and progressively compromise brain structure. Early clinical manifestations often include forgetfulness, disorientation, and social withdrawal. Primarily impacting the elderly population, AD significantly impairs daily functioning and diminishes overall quality of life. Current therapeutic approaches for AD mainly focus on symptomatic relief and decelerating the disease's progression. Cholinesterase inhibitors, such as donepezil and rivastigmine, increase acetylcholine (ACh) levels to enhance cognitive function in individuals with mild to moderate AD. For individuals in more advanced stages of the disease, NMDA receptor antagonists modulate glutamate activity to mitigate excitotoxicity. In addition to pharmacological interventions, lifestyle modifications such as adherence to a balanced diet, regular physical activity, and cognitive engagement are advocated to support brain health. Novel therapeutic avenues are being explored to address underlying pathophysiological mechanisms, such as metal ion dysregulation within the brain. Furthermore, non-pharmacological approaches, including cognitive-behavioral therapy and patient support groups, provide essential behavioral and emotional support. Cutting-edge research continues to investigate innovative treatments, such as immunotherapies targeting amyloid plaques and tau tangles and neuroprotective compounds derived from natural sources. The goal of these multifaceted strategies is to alleviate symptoms, enhance quality of life, and offer hope for individuals and families affected by AD. This review provides a comprehensive summary of both established and emerging therapeutic interventions for the management of AD.
Collapse
Affiliation(s)
- Urvashi Soni
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411023, Maharashtra, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Rohini Pujari
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411023, Maharashtra, India.
| |
Collapse
|
4
|
Sarangi NK, Mondal S, Keyes TE. Receptor modulated assembly and drug induced disassembly of amyloid beta aggregates at asymmetric neuronal model biomembranes. Biophys Chem 2025; 322:107441. [PMID: 40185057 DOI: 10.1016/j.bpc.2025.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Amyloid peptide non-fibrillar oligomers cause neurotoxicity and may contribute to Alzheimer's disease (AD) pathogenesis. Mounting evidence indicates that Aβ1-42 oligomers disrupt and remodel neuronal membrane, causing neuronal cell death. The involvement of individual neuronal membrane constituents in real-time Aβ1-42 aggregate assembly is unclear due to complexity of neuronal cell membrane. We used non-Faradaic electrochemical impedance spectroscopy (EIS) to track monomeric Aβ1-42 peptide binding and aggregation pathways in real-time in asymmetric micropore suspended lipid bilayer membranes with anionic phospholipids and glycosphingolipids. Anionic DOPC:PIP2 pore suspended membrane showed pore-formation within 2 h of incubation, but peptide insertion occurred over 6 h, with an onset time of ∼6-8 h for peptide aggregation at the membrane surface. Among different gangliosides, peptide binding to GM1- and GM3-containing membranes did not result pore development, but receptor mediated peptide aggregation formation caused membrane admittance to decrease within 2 h. In contrast, partial peptide insertion in the membrane surface increases membrane admittance at GD1a and mixed GSL membranes, arresting aggregation. Time-lapsed AFM imaging at asymmetric solid supported lipid bilayers (aSLBs) corroborated EIS findings, capturing pore-formation and receptor mediated peptide assembly routes. Fluorescence lifetime imaging (FLIM) imaging and spatial resolved single-point fluorescence correlation spectroscopy (FCS) at aSLBs revealed membrane-peptide interaction, assembly, and peptide induced membrane reorganization. Treatment with antidepressants fluoxetine and imipramine therapeutics, in synergy, which are cost-effective and capable of crossing the central nervous system (CNS+), resulted in the disassembly of membrane mediated Aβ1-42 aggregates, but not fibrils. Overall, the data suggests that membrane-mediated aggregate disassembly at the correct timing of AD progression may halt or reverse amyloid assembly through the use of repurposed drugs.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences, Dublin City University, Dublin 09, Ireland; Insight Centre for Data Analytics, Dublin City University, Dublin 09, Ireland
| | - Subrata Mondal
- School of Chemical Sciences, Dublin City University, Dublin 09, Ireland; Insight Centre for Data Analytics, Dublin City University, Dublin 09, Ireland
| | - Tia E Keyes
- School of Chemical Sciences, Dublin City University, Dublin 09, Ireland.
| |
Collapse
|
5
|
Tancreda G, Ravera S, Panfoli I. Preclinical Evidence of Withania somnifera and Cordyceps spp.: Neuroprotective Properties for the Management of Alzheimer's Disease. Int J Mol Sci 2025; 26:5403. [PMID: 40508211 PMCID: PMC12156217 DOI: 10.3390/ijms26115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Revised: 05/29/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Alzheimer's disease (AD) is considered one of the main pathologies of our time, whose incidence and prevalence are suggested to be strongly underestimated. AD presents as a complex neurodegenerative condition characterized by marked neuroinflammation and a significant decline in the cognitive and mnemonic functions of affected patients. Recognized AD pathological hallmarks include amyloid beta plaque and neurofibrillary tangle formation, synaptic dysfunction with considerable apoptosis of cholinergic and dopaminergic neurons, and high levels of oxidative stress and neuroinflammation. The available pharmacological treatments are represented by acetylcholinesterase inhibitors to treat the mild to moderate form of the disease and N-methyl-D-aspartate inhibitors alone or in combination with the previously cited ones in the late stage of the neurodegenerative condition. Furthermore, emerging drug therapies such as monoclonal antibodies are promising agents in AD management. Although scientific evidence highlights these chemicals as effective in slowing down disease progression, significant limitations behind their employment derive from the notable dose-dependent side effects and the single-target mechanism of action. In this context, two well-studied phytotherapeutics, W. somnifera (W. somnifera) and fungi belonging to the genus Cordyceps, have gained attention for their chemical composition regarding their neuroprotective and anti-inflammatory effects. Ashwagandha (obtained principally from the roots of W. somnifera) is an adaptogen that relieves stress and anxiety. It contains several ergostane-type steroidal lactones-such as withanolides and withaferin A-and various alkaloids, contributing to its antioxidant and neuroprotective effects. Likewise, cordycepin is the main bioactive principle found in Cordyceps fungi. This natural nucleoside has been reported to possess therapeutic potential as an anti-cancer, immunomodulatory, and anti-inflammatory agent, with some studies suggesting a beneficial role in AD treatment. The purpose of the present review is to investigate the pharmacological properties of W. somnifera and Cordyceps species in the context of AD treatment and explore the therapeutic potential of the constitutive bioactive molecules in preclinical models mimicking this neurodegenerative condition.
Collapse
Affiliation(s)
- Gabriele Tancreda
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Pelczarski M, Wolaniuk S, Zaborska M, Sadowski J, Sztangreciak-Lehun A, Bułdak RJ. The role of α-tocopherol in the prevention and treatment of Alzheimer's disease. Mol Cell Biochem 2025; 480:3385-3398. [PMID: 39832109 DOI: 10.1007/s11010-025-05214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Scientific reports from various areas of the world indicate the potential role of tocopherols (vitamin E) in particular α-tocopherol in the prevention and therapy of Alzheimer's disease. The current phenomenon is related to the growing global awareness of eating habits and is also determined by the need to develop the prevention, management and therapy of Alzheimer's disease. This article is a review of current research on the action of the active form of vitamin E-α-tocopherol and its impact on the development and course of Alzheimer's disease. Additionally, to contrast this information, selected primary research on this topic was included. The aim of this article is to analyze and summarize the available scientific information on the effects of the active form of vitamin E, α-tocopherol, on the development and course of Alzheimer's disease. In the structure of the review, particular attention was paid to the analysis of the pathophysiological processes of the disease and the biochemical features of the action of α-tocopherol. To discuss the relationship between the effect of α-tocopherol and the occurrence of Alzheimer's disease, a literature review was conducted using the following databases: PubMed, Google Scholar, and Elsevier. During the search process, the following keywords were used: "tocopherols", "vitamin E", "α-tocopherol", "Alzheimer's disease" in various combinations. The process was conducted in accordance with the adopted search strategy taking into account the inclusion and exclusion criteria. Alzheimer's disease (AD) is the most common, irreversible neurodegenerative disease, so many scientists are actively looking for substances and/or strategies to prevent its development and to slow down its course in patients. Alpha-tocopherols (ATF) are a factor that inhibits the pathophysiological processes associated with the development of AD by reducing the formation of atherogenic amyloid B (AB). Additionally, this type of tocopherols has antioxidant and anti-inflammatory properties and has a positive effect on the metabolic functioning of mitochondria. It has been shown that a higher intake of α-tocopherol (ATF) was associated with a reduced risk of developing dementia and the occurrence of mild types of cognitive impairment (MCI). Various sources indicate an insufficient supply of ATF in the diet. ATF supplementation may potentially help to slow down the course of Alzheimer's disease, which is why this substance may be popularized in the treatment of this disease in the future. However, there is a need for further research on this issue.
Collapse
Affiliation(s)
- Michał Pelczarski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Szymon Wolaniuk
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Monika Zaborska
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jakub Sadowski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Anna Sztangreciak-Lehun
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Rafał Jakub Bułdak
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| |
Collapse
|
7
|
Mainali N, Balasubramaniam M, Pahal S, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Altered protein homeostasis in cardiovascular diseases contributes to Alzheimer's-like neuropathology. Basic Res Cardiol 2025; 120:489-507. [PMID: 40332607 PMCID: PMC12158837 DOI: 10.1007/s00395-025-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVD is known to increase the risk of subsequent neurodegeneration but the mechanism(s) and proteins involved have yet to be elucidated. We previously showed that myocardial infarction (MI), induced in mice and compared to sham-MI mice, leads to increases in protein aggregation, endoplasmic reticulum (ER) stress in both heart and brain, and changes in proteostatic pathways. In this study, we further investigate the molecular mechanisms altered by induced MI in mice, which were also implicated by proteomics of postmortem human hippocampal aggregates from Alzheimer's disease (AD) and cardiovascular disease (CVD) patients, vs. age-matched controls (AMC). We utilized intra-aggregate crosslinking to identify protein-protein contacts or proximities, and thus to reconstruct aggregate "contactomes" (nonfunctional interactomes). We used leave-one-out analysis (LOOA) to determine the contribution of each protein to overall aggregate cohesion, and gene ontology meta-analyses of constituent proteins to define critical organelles, processes, and pathways that distinguish AD and/or CVD from AMC aggregates. We identified influential proteins in both AD and CVD aggregates, many of which are associated with pathways or processes previously implicated in neurodegeneration such as mitochondrial, oxidative, and endoplasmic-reticulum stress; protein aggregation and proteostasis; the ubiquitin proteasome system and autophagy; axonal transport; and synapses.
Collapse
Affiliation(s)
- Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
8
|
Allen J, Ermine CM, Lin R, Cloud GC, Shultz SR, Casillas-Espinosa PM. Proteinopathies and the Neurodegenerative Aftermath of Stroke: Potential Biomarkers and Treatment Targets. Stroke 2025; 56:1600-1611. [PMID: 40145137 DOI: 10.1161/strokeaha.124.049279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Stroke remains a predominant cause of death and long-term disability among adults worldwide. Emerging evidence suggests that proteinopathies, characterized by the aggregation and accumulation of misfolded proteins, may play a significant role in the aftermath of stroke and the progression of neurodegenerative disorders. In this review, we explore preclinical and clinical research on key proteinopathies associated with stroke, including tau, Aβ (amyloid-β), TDP-43 (TAR DNA-binding protein 43), α-synuclein, and UCH-L1 (ubiquitin C-terminal hydrolase-L1). We focus on their potential as biomarkers for recovery management and as novel treatment targets that may enhance neuronal repair and mitigate secondary neurodegeneration. The involvement of these proteinopathies in various aspects of stroke, including neuroinflammation, oxidative stress, neuronal damage, and vascular dysfunction, underscores their potential. However, further investigations are essential to validate the clinical utility of these biomarkers, elucidate the mechanisms connecting proteinopathies to poststroke neurodegeneration, and develop targeted interventions. Identifying specific protein signatures associated with stroke outcomes could facilitate the advancement of precision medicine tailored to individual patient needs, significantly enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health (C.M.E.), The University of Melbourne, Parkville, Australia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Geoffrey C Cloud
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital (S.R.S., P.M.C.-E.), The University of Melbourne, Parkville, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital (S.R.S., P.M.C.-E.), The University of Melbourne, Parkville, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| |
Collapse
|
9
|
Zhang J, Yang Y, Zhang C, Wang Y, Su R, Qi W. Revealing the mechanism of two rimantadine derivatives inhibiting Aβ aggregation and destabilizing Aβ protofibrils by molecular dynamics simulation. Colloids Surf B Biointerfaces 2025; 250:114538. [PMID: 39908957 DOI: 10.1016/j.colsurfb.2025.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Two rimantadine derivatives, m-aminobenzoyl rimantadine (meta) and p-aminobenzoyl rimantadine (para), have been demonstrated to effectively inhibit the aggregation of amyloid-β (Aβ) peptides. However, the exact atomic-level mechanism remains elusive. In this study, we investigated the inhibitory mechanisms of meta and para on Aβ aggregation. Using replica-exchange and microsecond classical molecular dynamics simulations, we analyzed the conformational ensembles of Aβ dimers and the structure of Aβ(1-40) protofibrils both with and without the rimantadine derivatives. Results showed that meta and para inhibit Aβ aggregation by hydrogen bonds and hydrophobic interactions with Aβ dimers. Meta mainly binds to CHC residues F19 and F20 to disrupt hydrophobic contacts, while para targets β-turns and the K28-V40 region, destabilizing the hydrophobic core and increasing structural flexibility, thus preventing stable dimer formation. Para exhibits a higher binding affinity and is more effective in inhibiting Aβ aggregation and destabilizing protofibrils. These findings provide valuable insights into the atomic-level mechanisms by which meta and para inhibit Aβ aggregation, offering promising avenues for the exploration of potential therapeutics for Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yufan Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengyu Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
10
|
Sekijima Y, Sousa L. Pathogenesis, manifestations, diagnosis, and management of CNS complications in hereditary ATTR amyloidosis. Amyloid 2025; 32:117-128. [PMID: 39627935 DOI: 10.1080/13506129.2024.2435573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
The clinical efficacy of transthyretin (TTR) tetramer stabilisers and TTR gene silencers in addition to liver transplantation has been established for hereditary ATTR (ATTRv) amyloidosis. Accordingly, non-central nervous system (CNS) systemic amyloidosis manifestations, such as peripheral neuropathy and cardiomyopathy, are now being overcome. However, emerging disease-modifying therapeutics have limited effects on CNS amyloidosis since they target the blood-circulating TTR produced in the liver, and not the cerebral spinal fluid (CSF) TTR synthesised in the choroid plexus. CNS involvement is therefore becoming the most common and severe complication in patients with ATTRv amyloidosis, including transient focal neurologic episodes, haemorrhagic and ischaemic stroke, cognitive decline, and cranial nerve dysfunction. Pathologically, extensive amyloid depositions are observable in the leptomeninges and leptomeningeal vessels, which are in direct contact with the CSF. Amyloid positron emission tomography is a useful biomarker for the early detection and treatment evaluation of early-onset ATTRv amyloidosis with the V30M (p.V50M) variant. Treatment-wise, blood-brain barrier-permeable stabilisers, intrathecal injection of silencers, and monoclonal antibodies against misfolded TTR and/or ATTR amyloid may potentially ameliorate CNS ATTR amyloidosis. The development of novel imaging/CSF biomarkers and disease-modifying therapies are the greatest unmet medical need in ATTRv amyloidosis and require further clinical trials.
Collapse
Affiliation(s)
- Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Luísa Sousa
- Unidade Corino de Andrade, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Paul JK, Malik A, Azmal M, Gulzar T, Afghan MTR, Talukder OF, Shahzadi S, Ghosh A. Advancing Alzheimer's Therapy: Computational strategies and treatment innovations. IBRO Neurosci Rep 2025; 18:270-282. [PMID: 39995567 PMCID: PMC11849200 DOI: 10.1016/j.ibneur.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative condition distinguished by the occurrence of memory impairment, cognitive deterioration, and neuronal impairment. Despite extensive research efforts, conventional treatment strategies primarily focus on symptom management, highlighting the need for innovative therapeutic approaches. This review explores the challenges of AD treatment and the integration of computational methodologies to advance therapeutic interventions. A comprehensive analysis of recent literature was conducted to elucidate the broad scope of Alzheimer's etiology and the limitations of conventional drug discovery approaches. Our findings underscore the critical role of computational models in elucidating disease mechanisms, identifying therapeutic targets, and expediting drug discovery. Through computational simulations, researchers can predict drug efficacy, optimize lead compounds, and facilitate personalized medicine approaches. Moreover, machine learning algorithms enhance early diagnosis and enable precision medicine strategies by analyzing multi-modal datasets. Case studies highlight the application of computational techniques in AD therapeutics, including the suppression of crucial proteins implicated in disease progression and the repurposing of existing drugs for AD management. Computational models elucidate the interplay between oxidative stress and neurodegeneration, offering insights into potential therapeutic interventions. Collaborative efforts between computational biologists, pharmacologists, and clinicians are essential to translate computational insights into clinically actionable interventions, ultimately improving patient outcomes and addressing the unmet medical needs of individuals affected by AD. Overall, integrating computational methodologies represents a promising paradigm shift in AD therapeutics, offering innovative solutions to overcome existing challenges and transform the landscape of AD treatment.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abbeha Malik
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tooba Gulzar
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Talal Rahim Afghan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Omar Faruk Talukder
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Samar Shahzadi
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
12
|
Rai A, Jakob U. Polyphosphate: a cellular Swiss army knife. Curr Opin Biotechnol 2025; 93:103303. [PMID: 40222262 PMCID: PMC12137000 DOI: 10.1016/j.copbio.2025.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous biopolymer whose functional repertoire has rapidly expanded over the past few years. How polyP controls these seemingly unrelated functions, which range from stress resistance, motility, and DNA damage control in bacteria to blood clotting, cancer and neurodegeneration in mammals, remains largely unknown. Here, we review what is known about its synthesis and degradation pathways in mammalian cells, provide an overview over the cell compartment-specific roles of polyP, and focus on recent studies, which showed that many of polyP's activities appear to be mediated by its ability to either solubilize, scaffold, or phase separate proteins. Future studies will show how polyP achieves these vastly different effects on proteins and hence controls its many functions.
Collapse
Affiliation(s)
- Akash Rai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Zabala-Rodriguez MC, Teter K, Tatulian SA. Amyloid β fragments that suppress oligomers but not fibrils are cytoprotective. Arch Biochem Biophys 2025; 768:110386. [PMID: 40086565 DOI: 10.1016/j.abb.2025.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Neurotoxic aggregates of amyloid beta (Aβ) peptide contribute to the etiology of Alzheimer's disease (AD). In this work, we examined how seven overlapping fragments derived from Aβ1-42 affect the oligomerization and toxicity of the full-length peptide. Four fragments inhibited the toxicity of oligomeric Aβ1-42 to various degrees, two others conferred no cellular protection against Aβ1-42 toxicity, and one fragment enhanced both Aβ1-42 oligomerization and toxicity. The structural and aggregation propensities of the peptides that support strong inhibition of Aβ1-42 toxicity have been identified. Data analysis allowed elucidation of the mechanisms of action of each of the seven peptide fragments on Aβ1-42 cytotoxicity. Our work establishes the potential therapeutic value of four Aβ fragments and supports the notion that agents directed to disruption of Aβ oligomers may be more effective AD drug candidates than those targeting Aβ fibrils.
Collapse
Affiliation(s)
| | - Ken Teter
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
14
|
Chamorro LB, Zulli B, Barone E. Insulin resistance: fueling oxidative stress and neurodegeneration. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02956-6. [PMID: 40448828 DOI: 10.1007/s00702-025-02956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025]
Abstract
The growing prevalence of age-related neurodegenerative diseases is a consequence of population aging and demands urgent treatment strategies. This literature review aims to provide a comprehensive overview of the contribution of oxidative stress and insulin resistance in neurodegenerative diseases, specifically Alzheimer's disease (AD). In addition, current therapeutic approaches to treat oxidative stress and insulin resistance in this age-related neurodegenerative disease will be discussed. AD is the most prevalent form of neurodegenerative disease and is marked at early stages by oxidative stress and insulin resistance. Results indicate that insulin resistance may be central in generating oxidative stress and exacerbating AD hallmarks. In turn, insulin resistance can be influenced by other factors, including amyloid beta (Aβ), impaired biliverdin-reductase A (BVR-A) activity, and the gut microbiota. Defective insulin signaling in the brain comes with consequences ranging from declined cognitive functions, impaired autophagy, mitochondrial dysfunction, hyperphosphorylation of Tau, and increased Aβ production. Multiple therapeutic approaches that target oxidative stress or brain insulin resistance, such as antioxidant supplementation and anti-diabetic drugs, have mostly been inconclusive, except for intranasal insulin. Positive results have been obtained in clinical trials using nasal delivery devices to administer insulin; however, results are inconsistent across studies likely due to inconsistencies in the delivery method. Future investigations should focus on investigating the molecular link between oxidative stress, insulin resistance, and AD to address current knowledge gaps. Moreover, more focus should be given to optimizing the reliability and efficacy of nasal delivery devices before considering such an approach viable to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Barbara Zulli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Gao QL, Zha HW, Liu ZJ, Wang MM, Zhang YQ, Bi JR, Wu TY, Liu ZJ, Wu H, Sun D. Hippocampal CA1 neuron, a crucial regulator for chronic stress exacerbating Alzheimer's disease progression. Cell Biosci 2025; 15:73. [PMID: 40448155 DOI: 10.1186/s13578-025-01420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic stress, a common risk factor for psychiatric disorders, is also implicated in the pathogenesis of Alzheimer's disease (AD). However, its underlying mechanisms remain elusive. Here, we provide evidence for chronic restraint stress (CRS), a widely used stress model in rodents, to regulate AD pathology. CRS not only induces prolonged depressive-like behaviors and cognitive deficits in young adult wild type (WT) mice, but also exacerbates a series of AD-related phenotypes in APP/PS1 mice, including impaired spatial learning and memory, increased β-amyloid plaques, promoted glial cells (astrocyte and microglial cell) activation and decreased dendritic spines in CA1 neurons. Single-nucleus RNA-sequencing analysis in hippocampus shows remarkable transcriptional changes in many cell type(s), and identifies oxidative phosphorylation pathway, a major source for adenosine triphosphate (ATP) production, is significantly downregulated in CA1 neurons by CRS stimuli. Furthermore, dysfunctional mitochondria and reduced ATP levels are also observed in CA1 neurons of CRS exposed WT and APP/PS1 mice. Interestingly, infusion of ATP in CA1 region abolishes the deficits in cognition, dendritic spines and glial activation in CRS exposed APP/PS1 mice. Taken together, these results uncover an unrecognized function of CA1 neurons in regulating CRS induced AD pathologies, and suggest ATP as a promising therapeutic strategy to improve brain health under stress condition.
Collapse
Affiliation(s)
- Qing-Lin Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Hai-Wei Zha
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Zi-Jie Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Miao-Miao Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Yu-Qing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Jia-Rui Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Tian-Yang Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Zhen-Jiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Dong Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Nakata K, Sakamoto J, Otomo K, Sato M, Ishii H, Tsutsumi M, Enoki R, Nemoto T. Amyloid-β-induced alteration of fast and localized calcium elevations in cultured astrocytes. Sci Rep 2025; 15:18944. [PMID: 40442293 PMCID: PMC12122671 DOI: 10.1038/s41598-025-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that causes cognitive decline. Uncovering the mechanisms of neurodegeneration in the early stages is essential to establish a treatment for AD. Recent research has proposed the hypothesis that amyloid-β (Aβ) oligomers elicit an excessive glutamate release from astrocytes toward synapses through intracellular free Ca2+ ([Ca2+]i) elevations in astrocytes, finally resulting in neuronal dendritic spine loss. Under physiological conditions, astrocytic [Ca2+]i elevations range spatially from microdomains to network-wide propagation and temporally from milliseconds to tens of seconds. Astrocytic localized and fast [Ca2+]i elevations might correlate with glutamate release; however, the Aβ-induced alteration of localized, fast astrocytic [Ca2+]i elevations remains unexplored. In this study, we quantitatively investigated the Aβ dimers-induced changes in the spatial and temporal patterns of [Ca2+]i in a primary culture of astrocytes by two-photon excitation spinning-disk confocal microscopy. The frequency of fast [Ca2+]i elevations occurring locally in astrocytes (≤ 0.5 s, ≤ 35 µm2) and [Ca2+]i event occupancy relative to cell area significantly increased after exposure to Aβ dimers. The effect of Aβ dimers appeared above 500 nM, and these Aβ dimers-induced [Ca2+]i elevations were primarily mediated by a metabotropic purinergic receptor (P2Y1 receptor) and Ca2+ release from the endoplasmic reticulum. Our findings suggest that the Aβ dimers-induced alterations and hyperactivation of astrocytic [Ca2+]i is a candidate cellular mechanism in the early stages of AD.
Collapse
Affiliation(s)
- Kaito Nakata
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan
| | - Joe Sakamoto
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masanao Sato
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hirokazu Ishii
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan
| | - Ryosuke Enoki
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan.
| | - Tomomi Nemoto
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
- Division of Biophotonics, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki, Japan.
| |
Collapse
|
17
|
Gao Z, Qiu R, Dave DR, Chandravanshi P, Soares GP, Smith CS, Ortega JA, Palmer LC, Álvarez Z, Stupp SI. Supramolecular Copolymerization of Glycopeptide Amphiphiles and Amyloid Peptides Improves Neuron Survival. J Am Chem Soc 2025; 147:17710-17724. [PMID: 40365999 DOI: 10.1021/jacs.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis are characterized by progressive neuronal loss and the accumulation of misfolded proteins including amyloid proteins. Current therapeutic options include the use of antibodies for these proteins, but novel chemical strategies need to be developed. The disaccharide trehalose has been widely reported to prevent misfolding and aggregation of proteins, and we therefore investigated the conjugation of this moiety to biocompatible peptide amphiphiles (TPAs) known to undergo supramolecular polymerization. Using X-ray scattering, circular dichroism, and infrared spectroscopy, we found that trehalose conjugation destabilized the internal β-sheet structures within the TPA supramolecular polymers as evidenced by a lower thermal transition. Thioflavin T fluorescence showed that these metastable TPA nanofibers suppressed A42 aggregation. Interestingly, we found that the suppression involved supramolecular copolymerization of TPA polymers with Aβ42, which effectively trapped the peptides within the filamentous structures. In vitro assays with human induced pluripotent stem cell-derived neurons demonstrated that these TPAs significantly improved neuron survival compared to other conditions. Our study highlights the potential of properly tuned supramolecular polymerizations of monomers to safely remove amyloidogenic proteins in neurodegeneration.
Collapse
Affiliation(s)
- Zijun Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dhwanit R Dave
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Gisele P Soares
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Neurodevelopmental Disorders Group, NeuroBell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Cara S Smith
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Neurodevelopmental Disorders Group, NeuroBell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Sun J, Geng W, Wang Y, Li H, Tan R, Tu Y. An innovative electrochemiluminescent immunosensor using dual amplified signals from AuNPs@CoSn(OH) 6 for the detection of the AD biomarker: amyloid beta 1-40. Analyst 2025; 150:2259-2269. [PMID: 40326625 DOI: 10.1039/d5an00048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is a degenerative condition of the nervous system that causes severe damage to patients' daily activities and quality of life. Amyloid beta 1-40 protein (Aβ40), which is involved in the formation of cerebral plaques, is one of the crucial biomarkers related to AD. Herein, a novel and highly sensitive immunosensor for the detection of Aβ40 is developed. Using a reinforced indium tin oxide-coated glass with a nanocomposite of gold nanoparticle-enhanced CoSn(OH)6 (AuNPs@CoSn(OH)6) to trigger the electrochemiluminescence (ECL) of luminol as the sensing signal, the immunosensor is fabricated by immobilizing the Aβ40 antibody onto it. By integrating the high immune specificity, excellent conductivity and catalytic activity of the nanocomposite, the resultant immunosensor can be successfully employed to detect the target in real samples. The formation of the immune complex leads to increased steric hindrance and electron transfer resistance, which in turn causes a declined ECL output when the target Aβ40 binds to the antibody on the sensor surface. Under optimized conditions, the developed ECL immunosensor exhibits a linear response for Aβ40 ranging from 1 to 800 pg mL-1 and a low detection limit of 0.47 pg mL-1. Experimentally, it is demonstrated to be highly sensitive, specific, reproducible and stable. This work extends the application of the perovskite CoSn(OH)6 and AuNPs in the field of ECL immunosensing and provides a novel strategy for clinical research on Alzheimer's disease.
Collapse
Affiliation(s)
- Jiaojing Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Wenqing Geng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Yueju Wang
- First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Huiling Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Nursing School, Suzhou Medical College of Soochow University, Suzhou, 215006, P. R. China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
- School of Material Engineering, Changshu Institute of Technology, Suzhou, 215500, P. R. China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
19
|
Zou R, Ågren H. Molecular Insight into Amyloid Fibril-Templated Aggregation of Biomarkers. ACS Chem Neurosci 2025. [PMID: 40420425 DOI: 10.1021/acschemneuro.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
The aggregation of misfolded proteins into β-sheet-rich fibrils constitutes a characteristic feature of neurodegenerative disorders and represents a therapeutic target. While cryo-electron microscopy has elucidated ordered binding patterns of small molecules on fibril surfaces, the mechanisms of ordered aggregate formation generally remain unclear. This study employs molecular dynamics (MD) simulations of the model ligand GTP-1 to examine fibril-templated ligand aggregation and elucidate the molecular determinants governing the aggregation process. Our results showed that in aqueous solution, GTP-1 molecules form dynamic clusters without preferential configurations, whereas tau fibril surfaces induce organized aggregation through protein-ligand hydrogen bonding and ligand-ligand π-π stacking interactions. 1000 independent 100 ns simulations were initiated from diverse ligand conformations to comprehensively sample the conformational landscape. Analysis of the MD trajectories revealed two distinct aggregation pathways. Starting from random initial configurations, on-pathway trajectories spontaneously sampled crystal-structure-like conformations during the simulation, and these conformations exhibited high kinetic stability after formation. In contrast, off-pathway trajectories were characterized by ligands adopting non-native binding geometries, with continuous interconversions between multiple disordered states. The conformational stability of on-pathway states was attributed to optimal surface complementarity and enhanced intermolecular interactions, while off-pathway configurations exhibited reduced structural order and increased conformational flexibility. Quantitative analysis demonstrated differential hydrogen-bonding patterns, with on-pathway aggregates forming 2.01 bonds per structure compared to 0.74 in off-pathway configurations. Energy decomposition identified protein-ligand interactions as the primary determinant of binding energetics, highlighting the direct influence of fibril surface properties on ligand aggregation. These findings provide a mechanistic basis for fibril-templated aggregation and offer a rational foundation for designing diagnostic agents targeting pathological protein fibrils in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rongfeng Zou
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, PL-50370 Wroclaw, Poland
| |
Collapse
|
20
|
Samaka RM, Hemida AS, Alfouly H, Kora MA. Immunohistochemical profile of non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) versus other thyroid follicular lesions. Diagn Pathol 2025; 20:64. [PMID: 40420140 PMCID: PMC12105278 DOI: 10.1186/s13000-025-01660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND A follicular thyroid tumour called Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) poses crossing-over morphologic characteristics with more thyroid follicular lesions whether benign or cancerous nodules. This study focuses on analysing the expression of CD56, HBME-1, RRM2 and APLP2 IHC markers in NIFTP versus other thyroid follicular lesions and their diagnostic validity was also evaluated. METHODS one hundred and nine thyroidectomy specimens including 31 NIFTP, 34 non-neoplastic, 34 papillary thyroid carcinoma (PTC) and 10 invasive encapsulated follicular variant papillary thyroid carcinoma (IEFVPTC) cases, were acquired between 2019 and 2022 from the Menoufia University's Faculty of Medicine's Pathology Department. Tissue microarray construction (TMA) blocks were prepared and CD56, HBME-1, RRM2 and APLP2 immunostaining were performed. RESULTS For CD56, 64.5% of NIFTP, 97.1% of the non-neoplastic group and 0% of both PTC and IEFVPTC were positive. For HBME-1, 61.3% of NIFTP, 0% of non-neoplastic, 100% of PTC and 100% of IEFVPTC were positive. For RRM2, all cases of NIFTP and the non-neoplastic group were negative, 88.2% of PTC and 100.0% of IEFVPTC were positive. For APLP2, 90.3% of NIFTP, 100% of the non-neoplastic group, 100% of PTC and 100% of IEFVPTC were positive. In differentiating NIFTP from non-neoplastic cases, the most sensitive marker was CD56 at H-score < 225 (sensitivity 95%) and the most specific was HBME-1 (specificity 100%). In various combinations, the panel of combined HBME-1 with either CD56 or APLP-2 improves their specificity (96.67% and 100% respectively) and the diagnostic accuracy (86.79 and 83.87, respectively) and therefore, combined HBME-1 and CD56 seems to be the most significant than using a single marker. In differentiation between NIFTP and PTC/IEFVPTC, the most sensitive marker was RRM2 (100% sensitivity for both groups) with the highest diagnostic accuracy (93.85% and 100%, respectively) and the most specific was CD56 (specificity 100% for both groups). CONCLUSIONS Immunohistochemical markers such as CD56, HBME-1, RRM2, and APLP2 may aid in the diagnosis of NIFTP and its distinction from other follicular lesions.
Collapse
Affiliation(s)
- Rehab Monir Samaka
- Pathology Department, Faculty of Medicine, Minufiya University, Menoufia, Shebin El-kom, 332511, Egypt
| | - Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Minufiya University, Menoufia, Shebin El-kom, 332511, Egypt
| | - Hagar Alfouly
- Pathology Department, Faculty of Medicine, Minufiya University, Menoufia, Shebin El-kom, 332511, Egypt
| | - Mona A Kora
- Pathology Department, Faculty of Medicine, Minufiya University, Menoufia, Shebin El-kom, 332511, Egypt.
| |
Collapse
|
21
|
Moreira DA, Carvalho ED, Ferreira-da-Silva F, Santos SD, Leiro V, Pêgo AP. Fully biodegradable dendrimers as novel nanodrugs for amyloid-β-induced neurotoxicity. J Control Release 2025:113870. [PMID: 40409371 DOI: 10.1016/j.jconrel.2025.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Alzheimer's disease (AD) is a severe neurological disorder and the leading cause of dementia, affecting millions globally. Dendrimers are remarkable organic macromolecules characterised by a globular, well-defined and highly branched structure featuring a high number of tuneable functional groups on their surface. Different types of dendrimers have demonstrated antioxidant, anti-inflammatory, and anti-amyloidogenic properties, showing their potential as powerful nanodrugs in AD. However, none of these dendrimers exhibit biodegradability under physiological conditions. This study explored the therapeutic potential of biodegradable PEG-GATGE (Poly(Ethylene Glycol)-Gallic Acid-Triethylene Glycol Ester) block copolymers against the Amyloid β (Aβ) (1-42) peptide, a key player in AD pathology. We focused on two dendritic structures: one functionalised with positively charged benzylamine terminal groups (fbB) and another functionalised with negatively charged benzoic acid terminal groups (fbBz). Our research aimed to evaluate their ability to inhibit Aβ (1-42) fibrillation by examining aggregation kinetics, secondary structure, and aggregate morphology. Additionally, we assessed their interactions with preformed Aβ species and neuroprotective effects in hippocampal neuron cultures. Results showed that both dendrimers modulate Aβ fibrillation in a peptide/dendrimer ratio-dependent manner and can also interact with preformed Aβ fibrils. Notably, only the positively charged dendrimer, fbB, effectively prevented the toxic association of Aβ oligomers with neurons. These findings emphasise the substantial promise of this family of biodegradable dendrimers as innovative nanodrugs in the fight against AD, paving the way for novel therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Eva D Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Frederico Ferreira-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia D Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Victoria Leiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Sugandhi VV, Gadhave DG, Ugale AR, Kulkarni N, Nangare SN, Patil HP, Rath S, Saxena R, Lavate A, Patel AT, Jadhav A, Paudel KR. Advances in Alzheimer's Therapy: Exploring Neuropathological Mechanisms to Revolutionize the Future Therapeutic Landscape. Ageing Res Rev 2025; 109:102775. [PMID: 40403980 DOI: 10.1016/j.arr.2025.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/07/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Alzheimer's disease (AD) is still an excessively complicated neurological disorder that impacts millions of individuals globally. The ideal defensive feature of the central nervous system (CNS) is the intimate junction of endothelial cells, which functions as a biological barrier to safely control molecular transport throughout the brain. The blood-brain barrier (BBB) comprises tightly locked astrocyte cell junctions on CNS blood capillaries. This biological barrier shields the brain from hazardous toxins by preventing the entry of polar medications, cells, and ions. However, it is very challenging to provide any treatment to the brain for neurodegenerative illnesses like Alzheimer's. Different causative mechanisms, such as amyloid-β (Aβ) plaques, tubulin-associated unit (Tau) tangles, and neuroinflammation, cause neuronal dysfunction, leading to dementia and memory loss in the subject. Several treatments are approved for AD therapy, whereas most only help treat related symptoms. Disappointingly, current remedies have not been able to control the progression of AD due to associated side effects. Specific pathogenic mechanisms are involved in the initiation and development of this disease. Therefore, the expected survival of a patient with AD is limited and is approximately ten years. Hence, the pathogenic mechanism behind AD progression must be understood to better comprehend and improve the overall survival rate. This review highlighted the recent insights into AD pathogenesis, molecular mechanisms, advancements in theragnostic techniques, the existing updates of clinical trials, and emerging innovations for AD medicinal development. That has helped researchers develop other strategies to address the shortcomings of traditional medications.
Collapse
Affiliation(s)
- Vrashabh V Sugandhi
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Dnyandev G Gadhave
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India.
| | - Akanksha R Ugale
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Nilesh Kulkarni
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Harshal P Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Seepra Rath
- Center for Dermal Research, Rutgers, the State University of New Jersey, 145 Bevier Road, Piscataway 08854, USA
| | - Rahul Saxena
- Graduate Programs in Molecular Biosciences, Rutgers, the State University of New Jersey, Piscataway 08854, USA
| | - Amol Lavate
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India
| | - Apeksha T Patel
- Department of Quality Assurance, Navinta III INC, Boca Raton, 33487, Florida, USA
| | - Ashish Jadhav
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
23
|
Kuang XC, Rempel DL, Lin Y, Gross ML. Mass-Spectrometry-Based GEE Footprinting Characterizes Kinetic Mechanisms and Sites of Conformational Change in Amyloid β 1-42 Aggregation. ACS Chem Neurosci 2025. [PMID: 40378310 DOI: 10.1021/acschemneuro.5c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Understanding the dynamics of Aβ aggregation is critical for elucidating Alzheimer's disease (AD) progression. This study extends our previous work on Aβ42 using fast photochemical oxidation of proteins (FPOP) and pulsed hydrogen-deuterium exchange and introduces mass spectrometry (MS)-based glycine ethyl ester (GEE) footprinting, combined with kinetic modeling, to characterize Aβ42 conformational changes and elucidate polymer populations along its aggregation pathways. We investigated Aβ42 conformational changes by analyzing three distinct peptide regions generated by Lys-N digestion, revealing three different views of the aggregation behaviors. The middle and C-terminal regions are identified as primary aggregation sites; in contrast, the N-terminal peptide exhibited only minor changes in GEE modification, supporting its limited involvement in intermolecular interactions during aggregation. Amino-acid-level analysis provided higher spatial resolution: D1 underwent relatively constant footprinting throughout aggregation, whereas E3/D7, E22, and D23 showed more substantial decreases in the level of modification, underscoring their critical roles in aggregation. By integrating these findings with kinetic modeling, we identified four predominant polymeric populations involved in Aβ1-42 aggregation. This study reports, for the first time, a stable, specific, and slow chemical footprinting approach to characterizing Aβ1-42 aggregation, offering new insights into Aβ1-42 polymerization dynamics and enhancing our understanding of its role in AD pathology. The solvent accessibility features of the six acidic amino acids and the C terminus calculated from the final, fibril state structure of Aβ42 are consistent with the footprinting results.
Collapse
Affiliation(s)
- Xinyi Cynthia Kuang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
24
|
Abdel-Aal RA, Meligy FY, Maghraby N, Sayed N, Mohamed Ashry IES. Comparing levetiracetam and zonisamide effects on rivastigmine anti-Alzheimer's activity in aluminum chloride-induced Alzheimer's-like disease in rats: Impact on α7 nicotinic acetylcholine receptors and amyloid β. Brain Res 2025; 1855:149573. [PMID: 40096940 DOI: 10.1016/j.brainres.2025.149573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/02/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease, which severely impairs cognitive function. The leading class of drugs used to treat AD is acetylcholinesterase inhibitors (AChE-Is) as Rivastigmine (RIVA), partially ameliorate its cognitive symptoms. Since epilepsy is a common comorbidity with AD, we explored the potential that new the antiepileptic drugs; Levetiracetam (LEV) and Zonisamide (ZNS) may possess an additional therapeutic benefit to RIVA in AlCl3-induced AD rat model. MATERIALS AND METHODS AlCl3 was used to provoke AD in rats which were then supplemented with treatment drugs for 2 weeks. Treated groups were: Control, AlCl3, RIVA, LEV, RIVA + LEV, ZNS and RIVA + ZNS. Then, the behavioral tests; passive avoidance (PA), Morris water maze (MWM) and novel object recognition (NOR) were conducted to assess cognitive behavior and memory. The Hippocampal Aβ assembly was thoroughly examined by histopathology and ELISA. α7 Nicotinic ACh receptors' (α7nAChRs) expression was assessed immunohistochemically and by real-time quantitative polymerase chain reaction (qPCR). Caspase 3 expression was also assessed by real-time qPCR in hippocampal tissues. RESULTS AlCl3 administration impaired memory and cognitive functions in rats, augmented hippocampal Aβ deposition, with subsequent neurodegeneration and α7nAChRs down-regulation. LEV, but not ZNS, administration significantly mitigated AlCl3-induced cognitive impairment probably through suppression of amyloid β (Aβ) deposition, enhancement of neurogenesis and α7nAChRs expression. When combined to RIVA, ZNS treatment negatively affected cognition possibly through its impact on hippocampal Aβ and subsequent neuronal damage. CONCLUSION Although our results indicated that neither LEV nor ZNS provided any extra benefit to cognitive enhancements in AD rats receiving rivastigmine, LEV demonstrated positive effects individually while ZNS had negative effects when combined with RIVA. As a result, this study suggests the use of LEV rather than ZNS for managing epilepsy in patients with AD given that Alzheimer's and epilepsy can coexist.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nashwa Maghraby
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nehal Sayed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | | |
Collapse
|
25
|
Jain S, Murmu A, Chauhan A. Advancing Alzheimer's disease therapy through engineered exosomal Macromolecules. Brain Res 2025; 1855:149590. [PMID: 40120708 DOI: 10.1016/j.brainres.2025.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are a subject of continuous investigation due to their function as extracellular vesicles (EVs) that significantly contribute to the pathophysiology of certain neurodegenerative disorders (NDD), including Alzheimer's disease (AD). Exosomes have shown the potential to carry both therapeutic and pathogenic materials; hence, researchers have used exosomes for medication delivery applications. Exosomes have reduced immunogenicity when used as natural drug delivery vehicles. This guarantees the efficient delivery of the medication without causing significant side reactions. Exosomes have lately enabled the potential for drug delivery in AD, along with promising future therapeutic uses for the detection of neurodegenerative disorders. Furthermore, exosomes have been examined for their prospective use in illness diagnosis and prediction before the manifestation of symptoms. This review will document prior studies and will concentrate on the rationale behind the substantial potential of exosomes in the treatment of AD and their prospective use as a diagnostic and predictive tool for this condition.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India.
| | - Ankita Murmu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| |
Collapse
|
26
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
27
|
Awad AS, El-Mokadem BM, Sherif MM, Bishr A. Can Quercetin protect against the pre-disposing factors for Alzheimer's disease via inhibiting NLRP3 inflammasome pathway? J Pharm Pharmacol 2025:rgaf020. [PMID: 40366903 DOI: 10.1093/jpp/rgaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVES The brain and its cognitive functions are most liable to stress, where it is known to promote the pathological manifestation of Alzheimer's disease (AD). This study aimed to investigate the effect of a 2-week-period of restraint stress (RS), as well as the protective effect of Quercetin in a dose-dependent manner against the early start of AD via studying the NLRP3 inflammasome pathway. METHODS The rats were divided into four groups: control (Con), induction (Ind), where 6 h/day for 2 weeks of RS was induced, low and high doses of Q (Q1+Ind and Q2+Ind, respectively), which were administered before the induction of RS for the same period. Behavioral tests were performed to assess the cognitive functions. KEY FINDINGS The higher dose of Q has shown more inhibition of the NLRP3 inflammasome pathway, oxidative stress, as well as the phosphorylated-tau and amyloid-β (Aβ) protein, which were significantly fired up by the 2 weeks of RS. These results were backed with the improved cellular structure in the histopathological examination and enhanced cognitive functions, where the two doses of Q have shown their protective effect. CONCLUSIONS This proves that Q shielded the brain against the initial pathogenesis of AD, induced by 2 weeks of RS.
Collapse
Affiliation(s)
- Azza S Awad
- Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo, Egypt
| | | | | | - Abeer Bishr
- Faculty of Pharmacy, Ahram Canadian University, Egypt
| |
Collapse
|
28
|
Ji E, Pal A, Claybourne QC, Michel M, Munk R, McDevitt RA, Cui CY, Gorospe M. Reducing HuD Levels Alleviates Alzheimer's Disease Pathology in 5xFAD Mice. Aging Cell 2025:e70080. [PMID: 40351099 DOI: 10.1111/acel.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative pathology in older persons. The accumulation of amyloid β (Aβ) plaques is a major contributor to AD development. The RNA-binding protein HuD/ELAVL4 has been implicated in the formation of Aβ plaques, but its role in AD is unclear. Here, we report that ablation of HuD from CAMK2A+ neurons (HuDcKO) in the 5xFAD mouse model of AD results in a significant reduction of Aβ plaques and the alleviation of some AD-associated behaviors. Given the lack of effective therapies for AD, we propose that reducing HuD levels or function can contribute to diminishing Aβ plaque formation and AD-associated pathology.
Collapse
Affiliation(s)
- Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Quia C Claybourne
- Comparative Medicine Section, National Institute on Aging (NIA) Intramural Research Program, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marc Michel
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging (NIA) Intramural Research Program, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
29
|
Ding S, Choi SH, Miller YI. Amyloid β-Induced Inflammarafts in Alzheimer's Disease. Int J Mol Sci 2025; 26:4592. [PMID: 40429737 PMCID: PMC12111532 DOI: 10.3390/ijms26104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
The formation of amyloid beta (Aβ) plaques is a central process in the development of Alzheimer's disease (AD). Although its causative role or the effectiveness of therapeutic targeting is still debated, the key involvement of Aβ in the pathogenesis of neuroinflammation and neurodegeneration in AD is broadly accepted. In this review, we emphasize the role of lipid rafts, both in APP cleavage producing Aβ in neurons and in mediating Aβ inflammatory signaling in microglia. We introduce the term inflammarafts to characterize the Aβ-driven formation of enlarged, cholesterol-rich lipid rafts in activated microglia, which support protein-protein and lipid-protein interactions of inflammatory receptors. Examples reviewed include toll-like receptors (TLR2, TLR4), scavenger receptors (CD36, RAGE), and TREM2. The downstream pathways lead to the production of cytokines and reactive oxygen species, intensifying neuroinflammation and resulting in neuronal injury and cognitive decline. We further summarize emerging therapeutic strategies and emphasize the utility of apolipoprotein A-I binding protein (AIBP) in selective targeting of inflammarafts and attenuation of microglia-driven inflammation. Unlike the targeting of a single inflammatory receptor or a secretase, selective disruption of inflammarafts and preservation of physiological lipid rafts offer a novel approach to targeting multiple components and processes that contribute to neuroinflammation in AD.
Collapse
Affiliation(s)
| | | | - Yury I. Miller
- Department of Medicine, University of California, San Diego, CA 92093, USA; (S.D.); (S.-H.C.)
| |
Collapse
|
30
|
Toprakcioglu Z, Jayaram AK, Knowles TPJ. Ganglioside lipids inhibit the aggregation of the Alzheimer's amyloid-β peptide. RSC Chem Biol 2025; 6:809-822. [PMID: 40109301 PMCID: PMC11915136 DOI: 10.1039/d4cb00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
The aggregation of the amyloid-β (Aβ) peptides (Aβ42/Aβ40) into amyloid fibrils and plaques is one of the molecular hallmarks in dementia and Alzheimer's disease (AD). While the molecular mechanisms behind this aggregation process are not fully known, it has been shown that some biomolecules can accelerate this process whereas others can inhibit amyloid formation. Lipids, which are ubiquitously found in cell membranes, play a pivotal role in protein aggregation. Here, we investigate how ganglioside lipids, which are abundant in the brain and in neurons, can influence the aggregation kinetics of both Aβ42 and Aβ40. We employ a variety of biophysical assays to characterise the effect ganglioside lipids have on the aggregation of Aβ. Through kinetic analysis, we show that the primary nucleation rate is greatly affected by the addition of gangliosides and that these lipids impair Aβ42 aggregation, while completely inhibiting Aβ40 aggregation. Furthermore, we find that an Aβ-ganglioside complex is formed, which potentially disrupts the aggregation pathway and results in delayed kinetics. Taken together, our results provide a quantitative description of how lipid molecules such as gangliosides can inhibit the aggregation of Aβ and shed light on the key factors that control these processes. In view of the fact that declining levels of gangliosides in neurons have been associated with ageing, our findings could be instrumental towards establishing new approaches in the prevention of amyloid-β aggregation.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Akhila K Jayaram
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Cavendish Laboratory, Department of Physics, University of Cambridge J J Thomson Avenue Cambridge CB3 0HE UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
31
|
Li H, Zheng C, Wen K, Zhang T, Zhang Y. Neurotrophic and Neurotoxic Effects of Aβ42 and Its Oligomers on Neuronal Survival: Revealed by Their Opposite Influence on the Potency of Extracellular BDNF. Int J Mol Sci 2025; 26:4501. [PMID: 40429646 PMCID: PMC12111036 DOI: 10.3390/ijms26104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is critical for neuronal survival. Amyloid-β monomers (Aβ42M) and oligomers (Aβ42O) have trophic and toxic effects on neuronal survival, respectively. Branched oligosaccharides (BOs) and catechins (CAs) can specifically bind to Aβ42M/Aβ42O, influencing both effects. However, whether and how Aβ42M/Aβ42O influences BDNF remains unknown. This study investigated the interaction between Aβ42M/Aβ42O and BDNF, the effects of Aβ42M and Aβ42O on BDNF binding to the TrkB/p75 receptor and their impact on BDNF-supported cell survival, and the roles of BOs and CAs in these processes. BDNF exhibited stronger binding affinity for Aβ42M and Aβ42O than BOs/CAs. Aβ42M increased neuronal viability by synergistically enhancing BDNF binding to TrkB and p75, whereas Aβ42O decreased neuronal viability by inactivating/consuming BDNF, thereby reducing its binding to these receptors. BDNF-Aβ42O binding appeared to mutually neutralize/counteract each other's biological effects; therefore, increasing BDNF levels might reduce Aβ42O's neurotoxicity. By competitively targeting Aβ42M/Aβ42O rather than BDNF or its receptors, BOs and CAs enhanced these effects. These findings suggest that Aβ42M's neurotrophicity was directly linked to its synergistic enhancement of BDNF activity, whereas Aβ42O's neurotoxicity was primarily due to its inactivation or consumption of BDNF. This study provided valuable insights for developing BOs/CAs-based neuroprotective therapeutics or nanomaterials against AD.
Collapse
Affiliation(s)
| | | | | | | | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (C.Z.); (K.W.); (T.Z.)
| |
Collapse
|
32
|
Lo CH, Cheong LYT, Zeng J. Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:704. [PMID: 40423094 DOI: 10.3390/nano15100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood-brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jialiu Zeng
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
33
|
Li Y, Yang C, Liu X, Shu J, Zhao N, Sun Z, Tabish MS, Hong Y, Liu E, Wei N, Sun M. Potential therapeutic targets for Alzheimer's disease: Fibroblast growth factors and their regulation of ferroptosis, pyroptosis and autophagy. Neuroscience 2025; 573:42-51. [PMID: 40096963 DOI: 10.1016/j.neuroscience.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is a progressively worsening neurodegenerative disorder characterized primarily by the deposition of amyloid beta (Aβ) plaques in the brain and the abnormal aggregation of tau protein forming neurofibrillary tangles. These pathological changes lead to impaired neuronal function and cell death, subsequently affecting the structure and function of the brain. Fibroblast growth factors (FGFs) are a group of proteins that play crucial roles in various biological processes, including cell proliferation, differentiation, and survival. This article reviews the expression and regulation of FGFs in the central nervous system and how they affect neuronal survival, as well as the changes in FGF signaling pathways and its regulation of programmed cell death in AD. It particularly focuses on the impact of FGF1, FGF2, FGF21, other members of the FGF family, and FGFR on the pathophysiological mechanisms of AD. The potential of the PI3K/AKT/GSK-3β, Wnt/β-catenin, and NF-κB signaling pathways as targets for AD treatment is also discussed. Furthermore, the relationship between FGF-regulated ferroptosis, Pyroptosis and Autophagy and AD is explored, along with the role of these mechanisms in improving the progression of AD.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
34
|
Mather M. Autonomic dysfunction in neurodegenerative disease. Nat Rev Neurosci 2025; 26:276-292. [PMID: 40140684 DOI: 10.1038/s41583-025-00911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
In addition to their more studied cognitive and motor effects, neurodegenerative diseases are also associated with impairments in autonomic function - the regulation of involuntary physiological processes. These autonomic impairments manifest in different ways and at different stages depending on the specific disease. The neural networks responsible for autonomic regulation in the brain and body have characteristics that render them particularly susceptible to the prion-like spread of protein aggregation involved in neurodegenerative diseases. Specifically, the axons of these neurons - in both peripheral and central networks - are long and poorly myelinated axons, which make them preferential targets for pathological protein aggregation. Moreover, cortical regions integrating information about the internal state of the body are highly connected with other brain regions, which increases the likelihood of intersection with pathological pathways and prion-like spread of abnormal proteins. This leads to an autonomic 'signature' of dysfunction, characteristic of each neurodegenerative disease, that is linked to the affected networks and regions undergoing pathological aggregation.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Smallwood MJ, Alghayth MA, Knight AR, Tveen-Jensen K, Pitt AR, Spickett CM, Llewellyn D, Pula G, Wearn A, Vanhatalo A, Jones AM, Francis P, Coulthard E, Kehoe PG, Winyard PG. Hemoglobin in the brain frontal lobe tissue of patients with Alzheimer's disease is susceptible to reactive nitrogen species-mediated oxidative damage. Redox Biol 2025; 82:103612. [PMID: 40184643 PMCID: PMC11999687 DOI: 10.1016/j.redox.2025.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Brain inflammation in Alzheimer's disease (AD) involves reactive nitrogen species (RNS) generation. Protein contents of 3-nitrotyrosine, a product of RNS generation, were assessed in frontal lobe brain homogenates from patients with AD, patients with vascular dementia (VaD) and non-dementia (ND) controls. Western blotting revealed a dominant 15 kDa nitrated protein band in both dementia (AD/VaD) and ND frontal lobe brain tissue. Surprisingly, this protein band was identified by mass spectrometry as hemoglobin, an erythrocytic protein. The same band stained positively when western blotted using an anti-hemoglobin antibody. On western blots, the median (IQR) normalized staining intensity for 3-nitrotyrosine in hemoglobin was increased in both AD [1.71 (1.20-3.05) AU] and VaD [1.50 (0.59-3.04) AU] brain tissue compared to ND controls [0.41 (0.09-0.75) AU] (Mann-Whitney U test: AD v ND, P < 0.0005; VaD v ND, P < 0.05; n = 11). The median normalized staining of the nitrated hemoglobin band was higher in advanced AD patients compared with early-stage AD (P < 0.005). The median brain tissue NO2- levels (nmol/mg protein) were significantly higher in AD samples than in ND controls (P < 0.05). Image analysis of western blots of lysates from peripheral blood erythrocytes suggested that hemoglobin nitration was increased in AD compared to ND (P < 0.05; n = 4 in each group). Total protein-associated 3-nitrotyrosine was measured by an electrochemiluminescence-based immunosorbent assay, but showed no statistically significant differences between AD, VaD and ND. Females showed larger increases in hemoglobin nitration and NO2- levels between disease and control groups compared to males, although the group sizes in these sub-analyses were small. In conclusion, the extent of hemoglobin nitration was increased in AD and VaD brain frontal lobe tissue compared with ND. We propose that reactive nitrogen species-mediated damage to hemoglobin may be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- M J Smallwood
- University of Exeter Medical School, Exeter, EX1 2LU, UK
| | - M Abu Alghayth
- University of Exeter Medical School, Exeter, EX1 2LU, UK; Current Address: Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - A R Knight
- University of Exeter Medical School, Exeter, EX1 2LU, UK
| | - K Tveen-Jensen
- College of Health & Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - A R Pitt
- College of Health & Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - C M Spickett
- College of Health & Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - D Llewellyn
- University of Exeter Medical School, Exeter, EX1 2LU, UK
| | - G Pula
- University of Exeter Medical School, Exeter, EX1 2LU, UK; Centre for Biomedicine, Hull York Medical School, Hull, HU6 7RX, UK
| | - A Wearn
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - A Vanhatalo
- University of Exeter Medical School, Exeter, EX1 2LU, UK
| | - A M Jones
- University of Exeter Medical School, Exeter, EX1 2LU, UK
| | - P Francis
- University of Exeter Medical School, Exeter, EX1 2LU, UK; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - E Coulthard
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - P G Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - P G Winyard
- University of Exeter Medical School, Exeter, EX1 2LU, UK.
| |
Collapse
|
36
|
Mavraganis G, Georgiopoulos G, Zervas G, Aivalioti E, Delialis D, Petropoulos I, Rachiotis N, Konstantaki C, Moustou C, Dimopoulou M, Sachse M, Tual‐Chalot S, Sopova K, Psimmenou E, Stellos K, Stamatelopoulos K. Circulating amyloid beta 1-40 peptide as an associate of renal function decline. Eur J Clin Invest 2025; 55:e70006. [PMID: 39989380 PMCID: PMC12011680 DOI: 10.1111/eci.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Recent evidence suggests that Alzheimer's amyloid-beta (1-40) (Αβ1-40), an emerging biomarker of cardiovascular disease, may be involved in the heart-brain-renal axis. We aimed to comprehensively explore the association between circulating Aβ1-40 levels and renal function and its clinical relevance. METHODS Consecutively recruited subjects in the Athens Angiometabolic Registry with measured Aβ1-40 plasma levels (n = 811) were analysed. Αβ1-40 was measured by enzyme-linked immunosorbent assay and glomerular filtration rate (GFR) was calculated using the abbreviated four-variable Modification of Diet in Renal Disease (MDRD) formula. All-cause mortality was the main clinical endpoint across a median follow-up of 47 months. RESULTS Cross-sectionally, a bidirectional association between Αβ1-40 [adjusted odds ratio (adjOR) = 3.67 for highest tertile of Αβ1-40 and chronic kidney disease (CKD) stage ≥3, p < .001] and CKD stage ≥3 (adjOR = 3.52 for association with highest Aβ1-40 tertile, p < .001) was observed. Longitudinally, increased Αβ1-40 at baseline was associated with decline in renal function at follow-up (adjOR for CKD stage ≥3 = 2.26, p = .033). Similarly, longitudinal changes in Aβ1-40 were inversely associated with changes in GFR (OR = .77 per 1 SD increase in Aβ1-40, p = .006). Aβ1-40 was associated with all-cause mortality, independently of traditional risk factors (hazard ratio = 1.20 per 1 SD increase in Aβ1-40, p = .016). An indirect effect of GFR on the association between Aβ1-40 and mortality (p < .05) with an estimated indirect-to-total effect ratio of .334, but not of Αβ1-40 on GFR with mortality, was observed. CONCLUSIONS In a population with a wide range of GFR, we found a bidirectional association between Αβ1-40 levels and renal function. The association of Αβ1-40 with all-cause mortality was partly mediated by lower GFR.
Collapse
Affiliation(s)
- Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Department of Physiology, School of MedicineUniversity of PatrasPatrasGreece
| | - Georgios Zervas
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Ioannis Petropoulos
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Nikolaos Rachiotis
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Christina Konstantaki
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Chrysoula Moustou
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Maria‐Aggeliki Dimopoulou
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Marco Sachse
- Department of Cardiovascular Surgery, University Heart and Vascular CentreUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Simon Tual‐Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Medicine, University Medical Centre MannheimHeidelberg UniversityMannheimGermany
| | - Erasmia Psimmenou
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Medicine, University Medical Centre MannheimHeidelberg UniversityMannheimGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/MannheimMannheimGermany
- Helmholtz Institute for Translational AngioCardioScience (HI‐TAC)MannheimGermany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
37
|
Sohrabi M, Bozorgmehr MR, Momen-Heravi M. Investigating the combined effect of copper, zinc, and iron ions on truncated and full-length Aβ peptides: insights from molecular dynamics simulation. J Biomol Struct Dyn 2025; 43:4165-4173. [PMID: 38189361 DOI: 10.1080/07391102.2024.2301755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
The truncated Aβ1 - 16 peptide containing the metal-binding domain is frequently used in in silico and experimental investigations because it is more soluble and thus more suitable for studies in solution and does not form amyloids. Several spectroscopic studies have shown that the metal binding of Aβ1 - 16 is very similar to that of the full-length Aβ1 - 42. However, since small changes can have a significant impact on aggregation, further experimental and theoretical are needed to elucidate the detailed structures of truncated and full-length Aβ. In this research, the binding of copper ion to the Aβ1 - 16 and Aβ1 - 42 has been studied by molecular dynamics simulation method. To investigate the effect of copper ion on beta-amyloid peptide structure, the simulations were repeated in the copper and zinc ions, copper and iron binary system, and the copper, zinc and iron ions ternary system. The conformation factor was calculated to calculate the binding affinity of copper ion to beta-amyloid peptide residues. The results showed that the initial 16 residues of the beta-amyloid peptide have high binding affinity for copper ions, and histidine 13 and histidine 14 have significantly higher binding affinity for copper ions in all studied systems. Zinc and iron ions were found to reduce the conformational factor of peptide residues in binding to copper ions, and the aggregation tendency was lower in the truncated structure. The SASA results suggest that the side chains of peptide residues are more affected by shortening and the presence of ions.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | |
Collapse
|
38
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2025; 480:2689-2706. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
39
|
Saaoud F, Liu L, Xu K, Lu Y, Shao Y, Ben Issa M, Jiang X, Wang X, Liu X, Autieri M, Wu S, Wei J, Yu J, Bouchareb R, Gillespie A, Luo JJ, Martinez L, Vazquez-Padron R, Sun J, Zhao H, Wang H, Pratico D, Yang X. Alzheimer's disease as an auto-innate immune pathology with potential cell trans-differentiation and enhanced trained immunity in 3xTg-AD mouse model. J Alzheimers Dis 2025; 105:550-572. [PMID: 40232249 DOI: 10.1177/13872877251329583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment. Neuroinflammatory processes, mediated by glial and immune cells, contribute to neuronal damage. Emerging evidence implicates innate immune mechanisms, including trained immunity and cell trans-differentiation, in AD pathogenesis, though their roles remain unclear.ObjectiveTo investigate transcriptomic changes in the 3xTg-AD mouse model, focusing on trained immunity and cell trans-differentiation in disease mechanisms.MethodsRNA-sequencing was performed on brain tissue (cortex plus hippocampus) from 11-month-old female 3xTg-AD and wild-type mice (n = 3/group). Differentially expressed genes (fold change > 1.5, p < 0.05) were identified and followed by bioinformatics and knowledge-based transcriptomic profiling. Public AD datasets were also analyzed.Results3xTg-AD mice exhibited 316 upregulated and 412 downregulated genes. Downregulated genes included those for blood-brain barrier protein, while upregulated genes related to cerebrospinal fluid. Increased expression of proinflammatory markers, as well as genes related to cell differentiation, proliferation, activation, and adhesion. Upregulation of genes associated with cell migration and trans-differentiation suggests a potential role for inflammation and cellular plasticity. Additionally, genes involved in inflammasome pathways, immunometabolism, and trained immunity were upregulated. Mechanistically, these genes were modulated by knockdown of trained immunity promoter SET-7, overexpression of trained immunity inhibitor IL-37, and knockout of inflammasome genes IL-1 receptor, caspase-1, and pattern recognition receptor CD36.ConclusionsThe finding underscore the potential role of trained immunity and cell trans-differentiation in AD, revealing a mechanistic framework in which danger-associated molecular patterns drive innate immune responses, inflammasome activation, and cell plasticity contribute to AD, offering therapeutic targets for neuroinflammation and cellular reprograming.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Michael Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Juncheng Wei
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jun Yu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rihab Bouchareb
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jin Jun Luo
- Department of Neurology, Temple University, Philadelphia, PA, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huaqing Zhao
- Department of Biomedical Education and Data Sciences, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer's Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
40
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
41
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
42
|
Litus EA, Shevelyova MP, Vologzhannikova AA, Deryusheva EI, Chaplygina AV, Rastrygina VA, Machulin AV, Alikova VD, Nazipova AA, Permyakova ME, Dotsenko VV, Permyakov SE, Nemashkalova EL. Interaction Between Glucagon-like Peptide 1 and Its Analogs with Amyloid-β Peptide Affects Its Fibrillation and Cytotoxicity. Int J Mol Sci 2025; 26:4095. [PMID: 40362335 PMCID: PMC12071944 DOI: 10.3390/ijms26094095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer's disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and their functional consequences remain unexplored. In this study, the interactions between monomeric Aβ40/Aβ42 of GLP-1(7-37) and its several analogs (semaglutide (Sema), liraglutide (Lira), exenatide (Exen)) were studied using biolayer interferometry and surface plasmon resonance spectroscopy. The quaternary structure of GLP-1RAs was investigated using dynamic light scattering. The effects of GLP-1RAs on Aβ fibrillation were assessed using the thioflavin T assay and electron microscopy. The impact of GLP-1RAs on Aβ cytotoxicity was evaluated via the MTT assay. Monomeric Aβ40 and Aβ42 directly bind to GLP-1(7-37), Sema, Lira, and Exen, with the highest affinity for Lira (the lowest estimates of equilibrium dissociation constants were 42-60 nM). GLP-1RAs are prone to oligomerization, which may affect their binding to Aβ. GLP-1(7-37) and Exen inhibit Aβ40 fibrillation, whereas Sema promotes it. GLP-1 analogs decrease Aβ cytotoxicity toward SH-SY5Y cells, while GLP-1(7-37) enhances Aβ40 cytotoxicity without affecting the cytotoxic effect of Aβ42. Overall, GLP-1RAs interact with Aβ and differentially modulate its fibrillation and cytotoxicity, suggesting the need for further studies of our observed effects in vivo.
Collapse
Affiliation(s)
- Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Alina V. Chaplygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Valeria D. Alikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Aliya A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Victor V. Dotsenko
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia;
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| |
Collapse
|
43
|
Vela Navarro N, De Nadai Mundim G, Cudic M. Implications of Mucin-Type O-Glycosylation in Alzheimer's Disease. Molecules 2025; 30:1895. [PMID: 40363702 PMCID: PMC12073284 DOI: 10.3390/molecules30091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders linked to aging. Major hallmarks of AD pathogenesis include amyloid-β peptide (Aβ) plaques, which are extracellular deposits originating from the processing of the amyloid precursor protein (APP), and neurofibrillary tangles (NFTs), which are intracellular aggregates of tau protein. Recent evidence indicates that disruptions in metal homeostasis and impaired immune recognition of these aggregates trigger neuroinflammation, ultimately driving disease progression. Therefore, a more comprehensive approach is needed to understand the underlying causes of the disease. Patients with AD present abnormal glycan profiles, and most known AD-related molecules are either modified with glycans or involved in glycan regulation. A deeper understanding of how O-glycosylation influences the balance between amyloid-beta peptide production and clearance, as well as microglia's pro- and anti-inflammatory responses, is crucial for deciphering the early pathogenic events of AD. This review aims to provide a comprehensive summary of the extensive research conducted on the role of mucin-type O-glycosylation in the pathogenesis of AD, discussing its role in disease onset and immune recognition.
Collapse
Affiliation(s)
| | | | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA; (N.V.N.); (G.D.N.M.)
| |
Collapse
|
44
|
Belaidi AA, Bush AI, Ayton S. Apolipoprotein E in Alzheimer's disease: molecular insights and therapeutic opportunities. Mol Neurodegener 2025; 20:47. [PMID: 40275327 PMCID: PMC12023563 DOI: 10.1186/s13024-025-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Apolipoprotein E (APOE- gene; apoE- protein) is the strongest genetic modulator of late-onset Alzheimer's disease (AD), with its three major isoforms conferring risk for disease ε2 < ε3 < ε4. Emerging protective gene variants, such as APOE Christchurch and the COLBOS variant of REELIN, an alternative target of certain apoE receptors, offer novel insights into resilience against AD. In recent years, the role of apoE has been shown to extend beyond its primary function in lipid transport, influencing multiple biological processes, including amyloid-β (Aβ) aggregation, tau pathology, neuroinflammation, autophagy, cerebrovascular integrity and protection from lipid peroxidation and the resulting ferroptotic cell death. While the detrimental influence of apoE ε4 on these and other processes has been well described, the molecular mechanisms underpinning this disadvantage require further enunciation, particularly to realize therapeutic opportunities related to apoE. This review explores the multifaceted roles of apoE in AD pathogenesis, emphasizing recent discoveries and translational approaches to target apoE-mediated pathways. These findings underscore the potential for apoE-based therapeutic strategies to prevent or mitigate AD in genetically at-risk populations.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
45
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
46
|
Asante JJ, Barger SW. P-glycoprotein and Alzheimer's Disease: Threats and Opportunities. ASN Neuro 2025; 17:2495632. [PMID: 40264334 DOI: 10.1080/17590914.2025.2495632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 50 million people worldwide. One of the hallmark features of AD is the accumulation of amyloid β-peptide (Aβ) protein in the brain. P-glycoprotein (P-gp) is a membrane-bound protein expressed in various tissues, including the cerebrovascular endothelium. It plays a crucial role in the efflux of toxic substances, including Aβ, from the brain. Aberrations in P-gp levels or activity have been implicated in the pathogenesis of AD by promoting the accumulation of Aβ in the brain. Therefore, modulating the P-gp function represents a promising therapeutic strategy for treating AD. P-gp has multiple substrate binding sites, creating the potential for substrates to fall into complementation groups based on these sites; two substrates in the same complementation group may compete with one other, but two substrates in different groups may exhibit cooperativity. Thus, a given P-gp substrate may interfere with Aβ efflux whereas another may promote clearance. These threats and opportunities, as well as other aspects of P-gp relevance to AD, are discussed here.
Collapse
Affiliation(s)
- Joseph Jr Asante
- Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, Little Rock, AR, USA
- Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
47
|
Xing H, Yue S, Qin R, Du X, Wu Y, Zhangsun D, Luo S. Recent Advances in Drug Development for Alzheimer's Disease: A Comprehensive Review. Int J Mol Sci 2025; 26:3905. [PMID: 40332804 PMCID: PMC12028297 DOI: 10.3390/ijms26083905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive impairments such as memory loss and executive dysfunction. The primary pathological features of AD include the deposition of amyloid-beta (Aβ) plaques, the hyperphosphorylation of tau proteins leading to neurofibrillary tangles, disruptions of neuronal and synaptic functions, and chronic inflammatory responses. These multifactorial interactions drive disease progression. To date, various therapeutic agents targeting these pathological mechanisms have been developed. This article provides a comprehensive review of the pathogenesis of AD, recent advances in drug development targeting different pathways, current challenges, and future directions, aiming to offer valuable insights for clinical treatment and research.
Collapse
Affiliation(s)
- Haonan Xing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Song Yue
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Runtian Qin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Xiaoxue Du
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Yili Wu
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Health, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China;
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
48
|
Singh D, Grazia A, Reiz A, Hermann A, Altenstein S, Beichert L, Bernhardt A, Buerger K, Butryn M, Dechent P, Duezel E, Ewers M, Fliessbach K, Freiesleben SD, Glanz W, Hetzer S, Janowitz D, Kilimann I, Kimmich O, Laske C, Levin J, Lohse A, Luesebrink F, Munk M, Perneczky R, Peters O, Preis L, Priller J, Prudlo J, Rauchmann BS, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schneider A, Schneider LS, Schott BH, Spottke A, Spruth EJ, Synofzik M, Wiltfang J, Jessen F, Teipel SJ, Dyrba M. A computational ontology framework for the synthesis of multi-level pathology reports from brain MRI scans. J Alzheimers Dis 2025:13872877251331222. [PMID: 40255031 DOI: 10.1177/13872877251331222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BackgroundConvolutional neural network (CNN) based volumetry of MRI data can help differentiate Alzheimer's disease (AD) and the behavioral variant of frontotemporal dementia (bvFTD) as causes of cognitive decline and dementia. However, existing CNN-based MRI volumetry tools lack a structured hierarchical representation of brain anatomy, which would allow for aggregating regional pathological information and automated computational inference.ObjectiveDevelop a computational ontology pipeline for quantifying hierarchical pathological abnormalities and visualize summary charts for brain atrophy findings, aiding differential diagnosis.MethodsUsing FastSurfer, we segmented brain regions and measured volume and cortical thickness from MRI scans pooled across multiple cohorts (N = 3433; ADNI, AIBL, DELCODE, DESCRIBE, EDSD, and NIFD), including healthy controls, prodromal and clinical AD cases, and bvFTD cases. Employing the Web Ontology Language (OWL), we built a semantic model encoding hierarchical anatomical information. Additionally, we created summary visualizations based on sunburst plots for visual inspection of the information stored in the ontology.ResultsOur computational framework dynamically estimated and aggregated regional pathological deviations across different levels of neuroanatomy abstraction. The disease similarity index derived from the volumetric and cortical thickness deviations achieved an AUC of 0.88 for separating AD and bvFTD, which was also reflected by distinct atrophy profile visualizations.ConclusionsThe proposed automated pipeline facilitates visual comparison of atrophy profiles across various disease types and stages. It provides a generalizable computational framework for summarizing pathologic findings, potentially enhancing the physicians' ability to evaluate brain pathologies robustly and interpretably.
Collapse
Affiliation(s)
- Devesh Singh
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Alice Grazia
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Achim Reiz
- Chair of Business Information Systems, Rostock University, Rostock, Germany
| | - Andreas Hermann
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Section for Translational Neurodegeneration Albrecht Kossel, Department of Neurology, University Hospital Rostock, Rostock, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Lukas Beichert
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Alexander Bernhardt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, LMU Munich University Hospital, Munich, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Goettingen, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, LMU Munich University Hospital, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Silka D Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité University Medicine Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, LMU Munich University Hospital, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Okka Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Falk Luesebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthias Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Lukas Preis
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich,Munich, Germany
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Neurology, University Medical Centre, Rostock, Germany
| | - Boris S Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
- Department of Neuroradiology, University Hospital, LMU Munich, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nina Roy-Kluth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Luisa S Schneider
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- Leibniz Institute for Neurobiology (LG), Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| |
Collapse
|
49
|
Ionescu C, Ghidersa M, Ciobica A, Mavroudis I, Kazis D, Petridis FE, Gorgan DL, Balmus IM. Potential Correlation Between Molecular Biomarkers and Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2025; 26:3858. [PMID: 40332547 PMCID: PMC12027598 DOI: 10.3390/ijms26083858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Diagnosing traumatic brain injury (TBI) remains challenging due to an incomplete understanding of its neuropathological mechanisms. TBI is recognised as a complex condition involving both primary and secondary injuries. Although oxidative stress is a non-specific molecular phenomenon observed in various neuropathological conditions, it plays a crucial role in brain injury response and recovery. Due to these aspects, we aimed to evaluate the interaction between some known TBI molecular biomarkers and oxidative stress in providing evidence for its possible relevance in clinical diagnosis and outcome prediction. We found that while many of the currently validated molecular biomarkers interact with oxidative pathways, their patterns of variation could assist the diagnosis, prognosis, and outcomes prediction in TBI cases.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Madalina Ghidersa
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Ioannis Mavroudis
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Foivos E. Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Dragoș Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania;
| |
Collapse
|
50
|
Sahoo TA, Chand J, Kandy AT, Antony S, Subramanian G. Unravelling the Proteinopathic Engagement of α-Synuclein, Tau, and Amyloid Beta in Parkinson's Disease: Mitochondrial Collapse as a Pivotal Driver of Neurodegeneration. Neurochem Res 2025; 50:145. [PMID: 40240583 DOI: 10.1007/s11064-025-04399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Parkinson's disease is a complex neurological ailment manifested by dopaminergic neurodegeneration in the substantia nigra of the brain. This study investigates the molecular tripartite interaction between Lewy bodies, amyloid beta, and tau protein in the pathogenesis of Parkinson's disease. Lewy bodies which have been found as the important pathological hallmark in the degenerative neurons of Parkinson's patients, are mainly composed of α-synuclein. The accumulation of α-synuclein has been directly and indirectly linked to the severity and degree of progression of the disease. In addition, approximately 50% of Parkinson's disease cases are also described by hyperphosphorylation of tau protein indicating its significant involvement in the disease. The study further explains how α-synuclein, tau and amyloid beta can spread via cross-seeding mechanisms and accelerate each other's aggregation leading to neuronal death. Both GSK-3β and CDK5 are involved in phosphorylation which among other effects contributes to the misfolding of both α-synuclein and tau proteins that lead to neurodegeneration in Alzheimer's disease. Several mediators, that contribute to mitochondrial damage through elevated oxidative stress pathology are clearly described. Because of the increase in the incidence of Parkinson's disease, as predicted to be 17 million when the study was being conducted, studying these pathological mechanisms is very important in trying to establish treatments. This work contributes a path to finding a multi-target treatment regimen to alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Tarini Ashish Sahoo
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Amarjith Thiyyar Kandy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Shanish Antony
- Department of Pharmaceutical Sciences, Government Medical College, Kottayam, Kerala, 686008, India
| | - Gomathy Subramanian
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| |
Collapse
|