1
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Hu MS, Maan ZN, Leavitt T, Hong WX, Rennert RC, Marshall CD, Borrelli MR, Zhu TN, Esquivel M, Zimmermann A, McArdle A, Chung MT, Foster DS, Jones RE, Gurtner GC, Giaccia AJ, Lorenz HP, Weissman IL, Longaker MT. Wounds Inhibit Tumor Growth In Vivo. Ann Surg 2021; 273:173-180. [PMID: 30829705 PMCID: PMC7169436 DOI: 10.1097/sla.0000000000003255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to determine the interaction of full thickness excisional wounds and tumors in vivo. SUMMARY OF BACKGROUND DATA Tumors have been described as wounds that do not heal due to similarities in stromal composition. On the basis of observations of slowed tumor growth after ulceration, we hypothesized that full thickness excisional wounds would inhibit tumor progression in vivo. METHODS To determine the interaction of tumors and wounds, we developed a tumor xenograft/allograft (human head and neck squamous cell carcinoma SAS/mouse breast carcinoma 4T1) wound mouse model. We examined tumor growth with varying temporospatial placement of tumors and wounds or ischemic flap. In addition, we developed a tumor/wound parabiosis model to understand the ability of tumors and wounds to recruit circulating progenitor cells. RESULTS Tumor growth inhibition by full thickness excisional wounds was dose-dependent, maintained by sequential wounding, and relative to distance. This effect was recapitulated by placement of an ischemic flap directly adjacent to a xenograft tumor. Using a parabiosis model, we demonstrated that a healing wound was able to recruit significantly more circulating progenitor cells than a growing tumor. Tumor inhibition by wound was unaffected by presence of an immune response in an immunocompetent model using a mammary carcinoma. Utilizing functional proteomics, we identified 100 proteins differentially expressed in tumors and wounds. CONCLUSION Full thickness excisional wounds have the ability to inhibit tumor growth in vivo. Further research may provide an exact mechanism for this remarkable finding and new advances in wound healing and tumor biology.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Zeshaan N. Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Clement D. Marshall
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Ted N. Zhu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Mikaela Esquivel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Andrew Zimmermann
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Michael T. Chung
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Deshka S. Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Ruth Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
3
|
Avishai E, Golubnitschaja O. Flammer Syndrome in the Context of Healing Impairments – Facts and Hypotheses for Multi-professional Consideration. FLAMMER SYNDROME 2019. [DOI: 10.1007/978-3-030-13550-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Alieva M, van Rheenen J, Broekman MLD. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin Exp Metastasis 2018; 35:319-331. [PMID: 29728948 PMCID: PMC6063335 DOI: 10.1007/s10585-018-9896-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Surgical procedures such as tumor resection and biopsy are still the gold standard for diagnosis and (determination of) treatment of solid tumors, and are prognostically beneficial for patients. However, growing evidence suggests that even a minor surgical trauma can influence several (patho) physiological processes that might promote postoperative metastatic spread and tumor recurrence. Local effects include tumor seeding and a wound healing response that can promote tumor cell migration, proliferation, differentiation, extracellular matrix remodeling, angiogenesis and extravasation. In addition, local and systemic immunosuppression impairs antitumor immunity and contributes to tumor cell survival. Surgical manipulation of the tumor can result in cancer cell release into the circulation, thus increasing the chance of tumor cell dissemination. To prevent these undesired effects of surgical interventions, therapeutic strategies targeting immune response exacerbation or alteration have been proposed. This review summarizes the current literature regarding these local, systemic and secondary site effects of surgical interventions on tumor progression and dissemination, and discusses studies that aimed to identify potential therapeutic approaches to prevent these effects in order to further increase the clinical benefit from surgical procedures.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marike L D Broekman
- Department of Neurology & Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
5
|
Abstract
Surgery is a mainstay treatment for patients with solid tumours. However, despite surgical resection with a curative intent and numerous advances in the effectiveness of (neo)adjuvant therapies, metastatic disease remains common and carries a high risk of mortality. The biological perturbations that accompany the surgical stress response and the pharmacological effects of anaesthetic drugs, paradoxically, might also promote disease recurrence or the progression of metastatic disease. When cancer cells persist after surgery, either locally or at undiagnosed distant sites, neuroendocrine, immune, and metabolic pathways activated in response to surgery and/or anaesthesia might promote their survival and proliferation. A consequence of this effect is that minimal residual disease might then escape equilibrium and progress to metastatic disease. Herein, we discuss the most promising proposals for the refinement of perioperative care that might address these challenges. We outline the rationale and early evidence for the adaptation of anaesthetic techniques and the strategic use of anti-adrenergic, anti-inflammatory, and/or antithrombotic therapies. Many of these strategies are currently under evaluation in large-cohort trials and hold promise as affordable, readily available interventions that will improve the postoperative recurrence-free survival of patients with cancer.
Collapse
|
6
|
Hartmann-Johnsen OJ, Kåresen R, Schlichting E, Nygård JF. Better survival after breast-conserving therapy compared to mastectomy when axillary node status is positive in early-stage breast cancer: a registry-based follow-up study of 6387 Norwegian women participating in screening, primarily operated between 1998 and 2009. World J Surg Oncol 2017; 15:118. [PMID: 28673296 PMCID: PMC5496325 DOI: 10.1186/s12957-017-1184-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/22/2017] [Indexed: 11/21/2022] Open
Abstract
Background Recent registry studies on early-stage breast cancer have shown better survival rates when women underwent breast-conserving therapy (BCT) compared with mastectomy (MTX). The aim of this study is to investigate women participating in screening, in all four stages of early breast cancer (T1N0M0, T2N0M0, T1N1M0, and T2N1M0), as to whether there is a survival benefit when women undergo BCT compared to MTX. Method A cohort of 6387 women aged 50–69, with primary-operated breast cancer from January 1998 to December 2009, participating in screening and followed-up until the end of 2010. Life tables were calculated by stages (pT1N0M0, pT2N0M0, pT1N1M0, and pT2N1M0), surgery groups (BCT and MTX), and screening detection (first screening, later screening, or interval cancer). Cox regression was used to calculate hazard ratios (HR) between BCT and MTX in crude and adjusted analyses. Results In stage T1N1M0, women who underwent MTX had an HR of 2.91 (95% CI 1.30–6.48) for breast cancer death compared to women who underwent BCT, after adjusting for screening detection, years of diagnosis, age at diagnosis, histology, grade, and hormone receptor status. For all other TNM categories of early breast cancer, there was no difference in survival. 10-year breast cancer-specific survival (BCSS) in T1N0M0 was 98% for women undergoing BCT and 96% for women undergoing MTX. 10-year BCSS in T1N1M0 was 97% for women undergoing BCT and 89% for women undergoing MTX. Conclusions For women participating in screening, there is a benefit of BCT over MTX in stage T1N1M0. No such effects were observed in the other early stages of breast cancer.
Collapse
Affiliation(s)
- Olaf Johan Hartmann-Johnsen
- Cancer Registry of Norway, P.O. Box 5313, Majorstuen, 0304, Oslo, Norway. .,Department of Breast and Endocrine Surgery, Kalnes Hospital, Kalnes, Norway. .,University of Oslo, Oslo, Norway.
| | - Rolf Kåresen
- Cancer Registry of Norway, P.O. Box 5313, Majorstuen, 0304, Oslo, Norway.,Department of Breast and Endocrine Surgery, Oslo University Hospital, Oslo, Norway
| | - Ellen Schlichting
- Department of Breast and Endocrine Surgery, Oslo University Hospital, Oslo, Norway
| | - Jan F Nygård
- Cancer Registry of Norway, P.O. Box 5313, Majorstuen, 0304, Oslo, Norway
| |
Collapse
|
7
|
Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J 2017; 8:23-33. [PMID: 28620441 PMCID: PMC5471802 DOI: 10.1007/s13167-017-0081-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
Abstract
Whereas the physiologic wound healing (WH) successfully proceeds through the clearly defined sequence of the individual phases of wound healing, chronic non-healing wounds/ulcers fail to complete the individual stages and the entire healing process. There are many risk factors both modifiable (such as stress, smoking, inappropriate alcohol consumption, malnutrition, obesity, diabetes, cardio-vascular disease, etc.) and non-modifiable (such as genetic diseases and ageing) strongly contributing to the impaired WH. Current statistics demonstrate that both categories are increasingly presented in the populations, which causes dramatic socio-economic burden to the healthcare sector and society at large. Consequently, innovative concepts by predictive, preventive and personalised medicine are crucial to be implemented in the area. Individual risk factors, causality, functional interrelationships, molecular signature, predictive diagnosis, and primary and secondary prevention are thoroughly analysed followed by the expert recommendations in this paper.
Collapse
Affiliation(s)
- Eden Avishai
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Kristina Yeghiazaryan
- Radiological Clinic, Medical Faculty, Friedrich-Wilhels-University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Olga Golubnitschaja
- Radiological Clinic, Medical Faculty, Friedrich-Wilhels-University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
8
|
DANESHPOYA F, KARIMIPOUR M, ZIRAK JAVANMARD M, POURHEYDAR B. Effects of n-acetylcysteine on ovarian tissue autografted intogranulation tissue compared to back muscle in rats. Turk J Med Sci 2017; 47:1931-1939. [DOI: 10.3906/sag-1704-170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
9
|
Comparative effectiveness study of breast-conserving surgery and mastectomy in the general population: A NCDB analysis. Oncotarget 2016; 6:40127-40. [PMID: 26517676 PMCID: PMC4741884 DOI: 10.18632/oncotarget.5394] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/29/2015] [Indexed: 12/27/2022] Open
Abstract
Purpose Recent studies have revealed that breast-conserving surgery (BCS) with radiotherapy (RT) led to better survival than mastectomy in some populations. We compared the efficacy of BCS+RT and mastectomy using the National Cancer Database (NCDB, USA). Methods Non-metastatic breast cancers in the NCDB from 2004–2011 were identified. The Kaplan-Meier method, Coxregression and propensity score analysis were used to compare the overall survival (OS) among patients with BCS+RT, mastectomy alone and mastectomy+RT. Results A total of 160,880 patients with a median follow-up of 43.4 months were included. The respective 8-year OS values were 86.5%, 72.3% and 70.4% in the BCS+RT, mastectomy alone and mastectomy+RT group, respectively (P < 0.001). After exclusion of patients with comorbidities, mastectomy (alone or with RT) remained associated with a lower OS in N0 and N1 patients. However, the OS of mastectomy+RT was equivalent to BCS+RT in N2–3 patients. Among patients aged 50 or younger, the OS benefit of BCS+RT over mastectomy alone was statistically significant (HR1.42, 95% CI 1.16–1.74), but not clinically significant (<5%) in N0 patients, whereas in N2–3 patients, the OS of BCS+RT was equivalent to mastectomy+RT (85.2% vs. 84.8%). The results of the propensity analysis were similar. Conclusions BCS+RT resulted in improved OS compared with mastectomy ± RT in N0 and N1 patients. In N2–3 patients, BCS+RT has an OS similar to mastectomy+RT when patients with comorbidities were excluded. Among patients aged 50 or younger, the OS of BCS+RT is equivalent to mastectomy ± RT.
Collapse
|
10
|
van Netten JP, Hoption Cann S, Thornton I, Finegan R. Growing concern following compression mammography. BMJ Case Rep 2016; 2016:bcr-2016-216889. [PMID: 27581236 DOI: 10.1136/bcr-2016-216889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A patient without clinical symptoms had a mammogram in October 2008. The procedure caused intense persistent pain, swelling and development of a haematoma following mediolateral left breast compression. Three months later, a 9×11 cm mass developed within the same region. Core biopsies showed a necrotizing high-grade ductal carcinoma, with a high mitotic index. Owing to its extensive size, the patient began chemotherapy followed by trastuzumab and later radiotherapy to obtain clear margins for a subsequent mastectomy. The mastectomy in October 2009 revealed an inflammatory carcinoma, with 2 of 3 nodes infiltrated by the tumour. The stage IIIC tumour, oestrogen and progesterone receptor negative, was highly HER2 positive. A recurrence led to further chemotherapy in February 2011. In July 2011, another recurrence was removed from the mastectomy scar. She died of progressive disease in 2012. In this article, we discuss the potential influence of compression on the natural history of the tumour.
Collapse
Affiliation(s)
| | - Stephen Hoption Cann
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Thornton
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Rory Finegan
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
11
|
Abstract
Similarities between tumors and the inflammatory response associated with wound healing have been recognized for more than 150 years and continue to intrigue. Some years ago, based on our then recent discovery of vascular permeability factor (VPF)/VEGF, I suggested that tumors behaved as wounds that do not heal. More particularly, I proposed that tumors co-opted the wound-healing response to induce the stroma they required for maintenance and growth. Work over the past few decades has supported this hypothesis and has put it on a firmer molecular basis. In outline, VPF/VEGF initiates a sequence of events in both tumors and wounds that includes the following: increased vascular permeability; extravasation of plasma, fibrinogen and other plasma proteins; activation of the clotting system outside the vascular system; deposition of an extravascular fibrin gel that serves as a provisional stroma and a favorable matrix for cell migration; induction of angiogenesis and arterio-venogenesis; subsequent degradation of fibrin and its replacement by "granulation tissue" (highly vascular connective tissue); and, finally, vascular resorption and collagen synthesis, resulting in the formation of dense fibrous connective tissue (called "scar tissue" in wounds and "desmoplasia" in cancer). A similar sequence of events also takes place in a variety of important inflammatory diseases that involve cellular immunity.
Collapse
Affiliation(s)
- Harold F Dvorak
- The Center for Vascular Biology Research and the Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Minimally invasive colorectal resection for benign pathology is associated with persistent proangiogenic plasma compositional changes. Dis Colon Rectum 2014; 57:740-6. [PMID: 24807599 DOI: 10.1097/dcr.0000000000000062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Minimally invasive colorectal resection for cancer is associated with increased plasma levels of numerous proangiogenic proteins for 3 to 4 weeks postoperatively, and plasma from postoperative weeks 2 and 3 stimulates proangiogenic endothelial cell behavior in vitro. It is unknown if similar plasma changes occur after minimally invasive colorectal resection for benign pathology. OBJECTIVE The aim of this study is to assess 1) plasma levels of angiopoetin-2, placental growth factor, and soluble vascular cell adhesion molecule-1 after minimally invasive colorectal resection for benign pathology and 2) postoperative plasma's effects on in vitro endothelial cell proliferation (branch point formation), migration, and invasion. DESIGN Prospectively gathered plasma samples taken from patients undergoing colorectal resection who consented to participate in an institutional review board-approved plasma and data bank were used for ELISAs and in vitro endothelial cell studies. SETTINGS The plasma and clinical data used were collected at 3 hospitals. PATIENTS Patients undergoing minimally invasive colorectal resection for benign indications who were enrolled in a plasma/data bank and for whom adequate samples and volumes of plasma were available were included in the study. MAIN OUTCOME MEASURES Perioperative plasma levels of angiopoetin-2, placental growth factor, and soluble vascular cell adhesion molecule-1 were the primary outcomes measured. In vitro rates of endothelial cell branch point formation, migration, and invasion were determined after the addition of preoperative and postoperative plasma samples to endothelial cell cultures. RESULTS Plasma from 86 patients undergoing minimally invasive colorectal resection for benign indications was assessed (diverticulitis, 30; benign polyps, 56). Plasma levels of angiopoetin-2, placental growth factor, and soluble vascular cell adhesion molecule-1 were significantly increased for 3 to 4 weeks postoperatively compared with preoperative levels. In regard to the endothelial cell culture assays, significantly increased endothelial cell branch point formation, invasion, and migration results were noted with plasma from the second and third weeks postoperatively in comparison with preoperative culture results. LIMITATIONS The weaknesses of this study are the limited numbers of late postoperative plasma samples and the need to bundle late samples into 7- to 12-day time blocks. CONCLUSIONS Minimally invasive colorectal resection for benign pathology is associated with persistent proangiogenic plasma alterations similar to those found in patients who have cancer. Surgical trauma and not the indication is the likely cause.
Collapse
|
13
|
Li Y, Shi G, Wang S, Wang S, Wu R. Iodine quantification with dual-energy CT: phantom study and preliminary experience with VX2 residual tumour in rabbits after radiofrequency ablation. Br J Radiol 2013; 86:20130143. [PMID: 23884759 PMCID: PMC3755393 DOI: 10.1259/bjr.20130143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE The purpose of our study was to validate iodine quantification in a phantom study with dual-source dual-energy CT (DECT) and to apply this technique to differentiate benign periablational reactive tissue from residual tumour in VX2 carcinoma in rabbits after radiofrequency ablation (RFA). METHODS We applied iodine quantification with DECT in a phantom and in VX2 carcinoma in rabbits after incomplete RFA to differentiate benign periablational reactive tissue from residual tumour and evaluated its efficacy in demonstrating response to therapeutic RFA. A series of tubes containing solutions of varying iodine concentration were scanned with DECT. The iodine concentration was calculated and compared with known true iodine concentration. Triple-phase contrast-enhanced DECT data on 24 rabbits with VX2 carcinoma were then assessed at Day 3 (n=6), 1 week (n=6), 2 weeks (n=6) and 3 weeks (n=6) after incomplete RFA independently by 2 readers. Dual-energy postprocessing was used to produce iodine-only images. Regions of interest were positioned on the iodine image over the lesion and, as a reference, over the aorta, to record iodine concentration in the lesion and in the aorta. The pathological specimens were sectioned in the same plane as DECT imaging, and the lesion iodine concentration and lesion-to-aorta iodine ratio of residual tumour and benign periablational reactive tissue were assessed. RESULTS There was excellent correlation between calculated and true iodine concentration (r=0.999, p<0.0001) in the phantom study. The lesion iodine concentration and lesion-to-aorta iodine ratio in residual tumour were significantly higher than in benign periablational reactive tissue in the 2-week group during the arterial phase (AP) (p<0.01) and in the 3-week group during both the AP (p<0.05) and the portal venous phase (p<0.05). There was no significant difference between them with respect to the lesion iodine concentration or lesion-to-aorta iodine ratio in the 3-day and 1-week groups. CONCLUSION Iodine quantification with DECT is accurate in a phantom study and can be used to differentiate benign periablational reactive tissue from residual tumour in VX2 carcinoma in rabbits after RFA. ADVANCES IN KNOWLEDGE Iodine quantification with DECT may help in differentiating benign periablational reactive tissue from residual tumour in VX2 carcinoma in rabbits after RFA.
Collapse
Affiliation(s)
- Y Li
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Hebei, China
| | | | | | | | | |
Collapse
|
14
|
Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, Li J. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One 2012; 7:e47003. [PMID: 23071695 PMCID: PMC3468565 DOI: 10.1371/journal.pone.0047003] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022] Open
Abstract
Background One major impediment to improving the management of breast cancer is the current lack of tumor marker with sufficient sensitivity and specificity. A growing body of evidence implicates the diagnostic potential of circulating miRNAs in cancer detection. MiR-155 plays an important role in the pathogenesis of breast cancer. However, the level of circulating miR-155 and its clinical relevance are not well established. The objective of the current study was to learn more about serum miR-155 in patients with breast cancer. Methodology/Principal Findings Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), we demonstrated that serum miR-155 had significant increased levels in breast cancer patients (n = 103) compared with healthy subjects (n = 55) (p<0.001), which had a mean fold change of 2.94. Receiver operating characteristic (ROC) analysis revealed that miR-155 had considerable diagnostic accuracy, yielding an ROC-AUC (the areas under the ROC curve) of 0.801 (sensitivity 65.0%, specificity 81.8%). In addition, sera from a subset of breast cancer patients (n = 29) were collected after surgery and after four cycles of chemotherapy to evaluate the effects of clinical treatment on serum levels of candidate miRNAs. Surprisingly, a decreased level of serum miR-155 was found; whereas the concentrations of carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA) and tissue polypeptide specific antigen (TPS) did not show this trend. Our results revealed that 79% patients showed response or stable disease after therapy had declined levels of serum miR-155. Conclusions/Significance Our results suggest that serum miR-155 is a potential biomarker to discriminate breast cancer patients from healthy subjects. For the first time, we demonstrated a declined trend of miR-155 after surgery and chemotherapy, which raises the possibility to use it as an indicator for treatment response.
Collapse
Affiliation(s)
- Yu Sun
- National Center for Clinical Laboratories, Beijing Hospital of the Ministry of Health, Beijing, People’s Republic of China
| | - Minjie Wang
- Clinical Laboratories, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital of the Ministry of Health, Beijing, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shipeng Sun
- Clinical Laboratories, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xuexiang Li
- Clinical Laboratories, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jun Qi
- Clinical Laboratories, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital of the Ministry of Health, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
Abstract
Hypoxia plays a central role in tumour development, angiogenesis, growth and resistance to treatment. Owing to constant developments in medical imaging technology, significant advances have been made towards in vitro and in vivo imaging of hypoxia in a variety of tumours, including gliomas of the central nervous system. The aim of this article is to review the literature on imaging approaches currently available for measuring hypoxia in human gliomas and provide an insight into recent advances and future directions in this field. After a brief overview of hypoxia and its importance in gliomas, several methods of measuring hypoxia will be presented. These range from invasive monitoring by Eppendorf polarographic O(2) microelectrodes, positron electron tomography (PET) tracers based on 2-nitroimidazole compounds [(18)F-labelled fluoro-misonidazole ((18)F-MISO) or 1-(2-[((18))F]fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole (FRP-170)], (64)Cu-ATSM Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) or (99m)Tc- and (68)Ga-labelled metronidazole (MN) agents to advanced MRI methods, such as blood oxygenation level dependent (BOLD) MRI, oxygen-enhanced MRI, diffusion-weighted MRI (DWI-MRI), dynamic contrast-enhanced MRI (DCE-MRI) and (1)H-magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- I Mendichovszky
- Wolfson Molecular Imaging Centre, University of Manchester, Withington, Manchester, UK
| | | |
Collapse
|
16
|
Retsky M, Demicheli R, Hrushesky W, Baum M, Gukas I. Surgery triggers outgrowth of latent distant disease in breast cancer: an inconvenient truth? Cancers (Basel) 2010; 2:305-37. [PMID: 24281072 PMCID: PMC3835080 DOI: 10.3390/cancers2020305] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 12/16/2022] Open
Abstract
We review our work over the past 14 years that began when we were first confronted with bimodal relapse patterns in two breast cancer databases from different countries. These data were unexplainable with the accepted continuous tumor growth paradigm. To explain these data, we proposed that metastatic breast cancer growth commonly includes periods of temporary dormancy at both the single cell phase and the avascular micrometastasis phase. We also suggested that surgery to remove the primary tumor often terminates dormancy resulting in accelerated relapses. These iatrogenic events are apparently very common in that over half of all metastatic relapses progress in that manner. Assuming this is true, there should be ample and clear evidence in clinical data. We review here the breast cancer paradigm from a variety of historical, clinical, and scientific perspectives and consider how dormancy and surgery-driven escape from dormancy would be observed and what this would mean. Dormancy can be identified in these diverse data but most conspicuous is the sudden synchronized escape from dormancy following primary surgery. On the basis of our findings, we suggest a new paradigm for early stage breast cancer. We also suggest a new treatment that is meant to stabilize and preserve dormancy rather than attempt to kill all cancer cells as is the present strategy.
Collapse
Affiliation(s)
- Michael Retsky
- Harvard School of Public Health, BLDG I, Rm 1311, 665 Huntington, Ave., Boston, MA 02115, USA
| | - Romano Demicheli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milano, Italy; E-Mail:
| | - William Hrushesky
- University of South Carolina, School of Medicine, Columbia, SC, USA; E-Mail:
| | - Michael Baum
- Royal Free and UCL Medical School, Centre for Clinical Science and Technology, Clerkenwell Building, Archway Campus, Highgate Hill, London, N19 5LW, UK; E-Mail:
| | - Isaac Gukas
- Breast Unit, Department of General Surgery, James Paget University Hospital, Gorleston, Great Yarmouth, UK; E-Mail:
| |
Collapse
|
17
|
Lee YH, Kwon W, Kim MS, Kim YJ, Lee MS, Yong SJ, Jung SH, Chang SJ, Sung KJ. Lung perfusion CT: The differentiation of cavitary mass. Eur J Radiol 2010; 73:59-65. [DOI: 10.1016/j.ejrad.2009.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 02/08/2023]
|
18
|
Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92:317-35. [PMID: 19357959 DOI: 10.1007/s11060-009-9827-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Hypoxia is implicated in many aspects of tumor development, angiogenesis, and growth in many different tumors. Brain tumors, particularly the highly aggressive glioblastoma multiforme (GBM) with its necrotic tissues, are likely affected similarly by hypoxia, although this involvement has not been closely studied. Invasion, apoptosis, chemoresistance, resistance to antiangiogenic therapy, and radiation resistance may all have hypoxic mechanisms. The extent of the influence of hypoxia in these processes makes it an attractive therapeutic target for GBM. Because of their relationship to glioma and meningioma growth and angiogenesis, hypoxia-regulated molecules, including hypoxia inducible factor-1, carbonic anhydrase IX, glucose transporter 1, and vascular endothelial growth factor, may be suitable subjects for therapies. Furthermore, other novel hypoxia-regulated molecules that may play a role in GBM may provide further options. Emerging imaging techniques may allow for improved determination of hypoxia in human brain tumors to better focus therapeutic treatments; however, tumor pseudoprogression, which may be prompted by hypoxia, poses further challenges. An understanding of the role of hypoxia in tumor development and growth is important for physicians involved in the care of patients with brain tumors.
Collapse
|
19
|
Demicheli R, Retsky MW, Hrushesky WJM, Baum M, Gukas ID. The effects of surgery on tumor growth: a century of investigations. Ann Oncol 2008; 19:1821-8. [PMID: 18550576 DOI: 10.1093/annonc/mdn386] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A few clinical investigations suggest that while primary breast cancer surgical removal favorably modifies the natural history for some patients, it may also hasten the metastatic development for others. The concepts underlying this disease paradigm, i.e. tumor homeostasis, tumor dormancy and surgery-driven enhancement of metastasis development, have a long history that is reviewed. The review reveals the context in which these concepts were conceived and structured to explain experimental data and shows that they are not so new and far fetched. The idea that surgical cancer resection has both beneficial and adverse effects upon cancer spread and growth that result from the modulation of tumor dormancy by the resection should be considered a potentially fruitful working hypothesis.
Collapse
Affiliation(s)
- R Demicheli
- Department of Medical Oncology, Istituto Nazionale Tumori, Milano, Italy.
| | | | | | | | | |
Collapse
|
20
|
Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. ACTA ACUST UNITED AC 2007; 4:699-710. [PMID: 18037874 DOI: 10.1038/ncponc0999] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 06/14/2007] [Indexed: 11/09/2022]
Abstract
Primary tumor removal, usually considered intrinsically beneficial, can perturb metastatic homeostasis, and for some patients results in the acceleration of metastatic cancer. The continuous-growth model is required to yield to an interrupted-growth model, the implications of which are episodes of tumor dormancy. This Review analyzes the recent evolution of two paradigms related to the development of breast cancer metastases. The evolution of the paradigms described herein is supported by a growing body of findings from experimental models, and is required to explain breast cancer recurrence dynamics for patients undergoing surgery with or without adjuvant chemotherapy.
Collapse
|
21
|
|
22
|
Israely T, Nevo N, Harmelin A, Neeman M, Tsafriri A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod 2006; 21:1368-79. [PMID: 16459346 DOI: 10.1093/humrep/del010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Anti-cancer therapies frequently lead to ovarian damage and impaired fertility. To preserve fertility, cryopreservation and subsequent transplantation of the ovaries have been suggested. One of the challenges in ovarian graft transplantation is overcoming the initial ischaemic damage that depletes a significant fraction of the oocyte pool. METHODS AND RESULTS Follicular survival in ovarian grafts was examined by magnetic resonance imaging (MRI) and fluorescence microscopy in a model system in which rat ovaries were transplanted into nude mice. Transplantation into angiogenic granulation tissue created during wound healing shortened the ischaemic period by 24 h and significantly increased the pool of healthy primordial follicles and the perfused area of the transplanted grafts. Functional blood vessels were detected within the grafts as early as 2 days after transplantation. Gain of function was demonstrated both by growth of the grafts and by the hormonal influence on the host uteri. CONCLUSION Implantation of ovarian grafts into an angiogenic granulation tissue improved graft vascularization and follicular survival. This procedure/treatment may be used for reducing the ischaemic damage in ovarian transplants, thus prolonging graft functionality and increasing the yield of oocytes that can be easily recovered for fertilization.
Collapse
Affiliation(s)
- Tomer Israely
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
23
|
Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J 2005; 19:211-21. [PMID: 15677344 DOI: 10.1096/fj.04-1970com] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Orchestration of the rapid formation and reorganization of new tissue observed in wound healing involves not only cells and polypeptides but also the extracellular matrix (ECM) microenvironment. The ability of heparan sulfate (HS) to interact with major components of the ECM suggests a key role for HS in maintaining the structural integrity of the ECM. Heparanase, an endoglycosidase-degrading HS in the ECM and cell surface, is involved in the enzymatic machinery that enables cellular invasion and release of HS-bound polypeptides residing in the ECM. Bioavailabilty and activation of multitude mediators capable of promoting cell migration, proliferation, and neovascularization are of particular importance in the complex setting of wound healing. We provide evidence that heparanase is normally expressed in skin and in the wound granulation tissue. Heparanase stimulated keratinocyte cell migration and wound closure in vitro. Topical application of recombinant heparanase significantly accelerated wound healing in a flap/punch model and markedly improved flap survival. These heparanase effects were associated with enhanced wound epithelialization and blood vessel maturation. Similarly, a marked elevation in wound angiogenesis, evaluated by MRI analysis and histological analyses, was observed in heparanase-overexpressing transgenic mice. This effect was blocked by a novel, newly developed, heparanase-inhibiting glycol-split fragment of heparin. These results clearly indicate that elevation of heparanase levels in healing wounds markedly accelerates tissue repair and skin survival that are mediated primarily by an enhanced angiogenic response.-Zcharia, E., Zilka, R., Yaar, A., Yacoby-Zeevi, O., Zetser, A., Metzger, S., Sarid, R., Naggi, A., Casu, B., Ilan, N., Vlodavsky, I., Abramovitch, R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models.
Collapse
Affiliation(s)
- Eyal Zcharia
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Höckel M, Dornhöfer N. The hydra phenomenon of cancer: why tumors recur locally after microscopically complete resection. Cancer Res 2005; 65:2997-3002. [PMID: 15833823 DOI: 10.1158/0008-5472.can-04-3868] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After surgical resection with microscopically clear margins, solid malignant tumors recur locally in up to 50%. Although the effect of a local tumor recurrence on the overall survival may be low in common cancers such as carcinoma of the breast or prostate, the affected patients suffer from exacerbated fear and the burden of the secondary treatment. With some tumor entities such as carcinoma of the uterine cervix or carcinoma of the head and neck, a local recurrence indicates incurability in the majority of cases. The pathomechanisms of local tumor spread and relapse formation are still unclear and comparatively little research has been devoted to their elucidation. Through the analysis of clinical and molecular data, we propose the concept of two pathogenetically and prognostically different local relapse types (i) in situ recurrences that arise in the residual organ/organ system not involved in the surgery for the primary tumor and (ii) scar recurrences that develop at the site of previous tumor resection. Whereas field cancerization, the monoclonal or multiclonal displacement of normal epithelium by a genetically altered but microscopically undistinguishable homologue, may explain the origin of in situ recurrences, most scar recurrences are regarded as the result of the interaction of minimal residual microscopically occult cancer with the surgical wound environment inside a developmentally defined tissue or organ compartment. The therapeutic implications derived from these concepts and areas of future research aimed to reduce local relapses are discussed in this perspective.
Collapse
Affiliation(s)
- Michael Höckel
- Department of Obstetrics and Gynecology, University of Leipzig, Philipp-Rosenthal-Str. 55, 04103F, Leipzig, Germany.
| | | |
Collapse
|
25
|
Abstract
Selective antiangiogenesis and vascular targeting drugs hold out the promise of improved efficacy and tolerability for anticancer treatments. Early phase 1 drug trials have shown good tolerability for antiangiogenesis agents with biological activity below the maximum tolerated dose. Advanced clinical trials have demonstrated that morphological assessments of tumour response are of limited value in gauging the efficacy of treatment. MRI is a versatile technique which is sensitive to contrast mechanisms that can be affected by antivascular treatments; this use for MRI has been validated in xenografts and humans. Dynamic contrast-enhanced MRI (DCE-MRI), which demonstrates tissue perfusion and permeability, is being used clinically as a pharmacodynamic indicator of biological activity for antivascular cancer drugs. Early data show that DCE-MRI studies can define the biologically active dose and predict the efficacy of treatment on the basis of changes observed. MRI with macromolecular contrast media (MMCM) depicts microvessel permeability and fractional plasma volume. Xenograft studies with MMCM have shown great promise for evaluating antivascular treatments but this has not been used clinically. Intrinsic susceptibility-weighted MRI, which is sensitive to blood oxygenation and flow, is emerging as a technique that may be able to monitor vascular targeting therapies.
Collapse
Affiliation(s)
- A R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| |
Collapse
|
26
|
Schaefer JF, Vollmar J, Schick F, Vonthein R, Seemann MD, Aebert H, Dierkesmann R, Friedel G, Claussen CD. Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging--perfusion differences in malignant and benign lesions. Radiology 2004; 232:544-53. [PMID: 15215548 DOI: 10.1148/radiol.2322030515] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine whether dynamic contrast material-enhanced magnetic resonance (MR) imaging with use of kinetic and morphologic parameters reveals statistically significant differences between malignant and benign solitary pulmonary nodules. MATERIALS AND METHODS Fifty-eight patients met the inclusion criteria of a solitary 5-40-mm pulmonary nodule without calcification or fat at computed tomography. Fifty-one patients were examined successfully; 46 received a histologic diagnosis, and five received a diagnosis by means of observation over 2 years. Dynamic MR images were acquired every 10 seconds for a total of 4 minutes. Diagnostic characteristics for differentiation were examined by using threshold values for maximum peak enhancement, slope of enhancement, and washout. Receiver operating characteristic curves were calculated to test the usefulness of these parameters. The diagnostic performance of a combination of curve profiles and morphologic contrast material distribution were tested by using a decision tree. RESULTS Frequency of malignancy was 53% (27 of 51 nodules). Malignant nodules showed stronger enhancement with a higher maximum peak and a faster slope (P <.001). Significant washout (>0.1% increase in signal intensity per second) was found only in malignant lesions (14 of 27 lesions). Sensitivity, specificity, and accuracy were 96%, 88%, and 92%, respectively, for maximum peak; 96%, 75%, and 86% for slope; and 52%, 100%, and 75% for washout. When curve profiles and morphologic enhancement patterns were combined, sensitivity increased to 100%. CONCLUSION Dynamic MR imaging delineates significant kinetic and morphologic differences in vascularity and perfusion between malignant and benign solitary pulmonary nodules. Washout seems to be highly specific for malignancy.
Collapse
Affiliation(s)
- Juergen F Schaefer
- Department of Diagnostic Radiology, Eberhard-Karls-University Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Christoforidis GA, Kangarlu A, Abduljalil AM, Schmalbrock P, Chaudhry A, Yates A, Chakeres DW. Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. AJNR Am J Neuroradiol 2004; 25:756-60. [PMID: 15140714 PMCID: PMC3500639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND PURPOSE Imaging methods are currently being optimized in an attempt to assess and monitor angiogenesis in vivo. The purpose of this investigation was to determine whether areas of apparently increased tumor vascularity, as identified on 8-T gradient-echo (GE) imaging of a known glioblastoma multiforme (GBM), corresponds to foci of increased microvascularity on histopathologic analysis. METHODS We performed postmortem in situ, high-resolution GE 8-T MR imaging of the brain in a 53-year-old woman with GBM. Ten histopathologic specimens in the region of the tumor bed were studied by using hematoxylin-eosin and reticulin stains. MR and histopathologic results were assessed and compared for microvascular size and density. RESULTS 8-T GE images showed small, penetrating vessels in the gray matter and white matter. The images, however, were partly inhomogeneous as a result of local magnetic field inhomogeneities adjacent to the skull base and aerated paranasal sinus structures. 8-T MR images demonstrated serpiginous areas of signal intensity loss, which were thought to represent areas of increased microvascularity. Areas of lower microvascularity in the tumor bed corresponded to areas of lower vascularity on histopathologic sections with smaller vessel diameters. There was concurrence between vascular size predicted by histopathologic analysis and 8-T MR imaging in nine of nine biopsy samples. Vascular density agreed in seven of nine biopsy samples. CONCLUSION Our pilot data suggest that microvascularity in GBM can be identified by use of high-resolution, GE, 8-T MR imaging.
Collapse
|
28
|
Abstract
Magnetic resonance imaging (MRI) is widely applied for functional imaging of the microcirculation and for functional and structural studies of the microvasculature. The interest in the capabilities of MRI in noninvasively monitoring changes in vascular structure and function expanded over the past years, with specific efforts directed toward the development of novel imaging methods for quantification of angiogenesis. Molecular imaging approaches hold promise for further expansion of the ability to characterize the microvasculature. Exciting applications for MRI are emerging in the study of the biology of microvessels and in the evaluation of potential pharmaceutical modulators of vascular function and development, and preclinical MRI tools can serve for the design of mechanism-of-action-based noninvasive clinical methods for monitoring response to therapy. The aim of this review is to provide a current snapshot of recent developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
29
|
Abstract
During the last decades a lot of attention has been focussed on mechanisms of glioma vascularization, particularly in terms of investigating vascular growth factors and receptors. Recently, these efforts resulted in various approaches for antiangiogenic treatment strategies using in vitro cell culture systems as well as experimental orthotopic and non-orthotopic brain tumors. These basic science and preclinical trials need an assortment of models, which should allow investigating a variety of questions. Several objectives concerning basic endothelial cell (EC) characteristics can adequately be studied in vitro using EC monolayer assays. Three-dimensional spheroid techniques respect the more complex cell-cell and cell-environment interplay within a 3-dimensional culture. Recent advances in molecular genetic techniques offer a wide access to the genome of EC. Using these micro array or chip methods differences between micro- and macromolecular EC as well as variations within the gene pool of different organ specific EC can be assessed. To optimize the imitation of the crucial interaction of human gliomas with host endothelial cells, immunological cells and extracellular matrix, animal models are mandatory. An essential rule is to utilize an orthotopic model, since tumor-host-interaction is organ specific. To avoid alloimmunogenic responses, it is desirable to use weak or non-immunogenic glioma grafts, which is best accomplished in a syngeneic model. However, since rat gliomas poorly resemble human glioma growth patterns, human glioma xenografting into immunocompromized animals should be considered. In vivo-monitoring techniques like videoscopy via a cranial window or magnetic resonance imaging (MRI) allow for functional studies and improve the validity of the model employed. Finally, it is essentially to recognize the limitations of each model considered and to select that model which seems to be most appropriate for the objectives to be investigated.
Collapse
Affiliation(s)
- Roland H Goldbrunner
- Department of Neurosurgery, Grosshadern Hospital, Ludwig-Maximilians, University of Munich, 81377 Munich, Germany
| | | | | |
Collapse
|
30
|
Neeman M. Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work. J Cell Biochem 2003; 39:11-7. [PMID: 12552597 DOI: 10.1002/jcb.10399] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive research over the last years led to the discovery of multiple molecular pathways and intricate regulatory network controlling the growth and regression of blood vessels in general and angiogenesis in particular. The difficulties in elucidation of the regulation of angiogenesis, stems from the inherent complexity due to participation of many cell types, under a dominant impact of physiological and environmental effects of flow, perfusion, and oxygenation. Major advances were achieved with the use of sophisticated transgenic mice models engineered so as to provide spatially and temporally controlled expression of specific factors alone or in combination. In vivo analysis of these models frequently requires the use of non-invasive imaging modalities for measurement of functional parameters of the vasculature along with dynamic molecular information. Optical methods are extensively applied for the study of angiogenesis [Brown et al., 2001] but provide very limited tissue penetration. MRI offers the advantage of being non-invasive with uniform and relatively high spatial resolution for deep tissues. Multiple MRI approaches for monitoring angiogenesis were developed over the last years, each looking at a particular step in the process. The aim of this paper is to analyze the clinical, pharmaceutical, and biological needs for imaging of angiogenesis, and to critically evaluate the strengths and weaknesses of functional and molecular imaging for monitoring angiogenesis. The inherent problem of validation of different measures of angiogenesis, and the advantages and limitations associated with application of MRI based methods, as surrogates for other measurements of angiogenesis will be discussed. The terms molecular imaging and functional imaging are frequently loosely defined with a significant overlap between the two. For the sake of this paper we will apply a narrower definition of both terms, where molecular imaging will apply to methods directed towards detection of specific biological molecules that participate directly in (regulation of) a physiological process; while functional imaging will be used to describe those methods that aim to detect the physiological response to a defined (molecular) stimulus.
Collapse
Affiliation(s)
- Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
31
|
Gross S, Gilead A, Scherz A, Neeman M, Salomon Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 2003; 9:1327-31. [PMID: 14502284 DOI: 10.1038/nm940] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Accepted: 08/02/2003] [Indexed: 11/09/2022]
Abstract
Antivascular photodynamic therapy (PDT) of tumors with palladium-bacteriopheophorbide (TOOKAD) relies on in situ photosensitization of the circulating drug by local generation of cytotoxic reactive oxygen species, which leads to rapid vascular occlusion, stasis, necrosis and tumor eradication. Intravascular production of reactive oxygen species is associated with photoconsumption of O(2) and consequent evolution of paramagnetic deoxyhemoglobin. In this study we evaluate the use of blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for real-time monitoring of PDT efficacy. Using a solid tumor model, we show that TOOKAD-PDT generates appreciable attenuation (25-40%) of the magnetic resonance signal, solely at the illuminated tumor site. This phenomenon is independent of, though augmented by, ensuing changes in blood flow. These results were validated by immunohistochemistry and intravital microscopy. The concept of photosensitized BOLD-contrast MRI may have intraoperative applications in interactive guidance and monitoring of antivascular cancer therapy, PDT treatment of macular degeneration, interventional cardiology and possibly other biomedical disciplines.
Collapse
Affiliation(s)
- Shimon Gross
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
32
|
Gilead A, Meir G, Neeman M. The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroids. Int J Cancer 2003; 108:524-31. [PMID: 14696116 DOI: 10.1002/ijc.11583] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MLS ovarian epithelial carcinoma multicellular spheroids xenografted subcutaneously in CD-1 nude mice displayed growth delay, or dormancy, of up to 52 days. In the study reported here, implanted MLS spheroids were used for testing the role of angiogenesis and vascular maturation in triggering the initiation of tumor progression. The kinetics and impact of neovascular maturation and functionality, in dormancy, and growth of MLS spheroid xenografts were studied noninvasively by BOLD contrast MRI. MR data were supported by histologic staining for biotinylated albumin as a blood pool marker and alpha-smooth muscle actin (alpha-SMA) as marker for perivascular mural cells. Although the tumor periphery showed higher levels of total and mature vasculature than normal skin, the fraction of mature out of the total vessels as detected by MRI vascular maturation index (VMI(MRI)) was significantly lower in the tumor both before and after tumor exit from dormancy. The neovasculature induced by the implanted spheroid was unstable and showed cycles of vessel growth and regression. Surprisingly, this instability was not restricted to the immature vessels, but rather included also regression of mature vessels. During dormancy, neovasculature was predominantly peripheral with no infiltration into the implanted spheroid. Infiltration of alpha-SMA positive stroma cells into the spheroid was associated with functional vascularization and tumor growth. Thus, stroma infiltration and vascular maturation are an important checkpoint linking the angiogenic switch with initiation of tumor progression.
Collapse
Affiliation(s)
- Assaf Gilead
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
33
|
Christoforidis GA, Grecula JC, Newton HB, Kangarlu A, Abduljalil AM, Schmalbrock P, Chakeres DW. Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 2002; 23:1553-6. [PMID: 12372746 PMCID: PMC7976784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
We used 8-T high-spatial-resolution gradient-echo MR imaging to directly visualize microvascularity in pathologically proved glioblastoma multiforme. Images were compared with 1.5-T high-spatial-resolution fast spin-echo T2-weighted images and digital subtraction angiograms. Preliminary data indicate that 8-T high-spatial-resolution MR imaging may enable the identification of areas of abnormal microvascularity in glioblastoma multiforme that are not visible with other routine clinical techniques.
Collapse
Affiliation(s)
- Gregory A Christoforidis
- Department of Radiology, the Ohio State University Medical Center, 168 Means Hall, 1654 Upham Drive, Columbus, OH 43221, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Marikovsky M. Thiram inhibits angiogenesis and slows the development of experimental tumours in mice. Br J Cancer 2002; 86:779-87. [PMID: 11875743 PMCID: PMC2375322 DOI: 10.1038/sj.bjc.6600078] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2001] [Revised: 11/12/2001] [Accepted: 11/13/2001] [Indexed: 11/09/2022] Open
Abstract
Thiram-tetramethylthiuram disulphide--a chelator of heavy metals, inhibited DNA synthesis and induced apoptosis in cultured bovine capillary endothelial cells. Bovine capillary endothelial cells were 10-60-fold more sensitive to thiram than other cell types. These effects were prevented by addition of antioxidants, indicating involvement of reactive oxygen species. Exogenously added Cu2+ impeded specifically and almost completely the inhibitory effect of thiram for bovine capillary endothelial cells. Moreover, thiram had markedly inhibited human recombinant Cu/Zn superoxide dismutase enzymatic activity (85%) in vitro. Moreover, PC12-SOD cells with elevated Cu/Zn superoxide dismutase were less sensitive to thiram treatment than control cells. These data indicate that the effects of thiram are mediated by inhibition of Cu/Zn superoxide dismutase activity. Oral administration of thiram (13-30 microg mouse(-1)), inhibited angiogenesis in CD1 nude mice. Tumour development is known to largely depend on angiogenesis. We found that oral administration of thiram (30 microg) to mice caused significant inhibition of C6 glioma tumour development (60%) and marked reduction (by 3-5-fold) in metastatic growth of Lewis lung carcinoma. The data establish thiram as a potential inhibitor of angiogenesis and raise the possibility for its use as therapy in pathologies in which neovascularisation is involved, including neoplasia.
Collapse
Affiliation(s)
- M Marikovsky
- Department of Animal Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M. Glutamate release promotes growth of malignant gliomas. Nat Med 2001; 7:1010-5. [PMID: 11533703 DOI: 10.1038/nm0901-1010] [Citation(s) in RCA: 417] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative diseases. Although recent data show that cultured glioma cells secrete glutamate, the growth potential of brain tumors has not yet been linked to an excitotoxic mechanism. Using bioluminescence detection of glutamate release from freshly prepared brain slices, we show that implanted glioma cells continue to secrete glutamate. Moreover, gliomas with high glutamate release have a distinct growth advantage in host brain that is not present in vitro. Treatment with the NMDA receptor antagonists MK801 or memantine slowed the growth of glutamate-secreting tumors in situ, suggesting that activation of NMDA receptors facilitates tumor expansion. These findings support a new approach for therapy of brain tumors, based upon antagonizing glutamate secretion or its target receptors.
Collapse
Affiliation(s)
- T Takano
- Department of Cell Biology, Anatomy and Pathology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | |
Collapse
|
36
|
Neeman M, Dafni H, Bukhari O, Braun RD, Dewhirst MW. In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy. Magn Reson Med 2001; 45:887-98. [PMID: 11323816 DOI: 10.1002/mrm.1118] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bold contrast MRI was applied for mapping vascular maturation in tumor- and wound-induced skin angiogenesis using the response of mature vessels to hypercapnia (inhalation of air vs. air 5% CO(2)) and the response of all vessels to hyperoxia (air 5% CO(2) vs. oxygen 5% CO(2) (carbogen)). MRI signal enhancement with hypercapnia was reduced in centered vs. linear phase encoding, suggesting increased blood flow. However, intravital microscopy demonstrated constriction of arterioles and reduced flux and density of red blood cells in mature capillaries with hypercapnia, with no change in the diameter of wound-induced neovasculature. The discrepancy in flow between MRI and intravital microscopy is consistent with increased plasma flow and reduced hematocrit. Hyperoxia resulted in increased blood oxygenation and constriction of all vessels. These results provide a hemodynamic explanation for the selective registration of MRI response to hypercapnia with mature vessels and the response to hyperoxia with total vascular function.
Collapse
Affiliation(s)
- M Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
37
|
Bhujwalla ZM, Artemov D, Natarajan K, Ackerstaff E, Solaiyappan M. Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia 2001; 3:143-53. [PMID: 11420750 PMCID: PMC1505415 DOI: 10.1038/sj.neo.7900129] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Accepted: 12/01/2000] [Indexed: 11/09/2022] Open
Abstract
Several studies have linked vascular density, identified in histologic sections, to "metastatic risk." Functional information of the vasculature, not readily available from histologic sections, can be obtained with contrast-enhanced MRI to exploit for therapy or metastasis prevention. Our aims were to determine if human breast and prostate cancer xenografts preselected for differences in invasive and metastatic characteristics established correspondingly different vascular volume and permeability, quantified here with noninvasive MRI of the intravascular contrast agent albumin-GdDTPA. Tumor vascular volume and permeability of human breast and prostate cancer xenografts were characterized using MRI. Parallel studies confirmed the invasive behavior of these cell lines. Vascular endothelial growth factor (VEGF) expression in the cell lines was measured using ELISA and Western blots. Metastasis to the lungs was evaluated with spontaneous as well as experimental assay. Metastatic tumors formed vasculature with significantly higher permeability or vascular volume (P<.05, two-sided unpaired t test). The permeability profile matched VEGF expression. Within tumors, regions of high vascular volume usually exhibited low permeability whereas regions of low vascular volume exhibited high permeability. We observed that although invasion was necessary, without adequate vascularization it was not sufficient for metastasis to occur.
Collapse
Affiliation(s)
- Z M Bhujwalla
- MR Oncology Section, Division of MR Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Recent research using multicellular tumor spheroids has resulted in new insights in the regulation of invasion and metastasis, angiogenesis and cell cycle kinetics. The onset and expansion of central necrosis in tumor spheroids has been characterized to be a complex interaction of several mechanisms; in a number of cases, necrosis is not a consequence of hypoxia or anoxia, but emerges as secondary necrosis following an accumulation of apoptosis in spheroids. Recent therapeutically oriented studies have been directed towards novel hypoxic markers, targeted therapy, multicellular-mediated drug resistance, and heavy ion irradiation of spheroids. Research efforts should be enhanced mainly in the fields of tumor tissue modeling by heterotypic three-dimensional (3D) cultures and of apoptotic versus necrotic cell death. Based on the fundamental differences between monolayer and 3D cultures, spheroids should become mandatory test systems in therapeutic screening programs.
Collapse
Affiliation(s)
- W Mueller-Klieser
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
39
|
Abstract
In the last two decades, much attention has been focussed on mechanisms of glioma vascularization including the investigation of growth factors and receptors involved. Recently, these efforts resulted in various approaches for antiangiogenic treatment of experimental brain tumors. These basic science and preclinical trials need an assortment of models, which should allow investigating a variety of questions. Several objectives concerning basic endothelial cell (EC) characteristics can adequately be studied in vitro using EC monolayer assays. Three-dimensional spheroid techniques respect the more complex cell-cell and cell-environment interplay within a three-dimensional culture. To optimize the imitation of the crucial interaction of human gliomas with host endothelial cells, immunological cells and extracellular matrix, animal models are mandatory. An essential rule is to utilize an orthotopic model, since tumor-host interaction is organ specific. To avoid alloimmunogenic responses, it is desirable to use weakly or not immunogenic glioma grafts, what is best accomplished in a syngeneic model. However, since rat gliomas poorly resemble human glioma growth patterns, human glioma xenografting into immunocompromized animals should be considered. In vivo monitoring techniques like videoscopy via a cranial window or magnetic resonance imaging (MRI) allow for functional studies and improve the validity of the model employed. Finally, it is essentially to recognize the limitations of each model considered and to select that model, which seems to be most appropriate for the objectives to be investigated.
Collapse
Affiliation(s)
- R H Goldbrunner
- Department of Neurosurgery, University of Wuerzburg, Germany
| | | | | | | |
Collapse
|
40
|
|
41
|
Gillies RJ, Bhujwalla ZM, Evelhoch J, Garwood M, Neeman M, Robinson SP, Sotak CH, Van Der Sanden B. Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2000; 2:139-51. [PMID: 10933073 PMCID: PMC1531870 DOI: 10.1038/sj.neo.7900076] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1999] [Accepted: 10/13/1999] [Indexed: 01/14/2023]
Abstract
A solid tumor presents a unique challenge as a system in which the dynamics of the relationship between vascularization, the physiological environment and metabolism are continually changing with growth and following treatment. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) studies have demonstrated quantifiable linkages between the physiological environment, angiogenesis, vascularization and metabolism of tumors. The dynamics between these parameters continually change with tumor aggressiveness, tumor growth and during therapy and each of these can be monitored longitudinally, quantitatively and non-invasively with MRI and MRS. An important aspect of MRI and MRS studies is that techniques and findings are easily translated between systems. Hence, pre-clinical studies using cultured cells or experimental animals have a high connectivity to potential clinical utility. In the following review, leaders in the field of MR studies of basic tumor physiology using pre-clinical models have contributed individual sections according to their expertise and outlook. The following review is a cogent and timely overview of the current capabilities and state-of-the-art of MRI and MRS as applied to experimental cancers. A companion review deals with the application of MR methods to anticancer therapy.
Collapse
Affiliation(s)
- R J Gillies
- Department of Biochemistry, Arizona Cancer Center, University of Arizona, Tucson 85724-5024, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M. Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia 1999; 1:321-9. [PMID: 10935487 PMCID: PMC1508102 DOI: 10.1038/sj.neo.7900043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Halofuginone, an inhibitor of collagen alpha1(I) gene expression was used for the treatment of subcutaneously implanted C6 glioma tumors. Halofuginone had no effect on the growth of C6 glioma spheroids in vitro, and these spheroids showed no collagen alpha1(I) expression and no collagen synthesis. However, a significant attenuation of tumor growth was observed in vivo, for spheroids implanted in CD-1 nude mice which were treated by oral or intraperitoneal (4 microg every 48 hours) administration of halofuginone. In these mice, treatment was associated with a dose-dependent reduction in collagen alpha1(I) expression and dose- and time-dependent inhibition of angiogenesis, as measured by MRI. Moreover, halofuginone treatment was associated with improved re-epithelialization of the chronic wounds that are associated with this experimental model. Oral administration of halofuginone was effective also in intervention in tumor growth, and here, too, the treatment was associated with reduced angiogenic activity and vessel regression. These results demonstrate the important role of collagen type I in tumor angiogenesis and tumor growth and implicate its role in chronic wounds. Inhibition of the expression of collagen type I provides an attractive new target for cancer therapy.
Collapse
Affiliation(s)
- R Abramovitch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
43
|
Gilead A, Neeman M. Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice. Neoplasia 1999; 1:226-30. [PMID: 10935477 PMCID: PMC1508074 DOI: 10.1038/sj.neo.7900032] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The goal of this study was to monitor the vascular bed during the lag phase in growth of implanted spheroids as a model of tumor dormancy. Vascular development and tumor growth were followed up by magnetic resonance imaging in a model system of MLS ovarian carcinoma spheroids implanted subcutaneously in female nude mice. Apparent vessel density in a 1-mm rim surrounding the spheroid was evaluated by gradient echo imaging as a measure of the angiogenic potential of the tumor. Vascular functionality and maturation were assessed by signal intensity changes in response to hyperoxia (elevated oxygen) and hypercapnia (elevated carbon dioxide), respectively. Tumor growth was delayed by 12 to 57 days after implantation. During this long period in which tumor volume did not change, up to 6 cycles of vascular development and regression were observed. We propose here that dynamic remodeling of the vascular bed may precede exit of tumors from dormancy. The sustained oscillations in the angiogenic response to the implanted spheroid are consistent with hypoxic regulation of vascular endothelial growth factor (VEGF), combined with the role of VEGF as an essential survival factor for newly formed blood vessels. Vascular maturation, manifested by physiological vasodilatory response to carbon dioxide, may be important for conferring vascular stability and exit from dormancy.
Collapse
Affiliation(s)
- A Gilead
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
44
|
Abstract
The goal of this work was to determine the molecular basis for the induction of tumour vascularization and progression by injury. Magnetic resonance imaging (MRI) studies demonstrated that administration of wound fluid derived from cutaneous injuries in pigs reduced the lag for vascularization and initiation of growth of C6 glioma spheroids, implanted in nude mice, and accelerated tumour doubling time. The former effect can be attributed to the angiogenic capacity of wound fluid as detected in vivo by MRI, and in vitro in promoting endothelial cell proliferation. The latter effect, namely the induced rate of tumour growth, is consistent with the angiogenic activity of wound fluid as well as with the finding that wound fluid was directly mitogenic to the tumour cells, and accelerated growth of C6 glioma in spheroid culture. Of the multiple growth factors present in wound fluid, two key factors, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) and platelet-derived growth factor (PDGF), were identified as the dominant mitogens for C6 glioma, and inhibition of their activity using specific neutralizing antibodies suppressed the mitogenic effect of wound fluid on DNA synthesis in C6 glioma. This study suggests that the stimulatory effect of injury on tumour progression can possibly be attenuated by therapeutic targeting directed against a limited number of specific growth factors.
Collapse
Affiliation(s)
- R Abramovitch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|