1
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC. Nat Chem Biol 2024:10.1038/s41589-024-01758-3. [PMID: 39394268 DOI: 10.1038/s41589-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
The protein kinase C (PKC) family of serine and threonine kinases, consisting of three distinctly regulated subfamilies, has been established as critical for various cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs, is unclear. Here we present a sensitive excitation ratiometric C kinase activity reporter (ExRai-CKAR2) that enables the detection of minute changes (equivalent to 0.2% of maximum stimulation) in subcellular PKC activity. Using ExRai-CKAR2 with an enhanced diacylglycerol (DAG) biosensor, we uncover that G-protein-coupled receptor stimulation triggers sustained PKC activity at the endoplasmic reticulum and lysosomes, differentially mediated by Ca2+-sensitive conventional PKC and DAG-sensitive novel PKC, respectively. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or partitioning defective complexes, further enabled us to detect previously inaccessible endogenous atypical PKC activity in three-dimensional organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
3
|
Singh SK, Weigel C, Brown RDR, Green CD, Tuck C, Salvemini D, Spiegel S. FTY720/Fingolimod mitigates paclitaxel-induced Sparcl1-driven neuropathic pain and breast cancer progression. FASEB J 2024; 38:e23872. [PMID: 39126272 DOI: 10.1096/fj.202401277r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Paclitaxel is among the most active chemotherapy drugs for the aggressive triple negative breast cancer (TNBC). Unfortunately, it often induces painful peripheral neuropathy (CIPN), a major debilitating side effect. Here we demonstrate that in naive and breast tumor-bearing immunocompetent mice, a clinically relevant dose of FTY720/Fingolimod that targets sphingosine-1-phosphate receptor 1 (S1PR1), alleviated paclitaxel-induced neuropathic pain. FTY720 also significantly attenuated paclitaxel-stimulated glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and expression of the astrocyte-secreted synaptogenic protein Sparcl1/Hevin, a key regulator of synapse formation. Notably, the formation of excitatory synapses containing VGluT2 in the spinal cord dorsal horn induced by paclitaxel was also inhibited by FTY720 treatment, supporting the involvement of astrocytes and Sparcl1 in CIPN. Furthermore, in this TNBC mouse model that mimics human breast cancer, FTY720 administration also enhanced the anti-tumor effects of paclitaxel, leading to reduced tumor progression and lung metastasis. Taken together, our findings suggest that targeting the S1P/S1PR1 axis with FTY720 is a multipronged approach that holds promise as a therapeutic strategy for alleviating both CIPN and enhancing the efficacy of chemotherapy in TNBC treatment.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Connor Tuck
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Zhu Y, Zhao Y, Ning Z, Deng Y, Li B, Sun Y, Meng Z. Metabolic self-feeding in HBV-associated hepatocarcinoma centered on feedback between circulation lipids and the cellular MAPK/mTOR axis. Cell Commun Signal 2024; 22:280. [PMID: 38773448 PMCID: PMC11106961 DOI: 10.1186/s12964-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Hepatitis B Virus (HBV) is widely recognized as a "metabolic virus" that disrupts hepatic metabolic homeostasis, rendering it one of the foremost risk factors for hepatocellular carcinoma (HCC). Except for antiviral therapy, the fundamental principles underlying HBV- and HBV+ HCC have remained unchanged, limiting HCC treatment options. OBJECTIVES In this study, we aim to identify the distinctive metabolic profile of HBV-associated HCC, with the promise of identifying novel metabolic targets that confer survival advantages and ultimately impede cancer progression. METHODS We employed a comprehensive methodology to evaluate metabolic alterations systematically. Initially, we analyzed transcriptomic and proteomic data obtained from a public database, subsequently validating these findings within our test cohort at both the proteomic and transcriptomic levels. Additionally, we conducted a comprehensive analysis of tissue metabolomics profiles, lipidomics, and the activity of the MAPK and AKT signaling pathway to corroborate the abovementioned changes. RESULTS Our multi-omics approach revealed distinct metabolic dysfunctions associated with HBV-associated HCC. Specifically, we observed upregulated steroid hormone biosynthesis, primary bile acid metabolism, and sphingolipid metabolism in HBV-associated HCC patients' serum. Notably, metabolites involved in primary bile acid and sphingolipids can activate the MAPK/mTOR pathway. Tissue metabolomics and lipidomics analyses further validated the serum metabolic alterations, particularly alterations in lipid composition and accumulation of unsaturated fatty acids. CONCLUSION Our findings emphasize the pivotal role of HBV in HCC metabolism, elucidating the activation of a unique MAPK/mTOR signaling axis by primary bile acids and sphingolipids. Moreover, the hyperactive MAPK/mTOR signaling axis transduction leads to significant reprogramming in lipid metabolism within HCC cells, further triggering the activation of the MAPK/mTOR pathway in turn, thereby establishing a self-feeding circle driven by primary bile acids and sphingolipids.
Collapse
Affiliation(s)
- Ying Zhu
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yingke Zhao
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yong Deng
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Bing Li
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Yun Sun
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China.
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| | - Zhiqiang Meng
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
5
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive Fluorescent Biosensor Reveals Differential Subcellular Regulation of PKC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587373. [PMID: 38586003 PMCID: PMC10996667 DOI: 10.1101/2024.03.29.587373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases, which consist of three distinctly regulated subfamilies, have long been established as critical for a variety of cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs such as the ER, lysosome, and Par signaling complexes, is unclear. Here, we present a sensitive Excitation Ratiometric (ExRai) C Kinase Activity Reporter (ExRai-CKAR2) that enables the detection of minute changes in subcellular PKC activity. Using ExRai-CKAR2 in conjunction with an enhanced diacylglycerol (DAG) biosensor capable of detecting intracellular DAG dynamics, we uncover the differential regulation of PKC isoforms at distinct subcellular locations. We find that G-protein coupled receptor (GPCR) stimulation triggers sustained PKC activity at the ER and lysosomes, primarily mediated by Ca2+ sensitive conventional PKC (cPKC) and novel PKC (nPKC), respectively, with nPKC showing high basal activity due to elevated basal DAG levels on lysosome membranes. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or Par-complexes, further enabled us to detect previously inaccessible endogenous atypical PKC (aPKC) activity in 3D organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
8
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
9
|
Das K, Keshava S, Mukherjee T, Wang J, Magisetty J, Kolesnick R, Pendurthi UR, Rao LVM. Factor VIIa releases phosphatidylserine-enriched extracellular vesicles from endothelial cells by activating acid sphingomyelinase. J Thromb Haemost 2023; 21:3414-3431. [PMID: 37875382 DOI: 10.1016/j.jtha.2023.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Our recent studies showed that activated factor (F) VII (FVIIa) releases extracellular vesicles (EVs) from the endothelium. FVIIa-released EVs were found to be enriched with phosphatidylserine (PS) and contribute to the hemostatic effect of FVIIa in thrombocytopenia and hemophilia. OBJECTIVE To investigate mechanisms by which FVIIa induces EV biogenesis and enriches EVs with PS. METHODS FVIIa activation of acid sphingomyelinase (aSMase) was evaluated by its translocation to the cell surface. The role of aSMase in the biogenesis of FVIIa-induced EVs and their enrichment with PS was investigated using specific siRNAs and inhibitors of aSMase and its downstream metabolites. Wild-type and aSMase-/- mice were injected with a control vehicle or FVIIa. EVs released into circulation were quantified by nanoparticle tracking analysis. EVs hemostatic potential was assessed in a murine thrombocytopenia model. RESULTS FVIIa activation of aSMase is responsible for both the externalization of PS and the release of EVs in endothelial cells. FVIIa-induced aSMase activation led to ceramide generation and de novo expression of transmembrane protein 16F. Inhibitors of ceramidases, sphingosine kinase, or sphingosine-1-phosphate receptor modulator blocked FVIIa-induced expression of transmembrane protein 16F and PS externalization without interfering with FVIIa release of EVs. In vivo, FVIIa release of EVs was markedly impaired in aSMase-/- mice compared with wild-type mice. Administration of a low dose of FVIIa, sufficient to induce EVs release, corrected bleeding associated with thrombocytopenia in wild-type mice but not in aSMase-/- mice. CONCLUSION Our study identifies a novel mechanism by which FVIIa induces PS externalization and releases PS-enriched EVs.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jue Wang
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, UT Tyler School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
10
|
Kurano M, Uranbileg B, Yatomi Y. Apolipoprotein M bound sphingosine 1-phosphate suppresses NETosis through activating S1P1 and S1P4. Biomed Pharmacother 2023; 166:115400. [PMID: 37657263 DOI: 10.1016/j.biopha.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The pleiotropic effects of high-density lipoprotein (HDL), including its protective properties against sepsis, are attributed to the sphingosine 1-phosphate and apolipoprotein M (ApoM) that are carried on the lipoproteins. In this study, we attempted to elucidate the possible mechanisms underlying the sepsis coagulopathic state by considering the modulation of NETosis. Our results revealed that in a lipopolysaccharide-induced sepsis mouse model, the levels of NETosis markers, such as plasma DNA and histone, were elevated in ApoM-knockout (KO) mice and attenuated in ApoM-overexpressing mice. In ApoM-KO mice, the survival rate decreased and the occurrence rates of coagulopathy and organ injury increased following the administration of histone. Treatment with a conditioned medium of ApoM-overexpressing cells attenuated the observed NETosis in HL-60S cells that differentiated into neutrophils and were inhibited through the suppression of S1P1 or S1P4. The attenuation of PKCδ and PKCα/β by S1P1 and S1P4 activation may also be involved. In ApoM-overexpressing mice, coagulopathy and organ injuries were attenuated following an injection of histone; these effects were partially inhibited by S1P1, 3, S1P4, or S1P1 antagonists. Furthermore, the exogenous administration of ApoM protected ApoM-KO mice that were challenged with histone from developing NETosis. In conclusion, the ApoM/S1P axis protects against NETosis through the attenuation of PKC activation by S1P1 and S1P4. The development of drugs targeting the ApoM/S1P axis may be beneficial for the treatment of pathological conditions involving uncontrolled NETosis, such as sepsis.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
12
|
Kiyozuka K, Zhao X, Konishi A, Minamishima YA, Obinata H. Apolipoprotein M supports S1P production and conservation and mediates prolonged Akt activation via S1PR1 and S1PR3. J Biochem 2023; 174:253-266. [PMID: 37098187 DOI: 10.1093/jb/mvad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is one of the lipid mediators involved in diverse physiological functions. S1P circulates in blood and lymph bound to carrier proteins. Three S1P carrier proteins have been reported, albumin, apolipoprotein M (ApoM) and apolipoprotein A4 (ApoA4). The carrier-bound S1P exerts its functions via specific S1P receptors (S1PR1-5) on target cells. Previous studies showed several differences in physiological functions between albumin-bound S1P and ApoM-bound S1P. However, molecular mechanisms underlying the carrier-dependent differences have not been clarified. In addition, ApoA4 is a recently identified S1P carrier protein, and its functional differences from albumin and ApoM have not been addressed. Here, we compared the three carrier proteins in the processes of S1P degradation, release from S1P-producing cells and receptor activation. ApoM retained S1P more stable than albumin and ApoA4 in the cell culture medium when compared in the equimolar amounts. ApoM facilitated theS1P release from endothelial cells most efficiently. Furthermore, ApoM-bound S1P showed a tendency to induce prolonged activation of Akt via S1PR1 and S1PR3. These results suggest that the carrier-dependent functional differences of S1P are partly ascribed to the differences in the S1P stability, S1P-releasing efficiency and signaling duration.
Collapse
Key Words
- Apolipoprotein A4
- Apolipoprotein M
- LC–MS/MS
- Sphingosine 1-phosphate.Abbreviations: ApoA4, Apolipoprotein A4; ApoM, Apolipoprotein M; CHO, Chinese hamster ovary; ERK, Extracellular signal-regulated kinase; LC–MS/MS, Liquid chromatography–tandem mass spectrometry; LPP, Lipid phosphate phosphatase; Mfsd2b, Multiple facilitator superfamily domain containing 2B; PBS, Phosphate-buffered saline; S1P, Sphingosine 1-phosphate; S1PR1, Sphingosine 1-phosphate receptor 1; S1PR3, Sphingosine 1-phosphate receptor 3; SphK, Sphingosine kinase; Spns2, Spinster homolog 2; TBS-T, Tris-buffed saline containing 0.1% Tween20
Collapse
Affiliation(s)
- Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoji Andrew Minamishima
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
13
|
Zhao X, Kiyozuka K, Konishi A, Kawabata-Iwakawa R, Minamishima YA, Obinata H. Actin-binding protein Filamin B regulates the cell-surface retention of endothelial sphingosine 1-phosphate receptor 1. J Biol Chem 2023:104851. [PMID: 37220855 PMCID: PMC10300261 DOI: 10.1016/j.jbc.2023.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell-specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand-dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed β2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | | | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
14
|
France NP, Rubino C, Safir MC, Maurer M, Duong T, Singamsetty D, Abd-Elaziz K, Chou T, Sankaranarayanan S, Ettema M, Cosford R, Dogterom P, Liu E, Barlow C. A Phase 1 First-in-Human Single-Ascending-Dose Trial With ESB1609, a Selective Agonist to the Sphingosine-1-Phosphate Receptor 5. Clin Pharmacol Drug Dev 2023. [PMID: 37191222 DOI: 10.1002/cpdd.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 05/17/2023]
Abstract
ESB1609 is a small-molecule sphingosine-1-phosphate-5 receptor-selective agonist designed to restore lipid homeostasis by promoting cytosolic egress of sphingosine-1-phosphate to reduce abnormal levels of ceramide and cholesterol in disease. A phase 1 study was conducted in healthy volunteers to determine the safety, tolerability, and pharmacokinetics of ESB1609. Following single oral doses, ESB1609 demonstrated linear pharmacokinetics in plasma and cerebrospinal fluid (CSF) for formulations containing sodium laurel sulfate. Plasma and CSF median time to maximum drug concentration (tmax ) were reached by 4-5 hours and 6-10 hours, respectively. The delay in achieving tmax in CSF relative to plasma, likely due to the high protein binding of ESB1609, was also observed in 2 rat studies. Continuous CSF collection via indwelling catheters confirmed that a highly protein-bound compound is measurable and established the kinetics of ESB1609 in human CSF. Mean plasma terminal elimination half-lives ranged from 20.2 to 26.8 hours. The effect of either a high-fat or standard meal increased maximum plasma concentration and area under the concentration-time curve from time 0 to infinity compared to the fasted state by 2.42-4.34-fold higher, but tmax and half-life remained the same irrespective of fed state. ESB1609 crosses the blood-brain barrier with CSF:plasma ratios ranging between 0.04% and 0.07% across dose levels. ESB1609 demonstrated a favorable safety and tolerability profile at exposures expected to be efficacious.
Collapse
Affiliation(s)
- Nicholas P France
- ESCAPE Bio, Inc. 4000 Shoreline Court, South San Francisco, California, USA
| | | | - M Courtney Safir
- Institute for Clinical Pharmacodynamics, Schenectady, New York, USA
| | - Mari Maurer
- ESCAPE Bio, Inc. 4000 Shoreline Court, South San Francisco, California, USA
| | - Tram Duong
- ESCAPE Bio, Inc. 4000 Shoreline Court, South San Francisco, California, USA
| | | | | | | | | | | | | | | | - Enchi Liu
- ESCAPE Bio, Inc. 4000 Shoreline Court, South San Francisco, California, USA
| | - Carrolee Barlow
- ESCAPE Bio, Inc. 4000 Shoreline Court, South San Francisco, California, USA
| |
Collapse
|
15
|
Frost K, Naylor AJ, McGettrick HM. The Ying and Yang of Sphingosine-1-Phosphate Signalling within the Bone. Int J Mol Sci 2023; 24:ijms24086935. [PMID: 37108099 PMCID: PMC10139073 DOI: 10.3390/ijms24086935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bone remodelling is a highly active and dynamic process that involves the tight regulation of osteoblasts, osteoclasts, and their progenitors to allow for a balance of bone resorption and formation to be maintained. Ageing and inflammation are risk factors for the dysregulation of bone remodelling. Once the balance between bone formation and resorption is lost, bone mass becomes compromised, resulting in disorders such as osteoporosis and Paget's disease. Key molecules in the sphingosine-1-phosphate signalling pathway have been identified for their role in regulating bone remodelling, in addition to its more recognised role in inflammatory responses. This review discusses the accumulating evidence for the different, and, in certain circumstances, opposing, roles of S1P in bone homeostasis and disease, including osteoporosis, Paget's disease, and inflammatory bone loss. Specifically, we describe the current, often conflicting, evidence surrounding S1P function in osteoblasts, osteoclasts, and their precursors in health and disease, concluding that S1P may be an effective biomarker of bone disease and also an attractive therapeutic target for disease.
Collapse
Affiliation(s)
- Kathryn Frost
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Kolko M, Mouhammad ZA, Cvenkel B. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacol Ther 2023; 245:108412. [PMID: 37037408 DOI: 10.1016/j.pharmthera.2023.108412] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Glaucoma is characterized by a continuous loss of retinal ganglion cells. The cause of glaucoma is associated with an increase in intraocular pressure (IOP), but the underlying pathophysiology is diverse and, in most cases, unknown. There is an indisputable unmet need to identify new pathways involved in glaucoma pathogenesis. Increasing evidence suggests that bioactive lipids may be critical in the development and progression of glaucoma. Preclinical and clinical bioactive lipid targets exist and are being developed. In this review, we aim to shed light on the potential of bioactive lipids for the prevention, diagnosis, prognosis, and treatment of glaucoma by asking the question "is fat the future for saving sight".
Collapse
Affiliation(s)
- Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
18
|
Ceramide and Sphingosine-1-Phosphate in Neurodegenerative Disorders and Their Potential Involvement in Therapy. Int J Mol Sci 2022; 23:ijms23147806. [PMID: 35887154 PMCID: PMC9324343 DOI: 10.3390/ijms23147806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders (ND) are progressive diseases of the nervous system, often without resolutive therapy. They are characterized by a progressive impairment and loss of specific brain regions and neuronal populations. Cellular and animal model studies have identified several molecular mechanisms that play an important role in the pathogenesis of ND. Among them are alterations of lipids, in particular sphingolipids, that play a crucial role in neurodegeneration. Overall, during ND, ceramide-dependent pro-apoptotic signalling is promoted, whereas levels of the neuroprotective spingosine-1-phosphate are reduced. Moreover, ND are characterized by alterations of the metabolism of complex sphingolipids. The finding that altered sphingolipid metabolism has a role in ND suggests that its modulation might provide a useful strategy to identify targets for possible therapies. In this review, based on the current literature, we will discuss how bioactive sphingolipids (spingosine-1-phosphate and ceramide) are involved in some ND (Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis) and their possible involvement in therapies.
Collapse
|
19
|
Fritzemeier R, Foster D, Peralta A, Payette M, Kharel Y, Huang T, Lynch KR, Santos WL. Discovery of In Vivo Active Sphingosine-1-phosphate Transporter (Spns2) Inhibitors. J Med Chem 2022; 65:7656-7681. [PMID: 35609189 PMCID: PMC9733493 DOI: 10.1021/acs.jmedchem.1c02171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with five G-protein-coupled receptors (S1P1-5) to regulate cellular signaling pathways. S1P export is facilitated by Mfsd2b and spinster homologue 2 (Spns2). While mouse genetic studies suggest that Spns2 functions to maintain lymph S1P, Spns2 inhibitors are necessary to understand its biology and to learn whether Spns2 is a viable drug target. Herein, we report a structure-activity relationship study that identified the first Spns2 inhibitor 16d (SLF1081851). In vitro studies in HeLa cells demonstrated that 16d inhibited S1P release with an IC50 of 1.93 μM. Administration of 16d to mice and rats drove significant decreases in circulating lymphocyte counts and plasma S1P concentrations, recapitulating the phenotype observed in mice made deficient in Spns2. Thus, 16d has the potential for development and use as a probe to investigate Spns2 biology and to determine the potential of Spns2 as a drug target.
Collapse
Affiliation(s)
- Russell Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Daniel Foster
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ashley Peralta
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Michael Payette
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
20
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
21
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
22
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Derkachev IA, Ryabov VV, Boshchenko AA, Prasad NR, Sufianova GZ, Khlestkina MS, Gareev I. Pharmacological Approaches to Limit Ischemic and Reperfusion Injuries of the Heart. Analysis of Experimental and Clinical Data on P2Y 12 Receptor Antagonists. Korean Circ J 2022; 52:737-754. [PMID: 36217596 PMCID: PMC9551227 DOI: 10.4070/kcj.2022.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
High mortality among people with acute myocardial infarction is one of the most urgent problems of modern cardiology. And in recent years, much attention has been paid to the search for pharmacological approaches to prevent heart damage. In this review, we tried to analyze data on the effect of P2Y12 receptor antagonists on the ischemia/reperfusion tolerance of the heart. Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5–7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart’s tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Ivan A. Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Vyacheslav V. Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | |
Collapse
|
23
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
24
|
Qi T, Li L, Weidong T. The Role of Sphingolipid Metabolism in Bone Remodeling. Front Cell Dev Biol 2021; 9:752540. [PMID: 34912800 PMCID: PMC8666436 DOI: 10.3389/fcell.2021.752540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging studies of bioactive lipids have made many exciting discoveries in recent years. Sphingolipids and their metabolites perform a wide variety of cellular functions beyond energy metabolism. Emerging evidence based on genetically manipulated mouse models and molecular biology allows us to obtain new insights into the role sphingolipid played on skeletal remodeling. This review summarizes studies or understandings of the crosstalk between sphingomyelin, ceramide, and sphingosine-1-phosphate (S1P) of sphingolipids family and the cells, especially osteoblasts and osteoclasts of the bone through which bone is remodeled during life constantly. This review also shows agonists and antagonists of S1P as possible therapeutic options and opportunities on bone diseases.
Collapse
Affiliation(s)
- Tang Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tian Weidong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
26
|
Dynamic characterization of intestinal metaplasia in the gastric corpus mucosa of Atp4a-deficient mice. Biosci Rep 2021; 40:221778. [PMID: 31904088 PMCID: PMC7040465 DOI: 10.1042/bsr20181881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Parietal cells of the gastric mucosa contain a complex and extensive secretory membrane system that harbors gastric H+, K+-adenosine triphosphatase (ATPase), the enzyme primarily responsible for gastric lumen acidification. Here, we describe the characterization of mice deficient in the H+, K+-ATPase α subunit (Atp4a−/−) to determine the role of this protein in the biosynthesis of this membrane system and the biology of the gastric mucosa. Atp4a−/− mice were produced by gene targeting. Wild-type (WT) and Atp4a−/− mice, paired for age, were examined at 10, 12, 14 and 16 weeks for histopathology, and the expression of mucin 2 (MUC2), α-methylacyl-CoA racemase (AMACR), Ki-67 and p53 proteins was analyzed by immunohistochemistry. For further information, phosphoinositide 3-kinase (PI3K), phosphorylated-protein kinase B (p-AKT), mechanistic target of rapamycin (mTOR), hypoxia-inducible factor 1α (HIF-1α), lactate dehydrogenase A (LDHA) and sirtuin 6 (SIRT6) were detected by Western blotting. Compared with the WT mice, hypochlorhydric Atp4a−/− mice developed parietal cell atrophy and significant antral inflammation (lymphocyte infiltration) and intestinal metaplasia (IM) with elevated MUC2 expression. Areas of dysplasia in the Atp4a−/− mouse stomach showed increased AMACR and Ki-67 expression. Consistent with elevated antral proliferation, tissue isolated from Atp4a−/− mice showed elevated p53 expression. Next, we examined the mechanism by which the deficiency of the H+, K+-ATPase α subunit has an effect on the gastric mucosa. We found that the expression of phosphorylated-PI3K, p-AKT, phosphorylated-mTOR, HIF-1α, LDHA and SIRT6 was significantly higher in tissue from the Atp4a−/− mice compared with the WT mice (P<0.05). The H+, K+-ATPase α subunit is required for acid-secretory activity of parietal cells in vivo, the normal development and cellular homeostasis of the gastric mucosa, and attainment of the normal structure of the secretory membranes. Chronic achlorhydria and hypergastrinemia in aged Atp4a−/− mice produced progressive hyperplasia and mucolytic and IM, and activated the Warburg effect via PI3K/AKT/mTOR signaling.
Collapse
|
27
|
The Phenoxyphenol Compound diTFPP Mediates Exogenous C 2-Ceramide Metabolism, Inducing Cell Apoptosis Accompanied by ROS Formation and Autophagy in Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2021; 10:antiox10030394. [PMID: 33807856 PMCID: PMC7998835 DOI: 10.3390/antiox10030394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe disease that accounts for 80% of liver cancers. Chemotherapy is the primary therapeutic strategy for patients who cannot be treated with surgery or who have late-stage HCC. C2-ceramide is an effective reagent that has been found to inhibit the growth of many cancer types. The metabolism of C2-ceramide plays a vital role in the regulation of cell death/cell survival. The phenoxyphenol compound 4-{2,3,5,6-tetrafluoro-4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy)phenyl]phenoxy}phenol (diTFPP) was found to have a synergistic effect with C2-ceramide, resulting in considerable cell death in the HA22T HCC cell line. diTFPP/C2-ceramide cotreatment induced a two- to threefold increase in cell death compared to that with C2-ceramide alone and induced pyknosis. Annexin V/7-aminoactinomycin D (7AAD) double staining and Western blotting indicated that apoptosis was involved in diTFPP/C2-ceramide cotreatment-mediated cell death. We next analyzed transcriptome alterations in diTFPP/C2-ceramide-cotreated HA22T cells with next-generation sequencing (NGS). The data indicated that diTFPP treatment disrupted sphingolipid metabolism, inhibited cell cycle-associated gene expression, and induced autophagy and reactive oxygen species (ROS)-responsive changes in gene expression. Additionally, we assessed the activation of autophagy with acridine orange (AO) staining and observed alterations in the expression of the autophagic proteins LC3B-II and Beclin-1, which indicated autophagy activation after diTFPP/C2-ceramide cotreatment. Elevated levels of ROS were also reported in diTFPP/C2-ceramide-treated cells, and the expression of the ROS-associated proteins SOD1, SOD2, and catalase was upregulated after diTFPP/C2-ceramide treatment. This study revealed the potential regulatory mechanism of the novel compound diTFPP in sphingolipid metabolism by showing that it disrupts ceramide metabolism and apoptotic sphingolipid accumulation.
Collapse
|
28
|
Liu H, Li L, Chen Z, Song Y, Liu W, Gao G, Li L, Jiang J, Xu C, Yan G, Cui H. S1PR2 Inhibition Attenuates Allergic Asthma Possibly by Regulating Autophagy. Front Pharmacol 2021; 11:598007. [PMID: 33643037 PMCID: PMC7902893 DOI: 10.3389/fphar.2020.598007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
This study is to investigate the role of Sphingosine-1-phosphate (S1P) in the asthma progression, and the involvement of autophagy. Airway remodeling mice were subjected to the HE, PAS, and Masson staining. Protein expression levels in the tissues, samples and model cells were detected with ELISA, Western blot analysis, and immunohistochemical/immunofluorescent analysis. The S1P2 receptor antagonist JTE-013 decreased the inflammatory cell infiltration and goblet cell production in asthmatic mice tissues. The IL-1, IL-4, IL-5 and serum IgE contents were decreased in bronchoalveolar lavage fluid, while the Beclin1 expression in lung tissues was decreased. The LC3B1 to LC-3B2 conversion was decreased, with increased P62 accumulation and decreased p-P62 expression. In airway remodeling mice, JTE-013 significantly decreased collagen deposition in lung tissues and decreased smooth muscle cell smooth muscle activating protein expression. In lung tissue, the expression levels of Beclin1 were decreased, with decreased LC3B1 to LC-3B2 conversion, as well as the increased P62 accumulation and decreased p-P62 expression. However, these effects were reversed by the RAC1 inhibitor EHT 1864. Similar results were observed for the silencing of S1P2 receptor in the cells, as shown by the decreased Beclin1 expression, decreased LC3B1 to LC-3B2 conversion, increased P62 accumulation, and decreased p-P62 expression. The smooth muscle activators were significantly decreased in the JTE-013 and EHT1864 groups, and the EHT 1864 + S1P2-SiRNA expression level was increased. S1P is involved in the progression of asthma and airway remodeling, which may be related to the activation of S1PR2 receptor and inhibition of autophagy through RAC1.
Collapse
Affiliation(s)
- Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Zhengai Chen
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Weidong Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Ge Gao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
29
|
Kuang Y, Li X, Liu X, Wei L, Chen X, Liu J, Zhuang T, Pi J, Wang Y, Zhu C, Gong X, Hu H, Yu Z, Li J, Yu P, Fan H, Zhang Y, Liu Z, Zhang L. Vascular endothelial S1pr1 ameliorates adverse cardiac remodelling via stimulating reparative macrophage proliferation after myocardial infarction. Cardiovasc Res 2021; 117:585-599. [PMID: 32091582 DOI: 10.1093/cvr/cvaa046] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Endothelial cell (EC) homoeostasis plays an important role in normal physiological cardiac functions, and its dysfunction significantly influences pathological cardiac remodelling after myocardial infarction (MI). It has been shown that the sphingosine 1-phosphate receptor 1 (S1pr1) was highly expressed in ECs and played an important role in maintaining endothelial functions. We thus hypothesized that the endothelial S1pr1 might be involved in post-MI cardiac remodelling. METHODS AND RESULTS Our study showed that the specific loss of endothelial S1pr1 exacerbated post-MI cardiac remodelling and worsened cardiac dysfunction. We found that the loss of endothelial S1pr1 significantly reduced Ly6clow macrophage accumulation, which is critical for the resolution of inflammation and cardiac healing following MI. The reduced reparative macrophages in post-MI myocardium contributed to the detrimental effects of endothelial S1pr1 deficiency on post-MI cardiac remodelling. Further investigations showed that the loss of endothelial S1pr1-reduced Ly6clow macrophage proliferation, while the pharmacological activation of S1pr1-enhanced Ly6clow macrophage proliferation, thereby ameliorated cardiac remodelling after MI. A mechanism study showed that S1P/S1pr1 activated the ERK signalling pathway and enhanced colony-stimulating factor 1 (CSF1) expression, which promoted Ly6clow macrophage proliferation in a cell-contact manner. The blockade of CSF1 signalling reversed the enhancing effect of S1pr1 activation on Ly6clow macrophage proliferation and worsened post-MI cardiac remodelling. CONCLUSION This study reveals that cardiac microvascular endothelium promotes reparative macrophage proliferation in injured hearts via the S1P/S1PR1/ERK/CSF1 pathway and thus ameliorates post-MI adverse cardiac remodelling.
Collapse
Affiliation(s)
- Yashu Kuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Xiaolin Li
- Medical School, Internal Medicine Department, Jinggangshan University, Ji'an 343009, China
| | - Xiuxiang Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Lu Wei
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Xiaoli Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Jie Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Jingjiang Pi
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Yanfang Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Chenying Zhu
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Gong
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Hu
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Jiming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Ping Yu
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huimin Fan
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| |
Collapse
|
30
|
Fang T, Jiang YX, Chen L, Huang L, Tian XH, Zhou YD, Nagle DG, Zhang DD. Coix Seed Oil Exerts an Anti-Triple-Negative Breast Cancer Effect by Disrupting miR-205/S1PR1 Axis. Front Pharmacol 2020; 11:529962. [PMID: 33101013 PMCID: PMC7556270 DOI: 10.3389/fphar.2020.529962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Coix Seed Oil (CSO) possesses a wide range of pharmacological activities. Kanglaite Injection, a commercial product of CSO, has been used clinically as an anticancer drug in China for decades. However, its molecular mechanisms on triple-negative breast cancer (TNBC) remains to be elucidated. In this study, the effect of CSO was evaluated on murine TNBC 4T1 cells and the orthotopic tumor-bearing mouse model and underlying mechanisms were explored. CSO suppressed cell proliferation, colony formation in vitro, and tumor growth in vivo. miR-205-5p was substantially altered in CSO treated tumor tissues compared to the control group by miRNA-sequencing analysis. Sphingomyelin metabolism (SM) decreased in serum in model group compared to the control group, while it increased by CSO administration by lipid metabolomics analysis. The expression of sphingosine 1 phosphate receptor 1 (S1PR1), the critical effector of SM, was downregulated upon CSO treatment. Mechanically, miRNA-205 directly targeted S1PR1 to regulate SM and cell proliferation. CSO reduced the expression of S1PR1, cyclinD1, and phosphorylation levels of STAT3, MAPK, and AKT while upregulated p27. These results revealed that CSO exerted an anti-TNBC effect via the miR-205/S1PR1 axis to regulate sphingomyelin metabolism, and the downstream STAT3/MAPK/AKT signal pathways were partly involved.
Collapse
Affiliation(s)
- Ting Fang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi-Xin Jiang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Huang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Hui Tian
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Misissippi, MS, United States
| | - Dale G Nagle
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences (RIPS), School of Pharmacy, University of Mississippi, University, Mississippi, MS, United States
| | - Dan-Dan Zhang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
An adiponectin-S1P autocrine axis protects skeletal muscle cells from palmitate-induced cell death. Lipids Health Dis 2020; 19:156. [PMID: 32611437 PMCID: PMC7330982 DOI: 10.1186/s12944-020-01332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background The prevalence of type 2 diabetes, obesity and their various comorbidities have continued to rise. In skeletal muscle lipotoxicity is well known to be a contributor to the development of insulin resistance. Here it was examined if the small molecule adiponectin receptor agonist AdipoRon mimicked the effect of adiponectin to attenuate palmitate induced reactive oxygen species (ROS) production and cell death in L6 skeletal muscle cells. Methods L6 cells were treated ±0.1 mM PA, and ± AdipoRon, then assays analyzing reactive oxygen species (ROS) production and cell death, and intracellular and extracellular levels of sphingosine-1 phosphate (S1P) were conducted. To determine the mechanistic role of S1P gain (using exogenous S1P or using THI) or loss of function (using the SKI-II) were conducted. Results Using both CellROX and DCFDA assays it was found that AdipoRon reduced palmitate-induced ROS production. Image-IT DEAD, MTT and LDH assays all indicated that AdipoRon reduced palmitate-induced cell death. Palmitate significantly increased intracellular accumulation of S1P, whereas in the presence of AdipoRon there was increased release of S1P from cells to extracellular medium. It was also observed that direct addition of extracellular S1P prevented palmitate-induced ROS production and cell death, indicating that S1P is acting in an autocrine manner. Pharmacological approaches to enhance or decrease S1P levels indicated that accumulation of intracellular S1P correlated with enhanced cell death. Conclusion This data indicates that increased extracellular levels of S1P in response to adiponectin receptor activation can activate S1P receptor-mediated signaling to attenuate lipotoxic cell death. Taken together these findings represent a possible novel mechanism for the protective action of adiponectin.
Collapse
|
32
|
Kroll A, Cho HE, Kang MH. Antineoplastic Agents Targeting Sphingolipid Pathways. Front Oncol 2020; 10:833. [PMID: 32528896 PMCID: PMC7256948 DOI: 10.3389/fonc.2020.00833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging studies in the enigmatic area of bioactive lipids have made many exciting new discoveries in recent years. Once thought to play a strictly structural role in cellular function, it has since been determined that sphingolipids and their metabolites perform a vast variety of cellular functions beyond what was previously believed. Of utmost importance is their role in cellular signaling, for it is now well understood that select sphingolipids serve as bioactive molecules that play critical roles in both cancer cell death and survival, as well as other cellular responses such as chronic inflammation, protection from intestinal pathogens, and intrinsic protection from intestinal contents, each of which are associated with oncogenesis. Importantly, it has been demonstrated time and time again that many different tumors display dysregulation of sphingolipid metabolism, and the exact profile of said dysregulation has been proven to be useful in determining not only the presence of a tumor, but also the susceptibility to various chemotherapeutic drugs, as well as the metastasizing characteristics of the malignancies. Since these discoveries surfaced it has become apparent that the understanding of sphingolipid metabolism and profile will likely become of great importance in the clinic for both chemotherapy and diagnostics of cancer. The goal of this paper is to provide a comprehensive review of the current state of chemotherapeutic agents that target sphingolipid metabolism that are undergoing clinical trials. Additionally, we will formulate questions involving the use of sphingolipid metabolism as chemotherapeutic targets in need of further research.
Collapse
Affiliation(s)
- Alexander Kroll
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
33
|
Feng Y, Mischler WJ, Gurung AC, Kavanagh TR, Androsov G, Sadow PM, Herbert ZT, Priolo C. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res 2020; 80:2751-2763. [PMID: 32393662 DOI: 10.1158/0008-5472.can-19-2884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by multiorgan hamartomas, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM). TSC2 deficiency leads to hyperactivation of mTOR Complex 1 (mTORC1), a master regulator of cell growth and metabolism. Phospholipid metabolism is dysregulated upon TSC2 loss, causing enhanced production of lysophosphatidylcholine (LPC) species by TSC2-deficient tumor cells. LPC is the major substrate of the secreted lysophospholipase D autotaxin (ATX), which generates two bioactive lipids, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). We report here that ATX expression is upregulated in human renal angiomyolipoma-derived TSC2-deficient cells compared with TSC2 add-back cells. Inhibition of ATX via the clinically developed compound GLPG1690 suppressed TSC2-loss associated oncogenicity in vitro and in vivo and induced apoptosis in TSC2-deficient cells. GLPG1690 suppressed AKT and ERK1/2 signaling and profoundly impacted the transcriptome of these cells while inducing minor gene expression changes in TSC2 add-back cells. RNA-sequencing studies revealed transcriptomic signatures of LPA and S1P, suggesting an LPA/S1P-mediated reprogramming of the TSC lipidome. In addition, supplementation of LPA or S1P rescued proliferation and viability, neutral lipid content, and AKT or ERK1/2 signaling in human TSC2-deficient cells treated with GLPG1690. Importantly, TSC-associated renal angiomyolipomas have higher expression of LPA receptor 1 and S1P receptor 3 compared with normal kidney. These studies increase our understanding of TSC2-deficient cell metabolism, leading to novel potential therapeutic opportunities for TSC and LAM. SIGNIFICANCE: This study identifies activation of the ATX-LPA/S1P pathway as a novel mode of metabolic dysregulation upon TSC2 loss, highlighting critical roles for ATX in TSC2-deficient cell fitness and in TSC tumorigenesis.
Collapse
Affiliation(s)
- You Feng
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William J Mischler
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ashish C Gurung
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Taylor R Kavanagh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Grigoriy Androsov
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Peter M Sadow
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Zachary T Herbert
- Harvard Medical School, Boston, Massachusetts
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
35
|
Combined Omics Approach Identifies Gambogic Acid and Related Xanthones as Covalent Inhibitors of the Serine Palmitoyltransferase Complex. Cell Chem Biol 2020; 27:586-597.e12. [DOI: 10.1016/j.chembiol.2020.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
|
36
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
37
|
Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int 2019; 19:295. [PMID: 31807117 PMCID: PMC6857321 DOI: 10.1186/s12935-019-1014-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
The potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.
Collapse
Affiliation(s)
- Peng Wang
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yonghui Yuan
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China.,2Research and Academic Department, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, 110042 Liaoning China
| | - Wenda Lin
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Hongshan Zhong
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Ke Xu
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xun Qi
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
38
|
Luo Z, Gu J, Dennett RC, Gaehle GG, Perlmutter JS, Chen DL, Benzinger TLS, Tu Z. Automated production of a sphingosine-1 phosphate receptor 1 (S1P1) PET radiopharmaceutical [ 11C]CS1P1 for human use. Appl Radiat Isot 2019; 152:30-36. [PMID: 31280104 PMCID: PMC6708718 DOI: 10.1016/j.apradiso.2019.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Automated synthesis of a radiopharmaceutical 3-((2-fluoro-4-(5-(2'-methyl-2-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1,2,4-oxadiazol-3-yl)benzyl) (methyl-11C)amino)propanoic acid ([11C]CS1P1) for PET imaging sphingosine-1 phosphate receptor 1 (S1P1) was accomplished by a two-step-one-pot procedure in a Siemens CTI methylation automated module using TR-19 cyclotron. The synthesis of [11C]CS1P1 was successfully validated under current Good Manufacturing Practices (cGMP) conditions, resulting in a consistent average radiochemical yield of ∼15%, molar activity of ∼3129 GBq/μmol (decay corrected to end of bombardment, EOB), and radiochemical purity > 95%. The radiopharmaceutical product meets all quality control criteria for human use for an Investigational New Drug (IND) application to permit human studies.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert C Dennett
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gregory G Gaehle
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Delphine L Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Yasuda K, Maki T, Saito S, Yamamoto Y, Kinoshita H, Choi YK, Arumugam TV, Lim YA, Chen CLH, Wong PTH, Ihara M, Takahashi R. Effect of fingolimod on oligodendrocyte maturation under prolonged cerebral hypoperfusion. Brain Res 2019; 1720:146294. [DOI: 10.1016/j.brainres.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
|
40
|
Yao S, Li L, Sun X, Hua J, Zhang K, Hao L, Liu L, Shi D, Zhou H. FTY720 Inhibits MPP +-Induced Microglial Activation by Affecting NLRP3 Inflammasome Activation. J Neuroimmune Pharmacol 2019; 14:478-492. [PMID: 31069623 DOI: 10.1007/s11481-019-09843-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons and excessive microglial activation in the substantia nigra pars compacta (SNpc). In the present study, we aimed to demonstrate the therapeutic effectiveness of the potent sphingosine-1-phosphate receptor antagonist fingolimod (FTY720) in an animal model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and to identify the potential mechanisms underlying these therapeutic effects. C57BL/6J mice were orally administered FTY720 before subcutaneous injection of MPTP. Open-field and rotarod tests were performed to determine the therapeutic effect of FTY720. The damage to dopaminergic neurons and the production of monoamine neurotransmitters were assessed using immunohistochemistry, high-performance liquid chromatography, and flow cytometry. Immunofluorescence (CD68- positive) and enzyme-linked immunosorbent assay were used to analyze the activation of microglia, and the levels of activated signaling molecules were measured using Western blotting. Our findings indicated that FTY720 significantly attenuated MPTP-induced behavioral deficits, reduced the loss of dopaminergic neurons, and increased dopamine release. FTY720 directly inhibited MPTP-induced microglial activation in the SNpc, suppressed the production of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α in BV-2 microglial cells treated with 1-methyl-4-phenylpyridinium (MPP+), and subsequently decreased apoptosis in SH-SY5Y neuroblastoma cells. Moreover, in MPP+-treated BV-2 cells and primary microglia, FTY720 treatment significantly attenuated the increases in the phosphorylation of PI3K/AKT/GSK-3β, reduced ROS generation and p65 activation, and also inhibited the activation of NLRP3 inflammasome and caspase-1. In conclusion, FTY720 may reduce PD progression by inhibiting NLRP3 inflammasome activation via its effects on ROS generation and p65 activation in microglia. These findings provide novel insights into the mechanisms underlying the therapeutic effects of FTY720, suggesting its potential as a novel therapeutic strategy against PD. Graphical Abstract FTY720 may reduce ROS production by inhibiting the PI3K/AKT/GSK-3β signaling pathway, while at the same time reducing p65 phosphorylation, thus decreasing NLRP3 inflammasome activation through these two pathways, ultimately reducing microglia activation-induced neuronal damage.
Collapse
Affiliation(s)
- Shu Yao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Longjun Li
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Xin Sun
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Jun Hua
- Department of Clinical Pharmacy, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Keqi Zhang
- Institute of Microscope Science and Technology, Ningbo Yongxin Optics Co. Ltd., 385 Mingzhu Road, Hi-tech Industry Park, Ningbo, 315040, China
| | - Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China.
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China.
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
41
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Lim JR, Kim SY, Lee JE, Park MC, Yoon JH, Choi MJ, Kim KS, Han HJ. O-cyclic phytosphingosine-1-phosphate stimulates HIF1α-dependent glycolytic reprogramming to enhance the therapeutic potential of mesenchymal stem cells. Cell Death Dis 2019; 10:590. [PMID: 31383843 PMCID: PMC6683124 DOI: 10.1038/s41419-019-1823-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
O-cyclic phytosphingosine-1-phosphate (cP1P) is a novel chemically synthesized sphingosine metabolite derived from phytosphingosine-1-phosphate. Although structurally similar to sphingosine-1-phosphate (S1P), its biological properties in stem cells remain to be reported. We investigated the effect of cP1P on the therapeutic potential of mesenchymal stem cells (MSCs) and their regulatory mechanism. We found that, under hypoxia, cP1P suppressed MSC mitochondrial dysfunction and apoptosis. Metabolic data revealed that cP1P stimulated glycolysis via the upregulation of glycolysis-related genes. cP1P-induced hypoxia-inducible factor 1 alpha (HIF1α) plays a key role for MSC glycolytic reprogramming and transplantation efficacy. The intracellular calcium-dependent PKCα/mammalian target of the rapamycin (mTOR) signaling pathway triggered by cP1P regulated HIF1α translation via S6K1, which is critical for HIF1 activation. Furthermore, the cP1P-activated mTOR pathway induced bicaudal D homolog 1 expression, leading to HIF1α nuclear translocation. In conclusion, cP1P enhances the therapeutic potential of MSC through mTOR-dependent HIF1α translation and nuclear translocation.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Eun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Chul Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myeong Jun Choi
- Axcesobiopharma, 268 Hakuiro, Dongan-gu, Anyang, 14056, Republic of Korea
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
43
|
Yue H, Hu B, Luo Z, Liu M. Metformin protects against sevoflurane-induced neuronal apoptosis through the S1P1 and ERK signaling pathways. Exp Ther Med 2019; 17:1463-1469. [PMID: 30680029 DOI: 10.3892/etm.2018.7098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the current study was to investigate whether metformin could counteract sevoflurane-induced neurotoxicity. In vitro experiments on the sevoflurane-induced nerve injury were performed using hippocampal neurons. Neuronal apoptosis was detected by an MTT assay. Protein expression levels of apoptosis-associated genes, including cleaved-caspase-3, apoptosis regulator BAX and apoptosis regulator Bcl-2 were detected by western blot analysis. The mechanism of the effect of metformin on sevoflurane-induced neuronal apoptosis was investigated using a sphingosine 1-phosphate receptor 1 (S1P1) antagonist (VPC23019) and mitogen-activated protein kinase kinase inhibitor (U0126). The current study revealed that metformin may reduce sevoflurane-induced neuronal apoptosis via activating mitogen-activated protein kinase (ERK)1/2 phosphorylation. VPC23019 and U0126 eliminated the neuroprotective effects of metformin on neuronal apoptosis, which suggests that metformin is able to protect against sevoflurane-induced neurotoxicity via activation of the S1P1-dependent ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Huiyu Yue
- Department of Anesthesiology, Shaan Xi Provincial Tumor Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Bin Hu
- Department of Anesthesiology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Zhikai Luo
- Department of Anesthesiology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Mei Liu
- Department of Anesthesiology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
44
|
The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019; 56:5436-5455. [PMID: 30612333 PMCID: PMC6614129 DOI: 10.1007/s12035-018-1448-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Bioactive sphingolipids-ceramide, sphingosine, and their respective 1-phosphates (C1P and S1P)-are signaling molecules serving as intracellular second messengers. Moreover, S1P acts through G protein-coupled receptors in the plasma membrane. Accumulating evidence points to sphingolipids' engagement in brain aging and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. Metabolic alterations observed in the course of neurodegeneration favor ceramide-dependent pro-apoptotic signaling, while the levels of the neuroprotective S1P are reduced. These trends are observed early in the diseases' development, suggesting causal relationship. Mechanistic evidence has shown links between altered ceramide/S1P rheostat and the production, secretion, and aggregation of amyloid β/α-synuclein as well as signaling pathways of critical importance for the pathomechanism of protein conformation diseases. Sphingolipids influence multiple aspects of Akt/protein kinase B signaling, a pathway that regulates metabolism, stress response, and Bcl-2 family proteins. The cross-talk between sphingolipids and transcription factors including NF-κB, FOXOs, and AP-1 may be also important for immune regulation and cell survival/death. Sphingolipids regulate exosomes and other secretion mechanisms that can contribute to either the spread of neurotoxic proteins between brain cells, or their clearance. Recent discoveries also suggest the importance of intracellular and exosomal pools of small regulatory RNAs in the creation of disturbed signaling environment in the diseased brain. The identified interactions of bioactive sphingolipids urge for their evaluation as potential therapeutic targets. Moreover, the early disturbances in sphingolipid metabolism may deliver easily accessible biomarkers of neurodegenerative disorders.
Collapse
|
45
|
POU5F1B promotes hepatocellular carcinoma proliferation by activating AKT. Biomed Pharmacother 2018; 100:374-380. [DOI: 10.1016/j.biopha.2018.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
|
46
|
Williams JJL, Alotaiq N, Mullen W, Burchmore R, Liu L, Baillie GS, Schaper F, Pilch PF, Palmer TM. Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nat Commun 2018; 9:168. [PMID: 29330478 PMCID: PMC5766592 DOI: 10.1038/s41467-017-02585-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Effective suppression of JAK-STAT signalling by the inducible inhibitor "suppressor of cytokine signalling 3" (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3-interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1.
Collapse
Affiliation(s)
- Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| | - Nasser Alotaiq
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Libin Liu
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Schaper
- Department of Systems Biology, Institute for Biology, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany
| | - Paul F Pilch
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
47
|
Watson EC, Grant ZL, Coultas L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci 2017; 74:4387-4403. [PMID: 28646366 PMCID: PMC11107683 DOI: 10.1007/s00018-017-2577-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Abstract
Blood vessel regression is an essential process for ensuring blood vessel networks function at optimal efficiency and for matching blood supply to the metabolic needs of tissues as they change over time. Angiogenesis is the major mechanism by which new blood vessels are produced, but the vessel growth associated with angiogenesis must be complemented by remodeling and maturation events including the removal of redundant vessel segments and cells to fashion the newly forming vasculature into an efficient, hierarchical network. This review will summarize recent findings on the role that endothelial cell apoptosis plays in vascular remodeling during angiogenesis and in vessel regression more generally.
Collapse
Affiliation(s)
- Emma C Watson
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Zoe L Grant
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Leigh Coultas
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
48
|
Zabielski P, Błachnio-Zabielska AU, Wójcik B, Chabowski A, Górski J. Effect of plasma free fatty acid supply on the rate of ceramide synthesis in different muscle types in the rat. PLoS One 2017; 12:e0187136. [PMID: 29095868 PMCID: PMC5667851 DOI: 10.1371/journal.pone.0187136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/13/2017] [Indexed: 01/06/2023] Open
Abstract
Ceramide is a key compound in sphingolipid metabolism. Dynamics of ceramide synthesis is important in the several biological processes, such as induction of apoptosis or insulin resistance. So far, its de novo synthesis rate was evaluated indirectly, based on the content of the compound, its intermediates and the activity of respective enzymes. The aim of the present study was to directly measure ceramide synthesis rate (FSR) in different muscle types under varied plasma FFA supply in rat with the use of [U-13C] palmitate tracer and LC/MS/MS. The experiments were carried out on male Wistar rats, divided into three groups: 1-control, 2-with elevated plasma free fatty acid (FFA) concentration by means of intralipid and heparin, 3-with reduced plasma FFA concentration by means of nicotinic acid. The stable plasma FFA concentration and plasma [U-13C] palmitate enrichment was maintained for two hours by simultaneous infusion of the tracer and the respective compounds. At the end of the experiment, samples of blood from the abdominal aorta, the heart, diaphragm, soleus and white section of the gastrocnemius were taken. Muscle sphinganine, sphingosine and ceramide content and enrichment and plasma palmitate enrichment was measured with the use of LC/MS/MS. Plasma FFA concentration and composition was measured by means of gas-liquid chromatography. Under basal conditions ceramide FSR in the heart and the diaphragm was higher than in the soleus and the white gastrocnemius. Elevation in the plasma FFA concentration increased the FSR and ceramide content in each muscle, which correlated with increased HOMA-IR. The highest FSR was noted in the heart. Reduction in the plasma FFA concentration decreased ceramide FSR in each muscle type, which was accompanied by marked reduction in HOMA-IR. It is concluded that ceramide FSR depends on both the muscle type and the plasma FFA supply and is correlated with whole body insulin sensitivity under varying plasma FFA supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
- Department of Medical Biology, Medical University of Białystok, Białystok, Poland
- * E-mail:
| | - Agnieszka Urszula Błachnio-Zabielska
- Department of Physiology, Medical University of Białystok, Białystok, Poland
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Białystok, Białystok, Poland
| | - Beata Wójcik
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Jan Górski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
- Medical Institute, Łomża State University of Applied Sciences, Łomża, Poland
| |
Collapse
|
49
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
50
|
Arish M, Alaidarous M, Ali R, Akhter Y, Rub A. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. J Recept Signal Transduct Res 2017; 37:437-446. [PMID: 28758826 DOI: 10.1080/10799893.2017.1358282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases.
Collapse
Affiliation(s)
- Mohd Arish
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Mohammed Alaidarous
- b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| | - Rahat Ali
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Yusuf Akhter
- c Centre for Computational Biology & Bioinformatics, School of Life Sciences , Central University of Himachal Pradesh , Shahpur, Kangra , India
| | - Abdur Rub
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India.,b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| |
Collapse
|