1
|
Waxman S, Schilpp H, Linton A, Jakobs TC, Sigal IA. Morphological comparison of astrocytes in the lamina cribrosa and glial lamina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.610493. [PMID: 39314351 PMCID: PMC11418941 DOI: 10.1101/2024.09.07.610493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Purpose Although the mechanisms underlying glaucomatous neurodegeneration are not yet well understood, cellular and small animal models suggest that LC astrocytes undergo early morphologic and functional changes, indicating their role as early responders to glaucomatous stress. These models, however, lack the LC found in larger animals and humans, leaving the in situ morphology of LC astrocytes and their role in glaucoma initiation underexplored. In this work, we aimed to characterize the morphology of LC astrocytes in situ and determine differences and similarities with astrocytes in the mouse glial lamina (GL), the analogous structure in a prominent glaucoma model. Methods Astrocytes in the LCs of twenty-two eyes from goats, sheep, and pigs were stochastically labeled via Multicolor DiOlistics and imaged in situ using confocal microscopy. 3D models of DiOlistically-labeled LC astrocytes and hGFAPpr-GFP mouse GL astrocytes were constructed to quantify morphological features related to astrocyte functions. LC and GL astrocyte cross-pore contacts, branching complexity, branch tortuosity, and cell and branch span were compared. Results LC astrocytes displayed distinct spatial relationships with collagen, greater branching complexity, and higher branch tortuosity compared to GL astrocytes. Despite substantial differences in their anatomical environments, LC and GL astrocytes had similar cell and branch spans. Conclusions Astrocyte morphology in the LC was characterized through Multicolor DiOlistic labeling. LC and GL astrocytes have both distinct and shared morphological features. Further research is needed to understand the potentially unique roles of LC astrocytes in glaucoma initiation and progression.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Ashley Linton
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
2
|
Choi GW, Kim ML, Sung KR. Modulation of TRPV4-mediated TNF-α expression in Müller glia and subsequent RGC apoptosis by statins. Exp Eye Res 2024; 239:109781. [PMID: 38184223 DOI: 10.1016/j.exer.2024.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
In addition to regulating cholesterol synthesis, statins have neuroprotective effects. Apoptosis of retinal ganglion cells (RGCs) causes a gradual loss of visual function in glaucoma. This study aimed to investigate the neuroprotective effect of statins on the RGC apoptosis induced by activated Müller glia. Primary Müller cells and RGCs were cultured from the retina of C57BL6 mice. Müller cells were activated with GSK101, a transient receptor potential vanilloid 4 (TRPV4) agonist, and tumor necrosis factor-alpha (TNF-α) released to the medium was measured using an enzyme-linked immunosorbent assay. Cells were pretreated with simvastatin or lovastatin before GSK101. RGCs were treated with conditioned media from Müller glia cultures, and apoptosis was determined using flow cytometry. TRPV4 activation through GSK101 treatment induced gliosis of Müller cells, and the conditioned media from activated Müller cells was potent to induce RGC apoptosis. Statins suppress both gliosis in Müller cells and subsequent RGC apoptosis. TNF-α release to the media was increased in GSK101-treated Müller cells, and TNF-α in the conditioned media was the critical factor causing RGC apoptosis. The increase in TRPV4-mediated TNF-α expression occurred through the nuclear factor kappa-light chain enhancer of activated B cell pathway activation, which was inhibited by statins. Herein, we showed that statins can modulate gliosis and TNF-α expression in Müller cells, protecting RGCs. These data further support the neuroprotective effect of statins, promoting them as a potential treatment for glaucoma.
Collapse
Affiliation(s)
- Go Woon Choi
- Biomedical Research Center, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Mi-Lyang Kim
- Biomedical Research Center, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Kyung Rim Sung
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
3
|
Wang Y, Sun X, Xie Y, Du A, Chen M, Lai S, Wei X, Ji L, Wang C. Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: Association with the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117135. [PMID: 37689326 DOI: 10.1016/j.jep.2023.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a neurovascular disease that causes blindness in adults and is the most serious and common complication of diabetes mellitus. Retinal inflammation is an early stage of DR, and it is believed to play a crucial role in the development of DR. Panax notoginseng saponins (PNS) are the major active constituent in the main root of P. notoginseng, and they exhibit various biological activities, including anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory functions. However, the protective effects and underlying mechanisms of PNS against DR remain unclear. AIM OF THE STUDY This study aimed to investigate the alleviation effects of PNS on DR and the mechanisms involved. Furthermore, it intended to explore the major components that exert efficacy in vivo. MATERIALS AND METHODS Streptozotocin (STZ) was administered intraperitoneally to Sprague Dawley rats, and PNS was administered orally for 1 month after 2 months of STZ injection. The morphological structure of the retina and retinal acellular capillaries were assessed via hematoxylin and eosin (H&E) staining assay. The disruption of the blood-retinal barrier (BRB) was detected through Evans blue dye leakage assay, and retinal leukocyte adhesion was achieved via fluorescein isothiocyanate-coupled concanavalin A lectin labeling assay. Immunofluorescence staining and Western blot assays were conducted to detect the expression of tight junction proteins, adhesion molecules, and the ionized calcium-binding adapter molecule-1 (Iba-1) in the retina. Enzyme-linked immunosorbent assay was performed to detect the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in serum. In addition, the protein expression levels of nuclear factor (NF)-κB p65, phosphorylated IκB kinase (p-IKK), phosphorylated NF-κB inhibitor (p-IκB), and phosphorylated NF-κB p65 (p-p65) were measured using Western blot assay. The ocular tissue distribution of PNS in normal and diabetic rats was determined through ultra-performance liquid chromatography-tandem mass spectrometry. The in vitro anti-inflammatory effects of PNS, notoginsenoside (NGR1), ginsenoside Rg1, Re, Rb1, and Rd (GRg1, GRe, GRb1, and GRd) were evaluated on human Müller (MIO-M1) cells. RESULTS PNS increased the reduction in retinal inner nuclear layer thickness, reduced the increase in retinal acellular capillaries, and attenuated elevated BRB disruption by upregulating the decrease in protein expression of claudin-1 and occludin. Furthermore, PNS significantly abrogated microglial cell activation and reversed the increase in leukocyte adhesion by downregulating the increase in the protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Moreover, PNS reduced the elevated levels of TNF-α, IL-6, and IL-1β in serum and inhibited the increased protein expression of p-IKK, p-IκB, and p-p65, and the nuclear translocation of p65. The tissue distribution results revealed that NGR1, GRg1, GRe, GRb1, and GRd were detected in the ocular tissue, while GRg1 and GRb1 were found at the highest levels compared with the other components. The cellular results showed that PNS, NGR1, GRg1, GRe, GRb1, and GRd suppressed the development of cellular inflammatory responses by inhibiting the activation of the NF-κB signaling pathway in MIO-M1 cells and that their anti-inflammatory effects were comparable. CONCLUSION PNS suppressed retinal inflammation by inhibiting the activation of the NF-κB signaling pathway, alleviating DR. GRg1 and GRb1 may be the primary components that exert anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Yaru Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Sun
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yumin Xie
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ming Chen
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Shusheng Lai
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Xiaohui Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Livne-Bar I, Maurya S, Gronert K, Sivak JM. Lipoxins A 4 and B 4 inhibit glial cell activation via CXCR3 signaling in acute retinal neuroinflammation. J Neuroinflammation 2024; 21:18. [PMID: 38212822 PMCID: PMC10782675 DOI: 10.1186/s12974-024-03010-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
| | - Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
- Vision Science Program, University of California Berkeley, Berkeley, CA, USA
- Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Sciences, Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
5
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Cordaro M, Modafferi S, D’Amico R, Fusco R, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Di Paola D, Impellizzeri D, Cuzzocrea S, Calabrese V, Di Paola R, Siracusa R. Natural Compounds Such as Hericium erinaceus and Coriolus versicolor Modulate Neuroinflammation, Oxidative Stress and Lipoxin A4 Expression in Rotenone-Induced Parkinson's Disease in Mice. Biomedicines 2022; 10:biomedicines10102505. [PMID: 36289766 PMCID: PMC9599271 DOI: 10.3390/biomedicines10102505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A growing body of research suggests that oxidative stress and neuroinflammation are early pathogenic features of neurodegenerative disorders. In recent years, the vitagene system has emerged as a potential target, as it has been shown to have a high neuroprotective power. Therefore, the discovery of molecules capable of activating this system may represent a new therapeutic target to limit the deleterious consequences induced by oxidative stress and neuroinflammation, such as neurodegeneration. Lipoxins are derived from arachidonic acid, and their role in the resolution of systemic inflammation is well established; however, they have become increasingly involved in the regulation of neuroinflammatory and neurodegenerative processes. Our study aimed at activating the NF-E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) redox system and increasing lipoxin A4 for the modulation of antioxidant stress and neuroinflammation through the action of two fungi in a rotenone-induced Parkinson's model. METHODS During the experiment, mice received Hericium erinaceus, Coriolus versicolor or a combination of the two (200 mg/kg, orally) concomitantly with rotenone (5 mg/kg, orally) for 28 days. RESULTS The results obtained highlighted the ability of these two fungi and, in particular, their ability through their association to act on neuroinflammation through the nuclear factor-kB pathway and on oxidative stress through the Nrf2 pathway. This prevented dopaminergic neurons from undergoing apoptosis and prevented the alteration of typical Parkinson's disease (PD) markers and α-synuclein accumulation. The action of Hericium erinaceus and Coriolus versicolor was also able to limit the motor and non-motor alterations characteristic of PD. CONCLUSIONS Since these two mushrooms are subject to fewer regulations than traditional drugs, they could represent a promising nutraceutical choice for preventing PD.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (S.C.); (V.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); (V.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
- Correspondence: (D.I.); (S.C.); (V.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
7
|
Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
|
8
|
Vicic N, Guo X, Chan D, Flanagan JG, Sigal IA, Sivak JM. Evidence of an Annexin A4 mediated plasma membrane repair response to biomechanical strain associated with glaucoma pathogenesis. J Cell Physiol 2022; 237:3687-3702. [PMID: 35862065 PMCID: PMC9891715 DOI: 10.1002/jcp.30834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/03/2023]
Abstract
Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.
Collapse
Affiliation(s)
- Nevena Vicic
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Darren Chan
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - John G Flanagan
- The Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy M. Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada,Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Elsukary AE, Helaly AMNZ, El Bakary AA, Moustafa ME, El-Kattan MA. Comparative Study of the Neurotoxic Effects of Pregabalin Versus Tramadol in Rats. Neurotox Res 2022; 40:1427-1439. [PMID: 35976555 PMCID: PMC9515019 DOI: 10.1007/s12640-022-00557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
In Egypt, both pregabalin and tramadol misuse increased in the last decade. Although many studies have confirmed the neurotoxic effects of tramadol, those of pregabalin are understudied. The aim of the study is to evaluate the neurotoxic effects of pregabalin compared with tramadol. Thirty male albino rats were included in this experimental study, and they were randomly allocated into three equal groups: group I (normal saline), group II (tramadol misuse), and group III (pregabalin misuse). All rats received the commenced drugs for 1 month. Open field tests were performed on the day of scarification, and after that, cortical samples were taken for immunohistochemical analysis and quantification of dopamine receptors' gene expression. The drug misuse groups showed a significant decrease in weight gain at the end of the study. Open field testing showed the upper hand of controls regarding all of the tested parameters. Tramadol has a more negative impact on the locomotor parameters compared with pregabalin. Both drugs induced relatively low dopamine-1 receptor (D1Rs) expression to dopamine-2 receptors (D2Rs), mimicking the schizophrenia model. Both tramadol and pregabalin were associated with neurotoxic effects in male albino rats. These effects were less noticed with pregabalin. It is suggested that long-term abuse may end in psychosis.
Collapse
Affiliation(s)
- Ahmed E Elsukary
- Forensic Medicine & Clinical Toxicology Department, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Ahmed M N Z Helaly
- Forensic Medicine & Clinical Toxicology Department, Mansoura Faculty of Medicine, Mansoura, Egypt.,Clinical Science Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Amal A El Bakary
- Forensic Medicine & Clinical Toxicology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Maha E Moustafa
- Forensic Medicine & Clinical Toxicology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Mohammad A El-Kattan
- Forensic Medicine & Clinical Toxicology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
10
|
Statins Inhibit the Gliosis of MIO-M1, a Müller Glial Cell Line Induced by TRPV4 Activation. Int J Mol Sci 2022; 23:ijms23095190. [PMID: 35563594 PMCID: PMC9100994 DOI: 10.3390/ijms23095190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized Müller cell gliosis induced by the activation of transient receptor potential vanilloid-type 4 (TRPV4) and assessed whether statins could modulate the gliosis. The human Müller cell line, MIO-M1, was used to analyze the gliosis caused by glaucomatous stimulation. To induce Müller gliosis in MIO-M1 cells, GSK101 was used to activate TRPV4, and Müller gliosis was evaluated by analyzing vimentin, nestin, and glial fibrillary acidic protein (GFAP) expression. The expression level of TNF-α was determined by ELISA. To evaluate the GSK101 activation of the NF-κB pathway, p65 phosphorylation was measured by Western blotting, and the nuclear translocation of p65 and IκBα phosphorylation were assessed by immunostaining. To assess the effect of statins on MIO-M1 gliosis, cells were pretreated for 24 h with statins before GSK101 treatment. Vimentin, nestin, and GFAP expression were upregulated by GSK101, while statins effectively inhibited them. The expression of TNF-α was increased by GSK101. The phosphorylation and nuclear translocation of p65 and IκBα phosphorylation, which occurs prior to p65 activation, were induced. Statins suppressed the GSK101-mediated phosphorylation of IκBα and p65 translocation. Statins can mitigate gliosis in the human Müller cell line. Because TRPV4 activation in Müller cells reflects glaucoma pathophysiology, statins may have the potential to prevent RGC death.
Collapse
|
11
|
Mathew DJ, Livne-Bar I, Sivak JM. An inducible rodent glaucoma model that exhibits gradual sustained increase in intraocular pressure with distinct inner retina and optic nerve inflammation. Sci Rep 2021; 11:22880. [PMID: 34819548 PMCID: PMC8613281 DOI: 10.1038/s41598-021-02057-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/09/2021] [Indexed: 01/29/2023] Open
Abstract
Glaucoma is a chronic and progressive neurodegenerative disease of the optic nerve resulting in loss of retinal ganglion cells (RGCs) and vision. The most prominent glaucoma risk factor is increased intraocular pressure (IOP), and most models focus on reproducing this aspect to study disease mechanisms and targets. Yet, current models result in IOP profiles that often do not resemble clinical glaucoma. Here we introduce a new model that results in a gradual and sustained IOP increase over time. This approach modifies a circumlimbal suture method, taking care to make the sutures 'snug' instead of tight, without inducing an initial IOP spike. This approach did not immediately affect IOPs, but generated gradual ocular hypertension (gOHT) as the sutures tighten over time, in comparison to loosely sutured control eyes (CON), resulting in an average 12.6 mmHg increase in IOP at 17 weeks (p < 0.001). Corresponding characterization revealed relevant retinal and optic nerve pathology, such as thinning of the retinal nerve fiber layer, decreased optokinetic response, RGC loss, and optic nerve head remodeling. Yet, angles remained open, with no evidence of inflammation. Corresponding biochemical profiling indicated significant increases in TGF-β2 and 3, and IL-1 family cytokines in gOHT optic nerve tissues compared to CON, with accompanying microglial reactivity, consistent with active tissue injury and repair mechanisms. Remarkably, this signature was absent from optic nerves following acute ocular hypertension (aOHT) associated with intentionally tightened sutures, although the resulting RGC loss was similar in both methods. These results suggest that the pattern of IOP change has an important impact on underlying pathophysiology.
Collapse
Affiliation(s)
- David J Mathew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Izhar Livne-Bar
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeremy M Sivak
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Hippert C, Graca AB, Basche M, Kalargyrou AA, Georgiadis A, Ribeiro J, Matsuyama A, Aghaizu N, Bainbridge JW, Smith AJ, Ali RR, Pearson RA. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration. Glia 2021; 69:2272-2290. [PMID: 34029407 DOI: 10.1002/glia.24034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Gliosis is a complex process comprising upregulation of intermediate filament (IF) proteins, particularly glial fibrillary acidic protein (GFAP) and vimentin, changes in glial cell morphology (hypertrophy) and increased deposition of inhibitory extracellular matrix molecules. Gliosis is common to numerous pathologies and can have deleterious effects on tissue function and regeneration. The role of IFs in gliosis is controversial, but a key hypothesized function is the stabilization of glial cell hypertrophy. Here, we developed RNAi approaches to examine the role of GFAP and vimentin in vivo in a murine model of inherited retinal degeneration, the Rhodopsin knockout (Rho-/- ) mouse. Specifically, we sought to examine the role of these IFs in the establishment of Müller glial hypertrophy during progressive degeneration, as opposed to (more commonly assessed) acute injury. Prevention of Gfap upregulation had a significant effect on the morphology of reactive Müller glia cells in vivo and, more strikingly, the reduction of Vimentin expression almost completely prevented these cells from undergoing degeneration-associated hypertrophy. Moreover, and in contrast to studies in knockout mice, simultaneous suppression of both GFAP and vimentin expression led to severe changes in the cytoarchitecture of the retina, in both diseased and wild-type eyes. These data demonstrate a crucial role for Vimentin, as well as GFAP, in the establishment of glial hypertrophy and support the further exploration of RNAi-mediated knockdown of vimentin as a potential therapeutic approach for modulating scar formation in the degenerating retina.
Collapse
Affiliation(s)
- Claire Hippert
- University College London Institute of Ophthalmology, London, UK
| | - Anna B Graca
- University College London Institute of Ophthalmology, London, UK
| | - Mark Basche
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Aikaterini A Kalargyrou
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | | | - Joana Ribeiro
- University College London Institute of Ophthalmology, London, UK
| | - Ayako Matsuyama
- University College London Institute of Ophthalmology, London, UK
| | - Nozie Aghaizu
- University College London Institute of Ophthalmology, London, UK
| | | | - Alexander J Smith
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
13
|
Zhao M, Wang B, Zhang C, Su Z, Guo B, Zhao Y, Zheng R. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson's disease. Cell Death Differ 2021; 28:2517-2535. [PMID: 33762743 PMCID: PMC8329302 DOI: 10.1038/s41418-021-00767-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
The pathogenesis of Parkinson's disease (PD) remains unclear, and there is no disease-modifying agent for PD. Withaferin A (WA), a naturally occurring compound, has emerged as a neuroprotective agent. However, the mechanisms by which WA is neuroprotective in PD are unknown. Here we show that WA protected against loss of dopaminergic neurons, neuroinflammation, and motor deficits in MPTP-induced PD mouse models. Whole-genome deep sequencing analysis combined with Meta-analysis of human PD studies reveal that DJ1, Nrf2, and STING in substantia nigra pars compacta (SNc) are linked to anti-PD effect of WA. We found that WA activated DJ1 and Nrf2, and suppressed STING within SNc; and overexpression of STING in SNc dampened the effect of WA. Using genetically modified mice (DJ1-KO, Nrf2-KO, STINGgt/gt and STING-KO) and immunolabeling technique, we identified that WA targeted DJ1-Nrf2-STING pathway in dopaminergic neurons; and we demonstrate that STING might be an important factor in PD pathogenesis. In addition, WA alleviated accumulation of phosphorylated α-synuclein (p-α-syn) and insoluble α-syn within SNc in adeno-associated virus (AAV)-mediated human α-syn overexpression PD model. Our comparative analysis on whole-genome transcriptome profiles suggests that STING might be a key target of WA and amantadine in PD treatment. This study highlights a multifaceted role for WA in neuroprotection, and suggests that WA can be a potential candidate for treatment of PD.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Bingbing Guo
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Yun Zhao
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China.
- Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China.
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China.
| |
Collapse
|
14
|
Patrick AT, He W, Madu J, Sripathi SR, Choi S, Lee K, Samson FP, Powell FL, Bartoli M, Jee D, Gutsaeva DR, Jahng WJ. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 2021; 19:829-848. [PMID: 33520806 DOI: 10.1007/s40200-020-00570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Purpose The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models. Methods We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used. Results We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue. Conclusions Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.
Collapse
Affiliation(s)
- Ambrose Teru Patrick
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI USA
| | - Joshua Madu
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Srinivas R Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seulggie Choi
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kook Lee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Faith Pwaniyibo Samson
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA USA
| | - Manuela Bartoli
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Donghyun Jee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Diana R Gutsaeva
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
15
|
Schneider R, Leven P, Glowka T, Kuzmanov I, Lysson M, Schneiker B, Miesen A, Baqi Y, Spanier C, Grants I, Mazzotta E, Villalobos‐Hernandez E, Kalff JC, Müller CE, Christofi FL, Wehner S. A novel P2X2-dependent purinergic mechanism of enteric gliosis in intestinal inflammation. EMBO Mol Med 2021; 13:e12724. [PMID: 33332729 PMCID: PMC7799361 DOI: 10.15252/emmm.202012724] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
Enteric glial cells (EGC) modulate motility, maintain gut homeostasis, and contribute to neuroinflammation in intestinal diseases and motility disorders. Damage induces a reactive glial phenotype known as "gliosis", but the molecular identity of the inducing mechanism and triggers of "enteric gliosis" are poorly understood. We tested the hypothesis that surgical trauma during intestinal surgery triggers ATP release that drives enteric gliosis and inflammation leading to impaired motility in postoperative ileus (POI). ATP activation of a p38-dependent MAPK pathway triggers cytokine release and a gliosis phenotype in murine (and human) EGCs. Receptor antagonism and genetic depletion studies revealed P2X2 as the relevant ATP receptor and pharmacological screenings identified ambroxol as a novel P2X2 antagonist. Ambroxol prevented ATP-induced enteric gliosis, inflammation, and protected against dysmotility, while abrogating enteric gliosis in human intestine exposed to surgical trauma. We identified a novel pathogenic P2X2-dependent pathway of ATP-induced enteric gliosis, inflammation and dysmotility in humans and mice. Interventions that block enteric glial P2X2 receptors during trauma may represent a novel therapy in treating POI and immune-driven intestinal motility disorders.
Collapse
Affiliation(s)
| | | | - Tim Glowka
- Department of SurgeryUniversity of BonnBonnGermany
| | | | | | | | - Anna Miesen
- Department of SurgeryUniversity of BonnBonnGermany
| | - Younis Baqi
- Faculty of ScienceDepartment of ChemistrySultan Qaboos UniversityMuscatOman
- Pharmaceutical InstitutePharmaceutical & Medical ChemistryUniversity of BonnBonnGermany
| | - Claudia Spanier
- Pharmaceutical InstitutePharmaceutical & Medical ChemistryUniversity of BonnBonnGermany
| | - Iveta Grants
- Department of AnesthesiologyWexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Elvio Mazzotta
- Department of AnesthesiologyWexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | | | - Jörg C Kalff
- Department of SurgeryUniversity of BonnBonnGermany
| | - Christa E Müller
- Pharmaceutical InstitutePharmaceutical & Medical ChemistryUniversity of BonnBonnGermany
| | - Fedias L Christofi
- Department of AnesthesiologyWexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Sven Wehner
- Department of SurgeryUniversity of BonnBonnGermany
| |
Collapse
|
16
|
Ram N, Peak SL, Perez AR, Jinwal UK. Implications of Withaferin A in neurological disorders. Neural Regen Res 2021; 16:304-305. [PMID: 32859786 PMCID: PMC7896225 DOI: 10.4103/1673-5374.290894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Natasha Ram
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Stephanie L Peak
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Andres R Perez
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Umesh K Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
17
|
Alqawlaq S, Livne-Bar I, Williams D, D'Ercole J, Leung SW, Chan D, Tuccitto A, Datti A, Wrana JL, Corbett AH, Schmitt-Ulms G, Sivak JM. An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. J Biol Chem 2021; 296:100118. [PMID: 33234594 PMCID: PMC7948738 DOI: 10.1074/jbc.ra120.015389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Joseph D'Ercole
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Darren Chan
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandro Datti
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
19
|
Tackling Chronic Inflammation with Withanolide Phytochemicals-A Withaferin a Perspective. Antioxidants (Basel) 2020; 9:antiox9111107. [PMID: 33182809 PMCID: PMC7696210 DOI: 10.3390/antiox9111107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory diseases are considered to be one of the biggest threats to human health. Most prescribed pharmaceutical drugs aiming to treat these diseases are characterized by side-effects and negatively affect therapy adherence. Finding alternative treatment strategies to tackle chronic inflammation has therefore been gaining interest over the last few decades. In this context, Withaferin A (WA), a natural bioactive compound isolated from Withania somnifera, has been identified as a promising anti-cancer and anti-inflammatory compound. Although the majority of studies focus on the molecular mechanisms of WA in cancer models, recent evidence demonstrates that WA also holds promise as a new phytotherapeutic agent against chronic inflammatory diseases. By targeting crucial inflammatory pathways, including nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2 related factor 2 (Nrf2) signaling, WA suppresses the inflammatory disease state in several in vitro and preclinical in vivo models of diabetes, obesity, neurodegenerative disorders, cystic fibrosis and osteoarthritis. This review provides a concise overview of the molecular mechanisms by which WA orchestrates its anti-inflammatory effects to restore immune homeostasis.
Collapse
|
20
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Reyes-Mendoza J, Morales T. Prolactin treatment reduces kainic acid-induced gliosis in the hippocampus of ovariectomized female rats. Brain Res 2020; 1746:147014. [DOI: 10.1016/j.brainres.2020.147014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
|
22
|
Kim YS, Choi J, Yoon BE. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020; 9:cells9102176. [PMID: 32992620 PMCID: PMC7601502 DOI: 10.3390/cells9102176] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have revealed synaptic dysfunction to be a hallmark of various psychiatric diseases, and that glial cells participate in synapse formation, development, and plasticity. Glial cells contribute to neuroinflammation and synaptic homeostasis, the latter being essential for maintaining the physiological function of the central nervous system (CNS). In particular, glial cells undergo gliotransmission and regulate neuronal activity in tripartite synapses via ion channels (gap junction hemichannel, volume regulated anion channel, and bestrophin-1), receptors (for neurotransmitters and cytokines), or transporters (GLT-1, GLAST, and GATs) that are expressed on glial cell membranes. In this review, we propose that dysfunction in neuron-glia interactions may contribute to the pathogenesis of neurodevelopmental disorders. Understanding the mechanisms of neuron-glia interaction for synapse formation and maturation will contribute to the development of novel therapeutic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Juwon Choi
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
- Department of Nanobiomedical science, Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-41-529-6085
| |
Collapse
|
23
|
Benson CA, Powell HR, Liput M, Dinham S, Freedman DA, Ignatowski TA, Stachowiak EK, Stachowiak MK. Immune Factor, TNFα, Disrupts Human Brain Organoid Development Similar to Schizophrenia-Schizophrenia Increases Developmental Vulnerability to TNFα. Front Cell Neurosci 2020; 14:233. [PMID: 33005129 PMCID: PMC7484483 DOI: 10.3389/fncel.2020.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental genetic disorder in which maternal immune activation (MIA) and increased tumor necrosis factor-α (TNF-α) may contribute. Previous studies using iPSC-derived cerebral organoids and neuronal cells demonstrated developmental malformation and transcriptional dysregulations, including TNF receptors and their signaling genes, common to SZ patients with diverse genetic backgrounds. In the present study, we examined the significance of the common TNF receptor dysregulations by transiently exposing cerebral organoids from embryonic stem cells (ESC) and from representative control and SZ patient iPSCs to TNF. In control iPSC organoids, TNF produced malformations qualitatively similar in, but generally less pronounced than, the malformations of the SZ iPSC-derived organoids. TNF and SZ alone disrupted subcortical rosettes and dispersed proliferating Ki67+ neural progenitor cells (NPC) from the organoid ventricular zone (VZ) into the cortical zone (CZ). In the CZ, the absence of large ramified pan-Neu+ neurons coincided with loss of myelinated neurites despite increased cortical accumulation of O4+ oligodendrocytes. The number of calretinin+ interneurons increased; however, they lacked the preferential parallel orientation to the organoid surface. SZ and SZ+TNF affected fine cortical and subcortical organoid structure by replacing cells with extracellular matrix (ECM)-like fibers The SZ condition increased developmental vulnerability to TNF, leading to more pronounced changes in NPC, pan-Neu+ neurons, and interneurons. Both SZ- and TNF-induced malformations were associated with the loss of nuclear (n)FGFR1 form in the CZ and its upregulation in deep IZ regions, while in earlier studies blocking nFGFR1 reproduced cortical malformations observed in SZ. Computational analysis of ChiPseq and RNAseq datasets shows that nFGFR1 directly targets neurogenic, oligodendrogenic, cell migration, and ECM genes, and that the FGFR1-targeted TNF receptor and signaling genes are overexpressed in SZ NPC. Through these changes, the developing brain with the inherited SZ genome dysregulation may suffer increased vulnerability to TNF and thus, MIA.
Collapse
Affiliation(s)
- Courtney A Benson
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hana R Powell
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michal Liput
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Stem Cells Bioengineering, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Siddhartha Dinham
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - David A Freedman
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
24
|
He X, Peng L, Zhang B, Li L, Wu C, Xiao H, Yang W, Zeng Z, Yang X, Long M, Cao H, Huang S. [Establishment of a vimentin knockout and HIV-1 gp120 transgenic mouse model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:519-524. [PMID: 32895127 DOI: 10.12122/j.issn.1673-4254.2020.04.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a HIV-1 gp120 transgenic mice (gp120 Tg) with vimentin (VIM) gene knockout. METHODS Female HIV-1 gp120 Tg mice were mated to VIM heterozygote mice (F0). All the offspring mice were derived from these original founders so that both genotypes had the same mixed genetic background. The F1 mice were bred to generate of VIM+/+, VIM-/-, VIM+/+/gp120 Tg and VIM-/-/gp120 Tg mice. PCR was performed for genotyping of the mice, and the expressions of VIM and gp120 in the brain tissues were examined using immunoblotting. RESULTS The results of PCR showed the presence of the target bands in VIM+/+, VIM-/-, VIM+/+/gp120 Tg and VIM-/-/gp120 Tg mice. In VIM-/-/gp120 Tg mice, gp120 expression was detected throughout the brain regions while no VIM expression was detected. CONCLUSIONS We generated gp120 transgenic mouse models with VIM gene knockout, which facilitate the exploration of the role of VIM in gp120-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liang Peng
- Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles 90027, USA
| | - Bao Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles 90027, USA
| | - Chunhua Wu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Hansen Xiao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weijun Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Min Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shenghe Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles 90027, USA
| |
Collapse
|
25
|
Kim C, Livne-Bar I, Gronert K, Sivak JM. Fair-Weather Friends: Evidence of Lipoxin Dysregulation in Neurodegeneration. Mol Nutr Food Res 2020; 64:e1801076. [PMID: 31797529 DOI: 10.1002/mnfr.201801076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)-metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega-6 PUFA. In addition to well-established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.
Collapse
Affiliation(s)
- Changmo Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Izhar Livne-Bar
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Karsten Gronert
- School of Optometry, Vision Science Program, University of California Berkeley, Berkeley, CA, 94720
- Infectious Disease and Immunity, University of California Berkeley, Berkeley, CA, 94720
| | - Jeremy M Sivak
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| |
Collapse
|
26
|
Dai SX, Wang Y, Lin LF, Yuan TM. [Effect of PR-957 on the formation of A1 reactive astrocytes]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1110-1115. [PMID: 31753094 PMCID: PMC7389308 DOI: 10.7499/j.issn.1008-8830.2019.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the effect of PR-957 on the formation of A1 reactive astrocytes. METHODS The cerebral cortices of 1-day-old female rats were obtained and cultured for primary astrocytes. These cells were divided into 3 groups: control, lipopolysaccharide (LPS), and LPS+PR-957. The LPS group was treated with LPS (at a concentration of 5 μmol/L) for 48 hours; the LPS+PR-957 group was treated with PR-957 (at a final concentration of 200 nmol/L) for 1 hour and then LPS for 48 hours. Enzyme-linked immunosorbent assay was used to determine the expression of complement 3 (C3, a marker for A1 reactive astrocytes) and tumor necrosis factor alpha (TNF-α). Quantitative real-time PCR was used to determine the relative mRNA expression of glypican-6 (GPC6), SPARC-like 1 (SPARCL1), and lipocalin-2 (LCN2). All the above experiments were repeated three times independently. RESULTS C3 expression was almost not observed in the control group, but was observed in both the LPS group and the LPS+PR-957 group, with significantly lower expression observed in the LPS+PR-957 group (P<0.05). The expression of TNF-α was consistent with that of C3. Compared with the control group, the LPS and the PS+PR-957 groups had significantly reduced mRNA expression levels of GPC6 and SPARCL1 but significantly increased mRNA expression level of LCN2 (P<0.001). Compared with the LPS group, the LPS+PR-957 group had significantly increased mRNA expression levels of GPC6 and SPARCL1 but significantly reduced mRNA expression level of LCN2 (P<0.001). CONCLUSIONS LPS can induce the transformation from astrocytes to A1 reactive astrocytes, and PR-957 can inhibit the formation of LPS-induced A1 reactive astrocytes.
Collapse
Affiliation(s)
- Shu-Xin Dai
- Department of Neonatology, Children's Hospital of Zhejiang University, Hangzhou 310003, China.
| | | | | | | |
Collapse
|
27
|
Wang S, Li J, Wang T, Bai J, Zhang YL, Lin QY, Li JM, Zhao Q, Guo SB, Li HH. Ablation of Immunoproteasome β5i Subunit Suppresses Hypertensive Retinopathy by Blocking ATRAP Degradation in Mice. Mol Ther 2019; 28:279-292. [PMID: 31636038 DOI: 10.1016/j.ymthe.2019.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation is associated with retinal diseases. Our recent data demonstrate that immunoproteasome catalytic subunit β2i contributes to angiotensin II (Ang II)-induced retinopathy in mice. Here, we investigated the role of another catalytic subunit β5i in regulating retinopathy and its underlying mechanisms. We induced a murine model of retinopathy by infusing Ang II (3,000 ng/kg/min) for 3 weeks into wild-type (WT) mice, β5i-knockout (KO) mice, or WT mice injected with either adenovirus-expressing β5i (Ad-β5i) or angiotensin II type 1 receptor (AT1R)-associated protein (Ad-ATRAP), which inhibits AT1R. The β5i expression and chymotrypsin-like activity were most significantly elevated in Ang II-infused retinas and serum from patients with hypertensive retinopathy. Moreover, Ang II infusion-induced retinopathy was markedly attenuated in β5i-KO mice but aggravated in Ad-β5i-injected mice. Accordingly, β5i KO markedly restored Ang II-induced downregulation of ATRAP and activation of AT1R downstream mediators, which was further enhanced in Ad-β5i-injected mice. Interestingly, overexpression of ATRAP significantly abrogated Ang II-induced retinopathy in Ad-β5i-injected mice. This study found that β5i promoted Ang II-induced retinopathy by promoting ATRAP degradation and activation of AT1R-mediated signals.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China.
| | - Jing Li
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Tong Wang
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jing-Min Li
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Qi Zhao
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Shu-Bin Guo
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
28
|
Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ1-40-injected mouse model of Alzheimer's disease. Cytotherapy 2019; 21:671-682. [DOI: 10.1016/j.jcyt.2019.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023]
|
29
|
Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: Induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res 2018; 183:88-97. [PMID: 30447198 DOI: 10.1016/j.exer.2018.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John G Flanagan
- School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
EphrinB/EphB forward signaling in Müller cells causes apoptosis of retinal ganglion cells by increasing tumor necrosis factor alpha production in rat experimental glaucomatous model. Acta Neuropathol Commun 2018; 6:111. [PMID: 30355282 PMCID: PMC6201539 DOI: 10.1186/s40478-018-0618-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/12/2018] [Indexed: 01/26/2023] Open
Abstract
It was previously shown that EphB/ephrinB reverse signaling in retinal ganglion cells (RGCs) is activated and involved in RGC apoptosis in a rat chronic ocular hypertension (COH) model. In the present work, we first show that ephrinB/EphB forward signaling was activated in COH retinas, and RGC apoptosis in COH retinas was reduced by PP2, an inhibitor of ephrinB/EphB forward signaling. We further demonstrate that treatment of cultured Müller cells with ephrinB1-Fc, an EphB1 activator, or intravitreal injection of ephrinB1-Fc in normal rats induced an increase in phosphorylated EphB levels in these cells, indicating the activation of ephrinB/EphB forward signaling, similar to those in COH retinas. The ephrinB1-Fc treatment did not induce Müller cell gliosis, as evidenced by unchanged GFAP expression, but significantly up-regulated mRNA and protein levels of tumor necrosis factor-α (TNF-α) in Müller cells, thereby promoting RGC apoptosis. Production of TNF-α induced by the activation of ephrinB/EphB forward signaling was mediated by the NR2B subunit of NMDA receptors, which was followed by a distinct PI3K/Akt/NF-κB signaling pathway, as pharmacological interference of each step of this pathway caused a reduction of TNF-α production, thus attenuating RGC apoptosis. Functional analysis of forward and reverse signaling in such a unique system, in which ephrin and Eph exist respectively in a glial element and a neuronal element, is of theoretical importance. Moreover, our results also raise a possibility that suppression of ephrinB/EphB forward signaling may be a new strategy for ameliorating RGC apoptosis in glaucoma.
Collapse
|
31
|
Qi J, Xian XH, Li L, Zhang M, Hu YY, Zhang JG, Li WB. Sulbactam Protects Hippocampal Neurons Against Oxygen-Glucose Deprivation by Up-Regulating Astrocytic GLT-1 via p38 MAPK Signal Pathway. Front Mol Neurosci 2018; 11:281. [PMID: 30158854 PMCID: PMC6104165 DOI: 10.3389/fnmol.2018.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Sulbactam is an atypical β-lactam medication and reported to be neuroprotective by up-regulating glial glutamate transporter-1 (GLT-1) in rats. The present study was undertaken to study the role of p38 MAPK signal pathway in sulbactam induced up-regulation of GLT-1 expression in astrocytes and anti-ischemic effect. Neuron-astrocyte co-cultures and astrocyte cultures from neonatal Wistar rats were used. Cerebral ischemia was mimicked by oxygen-glucose deprivation (OGD). Hoechst (HO)/propidium iodide (PI) double fluorescence staining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay were used to evaluate neuronal death and cell viability, respectively. Immunocytochemistry and Western blot were used to detect protein expressions. Sulbactam pre-incubation significantly and dose-dependently prevented neuronal death and decline in cell viability induced by OGD in neuron-astrocyte co-cultures, and upregulated GLT-1 expression in astrocyte cultures endured OGD, which suggested that sulbactam might protect neurons against OGD by up-regulating astrocytic GLT-1 expression. It was further shown that the phosphorylated-p38 MAPK expression in astrocytes was up-regulated after the sulbactam pre-incubation and this up-regulation was moderate in amplitude. Especially, the time course of the up-regulation of phosphorylated-p38 MAPK was obviously earlier than that of GLT-1, which suggested possibility that p38 MAPK might be an upstream signal for GLT-1 up-regulation induced by sulbactam. We further found that SB203580, the specific inhibitor of p38 MAPK, dose-dependently inhibited the GLT-1 up-regulation induced by sulbactam either in non- or OGD-treated astrocytes and the protective effect of sulbactam on co-cultured neurons against OGD. Taken together, it might be concluded that sulbactam protects cerebral neurons against OGD by up-regulating astrocytic GLT-1 expression via p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Jie Qi
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Li Li
- Department of Science and Technology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Center, Hebei Medical University, Shijiazhuang, China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Center, Hebei Medical University, Shijiazhuang, China.,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
32
|
Oxygen-Induced Retinopathy from Recurrent Intermittent Hypoxia Is Not Dependent on Resolution with Room Air or Oxygen, in Neonatal Rats. Int J Mol Sci 2018; 19:ijms19051337. [PMID: 29724000 PMCID: PMC5983662 DOI: 10.3390/ijms19051337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Preterm infants often experience intermittent hypoxia (IH) with resolution in room air (RA) or hyperoxia (Hx) between events. Hypoxia is a major inducer of vascular endothelial growth factor, which plays a key role in normal and aberrant retinal angiogenesis. This study tested the hypothesis that neonatal IH which resolved with RA is less injurious to the immature retina than IH resolved by Hx between events. Newborn rats were exposed to: (1) Hx (50% O2) with brief hypoxia (12% O2); (2) RA with 12% O2; (3) Hx with RA; (4) Hx only; or (5) RA only, from P0 to P14. Pups were examined at P14 or placed in RA until P21. Retinal vascular and astrocyte integrity; retinal layer thickness; ocular and systemic biomarkers of angiogenesis; and somatic growth were determined at P14 and P21. All IH paradigms resulted in significant retinal vascular defects, disturbances in retinal astrocyte template, retinal thickening, and photoreceptor damage concurrent with elevations in angiogenesis biomarkers. These data suggest that the susceptibility of the immature retina to changes in oxygen render no differences in the outcomes between RA or O2 resolution. Interventions and initiatives to curtail O2 variations should remain a high priority to prevent severe retinopathy.
Collapse
|
33
|
Guo X, Jiang Q, Tuccitto A, Chan D, Alqawlaq S, Won GJ, Sivak JM. The AMPK-PGC-1α signaling axis regulates the astrocyte glutathione system to protect against oxidative and metabolic injury. Neurobiol Dis 2018; 113:59-69. [PMID: 29438738 DOI: 10.1016/j.nbd.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/10/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Neurons are highly sensitive to metabolic and oxidative injury, but endogenous astrocyte mechanisms have a critical capacity to provide protection from these stresses. We previously reported that the master regulator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) is necessary for retinal astrocytes to mount effective injury responses, with particular regard to oxidative stress. Yet, this pathway has not been well studied in glia. PGC-1α is a transcriptional co-activator that is dysregulated in a variety of neurodegenerative diseases. It functions as a master regulator of cellular bioenergetics, with the ability to regulate tissue specific responses. A key inducer of PGC-1α signaling is adenosine monophosphate-activated kinase (AMPK). Thus, the AMPK-PGC-1α signaling axis coordinates metabolic and oxidative damage responses in the central nervous system (CNS). Here we report that AMPK selectively regulates expression of GCLM (glutamate cysteine ligase modulatory subunit) in astrocytes, but not neurons, through PGC-1α activation. Glutamate cysteine ligase (GCL) is the rate limiting enzyme in the biosynthesis of glutathione (GSH); a critical antioxidant and detoxifying peptide in the CNS. Through this mechanism we describe PGC-1α-dependent induction of GSH synthesis and antioxidant activity in astrocytes, and in the rodent retina in vivo. Furthermore, we demonstrate that therapeutic agonism of this pathway with the AMP mimetic, AICAR, rescues GSH levels in vivo, while reducing RGC death and astrocyte reactivity, following retinal ischemia/reperfusion injury. This mechanism presents a novel strategy for enhancing protective astrocyte antioxidant capacity in the CNS.
Collapse
Affiliation(s)
- Xiaoxin Guo
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Qi Jiang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Darren Chan
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Samih Alqawlaq
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gah-Jone Won
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Beharry KD, Cai CL, Ahmad T, Guzel S, Valencia GB, Aranda JV. Impact of Chronic Neonatal Intermittent Hypoxia on Severity of Retinal Damage in a Rat Model of Oxygen-Induced Retinopathy. JOURNAL OF NATURE AND SCIENCE 2018; 4:e488. [PMID: 29552637 PMCID: PMC5851484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neonatal intermittent hypoxia (IH) followed by re-oxygenation in normoxia or supplemental oxygen (IHR) increases the risk for severe retinopathy of prematurity (ROP). The exact timing for the onset of retinal damage which may guide strategic interventions during retinal development, is unknown. We tested the hypothesis that chronic exposure of the immature retina to neonatal IH induces early manifestations of retinal damage that can be utilized as key time points for strategic pharmacologic intervention. Newborn rats were exposed to IH within 2 hours of birth (P0) until P14, or allowed to recover in room air (RA) from P14 to P21 (IHR). Retinal integrity and angiogenesis biomarkers were progressively assessed before (P0), during IH, and post IH (recovery in RA), or IHR, and compared to normoxic age-matched controls. Retinal damage occurred as early as day 3 of neonatal IH, consistent with vascular abnormalities and disturbances in the astrocytic template. These abnormalities worsened during IHR. Pharmacologic and non-pharmacologic interventions to identify, prevent, or minimize neonatal IH should be implemented shortly after birth in high risk preterm newborns. This strategy may lead to a reduction in the outcome of severe ROP requiring later invasive treatments.
Collapse
Affiliation(s)
- Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
- Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
- State University of New York Eye Institute, New York, NY10062, USA
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
| | - Taimur Ahmad
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
| | - Sibel Guzel
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
| | - Gloria B. Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
- Department of Ophthalmology; State University of New York, Downstate Medical Center, Brooklyn, NY11203, USA
- State University of New York Eye Institute, New York, NY10062, USA
| |
Collapse
|
35
|
Livne-Bar I, Wei J, Liu HH, Alqawlaq S, Won GJ, Tuccitto A, Gronert K, Flanagan JG, Sivak JM. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. J Clin Invest 2017; 127:4403-4414. [PMID: 29106385 DOI: 10.1172/jci77398] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Astrocytes perform critical non-cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Wei
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Hsin-Hua Liu
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Samih Alqawlaq
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gah-Jone Won
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - John G Flanagan
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Jeremy M Sivak
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|