1
|
Meléndez DC, Laniewski N, Jusko TA, Qiu X, Paige Lawrence B, Rivera-Núñez Z, Brunner J, Best M, Macomber A, Leger A, Kannan K, Miller RK, Barrett ES, O'Connor TG, Scheible K. In utero exposure to per - and polyfluoroalkyl substances (PFAS) associates with altered human infant T helper cell development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317489. [PMID: 39606350 PMCID: PMC11601683 DOI: 10.1101/2024.11.18.24317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Environmental exposures to chemical toxicants during gestation and infancy can dysregulate multiple developmental processes, causing lifelong effects. There is compelling evidence of PFAS-associated immunotoxicity in adults and children. However, the effect of developmental PFAS exposure on infant T-cell immunity is unreported, and, if present, could be implicated in immune-related health outcomes. Objectives We seek to model longitudinal changes in CD4+ T-cell subpopulations from birth through 12 months and their association with in-utero PFAS exposure and postnatal CD4+ T-cell frequencies and functions. Methods Maternal-infant dyads were recruited as part of the UPSIDE-ECHO cohort during the first trimester between 2015 and 2019 in Rochester, New York; dyads were followed through the infant's first birthday. Maternal PFAS concentrations (PFOS, PFOA, PFNA, and PFHXS) were quantified in serum during the second trimester using high-performance liquid chromatography and tandem mass spectrometry. Infant lymphocyte frequencies were assessed at birth, 6- and 12-months using mass cytometry and high-dimensional clustering methods. Linear mixed-effects models were employed to analyze the relationship between maternal PFAS concentrations and CD4+ T-cell subpopulations (n=200). All models included a PFAS and age interaction and were adjusted for parity, infant sex, and pre-pregnancy body mass index. Results In-utero PFAS exposure correlated with multiple CD4+ T-cell subpopulations in infants. The greatest effect sizes were seen in T-follicular helper (Tfh) and T-helper 2 (Th2) cells at 12 months. A log 2 -unit increase in PFOS was associated with lower Tfh [0.17% (95%CI: -0.30, -0.40)] and greater Th2 [0.27% (95%CI: 0.18, 0.35)] cell percentages at 12 months. Similar trends were observed for PFOA, PFNA, and PFHXS. Discussion Maternal PFAS exposures correlate with cell-specific changes in the infant T-cell compartment, including key CD4+ T-cell subpopulations that play central roles in coordinating well-regulated, protective immunity. Future studies into the role of PFAS-associated T-cell distribution and risk of adverse immune-related health outcomes in children are warranted.
Collapse
|
2
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
3
|
Abdelwahab OA, Mechi A, Gahlan S, Hamadein FE, Kadhim H, Ismail D, Soliman Y, El-Samahy M. Efficacy and safety of mycophenolate mofetil in patients with immune thrombocytopenic purpura: a systematic review and meta-analysis. Clin Rheumatol 2024; 43:621-632. [PMID: 37981614 PMCID: PMC10834632 DOI: 10.1007/s10067-023-06820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Immune thrombocytopenic purpura (ITP) is a challenging disease in its presentation and management as it may cause life-threatening hemorrhaging in vital organs and may resist several lines of treatment. This systematic review and meta-analysis aimed to evaluate the safety and efficacy of mycophenolate mofetil (MMF) in treating patients with ITP. METHODS We systematically searched four electronic databases (PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials) from inception until 10 October 2022. We included all clinical trials, either controlled or single arm, and prospective and retrospective observational studies that evaluate the efficacy and safety of MMF in patients with ITP. We assessed the risk of bias using three tools (ROBINS-I, Cochrane ROB-2, and NIH), each for eligible study design. RESULTS Nine studies were included in this meta-analysis, with a total of 411 patients with ITP. We found that MMF demonstrated an overall response rate of (62.09%; 95% CI = [43.29 to 77.84]) and the complete response rate was (46.75%; 95% CI = [24.84 to 69.99]). The overall proportion of adverse events was (12%; 95% CI = [6 to 24]). After the sensitivity analysis, the overall response rate became 50%; 95% CI = [38 to 63]) and the complete response rate became (32%; 95% CI = [24 to 42]). However, MMF did not appear to affect white blood cell counts or hemoglobin levels significantly. CONCLUSION This systematic review and meta-analysis demonstrate that MMF appears to be an effective and relatively safe treatment option for patients with ITP when combined with steroids and even in those who have not responded to standard therapies (steroid-resistant cases). Further research with well-designed studies is warranted to better understand the factors influencing treatment response and to refine the use of MMF in the management of ITP. An interactive version of our analysis can be accessed from here: https://databoard.shinyapps.io/mycophenolate_meta/.
Collapse
Affiliation(s)
- Omar Ahmed Abdelwahab
- Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt.
- Medical Research Group of Egypt, Cairo, Egypt.
| | - Ahmed Mechi
- Medical Research Group of Egypt, Cairo, Egypt
- Internal Medicine Department, Medicine College, University of Kufa, Najaf, Iraq
| | - Shereen Gahlan
- Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
- Medical Research Group of Egypt, Cairo, Egypt
| | | | - Hallas Kadhim
- Medical Research Group of Egypt, Cairo, Egypt
- College of Medicine, Al-Muthanna University, Samawah, Iraq
| | - Doaa Ismail
- Medical Research Group of Egypt, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Youssef Soliman
- Medical Research Group of Egypt, Cairo, Egypt
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed El-Samahy
- Medical Research Group of Egypt, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| |
Collapse
|
4
|
Liu M, Guo P, Zeng M, Zhang Y, Jia J, Liu Y, Chen X, Kuang H, Feng W, Zheng X. Effects and mechanisms of frehmaglutin D and rehmaionoside C improve LPS-induced acute kidney injury through the estrogen receptor-mediated TLR4 pathway in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155218. [PMID: 37980806 DOI: 10.1016/j.phymed.2023.155218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (S-AKI) is an inflammatory disease with sex differences and there has no effective drugs to cure it. Frehmaglutin D (Fre D) and rehmaionoside C (Reh C) are two violetone compounds with estrogenic activity isolated from Rehmannia glutinosa. However, whether these two drugs exert protective effects on S-AKI through their estrogen-like activity are unclear. PURPOSE This study aimed to explore the effects and mechanisms of Fre D and Reh C on lipopolysaccharide (LPS)-induced S-AKI through the estrogen receptor pathway in vivo and in vitro and to explore the interaction between ER and TLR4 for the first time. METHODS The LPS-induced female BALB/c mice S-AKI mouse model was established by adding the estrogen receptor antagonist ICI182,780. Renal function, inflammation, oxidative stress, apoptosis, immune cells, and expression of key proteins of the ER-TLR4-IL-1β pathway were tested. The affinity of Fre D and Reh C for the ER was investigated by molecular docking. Then, an in vitro S-AKI model was established, and ERα/ERβ antagonists (MPP/PHTPP) were added and combined with gene overexpression techniques. The interaction between ER and TLR4 was further explored by Co-IP, GST pull-down and SPR techniques. RESULTS Fre D and Reh C ameliorated LPS-induced renal damage, inflammation in mice, regulated the immune cells, decreased ROS levels, increased ERα and ERβ protein expression, and decreased TLR4, caspase 11 and IL-1β protein expression. These effects were blocked by ICI182,780. Molecular docking results showed that Fre D and Reh C bound ERα and ERβ with similar potency. The results of in vitro suggested that Fre D and Reh C reduced the levels of inflammation, ROS and apoptosis, TLR4, caspase 11, and IL-1β protein expression and increased ERα/ERβ protein expression in cells. All of these effects were reversed by the addition of MPP/PHTPP and further enhanced after ERα/ERβ gene overexpression with no significant difference in effects. Moreover, there was an indirect or direct interaction between ER and TLR4, and the binding of ERα and ERβ to TLR4 was concentration dependent. CONCLUSION Fre D and Reh C may improve S-AKI through the ER-TLR4-IL-1β pathway and may act on both ERα and ERβ receptors. Moreover, ERα and ERβ may interact directly or indirectly with TLR4, which was studied for the first time.
Collapse
Affiliation(s)
- Meng Liu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150000, Heilongjiang, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Pengli Guo
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Mengnan Zeng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yuhan Zhang
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Jufang Jia
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yanling Liu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xu Chen
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150000, Heilongjiang, China
| | - Weisheng Feng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Xiaoke Zheng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Naik A, Leask A. Tumor-Associated Fibrosis Impairs the Response to Immunotherapy. Matrix Biol 2023; 119:125-140. [PMID: 37080324 DOI: 10.1016/j.matbio.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Previously, impaired responses to immunotherapy in cancer had been attributed mainly to inherent tumor characteristics (tumor cell intrinsic factors) such as low immunogenicity, (low) mutational burden, weak host immune system, etc. However, mapping the responses of immunotherapeutic regimes in clinical trials for different types of cancer has pointed towards an obvious commonality - that tumors with a rich fibrotic stroma respond poorly or not at all. This has prompted a harder look on tumor cell extrinsic factors such as the surrounding tumor microenvironment (TME), and specifically, the fibrotic stroma as a potential enabler of immunotherapy failure. Indeed, the role of cancer-associated fibrosis in impeding efficacy of immunotherapy is now well-established. In fact, recent studies reveal a complex interconnection between fibrosis and treatment efficacy. Accordingly, in this review we provide a general overview of what a tumor associated fibrotic reaction is and how it interacts with the members of immune system that are frequently seen to be modulated in a failed immunotherapeutic regime.
Collapse
Affiliation(s)
- Angha Naik
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
9
|
Steen EA, Nichols KE, Meyer LK. Insights into the cellular pathophysiology of familial hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1147603. [PMID: 36969228 PMCID: PMC10033680 DOI: 10.3389/fimmu.2023.1147603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) encompasses a group of rare inherited immune dysregulation disorders characterized by loss-of-function mutations in one of several genes involved in the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. The resulting defect in cytotoxicity allows these cells to be appropriately stimulated in response to an antigenic trigger, and also impairs their ability to effectively mediate and terminate the immune response. Consequently, there is sustained lymphocyte activation, resulting in the secretion of excessive amounts of pro-inflammatory cytokines that further activate other cells of the innate and adaptive immune systems. Together, these activated cells and pro-inflammatory cytokines mediate tissue damage that leads to multi-organ failure in the absence of treatment aimed at controlling hyperinflammation. In this article, we review these mechanisms of hyperinflammation in fHLH at the cellular level, focusing primarily on studies performed in murine models of fHLH that have provided insight into how defects in the lymphocyte cytotoxicity pathway mediate rampant and sustained immune dysregulation.
Collapse
Affiliation(s)
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Lauren K. Meyer
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Lauren K. Meyer,
| |
Collapse
|
10
|
De Azevedo J, Mourtada J, Bour C, Devignot V, Schultz P, Borel C, Pencreach E, Mellitzer G, Gaiddon C, Jung AC. The EXTREME Regimen Associating Cetuximab and Cisplatin Favors Head and Neck Cancer Cell Death and Immunogenicity with the Induction of an Anti-Cancer Immune Response. Cells 2022; 11:cells11182866. [PMID: 36139440 PMCID: PMC9496761 DOI: 10.3390/cells11182866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: The first line of treatment for recurrent/metastatic Head and Neck Squamous Cell Carcinoma (HNSCC) has recently evolved with the approval of immunotherapies that target the anti-PD-1 immune checkpoint. However, only about 20% of the patients display a long-lasting objective tumor response. The modulation of cancer cell immunogenicity via a treatment-induced immunogenic cell death is proposed to potentially be able to improve the rate of patients who respond to immune checkpoint blocking immunotherapies. (2) Methods: Using human HNSCC cell line models and a mouse oral cancer syngeneic model, we have analyzed the ability of the EXTREME regimen (combination therapy using the anti-EGFR cetuximab antibody and platinum-based chemotherapy) to modify the immunogenicity of HNSCC cells. (3) Results: We showed that the combination of cetuximab and cisplatin reduces cell growth through both cell cycle inhibition and the induction of apoptotic cell death independently of p53. In addition, different components of the EXTREME regimen were found to induce, to a variable extent, and in a cell-dependent manner, the emission of mediators of immunogenic cell death, including calreticulin, HMGB1, and type I Interferon-responsive chemokines. Interestingly, cetuximab alone or combined with the IC50 dose of cisplatin can induce an antitumor immune response in vivo, but not when combined with a high dose of cisplatin. (4) Conclusions: Our observations suggest that the EXTREME protocol or cetuximab alone are capable, under conditions of moderate apoptosis induction, of eliciting the mobilization of the immune system and an anti-tumor immune response in HNSCC.
Collapse
Affiliation(s)
- Justine De Azevedo
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Jana Mourtada
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Cyril Bour
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Véronique Devignot
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Philippe Schultz
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
- Department of Otorhinolaryngology and Head and Neck Surgery, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France
| | - Christian Borel
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Erwan Pencreach
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France
| | - Georg Mellitzer
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Christian Gaiddon
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
- Correspondence: (C.G.); (A.C.J.)
| | - Alain C. Jung
- Laboratory Streinth, Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
- Correspondence: (C.G.); (A.C.J.)
| |
Collapse
|
11
|
Hartel JC, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol 2022; 13:1002915. [PMID: 36176439 PMCID: PMC9513432 DOI: 10.3389/fphar.2022.1002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of proper resolution of inflammation rather than counteracting it, gained a lot of attention in the past few years. Re-assembly of tissue and cell homeostasis as well as establishment of adaptive immunity after inflammatory processes are the key events of resolution. Neutrophiles and macrophages are well described as promotors of resolution, but the role of T cells is poorly reviewed. It is also broadly known that sphingolipids and their imbalance influence membrane fluidity and cell signalling pathways resulting in inflammation associated diseases like inflammatory bowel disease (IBD), atherosclerosis or diabetes. In this review we highlight the role of sphingolipids in T cells in the context of resolution of inflammation to create an insight into new possible therapeutical approaches.
Collapse
Affiliation(s)
- Jennifer Christina Hartel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Department of Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadine Merz
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- *Correspondence: Sabine Grösch,
| |
Collapse
|
12
|
The short-term predictive value of CD4 + cells for combination therapy with high-dose dexamethasone and immunoglobulin in newly diagnosed primary immune thrombocytopenia patients. Thromb Res 2022; 218:157-168. [PMID: 36054980 DOI: 10.1016/j.thromres.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Dexamethasone (DXM) or immunoglobulin (IVIg) are first-line therapies for primary immune thrombocytopenia (ITP), with an effective rate of 80 %. Some patients with both severe bleeding symptoms and platelet counts of <30 × 109/L received a combination of DXM and IVIg. Autoimmune disorders, especially involving CD4+ T-cells, play a key role in the pathogenesis of ITP. We assumed that variations in the immune status of CD4+ T-cells will lead to different treatment responses. Until now, there have been few relevant clinical studies on CD4+ T-cells and the outcome of first-line therapies. METHODS A prospective study enrolling 42 newly diagnosed ITP patients and 30 normal control volunteers was performed. The profiles of major CD4+ T-cells, including T helper (Th)1, Th2, Th17, and regulatory T (Treg) cells, and the related levels of interleukin (IL)-2, IL-17, and IL-23 were examined. The platelet number was recorded at the time point of day 0, day 14, and day 30. RESULTS Greater concentrations of Th1 and Th17 cells and lower relative numbers of Treg cells were found in the ITP group. As for the treatment outcome on day 14, the profiles of Th2 and IL-2 were significantly greater in the NR group, while the expression of IL-17 was elevated in the CR group. As for the treatment outcome on day 30, higher levels of Th2 cells were observed in those patients who needed 2× pulses of HD DXM compared to those who needed only 1× pulse of HD DXM and IVIg, and receiver operating characteristic curve analysis showed that lower Treg cell may predict favorable values. Meanwhile, the higher IL-23 value may predict a poor early response. CONCLUSIONS Our results indicate that Th1, Th17, and Treg cells and IL-2 and IL-23 participate in the onset of ITP. Higher profiles of Th2, IL-2 and IL-23 may predict poor treatment outcomes. Higher levels of IL-17 and lower profile of Treg may predict sensitivity to HD DXM and IVIg combination therapy.
Collapse
|
13
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
14
|
Premkumar K, Shankar BS. Identification of EPZ004777 and FG2216 as inhibitors of TGF-β1 induced Treg cells by screening a library of epigenetic compounds. Life Sci 2022; 301:120643. [DOI: 10.1016/j.lfs.2022.120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
15
|
Star P, Jackett LA, Cheung K, Wilmott JS, Ho G, Smith A, Long GV, Scolyer RA, Martin LK. Multiple eruptive squamoproliferative lesions during
anti‐PD1
immunotherapy for metastatic melanoma: pathogenesis, immunohistochemical analysis and treatment. Dermatol Ther 2022; 35:e15472. [DOI: 10.1111/dth.15472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Phoebe Star
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
| | - Louise A. Jackett
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
- Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital and NSW Health Pathology Sydney New South Wales Australia
| | - Karen Cheung
- Skin & Cancer Foundation Australia / Douglass Hanly Moir Pathology Darlinghurst New South Wales Australia
| | - James S. Wilmott
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
| | - Genevieve Ho
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
| | - Annika Smith
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
| | - Georgina V. Long
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Royal North Shore and Mater Hospitals Sydney Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
- Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital and NSW Health Pathology Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Linda K. Martin
- Melanoma Institute Australia The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of New South Wales Sydney Australia
| |
Collapse
|
16
|
Han L, Chen Z, Yu K, Yan J, Li T, Ba X, Lin W, Huang Y, Shen P, Huang Y, Qin K, Geng Y, Liu Y, Wang Y, Tu S. Interleukin 27 Signaling in Rheumatoid Arthritis Patients: Good or Evil? Front Immunol 2022; 12:787252. [PMID: 35058928 PMCID: PMC8764250 DOI: 10.3389/fimmu.2021.787252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence and development of rheumatoid arthritis (RA) is regulated by numerous cytokines. Interleukin 27 (IL-27) is a soluble cytokine that exerts biological effects by regulating the Janus tyrosine kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway via the IL-27 receptor. IL-27 is known for its pleiotropic roles in modulating inflammatory responses. Previous studies found that IL-27 levels are elevated in RA blood, synovial fluid, and rheumatoid nodules. Cellular and animal experiments indicated that IL-27 exerts multiple regulatory functions in RA patients via different mechanisms. IL-27 inhibits ectopic-like structure (ELS) formation and CD4+ T helper type 2 (Th2) cell, CD4+ T helper type 17 (Th17) cell, and osteoclast differentiation in RA, contributing to alleviating RA. However, IL-27 promotes Th1 cell differentiation, which may exacerbate RA synovitis. Moreover, IL-27 also acts on RA synovial fibroblasts (RA-FLSs) and regulatory T cells (Tregs), but some of its functions are unclear. There is currently insufficient evidence to determine whether IL-27 promotes or relieves RA. Targeting IL-27 signaling in RA treatment should be deliberate based on current knowledge.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Wang Y, Li L, Li J, Zhao B, Huang G, Li X, Xie Z, Zhou Z. The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Front Cell Dev Biol 2021; 9:755691. [PMID: 34869344 PMCID: PMC8635162 DOI: 10.3389/fcell.2021.755691] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Over the past several decades, RNA modifications have rapidly emerged as an indispensable topic in epitranscriptomics. N6-methyladenosine (m6A), namely, methylation at the sixth position of an adenine base in an RNA molecule, is the most prevalent RNA modification in both coding and noncoding RNAs. m6A has emerged as a crucial posttranscriptional regulator involved in both physiological and pathological processes. Based on accumulating evidence, m6A participates in the pathogenesis of immune-related diseases by regulating both innate and adaptive immune cells through various mechanisms. Autoimmune diseases are caused by a self-destructive immune response in the setting of genetic and environmental factors, and recent studies have discovered that m6A may play an essential role in the development of autoimmune diseases. In this review, we focus on the important role of m6A modification in biological functions and highlight its contributions to immune cells and the development of autoimmune diseases, thereby providing promising epitranscriptomic targets for preventing and treating autoimmune disorders.
Collapse
Affiliation(s)
- Yimeng Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
The Immune System in Duchenne Muscular Dystrophy Pathogenesis. Biomedicines 2021; 9:biomedicines9101447. [PMID: 34680564 PMCID: PMC8533196 DOI: 10.3390/biomedicines9101447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Growing evidence demonstrates the crosstalk between the immune system and the skeletal muscle in inflammatory muscle diseases and dystrophic conditions such as Duchenne Muscular Dystrophy (DMD), as well as during normal muscle regeneration. The rising of inflammation and the consequent activation of the immune system are hallmarks of DMD: several efforts identified the immune cells that invade skeletal muscle as CD4+ and CD8+ T cells, Tregs, macrophages, eosinophils and natural killer T cells. The severity of muscle injury and inflammation dictates the impairment of muscle regeneration and the successive replacement of myofibers with connective and adipose tissue. Since immune system activation was traditionally considered as a consequence of muscular wasting, we recently demonstrated a defect in central tolerance caused by thymus alteration and the presence of autoreactive T-lymphocytes in DMD. Although the study of innate and adaptive immune responses and their complex relationship in DMD attracted the interest of many researchers in the last years, the results are so far barely exhaustive and sometimes contradictory. In this review, we describe the most recent improvements in the knowledge of immune system involvement in DMD pathogenesis, leading to new opportunities from a clinical point-of-view.
Collapse
|
19
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
20
|
Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021; 12:690375. [PMID: 34489937 PMCID: PMC8417606 DOI: 10.3389/fimmu.2021.690375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-β1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Luo MH, Qian YQ, Huang DL, Luo JC, Su Y, Wang H, Yu SJ, Liu K, Tu GW, Luo Z. Tailoring glucocorticoids in patients with severe COVID-19: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1261. [PMID: 34532398 PMCID: PMC8421952 DOI: 10.21037/atm-21-1783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To discuss the pathogenesis of severe coronavirus disease 2019 (COVID-19) infection and the pharmacological effects of glucocorticoids (GCs) toward this infection. To review randomized controlled trials (RCTs) using GCs to treat patients with severe COVID-19, and investigate whether GC timing, dosage, or duration affect clinical outcomes. Finally. to discuss the use of biological markers, respiratory parameters, and radiological evidence to select patients for improved GC therapeutic precision. BACKGROUND COVID-19 has become an unprecedented global challenge. As GCs have been used as key immunomodulators to treat inflammation-related diseases, they may play key roles in limiting disease progression by modulating immune responses, cytokine production, and endothelial function in patients with severe COVID-19, who often experience excessive cytokine production and endothelial and renin-angiotensin system (RAS) dysfunction. Current clinical trials have partially proven this efficacy, but GC timing, dosage, and duration vary greatly, with no unifying consensus, thereby creating confusion. METHODS Publications through March 2021 were retrieved from the Web of Science and PubMed. Results from cited references in published articles were also included. CONCLUSIONS GCs play key roles in treating severe COVID-19 infections. Pharmacologically, GCs could modulate immune cells, reduce cytokine and chemokine, and improve endothelial functions in patients with severe COVID-19. Benefits of GCs have been observed in multiple clinical trials, but the timing, dosage and duration vary across studies. Tapering as an option is not widely accepted. However, early initiation of treatment, a tailored dosage with appropriate tapering may be of particular importance, but evidence is inconclusive and more investigations are needed. Biological markers, respiratory parameters, and radiological evidence could also help select patients for specific tailored treatments.
Collapse
Affiliation(s)
- Ming-Hao Luo
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Qi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan-Lei Huang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shen-Ji Yu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
22
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
23
|
New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs. Cells 2021; 10:cells10040893. [PMID: 33919732 PMCID: PMC8070707 DOI: 10.3390/cells10040893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells “hijack” host immune cells to promote growth, survival, and metastasis. The immune microenvironment of high-grade gliomas (HGG) is a complex and heterogeneous system, consisting of diverse cell types such as microglia, bone marrow-derived macrophages (BMDMs), myeloid-derived suppressor cells (MDSCs), dendritic cells, natural killer (NK) cells, and T-cells. Of these, MDSCs are one of the major tumor-infiltrating immune cells and are correlated not only with overall worse prognosis but also poor clinical outcomes. Upon entry from the bone marrow into the peripheral blood, spleen, as well as in tumor microenvironment (TME) in HGG patients, MDSCs deploy an array of mechanisms to perform their immune and non-immune suppressive functions. Here, we highlight the origin, function, and characterization of MDSCs and how they are recruited and metabolically reprogrammed in HGG. Furthermore, we discuss the mechanisms by which MDSCs contribute to immunosuppression and resistance to current therapies. Finally, we conclude by summarizing the emerging approaches for targeting MDSCs alone as a monotherapy or in combination with other standard-of-care therapies to improve the current treatment of high-grade glioma patients.
Collapse
|
24
|
Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, Bujnak J, Kwon TK, Büsselberg D, Prosecky R, Caprnda M, Rodrigo L, Ciccocioppo R, Kruzliak P, Kubatka P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol 2020; 146:3137-3154. [PMID: 33063131 DOI: 10.1007/s00432-020-03424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The role of immune system in carcinogenesis represents fundamental events associated with cancer eradication; however, tumor evolution is connected with various mechanisms of tumor evasion and progression of cancer. Based on recent evidence, phytochemicals are directly associated with immunomodulation of the innate and adaptive immunity via different mechanisms of action including stimulation and amplification of immune cells, humoral compartments, and associated molecules. This comprehensive study focuses on immunomodulating potential of phytochemicals (mixture in plants or separately such as individual phytochemical) and their impact on regulation of immune response during cancer development, immune tolerance, and immune escape. Clinical application of phytochemicals as modulators of host immunity against cancer may represent perspective approach in anticancer therapy.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, Michalovce, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia.
| |
Collapse
|
25
|
Neuropilin1 Expression Acts as a Prognostic Marker in Stomach Adenocarcinoma by Predicting the Infiltration of Treg Cells and M2 Macrophages. J Clin Med 2020; 9:jcm9051430. [PMID: 32408477 PMCID: PMC7290937 DOI: 10.3390/jcm9051430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropilin1 (NRP1) plays a critical role in tumor progression and immune responses. Although the roles of NRP1 in various tumors have been investigated, the clinical relevance of NRP1 expression in stomach adenocarcinoma (STAD) has not been studied. To investigate the use of NRP1 as a prognostic biomarker of STAD, we analyzed NRP1 mRNA expression and its correlation with patient survival and immune cell infiltration using various databases. NRP1 mRNA expression was significantly higher in STAD than normal tissues, and Kaplan-Meier survival analysis showed that NRP1 expression was significantly associated with poor prognosis in patients with STAD. To elucidate the related mechanism, we analyzed the correlation between NRP1 expression and immune cell infiltration level. In particular, the infiltration of immune-suppressive cells, such as regulatory T (Treg) cells and M2 macrophage, was significantly increased by NRP1 expression. In addition, the expression of interleukin (IL)-35, IL-10, and TGF-β1 was also positively correlated with NRP1 expression, resulting in the immune suppression. Collectively in this study, our integrated analysis using various clinical databases shows that the significant correlation between NRP1 expression and the infiltration of Treg cells and M2 macrophage explains poor prognosis mechanism in STAD, suggesting the clinical relevance of NRP1 expression as a prognostic biomarker for STAD patients.
Collapse
|
26
|
Regulating T-cell differentiation through the polyamine spermidine. J Allergy Clin Immunol 2020; 147:335-348.e11. [PMID: 32407834 DOI: 10.1016/j.jaci.2020.04.037] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.
Collapse
|
27
|
Abstract
The role of dietary fiber in chronic inflammatory disorders has been explored, but very little is known about its benefits in acute inflammation. Previously, we have demonstrated that dietary cellulose supplementation confers protection in a murine model of sepsis by promoting the growth of the gut microbiota that are linked to metabolic health. The survival benefit is associated with a decrease in serum concentration of proinflammatory cytokines, reduced neutrophil infiltration in the lungs, and diminished hepatic inflammation. Here, we aim to understand if the benefit of manipulating the gut microbiome exerts a broader "systemic" influence on the immune system in a lethal murine endotoxemia model. We hypothesize that mice-fed high-fiber cellulose (HF) diet will demonstrate a reduction in activated macrophages and dendritic cells (DCs) and a concomitant increase in the suppressive capacity of T-regulatory cells (Tregs) toward T cells responsiveness. We characterized the immunological profile and activation status of macrophages, DCs, and T cells in mice on HF diet that were then subjected to endotoxemia. Supplementation with HF diet decreased the number and activation of splenic macrophages and DCs in mice after LPS administration. Similarly, HF diet amplified the suppressive function of Tregs and induced anergy in T cells as compared with mice on a regular diet. Our data suggest that the use of HF diet can be a simple, yet effective tool that decreases the hepatic DNA-binding activity of NF-κB leading to a reduction in proinflammatory cytokine response in a murine endotoxemia model.
Collapse
|
28
|
Cho H, Kang H, Kim JY, Kim HY, Kim CW. FoxP3, PD-1 and CTLA-4 are decreased significantly after a tenofovir therapy in patients with chronic hepatitis B. Future Virol 2020. [DOI: 10.2217/fvl-2019-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: FoxP3, PD-1 and CTLA-4 are upregulated in chronic viral infections, such as chronic HCV, chronic HBV and HIV infection. Materials & methods: During 1 year of tenofovir disoproxil fumarate (TDF) treatment in patients with chronic hepatitis B, we investigated the expression of FoxP3, PD-1 and CTLA-4. Peripheral blood mononuclear cells were isolated from the 30 study subjects at T0 (0 months), T3, T6 and T12 months after the commencement of TDF treatment. Results & conclusion: Expression of FoxP3, PD-1 and CTLA-4 was significantly decreased in T cells of patients with chronic hepatitis B under TDF treatment at T12, when compared with that at T0. A direct correlation was observed between FoxP3 and CTLA-4 expression in patients with chronic hepatitis B and the frequency of FoxP3 was positively associated with serum alanine aminotransferase levels.
Collapse
Affiliation(s)
- Hyosun Cho
- Department of Pharmacy, Duksung Women’s University College of Pharmacy, Seoul, Republic of Korea
- Department of Pharmacy, Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Republic of Korea
| | - Hyojeung Kang
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences & Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Y Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Hee Y Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Chang W Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Wang X, Li W, Zhu D, Zhao H, Chen P, Chen X. Characterization of human peripheral blood γδ T cells in patients with sepsis. Exp Ther Med 2020; 19:3698-3706. [PMID: 32346434 PMCID: PMC7185150 DOI: 10.3892/etm.2020.8615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
In total, 30 cases of patients undergoing health check-ups with the diagnostic criteria of sepsis were included in the present study. The clinical data of each patient with sepsis were recorded at admission. In the present study, the association between the proportion of T cells in patients with sepsis and those in a healthy condition were observed. The expression of immunosuppressive molecules on the surface of Vδ1 T cells were examined, as well as studying the secretion of inflammatory cytokines in Vδ2 T cells, and the ability of the Vδ1 T cells to inhibit the secretory level of interferon-γ (IFN-γ) and the inflammatory function of Vδ2 T cells were monitored. The inhibition of proliferation of naïve CD4 T cells by Vδ1 T cells and inflammatory function of Vδ2 T cells were examined. The number of Vδ1 T cells in the peripheral blood of patients with sepsis was significantly increased compared with healthy controls (P<0.01); the proportion of Vδ2 T cells was opposite to that of Vδ1 T cells. The Sequential Organ Failure Assessment score, survival and survival time were positively associated with Vδ1 T cell ratio (P<0.05) and negatively correlated with Vδ2 T cells. The expression of cytotoxic T-lymphocyte protein 4 and T cell immunoglobulin and mucin domain-containing protein 3 on the surface of Vδ1 T cells in the peripheral blood of patients with sepsis was significantly increased compared with the healthy controls (P<0.01), and the levels of IFN-γ and tumor necrosis factor-α secreted by Vδ2 T cells were significantly decreased (P<0.01). The immunosuppressive function of Vδ1 T cells was significantly higher, and the function of Vδ2 T cells was significantly reduced (P<0.01). The phosphorylation level of Erk1/2 in Vδ2 T cells was significantly lower (P<0.01). The present results suggested that the imbalance and functional changes of different γδ T cell subtypes in the peripheral blood of patients with sepsis are associated with sepsis, and may be involved in sepsis progression.
Collapse
Affiliation(s)
- Xiaohua Wang
- Yueqing People's Hospital Laboratory, Wenzhou, Zhejiang 325600, P.R. China
| | - Weijin Li
- Yueqing People's Hospital Laboratory, Wenzhou, Zhejiang 325600, P.R. China
| | - Dan Zhu
- Yueqing People's Hospital Laboratory, Wenzhou, Zhejiang 325600, P.R. China
| | - Hang Zhao
- Yueqing People's Hospital Laboratory, Wenzhou, Zhejiang 325600, P.R. China
| | - Pu Chen
- Yueqing People's Hospital Laboratory, Wenzhou, Zhejiang 325600, P.R. China
| | - Xiaoiun Chen
- Yueqing People's Hospital Laboratory, Wenzhou, Zhejiang 325600, P.R. China
| |
Collapse
|
30
|
Clift R, Souratha J, Garrovillo SA, Zimmerman S, Blouw B. Remodeling the Tumor Microenvironment Sensitizes Breast Tumors to Anti-Programmed Death-Ligand 1 Immunotherapy. Cancer Res 2019; 79:4149-4159. [DOI: 10.1158/0008-5472.can-18-3060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/22/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
|
31
|
Chen L, Lu Y, Zhao L, Hu L, Qiu Q, Zhang Z, Li M, Hong G, Wu B, Zhao G, Lu Z. Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of Tregs. Int Immunopharmacol 2018; 61:1-7. [PMID: 29778842 DOI: 10.1016/j.intimp.2018.04.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Sepsis is characterized by the extensive release of cytokines and other mediators. It results in a dysregulated immune response and can lead to organ damage and death. Curcumin has anti-inflammatory properties and immunoregulation functions in various disorders such as sepsis, cancer, rheumatoid arthritis, cardiovascular diseases, lung fibrosis, gallstone formation, and diabetes. This paper investigates the effects of curcumin on immune status and inflammatory response in mice subjected to cecal ligation and puncture (CLP). Inflammatory tissue injury was evaluated by histological observation. Magnetic microbeads were used to isolate splenic CD4+CD25+regulatory T cells (Tregs), and phenotypes were then analyzed by flow cytometry. The levels of Foxp3 were detected by Western blot and real-time PCR and cytokine levels were determined by enzyme-linked immunosorbent assay. We found that the administration of curcumin significantly alleviated inflammatory injury of the lung and kidney in septic mice. The suppressive function of Treg cells was enhanced and the plasma levels of IL-10 increased after treatment with curcumin. Furthermore, the secretion of plasma TNF-α and IL-6 was notably inhibited in septic mice treated with curcumin and administration with curcumin could improve survival after CLP. These data suggest that curcumin could be used as a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Longwang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Lu
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou 325000, China
| | - Linjun Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lili Hu
- Central Blood Station of Wenzhou, Wenzhou 325000, China
| | - Qiaomeng Qiu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuoling Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bing Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; College of Nursing, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
32
|
Brodie TM, Tosevski V. High‐Dimensional Single‐Cell Analysis with Mass Cytometry. ACTA ACUST UNITED AC 2018; 118:5.11.1-5.11.25. [DOI: 10.1002/cpim.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Vinko Tosevski
- University of Zurich, Mass Cytometry Facility Zurich Switzerland
| |
Collapse
|
33
|
Hibbert JE, Currie A, Strunk T. Sepsis-Induced Immunosuppression in Neonates. Front Pediatr 2018; 6:357. [PMID: 30555806 PMCID: PMC6281766 DOI: 10.3389/fped.2018.00357] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Neonates, especially those born preterm, are at increased risk of sepsis and adverse long-term effects associated with infection-related inflammation. Distinct neonatal immune responses and dysregulated inflammation are central to this unique susceptibility. The traditional separation of sepsis into an initial hyper-inflammatory response followed by hypo-inflammation is continually under review with new developments in this area of research. There is evidence to support the association of mortality in the early acute phase of sepsis with an overwhelming hyper-inflammatory immune response. Emerging evidence from adults suggests that hypo- and hyper-inflammation can occur during any phase of sepsis and that sepsis-immunosuppression is associated with increased mortality, morbidity, and risk to subsequent infection. In adults, sepsis-induced immunosuppression (SII) is characterised by alterations of innate and adaptive immune responses, including, but not limited to, a prominent bias toward anti-inflammatory cytokine secretion, diminished antigen presentation to T cells, and reduced activation and proliferation of T cells. It is unclear if sepsis-immunosuppression also plays a role in the adverse outcomes associated with neonatal sepsis. This review will focus on exploring if key characteristics associated with SII in adults are observed in neonates with sepsis.
Collapse
Affiliation(s)
- Julie E Hibbert
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia
| | - Andrew Currie
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Tobias Strunk
- Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia.,Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, WA, Australia
| |
Collapse
|
34
|
Shi W, Wei ZY, Elsheikha HM, Zhang FK, Sheng ZA, Lu KJ, Wang DY, Huang WY, Zhu XQ. Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes. Parasit Vectors 2017; 10:602. [PMID: 29216911 PMCID: PMC5721666 DOI: 10.1186/s13071-017-2538-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection. METHODS Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology. RESULTS Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3-10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host's Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis. CONCLUSIONS Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Zhi-Yong Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Ke-Jing Lu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Ying Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
35
|
Yang JH, Eun SC. Therapeutic application of T regulatory cells in composite tissue allotransplantation. J Transl Med 2017; 15:218. [PMID: 29073905 PMCID: PMC5658973 DOI: 10.1186/s12967-017-1322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
With growing number of cases in recent years, composite tissue allotransplantation (CTA) has been improving the quality of life of patient who seeks reconstruction and repair of damaged tissues. Composite tissue allografts are heterogeneous. They are composed of a variety of tissue types, including skin, muscle, vessel, bone, bone marrow, lymph nodes, nerve, and tendon. As a primary target of CTA, skin has high antigenicity with a rich repertoire of resident cells that play pivotal roles in immune surveillance. In this regard, understanding the molecular mechanisms involved in immune rejection in the skin would be essential to achieve successful CTA. Although scientific evidence has proved the necessity of immunosuppressive drugs to prevent rejection of allotransplanted tissues, there remains a lingering dilemma due to the lack of specificity of targeted immunosuppression and risks of side effects. A cumulative body of evidence has demonstrated T regulatory (Treg) cells have critical roles in induction of immune tolerance and immune homeostasis in preclinical and clinical studies. Presently, controlling immune susceptible characteristics of CTA with adoptive transfer of Treg cells is being considered promising and it has drawn great interests. This updated review will focus on a dominant form of Treg cells expressing CD4+CD25+ surface molecules and a forkhead box P3 transcription factor with immune tolerant and immune homeostasis activities. For future application of Treg cells as therapeutics in CTA, molecular and cellular characteristics of CTA and immune rejection, Treg cell development and phenotypes, Treg cell plasticity and stability, immune tolerant functions of Treg cells in CTA in preclinical studies, and protocols for therapeutic application of Treg cells in clinical settings are addressed in this review. Collectively, Treg cell therapy in CTA seems feasible with promising perspectives. However, the extreme high immunogenicity of CTA warrants caution.
Collapse
Affiliation(s)
- Jeong-Hee Yang
- Department of Plastic and Reconstructive Surgery, Composite Tissue Allotransplantation Immunology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seok-Chan Eun
- Department of Plastic and Reconstructive Surgery, Composite Tissue Allotransplantation Immunology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
36
|
Jin X, Jia X, Wang Y. Clinical significance of Vδ1 T cell detection in sepsis patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7434-7442. [PMID: 31966586 PMCID: PMC6965301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/05/2017] [Indexed: 06/10/2023]
Abstract
This study is to investigate changes of the number of PB Vδ1 T cells and their function in patients with sepsis, analyze the clinical significance of Vδ1 T cell detection and validate the effects of Vδ1 T cells on the onset of sepsis. Forty patients with sepsis were included into this study together with forty healthy subjects who received the physical examination in the hospital during the same period, and the clinical data of all subgroups of patients with sepsis were recorded. In the morning, the fasting peripheral venous blood at 10 ml was sampled from patients with sepsis and subjects in the Health Control (HC) group. The flow cytometry (FCM) was used to measure the percentage of Vδ1 T cells in PB, analyze the correlation between the percentage of Vδ1 T cells, APACHEII score and blood lactic acid level in patients with sepsis, and detect the expression level of Foxp3 on the surface of Vδ1 T cells. CFSE staining method was used to detect the influence of Vδ1 T cells on the proliferation capacity of naïve CD4 T cells. Compared with the HC group, the number of Vδ1 T cells in PB was significantly increased in patients with sepsis (P<0.01), and the sepsis shock group exhibited the highest expression level of Vδ1 T cells, followed by the severe sepsis group and the sepsis group. The percentage of Vδ1 T cells in patients with sepsis was positively correlated with APACHEII score and the lactic acid level, respectively. Compared with the HC group, the expression level of Foxp3 on the surface of Vδ1 T cells in PB was significantly increased in patients with sepsis (P<0.01), with the highest expression level of Foxp3 in the sepsis shock group, followed by the severe sepsis group and the sepsis group. In the HC group and patients with sepsis, the proliferation rate of naïve CD4 T cells co-incubated by Vδ1 T cells and naïve CD4 T cells in PB was (66.94±8.91)% and (47.24±9.86)%, respectively. Vδ1 T cells in PB of patients with sepsis exhibited obviously increased inhibition on the proliferation of naïve CD4 T cells, indicating that PB Vδ1 T cells in patients with sepsis presented stronger immunosuppressive functions than those in the HC group (P<0.01). The percentage of PB Vδ1 T cells in patients with sepsis was increased and the immunosuppressive function was increased, so that immune function of patients with sepsis was inhibited and then sepsis occurred. This indicated that Vδ1 T cells in PB might play important roles in the immune pathogenesis of sepsis and provide clinical values in the evaluation of prognosis.
Collapse
Affiliation(s)
- Xin Jin
- Department of Intensive Care Unit, Daqing Oil Field General HospitalDaqing, Heilonhjiang Province, China
| | - Xiaonan Jia
- Department of Intensive Care Unit, Daqing Oil Field General HospitalDaqing, Heilonhjiang Province, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, Daqing Oil Field General HospitalDaqing, Heilonhjiang Province, China
| |
Collapse
|
37
|
Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. T Regulatory Cells in Systemic Lupus Erythematosus: Current Knowledge and Future Prospects. Lupus 2017. [DOI: 10.5772/intechopen.68479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Papadopoulos P, Pistiki A, Theodorakopoulou M, Christodoulopoulou T, Damoraki G, Goukos D, Briassouli E, Dimopoulou I, Armaganidis A, Nanas S, Briassoulis G, Tsiodras S. Immunoparalysis: Clinical and immunological associations in SIRS and severe sepsis patients. Cytokine 2017; 92:83-92. [PMID: 28119177 DOI: 10.1016/j.cyto.2017.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 01/06/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION This study was designed to identify changes in the monocytic membrane marker HLA-DR and heat shock proteins (HSPs) in relation to T-regulatory cells (T-regs) and other immunological marker changes in patients with systemic inflammatory response syndrome (SIRS) or sepsis/septic shock. METHODS Healthy volunteers, intensive care unit (ICU) patients with SIRS due to head injury and ICU patients with severe sepsis/septic shock were enrolled in the current study. Determination of CD14+/HLA-DR+ cells, intracellular heat-shock proteins and other immunological parameters were performed by flow cytometry and RT-PCR techniques as appropriate. Univariate and multivariate analysis examined associations of CD14/HLA-DR, HSPs, T-regs and suppressor of cytokine signalling (SOCS) proteins with SIRS, sepsis and outcome. RESULTS Fifty patients (37 with severe sepsis and 13 with SIRS) were enrolled, together with 20 healthy volunteers used as a control group. Compared to healthy individuals, patients with SIRS and severe sepsis showed progressive decline of their CD14/HLA-DR expression (0% to 7.7% to 50% within each study subpopulation, p<0.001). Mean fluorescent intensity (MFI) levels of HSP70 and HSP90 on monocytes and polymorphonuclear cells were significantly higher in SIRS patients compared to controls and fell significantly in severe sepsis/septic shock patients (p<0.05 for all comparisons). There was no statistically significant difference between subgroups for levels of T-regulatory cells or relative copies of Suppressor of Cytokine Signalling 3 (SOCS3) proteins. In univariate models percent of CD14/HLA-DR was associated with mortality (OR: 1.8 95%CI 1.02-3.2, p=0.05), while in multivariate models after adjusting for CD14/HLA-DR only younger age and lower Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with increased chances of survival (beta -0.05, OR 0.9, 95% CI 0.9-0.99, p=0.038 for age and beta -0.11, OR 0.89, 95% CI 0.8-0.99, p=0.037 for APACHE II score). CONCLUSIONS Significant associations with SIRS and sepsis were found for CD14/HLA-DR expression and monocyte and polymorphonuclear cell levels of HSP70 and 90. The role of these biomarkers in assessing the prognosis of sepsis needs to be further explored and validated in prospective studies.
Collapse
Affiliation(s)
- Panagiotis Papadopoulos
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Pistiki
- 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Theodorakopoulou
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Christodoulopoulou
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Damoraki
- 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Goukos
- First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrossini Briassouli
- First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dimopoulou
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Armaganidis
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafim Nanas
- First Critical Care Department, Evangelismos Hospital, University of Athens, Athens, Greece
| | - George Briassoulis
- Pediatric Intensive Care Unit, University Hospital, University of Crete, Heraklion, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
39
|
Wei C, Mei J, Tang L, Liu Y, Li D, Li M, Zhu X. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis 2016; 7:e2489. [PMID: 27906184 PMCID: PMC5260991 DOI: 10.1038/cddis.2016.375] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Foxp3+ regulatory T (Treg) cells contribute to the local dysfunctional immune environment in endometriosis, an estrogen-dependent gynecological disease, which affects the function of ectopic endometrial tissue clearance by the immune system. The reason for the high percentage of peritoneal Treg in endometriosis patients is unknown. Here, we show that the proportion of peritoneal Treg cells increases as endometriosis progresses. To determine the probable mechanism, we established a naive T cell-macrophage-endometrial stromal cell (ESC) co-culture system to mimic the peritoneal cavity microenvironment. After adding 1-methyl-tryptophan (1-MT), a specific inhibitor of indoleamine 2,3-dioxygenase-1 (IDO1), to the co-culture system, we found that the differentiation of Treg cells, mainly IL-10+ Treg cells, decreased. Therefore, 1-MT-pretreated ESCs-educated Treg cells performed impaired suppressive function. Moreover, estrogen promoted the differentiation of Treg cells by elevating IDO1 expression in the ectopic lesion. Subsequently, we examined mannose receptor C, type 2 (MRC2), which is an up-stream molecule of IL-10, by bioinformatics analysis and real-time PCR validation. MRC2 expression in ectopic ESCs was notably lower than that in normal ESCs, which further negatively regulated the expression of IDO1 and Ki-67 in ESCs. Furthermore, MRC2 is required for Treg differentiation in the ectopic lesion, especially that for CD4high Treg. Therefore, MRC2-silenced ESCs-educated Treg manifested a stronger suppressive function in vitro. Consistently, the percentage of Treg increased when MRC2-shRNA was administered in the peritoneal cavity of endometriosis-disease mice model. Besides, 1-MT improved the condition of endometriosis, in terms of reducing the number and weight of total ectopic lesions in vivo. These results indicate that the estrogen-IDO1-MRC2 axis participates in the differentiation and function of Treg and is involved in the development of endometriosis. Thus, blockage of IDO1 in the ectopic lesion, which does not influence physiological functions of estrogen, may be considered a potential therapy for endometriosis.
Collapse
Affiliation(s)
- Chunyan Wei
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing 210000, China
| | - Lingli Tang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Yukai Liu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
40
|
Pan X, Ji Z, Xue J. Percentage of Peripheral CD19+CD24hiCD38hi Regulatory B Cells in Neonatal Sepsis Patients and Its Functional Implication. Med Sci Monit 2016; 22:2374-8. [PMID: 27389933 PMCID: PMC4946390 DOI: 10.12659/msm.895421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND As a major cause of mortality in neonates, neonatal sepsis is often accompanied by immune dysfunctions, which are frequently caused by dysregulated T cell sub-populations. The role of regulatory B cells in neonatal sepsis, however, remains unknown. Therefore, this study investigated the percentage and functional variation of CD19+CD24hiCD38hi regulatory B cells in peripheral blood of neonatal sepsis patients in an attempt to elucidate the role of these regulatory B cells in pathogenesis of sepsis. MATERIAL AND METHODS Flow cytometry was used to quantify the percentage of CD19+CD24hiCD38hi regulatory B cells from peripheral blood samples. The correlation between B cell percentage and C reactive protein (CRP) level was analyzed. Secretion level of interleukin-10 (IL-10) and effects on the proliferation of naïve CD4+ T cells were further analyzed. RESULTS The percentage of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis patients was significantly higher compared to healthy controls (p<0.05), and was positively correlated with serum CRP level. The percentage of IL-10+ CD19+CD24hiCD38hi regulatory B cells was also higher in sepsis patients, and also had more potent inhibition on naïve CD4+ T cells (p<0.01). CONCLUSIONS The elevation of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis can inhibit body immune function and thus may participate in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Internal Medicine, Second Ward, Linyi City People's Hospital, Linyi, Shandong, China (mainland)
| | - Zuoquan Ji
- Department of Neonatal, Affiliated Hospital of Shandong Medical College, Linyi, Shandong, China (mainland)
| | - Jiang Xue
- Department of Neonatal, Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
41
|
Gyllenhammer LE, Lam J, Alderete TL, Allayee H, Akbari O, Katkhouda N, Goran MI. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower β-cell function in adults with obesity. Obesity (Silver Spring) 2016; 24:1274-82. [PMID: 27133873 PMCID: PMC4882248 DOI: 10.1002/oby.21507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. METHODS SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. RESULTS Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. CONCLUSIONS Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Lam
- Department of Molecular and Cellular Immunology, University of Southern California, Los Angeles, California, USA
| | - Tanya L Alderete
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Molecular and Cellular Immunology, University of Southern California, Los Angeles, California, USA
| | - Namir Katkhouda
- Department of Surgery, University of Southern California, Los Angeles, California, USA
| | - Michael I Goran
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
42
|
Knuschke T, Rotan O, Bayer W, Sokolova V, Hansen W, Sparwasser T, Dittmer U, Epple M, Buer J, Westendorf AM. Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection. Retrovirology 2016; 13:24. [PMID: 27076190 PMCID: PMC4831142 DOI: 10.1186/s12977-016-0258-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Background Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8+ or CD4+ T cell epitope peptides (GagL85–93 or Env gp70123–141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4+ and CD8+ effector T cells was analysed and the viral loads were determined. Results Therapeutic vaccination of chronically FV-infected mice with functionalized CaP nanoparticles transiently reactivated cytotoxic CD8+ T cells and significantly reduced the viral loads. Transient ablation of Tregs during nanoparticle-based therapeutic vaccination strongly enhanced anti-viral immunity and further decreased viral burden. Conclusion Our data illustrate a crucial role for CD4+ Foxp3+ Tregs in the suppression of anti-viral T cell responses during therapeutic vaccination against chronic retroviral infection. Thus, the combination of transient Treg ablation and therapeutic nanoparticle-based vaccination confers robust and sustained anti-viral immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Medicine, 30625, Hannover, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
43
|
Huang CH, Jeng WJ, Ho YP, Teng W, Chen WT, Chen YC, Lin SM, Chiu CT, Sheen IS, Lin CY. Increased regulatory T cells in patients with liver cirrhosis correlated with hyperbilirubinemia and predict bacterial complications. J Gastroenterol Hepatol 2015; 30:775-83. [PMID: 25250558 DOI: 10.1111/jgh.12781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Patients with liver cirrhosis (LC) were regarded as immunocompromised status with high incidence of bacterial infection. Regulatory T cell (Treg cell) is known as an immune suppressor and also plays an important role in patients with sepsis. This paper aims to study the role of Treg cells in patients with liver cirrhosis and their correlations to bacterial complications. METHODS Thirty-three normal controls (NC) and 82 cirrhotic patients were enrolled for the case-control study. The Treg cells, defined as CD4+ CD25+ Foxp3+ T cells, in peripheral blood of these patients were evaluated. RESULTS The percentage of Treg cells increased significantly in patients with liver cirrhosis when compared with normal volunteers. Furthermore, this increase of Treg cells was mainly memory phenotype defined as CD45RO+ Treg cells and was significantly correlated with serum bilirubin levels as evaluated by multiple linear regression analysis. In addition, the tumor necrosis factor (TNF)-α receptor II (TNFRII) expression also significantly increased on Treg cells in these patients. Interestingly, these membranous TNFRII would be shed and released into supernatant. Lastly, this increased percentage of Treg cells in cirrhotic patients correlate well with and predict subsequent bacterial complications. CONCLUSION The Treg cells, mainly with memory phenotype and with high TNFRII expression, increased significantly in patients with liver cirrhosis and significantly correlated with the serum bilirubin levels. Furthermore, this increased Treg cells correlate with and predict subsequent bacterial complications in cirrhotic patients.
Collapse
Affiliation(s)
- Chien-Hao Huang
- Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cao C, Ma T, Chai YF, Shou ST. The role of regulatory T cells in immune dysfunction during sepsis. World J Emerg Med 2015; 6:5-9. [PMID: 25802559 DOI: 10.5847/wjem.j.1920-8642.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although regulatory T cells (Tregs) are key to the maintenance of immunologic homeostasis and tolerance, little is known about Treg-mediated immunosuppression in the stage of sepsis. This article aimed to review the current literature on the role of Tregs in the pathophysiology of septic response, attempting to investigate the role of Tregs in immune dysfunction during sepsis. DATA SOURCES A literature search was conducted in January 2014 using the China National Knowledge Infrastructure and PubMed. Articles on the role of Tregs in immune dysfunction during sepsis were identified. RESULTS The identified articles indicated that Treg levels can be used for the assessment of the course of sepsis. The inhibition of Treg activity can promote the recovery of immune function. CONCLUSION Since the mechanism of Tregs is complex during the sepsis, more studies are needed.
Collapse
Affiliation(s)
- Chao Cao
- Emergency Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan-Fen Chai
- Emergency Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song-Tao Shou
- Emergency Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
45
|
Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. The influence of therapy on CD4+CD25highFOXP3+ regulatory T cells in systemic lupus erythematosus patients: a prospective study. Scand J Rheumatol 2014; 44:29-35. [DOI: 10.3109/03009742.2014.922214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Cho H, Kikuchi M, Li Y, Nakamoto N, Amorosa VK, Valiga ME, Chang KM. Induction of Multiple Immune Regulatory Pathways with Differential Impact in HCV/HIV Coinfection. Front Immunol 2014; 5:265. [PMID: 25071758 PMCID: PMC4086204 DOI: 10.3389/fimmu.2014.00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022] Open
Abstract
Persistent viral infections including HCV, HBV, and HIV are associated with increased immune regulatory pathways including the extrinsic FoxP3+CD4+ regulatory T cells (Tregs) and intrinsic inhibitory pathways such as programed death-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) with potentially reversible suppression of antiviral effector T cells (1–12). Immunological consequences of viral coinfections relative to these immune regulatory pathways and their interplay are not well-defined. In this study, we examined the frequency, phenotype, and effector function of circulating T cell subsets in patients with chronic HCV and/or HIV infection, hypothesizing that HCV/HIV coinfection will result in greater immune dysregulation with pathogenetic consequences (13, 14). We show that multiple T cell inhibitory pathways are induced in HCV/HIV coinfection including FoxP3+ Tregs, PD-1, and CTLA-4 in inverse association with overall CD4 T cell frequency but not with liver function or HCV RNA titers. The inverse association between CD4 T cell frequency and their FoxP3, PD-1, or CTLA-4 expression remained significant in all subjects combined regardless of HCV and/or HIV infection, suggesting a global homeostatic mechanism to maintain immune regulation relative to CD4 T cell frequency. PD-1 blockade rescued T cell responses to HIV but not HCV without significant impact by CTLA-4 blockade in vitro. Collectively, these findings highlight complex immune interactions in viral coinfections and differential regulatory pathways influencing virus-specific T cells that are relevant in immunotherapeutic development.
Collapse
Affiliation(s)
- Hyosun Cho
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA ; Duksung Women's University , Seoul , South Korea
| | - Masahiro Kikuchi
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| | - Yun Li
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| | - Nobuhiro Nakamoto
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| | - Valerianna K Amorosa
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| | - Mary E Valiga
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| | - Kyong-Mi Chang
- Philadelphia VAMC , Philadelphia, PA , USA ; Department of Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA , USA
| |
Collapse
|
47
|
Khadem F, Mou Z, Liu D, Varikuti S, Satoskar A, Uzonna JE. Deficiency of p110δ isoform of the phosphoinositide 3 kinase leads to enhanced resistance to Leishmania donovani. PLoS Negl Trop Dis 2014; 8:e2951. [PMID: 24945303 PMCID: PMC4063731 DOI: 10.1371/journal.pntd.0002951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/06/2014] [Indexed: 12/20/2022] Open
Abstract
Background Visceral leishmaniasis is the most clinically relevant and dangerous form of human leishmaniasis. Most traditional drugs for treatment of leishmaniasis are toxic, possess many adverse reactions and drug resistance is emerging. Therefore, there is urgent need for identification of new therapeutic targets. Recently, we found that mice with an inactivating knock-in mutation in the p110δ isoform of pi3k, (p110δd910a) are hyper resistant to L. major, develop minimal cutaneous lesion and rapidly clear their parasite. Here, we investigated whether pi3k signaling also regulates resistance to L. donovani, one of the causative agents of visceral leishmaniasis. Methodology/Principal Findings WT and p110δD910A mice (on a BALB/c background) were infected with L. donovani. At different time points, parasite burden and granuloma formation were assessed. T and B cell responses in the liver and spleen were determined. In addition, Tregs were expanded in vivo and its impact on resistance was assessed. We found that p110δD910A mice had significantly reduced splenomegaly and hepatomegaly and these organs harbored significantly fewer parasites than those of WT mice. Interestingly, infected p110δD910A mice liver contains fewer and less organized granulomas than their infected WT counterparts. Cells from p110δD910A mice were significantly impaired in their ability to produce cytokines compared to WT mice. The percentage and absolute numbers of Tregs in infected p110δD910A mice were lower than those in WT mice throughout the course of infection. In vivo expansion of Tregs in infected p110δD910A mice abolished their enhanced resistance to L. donovani infection. Conclusions/Significance Our results indicate that the enhanced resistance of p110δD910A mice to L. donovani infection is due to impaired activities of Tregs. They further show that resistance to Leishmania in the absence of p110δ signaling is independent of parasite species, suggesting that targeting the PI3K signaling pathway may be useful for treatment of both visceral and cutaneous leishmaniasis. Visceral leishmaniasis (VL) is the most dangerous form of human leishmaniasis in terms of mortality and morbidity and is spreading to several non-endemic areas because of global traveling and military conflicts. The emergence of Leishmania-HIV coinfection and increased prevalence of drug resistant strains have compounded an already bad situation. In addition, the drugs available are toxic, expensive and have several side effects. Therefore, a detailed understanding of protective immune response is extremely important in order to identify new therapeutic targets. The phosphoinositide 3 kinase (PI3K) family of enzymes mediate several important immunologic and physiologic cellular process including proliferation, differentiation, growth and host defense. We previously showed that genetic inactivation of the p110δ isoform of PI3K results in resistant to L. major (the causative agent of cutaneous leishmaniasis (CL)). Here, we investigate the role of PI3K in immunity to VL and the mechanisms underlying its protective effect. Collectively, our results demonstrate that signaling via the p110δ also regulates immunity to L. donovani, an effect that is dependent on the impact of p110δ signaling on expansion and function of regulatory T cells in vivo. Thus, our studies suggest that targeting the p110δ pathway may be a novel therapeutic strategy for controlling VL and CL.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhirong Mou
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dong Liu
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjay Varikuti
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Abhay Satoskar
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Jude E. Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
48
|
Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol 2014; 24:365-78. [PMID: 24733560 DOI: 10.1002/rmv.1791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/23/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
49
|
Gousias K, von Ruecker A, Voulgari P, Simon M. Phenotypical analysis, relation to malignancy and prognostic relevance of ICOS+T regulatory and dendritic cells in patients with gliomas. J Neuroimmunol 2013; 264:84-90. [PMID: 24071056 DOI: 10.1016/j.jneuroim.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 01/17/2023]
Abstract
We determined circulating T helper, T regulatory and ICOS+T regulatory as well as DC cell counts in 29 patients with cerebral gliomas. Samples from patients with gliomas vs. healthy controls and from patients with glioblastomas vs. patients with glioma WHO grades I-III contained significantly (p<0.05) decreased numbers of total as well as mature, i.e. myeloid and plasmacytoid DCs. Patients with glioblastomas demonstrated significantly lower values of CD4+ as well as an increased fraction of ICOS+T regulatory/CD4+ cells. Higher CD4+ cell counts (≥225 cells/μl, median) were associated with improved survival in glioblastomas.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53105, Germany.
| | | | | | | |
Collapse
|
50
|
Involvement of levels of Toll like receptor-4 in monocytes, CD4+ T-lymphocyte subsets, and cytokines in patients with immune thrombocytopenic purpura. Thromb Res 2013; 132:196-201. [PMID: 23830211 DOI: 10.1016/j.thromres.2013.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/25/2013] [Accepted: 04/30/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Toll-like receptors have been found to be associated with immune-mediated diseases but it is still not clear whether they play a role in immune thrombocytopenic purpura (ITP), especially TLR4. CD4+ T-lymphocyte abnormalities, including Th17, Th1, Th2, and regulator T cell (Treg), are considered important in ITP. There have been few studies regarding the expression of TLR4 and the relationships between TLR4 and Th17 levels in ITP. MATERIALS AND METHODS In this study, we evaluated the expression of TLR4 in monocytes, the plasma concentrations of IL-23, IL-17 and the profiles of Th17, Th1, Th2 cells in 70 patients with ITP and 31 healthy controls. In addition, we evaluated IL-2 and Treg cells in 46 cases of 70 patients with ITP and the same 31 controls. RESULTS Higher levels of TLR4 expression, higher relative numbers of Th17 and Th1 cells and lower levels of Treg cells were observed in patients when compared with controls (p=0.001 for TLR4; p<0.001 for Th17; p=0.014 for Th1; p=0.001 for Treg). The levels of IL-23 and IL-2 were increased (p=0.022 for IL-23; p=0.025 for IL-2), the relative levels of Th2 and concentrations of IL-17 were similar across both groups (p=0.446 for Th2; p=0.316 for IL-17). A significant negative correlation was observed between levels of TLR4 and Treg(r=-0.544, p<0.001), but a significantly positive correlation was observed between IL-2 and IL-23 concentration in patients (r=0.441, p=0.004). Neither the correlation between TLR4 and the other CD4(+) T cells and cytokines nor the correlation between the three cytokines and CD4+ T cells was found to be statistically significant. CONCLUSIONS Our data showed that TLR4, CD4+ T cells (Th1, Th17 and Treg cells) and related cytokines (IL-23, IL-2) may take part in the pathogenesis of ITP. TLR4 may play a role through the TLR4-cytokine-CD4+ T lymphocyte cell pathway.
Collapse
|