1
|
Wang S, Du Y, Zhang B, Meng G, Liu Z, Liew SY, Liang R, Zhang Z, Cai X, Wu S, Gao W, Zhuang D, Zou J, Huang H, Wang M, Wang X, Wang X, Liang T, Liu T, Gu J, Liu N, Wei Y, Ding X, Pu Y, Zhan Y, Luo Y, Sun P, Xie S, Yang J, Weng Y, Zhou C, Wang Z, Wang S, Deng H, Shen Z. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 2024; 187:6152-6164.e18. [PMID: 39326417 DOI: 10.1016/j.cell.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.
Collapse
Affiliation(s)
- Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yuanyuan Du
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Gaofan Meng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Soon Yi Liew
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Zhengyuan Zhang
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiangheng Cai
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | - Wei Gao
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Hui Huang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Mingyang Wang
- Department of Ultrasound, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | | | - Xuelian Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Ting Liang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Jiabin Gu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yanling Wei
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Yixiang Zhan
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yu Luo
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Shuangshuang Xie
- Radiology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Zhenglu Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Shuang Wang
- Department of Plastic and Burn, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Hongkui Deng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; China Changping Laboratory, Beijing 102206, China.
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| |
Collapse
|
2
|
Bai H, Xian N, Zhao F, Zhou Y, Qin S. The dual role of SUSD2 in cancer development. Eur J Pharmacol 2024; 977:176754. [PMID: 38897441 DOI: 10.1016/j.ejphar.2024.176754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Sushi domain-containing protein 2 (SUSD2, also known as the complement control protein domain) is a representative and vital protein in the SUSD protein family involved in many physiological and pathological processes beyond complement regulation. Cancer is one of the leading causes of death worldwide. The complex role of SUSD2 in tumorigenesis and cancer progression has raised increasing concerns. Studies suggest that SUSD2 has different regulatory tendencies among different tumors and exerts its biological effects in a cancer type-specific manner; for instance, it has oncogenic effects on breast cancer, gastric cancer, and glioma and has tumor-suppression effects on lung cancer, bladder cancer, and colon cancer. Moreover, SUSD2 can be regulated by noncoding RNAs, its promoter methylation and other molecules, such as Galectin-1 (Gal-1), tropomyosin alpha-4 chain (TPM4), and p63. The therapeutic implications of targeting SUSD2 have already been preliminarily revealed in some malignancies, including melanoma, colon cancer, and breast cancer. This article reviews the role and regulatory mechanisms of SUSD2 in cancer development, as well as its structure and distribution. We hope that this review will advance the understanding of SUSD2 as a diagnostic and/or prognostic biomarker and provide new avenues for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Ningyi Xian
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengyu Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yikun Zhou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Sida Qin
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Tyler SR, Lozano-Ojalvo D, Guccione E, Schadt EE. Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq. Nat Commun 2024; 15:699. [PMID: 38267438 PMCID: PMC10808220 DOI: 10.1038/s41467-023-43406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 01/26/2024] Open
Abstract
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Collapse
Affiliation(s)
- Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
5
|
Li J, Chen J, Luo X, Lu G, Lin G. Single-cell transcriptome analysis of NEUROG3+ cells during pancreatic endocrine differentiation with small molecules. Stem Cell Res Ther 2023; 14:101. [PMID: 37098639 PMCID: PMC10127065 DOI: 10.1186/s13287-023-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
The efficiency of inducing human embryonic stem cells into NEUROG3+ pancreatic endocrine cells is a bottleneck in stem cell therapy for diabetes. To understand the cell properties and fate decisions during differentiation, we analyzed the modified induction method using single-cell transcriptome and found that DAPT combined with four factors (4FS): nicotinamide, dexamethasone, forskolin and Alk5 inhibitor II (DAPT + 4FS) increased the expression of NEUROG3 to approximately 34.3%. The increased NEUROG3+ cells were mainly concentrated in Insulin + Glucagon + (INS + GCG+) and SLAC18A1 + Chromogranin A+(SLAC18A1 + CHGA +) populations, indicating that the increased NEUROG3+ cells promoted the differentiation of pancreatic endocrine cells and enterochromaffin-like cells. Single-cell transcriptome analysis provided valuable clues for further screening of pancreatic endocrine cells and differentiation of pancreatic islet cells. The gene set enrichment analysis (GSEA) suggest that we can try to promote the expression of INS + GCG+ population by up-regulating G protein-coupled receptor (GPCR) and mitogen-activated protein kinase signals and down-regulating Wnt, NIK/NF-KappaB and cytokine-mediated signal pathways. We can also try to regulate GPCR signaling through PLCE1, so as to increase the proportion of NEUROG3+ cells in INS+GCG+ populations. To exclude non-pancreatic endocrine cells, ALCAMhigh CD9low could be used as a marker for endocrine populations, and ALCAMhigh CD9lowCDH1low could remove the SLC18A1 + CHGA+ population.
Collapse
Affiliation(s)
- Jin Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, People's Republic of China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410078, Hunan, People's Republic of China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410078, Hunan, People's Republic of China
| | - Junru Chen
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaoyu Luo
- National Engineering and Research Center of Human Stem Cells, Changsha, 410078, Hunan, People's Republic of China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, People's Republic of China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410078, Hunan, People's Republic of China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410078, Hunan, People's Republic of China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, People's Republic of China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, People's Republic of China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410078, Hunan, People's Republic of China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410078, Hunan, People's Republic of China.
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Liu T, Zou X, Ruze R, Xu Q. Bariatric Surgery: Targeting pancreatic β cells to treat type II diabetes. Front Endocrinol (Lausanne) 2023; 14:1031610. [PMID: 36875493 PMCID: PMC9975540 DOI: 10.3389/fendo.2023.1031610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic β-cell function impairment and insulin resistance are central to the development of obesity-related type 2 diabetes mellitus (T2DM). Bariatric surgery (BS) is a practical treatment approach to treat morbid obesity and achieve lasting T2DM remission. Traditionally, sustained postoperative glycemic control was considered a direct result of decreased nutrient intake and weight loss. However, mounting evidence in recent years implicated a weight-independent mechanism that involves pancreatic islet reconstruction and improved β-cell function. In this article, we summarize the role of β-cell in the pathogenesis of T2DM, review recent research progress focusing on the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on pancreatic β-cell pathophysiology, and finally discuss therapeutics that have the potential to assist in the treatment effect of surgery and prevent T2D relapse.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
7
|
Meng Z, Liu J, Feng Z, Guo S, Wang M, Wang Z, Li Z, Li H, Sui L. N-acetylcysteine regulates dental follicle stem cell osteogenesis and alveolar bone repair via ROS scavenging. Stem Cell Res Ther 2022; 13:466. [PMID: 36076278 PMCID: PMC9461171 DOI: 10.1186/s13287-022-03161-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Dental follicle stem cells (DFSCs) show mesenchymal stem cell properties with the potential for alveolar bone regeneration. Stem cell properties can be impaired by reactive oxygen species (ROS), prompting us to examine the importance of scavenging ROS for stem cell-based tissue regeneration. This study aimed to investigate the effect and mechanism of N-acetylcysteine (NAC), a promising antioxidant, on the properties of DFSCs and DFSC-based alveolar bone regeneration. Methods DFSCs were cultured in media supplemented with different concentrations of NAC (0–10 mM). Cytologic experiments, RNA-sequencing and antioxidant assays were performed in vitro in human DFSCs (hDFSCs). Rat maxillary first molar extraction models were constructed, histological and radiological examinations were performed at day 7 post-surgery to investigate alveolar bone regeneration in tooth extraction sockets after local transplantation of NAC, rat DFSCs (rDFSCs) or NAC-treated rDFSCs. Results 5 mM NAC-treated hDFSCs exhibited better proliferation, less senescent rate, higher stem cell-specific marker and immune-related factor expression with the strongest osteogenic differentiation; other concentrations were also beneficial for maintaining stem cell properties. RNA-sequencing identified 803 differentially expressed genes between hDFSCs with and without 5 mM NAC. “Developmental process (GO:0032502)” was prominent, bioinformatic analysis of 394 involved genes revealed functional and pathway enrichment of ossification and PI3K/AKT pathway, respectively. Furthermore, after NAC treatment, the reduction of ROS levels (ROS, superoxide, hydrogen peroxide), the induction of antioxidant levels (glutathione, catalase, superoxide dismutase), the upregulation of PI3K/AKT signaling (PI3K-p110, PI3K-p85, AKT, phosphorylated-PI3K-p85, phosphorylated-AKT) and the rebound of ROS level upon PI3K/AKT inhibition were showed. Local transplantation of NAC, rDFSCs or NAC-treated rDFSCs was safe and promoted oral socket bone formation after tooth extraction, with application of NAC-treated rDFSCs possessing the best effect. Conclusions The proper concentration of NAC enhances DFSC properties, especially osteogenesis, via PI3K/AKT/ROS signaling, and offers clinical potential for stem cell-based alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03161-y.
Collapse
Affiliation(s)
- Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhipeng Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Shuling Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Mingzhe Wang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhe Li
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Hongjie Li
- School of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
8
|
Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med 2022; 28:272-282. [PMID: 35115708 DOI: 10.1038/s41591-021-01645-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem-cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment1,2. However, this therapeutic strategy has not been systematically assessed in large animal models physiologically similar to humans, such as non-human primates3. In this study, we generated islets from human chemically induced pluripotent stem cells (hCiPSC-islets) and show that a one-dose intraportal infusion of hCiPSC-islets into diabetic non-human primates effectively restored endogenous insulin secretion and improved glycemic control. Fasting and average pre-prandial blood glucose levels significantly decreased in all recipients, accompanied by meal or glucose-responsive C-peptide release and overall increase in body weight. Notably, in the four long-term follow-up macaques, average hemoglobin A1c dropped by over 2% compared with peak values, whereas the average exogenous insulin requirement reduced by 49% 15 weeks after transplantation. Collectively, our findings show the feasibility of hPSC-islets for diabetic treatment in a preclinical context, marking a substantial step forward in clinical translation of hPSC-islets.
Collapse
|
9
|
Liu H, Li R, Liao HK, Min Z, Wang C, Yu Y, Shi L, Dan J, Hayek A, Martinez Martinez L, Nuñez Delicado E, Izpisua Belmonte JC. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional β cells. Nat Commun 2021; 12:3330. [PMID: 34099664 PMCID: PMC8184986 DOI: 10.1038/s41467-021-23525-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived pancreatic β cells are an attractive cell source for treating diabetes. However, current derivation methods remain inefficient, heterogeneous, and cell line dependent. To address these issues, we first devised a strategy to efficiently cluster hPSC-derived pancreatic progenitors into 3D structures. Through a systematic study, we discovered 10 chemicals that not only retain the pancreatic progenitors in 3D clusters but also enhance their potentiality towards NKX6.1+/INS+ β cells. We further systematically screened signaling pathway modulators in the three steps from pancreatic progenitors toward β cells. The implementation of all these strategies and chemical combinations resulted in generating β cells from different sources of hPSCs with high efficiency. The derived β cells are functional and can reverse hyperglycemia in mice within two weeks. Our protocol provides a robust platform for studying human β cells and developing hPSC-derived β cells for cell replacement therapy.
Collapse
Affiliation(s)
- Haisong Liu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronghui Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hsin-Kai Liao
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zheying Min
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chao Wang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yang Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lei Shi
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jiameng Dan
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Alberto Hayek
- Department of Pediatrics, UCSD-Medical School, La Jolla, California, USA
| | | | | | | |
Collapse
|
10
|
Rasouli N, Melton DA, Alvarez-Dominguez JR. Purification of Live Stem-Cell-Derived Islet Lineage Intermediates. ACTA ACUST UNITED AC 2021; 53:e111. [PMID: 32521122 DOI: 10.1002/cpsc.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stem-cell-derived tissues offer platforms to study organ development, model physiology during health and disease, and test novel therapies. We describe methods to isolate cells at successive stages during in vitro differentiation of human stem cells into the pancreatic endocrine lineage. Using flow cytometry, we purify live lineage intermediates in numbers not available by fetal biopsy. These include pancreatic and endocrine progenitors, isolated based on known surface markers. We further report a strategy that leverages intracellular zinc content and DPP4/CD26 expression to separate monohormonal insulin+ β cells from polyhormonal counterparts. These methods enable comprehensive molecular profiling during human islet lineage progression. © 2020 Wiley Periodicals LLC. Basic Protocol: In vitro isolation of human islet developmental intermediates.
Collapse
Affiliation(s)
- Niloofar Rasouli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Juan R Alvarez-Dominguez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
11
|
Watanabe A, Tanaka A, Koga C, Matsumoto M, Okazaki Y, Kin T, Miyajima A. CD82 is a marker to isolate β cell precursors from human iPS cells and plays a role for the maturation of β cells. Sci Rep 2021; 11:9530. [PMID: 33953224 PMCID: PMC8100138 DOI: 10.1038/s41598-021-88978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Generation of pancreatic β cells from pluripotent stem cells is a key technology to develop cell therapy for insulin-dependent diabetes and considerable efforts have been made to produce β cells. However, due to multiple and lengthy differentiation steps, production of β cells is often unstable. It is also desirable to eliminate undifferentiated cells to avoid potential risks of tumorigenesis. To isolate β cell precursors from late stage pancreatic endocrine progenitor (EP) cells derived from iPS cells, we have identified CD82, a member of the tetraspanin family. CD82+ cells at the EP stage differentiated into endocrine cells more efficiently than CD82- EP stage cells. We also show that CD82+ cells in human islets secreted insulin more efficiently than CD82- cells. Furthermore, knockdown of CD82 expression by siRNA or inhibition of CD82 by monoclonal antibodies in NGN3+ cells suppressed the function of β cells with glucose-stimulated insulin secretion, suggesting that CD82 plays a role in maturation of EP cells to β cells.
Collapse
Affiliation(s)
- Ami Watanabe
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Gene Techno Science Co.,Ltd, Kita 21-jo Nishi 11-chome Kita-ku, Sapporo, 001-0021, Japan.
| | - Anna Tanaka
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chizuko Koga
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahito Matsumoto
- Graduate School of Medical and Dental Sciences, Department of Biofunction Research, Institute of Biomaterials and Bioenginnering, Tokyo Medical University and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, 2-1-2 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, 210 College Plaza, 8215-112 St, Edmonton, AB, T6G2C8, Canada
| | - Atsushi Miyajima
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Gene Techno Science Co.,Ltd, Kita 21-jo Nishi 11-chome Kita-ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
12
|
Gutiérrez M. Activating mutations of STAT3: Impact on human growth. Mol Cell Endocrinol 2020; 518:110979. [PMID: 32818584 DOI: 10.1016/j.mce.2020.110979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
The signal transducer and activator of transcription (STAT) 3 is the most ubiquitous member of the STAT family and fulfills fundamental functions in immune and non-immune cells. Mutations in the STAT3 gene lead to different human diseases. Germline STAT3 activating or gain-of-function (GOF) mutations result in early-onset multiorgan autoimmunity, lymphoproliferation, recurrent infections and short stature. Since the first description of the disease, the clinical manifestations of STAT3 GOF mutations have expanded considerably. However, due to the complexity of immunological characteristics in patients carrying STAT3 GOF mutations, most of attention was focused on the immune alterations. This review summarizes current knowledge on STAT3 GOF mutations with special focus on the growth defects, since short stature is a predominant feature in this condition. Underlying mechanisms of STAT3 GOF disease are still poorly understood, and potential effects of STAT3 GOF mutations on the growth hormone signaling pathway are unclear. Functional studies of STAT3 GOF mutations and the broadening of clinical growth-related data in these patients are necessary to better delineate implications of STAT3 GOF mutations on growth.
Collapse
Affiliation(s)
- Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños R. Gutiérrez, Gallo 1360, Buenos Aires, CP1425EFD, Argentina.
| |
Collapse
|
13
|
Li L, Tan D, Liu S, Jiao R, Yang X, Li F, Wu H, Huang W. Optimization of Factor Combinations for Stem Cell Differentiations on a Design-of-Experiment Microfluidic Chip. Anal Chem 2020; 92:14228-14235. [PMID: 33017151 DOI: 10.1021/acs.analchem.0c03488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Directed differentiation of stem cells plays a vital role in cell replacement therapy. Many activators and inhibitors targeting different signaling pathways have been identified to contribute to each step of differentiation. Most studies relied on empirically optimizing the combinations of the aforementioned factors for each step to optimize the efficiency of differentiation, which are time-consuming and nonsystematic. Design-of-experiment (DOE) is a powerful strategy to identify the critical combinations from multiple factors systematically. However, it is prohibitively complicated for typical laboratories, given a large number of potential combinations. Here, we develop a multilayer polymethyl methacrylate-based, reusable microfluidic chip to directly facilitate the DOE in the differentiation of stem cells. The chip consists of an inlet layer and multiple disperse layers. Different solutions are injected simultaneously to the chip through the inlet layer. Subsequently, the channels in the disperse layers split and recombine the flow streams to generate solution combinations based on hard-wired DOE designs. We demonstrated that it is in quantitative agreement with the designs using fluorescent dyes. Moreover, we constructed a human-induced pluripotent stem reporter cell line to improve the consistency of the cellular state measurements and use the chip to identify critical factors for cell differentiation to definitive endoderm (DE). We found that the differentiation efficiencies under various factor combinations are significantly different, and CHIR99201 and GDF8 are the most critical factors for differentiation to DE. Our method is potentially applicable to the optimization of factor combinations for multi-step stem cell differentiation and combinatorial drug screening.
Collapse
Affiliation(s)
- Lijun Li
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China
| | - Deng Tan
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China
| | - Shuqin Liu
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong, China
| | - Ruifeng Jiao
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020 Guangdong, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China.,Guangzhou First People's Hospital, 1 Panfu Rd, Yuexiu District, Guangzhou, 510180 Guangdong, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong, China
| |
Collapse
|
14
|
Ma H, Jeppesen JF, Jaenisch R. Human T Cells Expressing a CD19 CAR-T Receptor Provide Insights into Mechanisms of Human CD19-Positive β Cell Destruction. CELL REPORTS MEDICINE 2020; 1:100097. [PMID: 33205073 PMCID: PMC7659530 DOI: 10.1016/j.xcrm.2020.100097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Autoimmune destruction of pancreatic β cells underlies type 1 diabetes (T1D). To understand T cell-mediated immune effects on human pancreatic β cells, we combine β cell-specific expression of a model antigen, CD19, and anti-CD19 chimeric antigen receptor T (CAR-T) cells. Coculturing CD19-expressing β-like cells and CD19 CAR-T cells results in T cell-mediated β-like cell death with release of activated T cell cytokines. Transcriptome analysis of β-like cells and human islets treated with conditioned medium of the immune reaction identifies upregulation of immune reaction genes and the pyroptosis mediator GSDMD as well as its activator CASP4. Caspase-4-mediated cleaved GSDMD is detected in β-like cells under inflammation and endoplasmic reticulum (ER) stress conditions. Among immune-regulatory genes, PDL1 is one of the most upregulated, and PDL1 overexpression partially protects human β-like cells transplanted into mice. This experimental platform identifies potential mechanisms of β cell destruction and may allow testing of therapeutic strategies. CD19-expressing β-like cells differentiated from human ES cells are functional Tractable in vitro and in vivo killing of CD19-expressing β-like cells by CAR-T cells Upregulation of pyroptosis factors GSDMD and CAPS4 during β-like cell inflammation PDL1-overexpressing in β-like cells partially protects against reactive T cells
Collapse
Affiliation(s)
- Haiting Ma
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jacob F Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Global Drug Discovery, Novo Nordisk, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
15
|
Sasaki B, Uemoto S, Kawaguchi Y. Transient FOXO1 inhibition in pancreatic endoderm promotes the generation of NGN3+ endocrine precursors from human iPSCs. Stem Cell Res 2020; 44:101754. [PMID: 32179491 DOI: 10.1016/j.scr.2020.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the multi-step differentiation protocol used to generate pancreatic endocrine cells from human pluripotent stem cells, the induction of NGN3+ endocrine precursors from the PDX1+/NKX6.1+ pancreatic endoderm is crucial for efficient endocrine cell production. Here, we demonstrate that transient, not prolonged FOXO1 inhibition results in enhanced NGN3+ endocrine precursors and hormone-producing cell production. FOXO1 inhibition does not directly induce NGN3 expression but stimulates PDX1+/NKX6.1+ cell proliferation. NOTCH activity, whose suppression is important for Ngn3 expression, is not suppressed but Wnt signaling is stimulated by FOXO1 inhibition. Reversely, Wnt inhibition suppresses the effects of FOXO1 inhibitor. These findings indicate that FOXO1 and Wnt are involved in regulating the proliferation of PDX1+/NKX6.1+ pancreatic endoderm that gives rise to NGN3+ endocrine precursors.
Collapse
Affiliation(s)
- Ben Sasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
16
|
Tanaka A, Watanabe A, Nakano Y, Matsumoto M, Okazaki Y, Miyajima A. Reversible expansion of pancreatic islet progenitors derived from human induced pluripotent stem cells. Genes Cells 2020; 25:302-311. [PMID: 32065490 DOI: 10.1111/gtc.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Transplantation of pancreatic islets is an effective therapy for severe type 1 diabetes. As donor shortage is a major problem for this therapy, attempts have been made to produce a large number of pancreatic islets from human pluripotent stem cells (hPSCs). However, as the differentiation of hPSCs to pancreatic islets requires multiple and lengthy processes using various expensive cytokines, the process is variable, low efficiency and costly. Therefore, it would be beneficial if islet progenitors could be expanded. Neurogenin3 (NGN3)-expressing pancreatic endocrine progenitor (EP) cells derived from hPSCs exhibited the ability to differentiate into pancreatic islets while their cell cycle was arrested. By using a lentivirus vector, we introduced several growth-promoting genes into NGN3-expressing EP cells. We found that SV40LT expression induced proliferation of the EP cells but reduced the expression of endocrine lineage-commitment factors, NGN3, NEUROD1 and NKX2.2, resulting in the suppression of islet differentiation. By using the Cre-loxP system, we removed SV40LT after the expansion, leading to re-expression of endocrine-lineage commitment genes and differentiation into functional pancreatic islets. Thus, our findings will pave a way to generate a large quantity of functional pancreatic islets through the expansion of EP cells from hPSCs.
Collapse
Affiliation(s)
- Anna Tanaka
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ami Watanabe
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Nakano
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahito Matsumoto
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan.,Department of Biofunction Research, Institute of Biomaterials and Bioenginnering, Tokyo Medical University and Dental University, Tokyo, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA. Circadian Entrainment Triggers Maturation of Human In Vitro Islets. Cell Stem Cell 2019; 26:108-122.e10. [PMID: 31839570 DOI: 10.1016/j.stem.2019.11.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 02/09/2023]
Abstract
Stem-cell-derived tissues could transform disease research and therapy, yet most methods generate functionally immature products. We investigate how human pluripotent stem cells (hPSCs) differentiate into pancreatic islets in vitro by profiling DNA methylation, chromatin accessibility, and histone modification changes. We find that enhancer potential is reset upon lineage commitment and show how pervasive epigenetic priming steers endocrine cell fates. Modeling islet differentiation and maturation regulatory circuits reveals genes critical for generating endocrine cells and identifies circadian control as limiting for in vitro islet function. Entrainment to circadian feeding/fasting cycles triggers islet metabolic maturation by inducing cyclic synthesis of energy metabolism and insulin secretion effectors, including antiphasic insulin and glucagon pulses. Following entrainment, hPSC-derived islets gain persistent chromatin changes and rhythmic insulin responses with a raised glucose threshold, a hallmark of functional maturity, and function within days of transplantation. Thus, hPSC-derived tissues are amenable to functional improvement by circadian modulation.
Collapse
Affiliation(s)
- Juan R Alvarez-Dominguez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Julie Donaghey
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Niloofar Rasouli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jennifer H R Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Juerg R Straubhaar
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Nyström NN, Yip LCM, Carson JJL, Scholl TJ, Ronald JA. Development of a Human Photoacoustic Imaging Reporter Gene Using the Clinical Dye Indocyanine Green. Radiol Imaging Cancer 2019; 1:e190035. [PMID: 33778683 DOI: 10.1148/rycan.2019190035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Purpose To develop a photoacoustic imaging (PAI) reporter gene that has high translational potential. Previous research has shown that human organic anion-transporting polypeptide 1b3 (OATP1B3) promotes the uptake of the near-infrared fluorescent dye indocyanine green (ICG). In this study, the authors have established OATP1B3 and ICG as a reporter gene-probe pair for in vivo PAI. Materials and Methods Human breast cancer cells were engineered to express OATP1B3. Control cells (not expressing OATP1B3) or OATP1B3-expressing cells were incubated with or without ICG, placed in a breast-mimicking phantom, and imaged with PAI. Control (n = 6) or OATP1B3-expressing (n = 5) cells were then implanted orthotopically into female mice. Full-spectrum PAI was performed before and 24 hours after ICG administration. One-way analysis of variance was performed, followed by Tukey posthoc multiple comparisons, to assess statistical significance. Results OATP1B3-expressing cells incubated with ICG exhibited a 2.7-fold increase in contrast-to-noise ratio relative to all other controls in vitro (P < .05). In mice, PAI signals after ICG administration were increased 2.3-fold in OATP1B3 tumors relative to those in controls (P < .05). Conclusion OATP1B3 operates as an in vivo PAI reporter gene based on its ability to promote the cellular uptake of ICG. Benefits include the human derivation of OATP1B3, combined with the use of wavelengths in the near-infrared region, high extinction coefficient, low quantum yield, and clinical approval of ICG. The authors posit that this system will be useful for localized monitoring of emerging gene- and cell-based therapies in clinical applications.© RSNA, 2019Keywords: Animal Studies, Molecular Imaging, Molecular Imaging-Clinical Translation, Molecular Imaging-Reporter Gene Imaging, Optical ImagingSupplemental material is available for this article.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St N, Room 2241A, London, ON, Canada N6A 3K7 (N.N.N., L.C.M.Y., J.J.L.C., T.J.S., J.A.R.); Imaging Research Laboratories, Robarts Research Institute, London, Canada (N.N.N., T.J.S., J.A.R.); Lawson Health Research Institute, London, Canada (L.C.M.Y., J.J.L.C., J.A.R.); and Ontario Institute for Cancer Research, Toronto, Canada (T.J.S.)
| | - Lawrence C M Yip
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St N, Room 2241A, London, ON, Canada N6A 3K7 (N.N.N., L.C.M.Y., J.J.L.C., T.J.S., J.A.R.); Imaging Research Laboratories, Robarts Research Institute, London, Canada (N.N.N., T.J.S., J.A.R.); Lawson Health Research Institute, London, Canada (L.C.M.Y., J.J.L.C., J.A.R.); and Ontario Institute for Cancer Research, Toronto, Canada (T.J.S.)
| | - Jeffrey J L Carson
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St N, Room 2241A, London, ON, Canada N6A 3K7 (N.N.N., L.C.M.Y., J.J.L.C., T.J.S., J.A.R.); Imaging Research Laboratories, Robarts Research Institute, London, Canada (N.N.N., T.J.S., J.A.R.); Lawson Health Research Institute, London, Canada (L.C.M.Y., J.J.L.C., J.A.R.); and Ontario Institute for Cancer Research, Toronto, Canada (T.J.S.)
| | - Timothy J Scholl
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St N, Room 2241A, London, ON, Canada N6A 3K7 (N.N.N., L.C.M.Y., J.J.L.C., T.J.S., J.A.R.); Imaging Research Laboratories, Robarts Research Institute, London, Canada (N.N.N., T.J.S., J.A.R.); Lawson Health Research Institute, London, Canada (L.C.M.Y., J.J.L.C., J.A.R.); and Ontario Institute for Cancer Research, Toronto, Canada (T.J.S.)
| | - John A Ronald
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St N, Room 2241A, London, ON, Canada N6A 3K7 (N.N.N., L.C.M.Y., J.J.L.C., T.J.S., J.A.R.); Imaging Research Laboratories, Robarts Research Institute, London, Canada (N.N.N., T.J.S., J.A.R.); Lawson Health Research Institute, London, Canada (L.C.M.Y., J.J.L.C., J.A.R.); and Ontario Institute for Cancer Research, Toronto, Canada (T.J.S.)
| |
Collapse
|
19
|
Bandeiras C, Cabral JMS, Gabbay RA, Finkelstein SN, Ferreira FC. Bringing Stem Cell‐Based Therapies for Type 1 Diabetes to the Clinic: Early Insights from Bioprocess Economics and Cost‐Effectiveness Analysis. Biotechnol J 2019; 14:e1800563. [DOI: 10.1002/biot.201800563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/21/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Bandeiras
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa 1049‐001 Lisboa Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de Lisboa 1049‐001 Lisboa Portugal
- Division of Clinical Informatics, Department of MedicineBeth Israel Deaconess Medical Center 1330 Beacon Street Brookline MA 02446 USA
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa 1049‐001 Lisboa Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de Lisboa 1049‐001 Lisboa Portugal
| | - Robert A. Gabbay
- Joslin Diabetes Medical CenterHarvard Medical School One Joslin Place Boston MA 02216 USA
| | - Stan N. Finkelstein
- Division of Clinical Informatics, Department of MedicineBeth Israel Deaconess Medical Center 1330 Beacon Street Brookline MA 02446 USA
- Institute for Data, Systems and SocietyMassachusetts Institute of Technology 50 Ames Street Cambridge MA 02139 USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa 1049‐001 Lisboa Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de Lisboa 1049‐001 Lisboa Portugal
| |
Collapse
|
20
|
Sambathkumar R, Migliorini A, Nostro MC. Pluripotent Stem Cell-Derived Pancreatic Progenitors and β-Like Cells for Type 1 Diabetes Treatment. Physiology (Bethesda) 2018; 33:394-402. [DOI: 10.1152/physiol.00026.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we focus on the processes guiding human pancreas development and provide an update on methods to efficiently generate pancreatic progenitors (PPs) and β-like cells in vitro from human pluripotent stem cells (hPSCs). Furthermore, we assess the strengths and weaknesses of using PPs and β-like cell for cell replacement therapy for the treatment of Type 1 diabetes with respect to cell manufacturing, engrafting, functionality, and safety. Finally, we discuss the identification and use of specific cell surface markers to generate safer populations of PPs for clinical translation and to study the development of PPs in vivo and in vitro.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Adriana Migliorini
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Maria Cristina Nostro
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Scavuzzo MA, Hill MC, Chmielowiec J, Yang D, Teaw J, Sheng K, Kong Y, Bettini M, Zong C, Martin JF, Borowiak M. Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 2018; 9:3356. [PMID: 30135482 PMCID: PMC6105717 DOI: 10.1038/s41467-018-05740-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
Decoding the molecular composition of individual Ngn3 + endocrine progenitors (EPs) during pancreatic morphogenesis could provide insight into the mechanisms regulating hormonal cell fate. Here, we identify population markers and extensive cellular diversity including four EP subtypes reflecting EP maturation using high-resolution single-cell RNA-sequencing of the e14.5 and e16.5 mouse pancreas. While e14.5 and e16.5 EPs are constantly born and share select genes, these EPs are overall transcriptionally distinct concomitant with changes in the underlying epithelium. As a consequence, e16.5 EPs are not the same as e14.5 EPs: e16.5 EPs have a higher propensity to form beta cells. Analysis of e14.5 and e16.5 EP chromatin states reveals temporal shifts, with enrichment of beta cell motifs in accessible regions at later stages. Finally, we provide transcriptional maps outlining the route progenitors take as they make cell fate decisions, which can be applied to advance the in vitro generation of beta cells. Endocrine progenitors form early in pancreatic development but the diversity of this cell population is unclear. Here, the authors use single cell RNA sequencing of the mouse pancreas at e14.5 and e16.5 to show that endocrine progenitors are temporally distinct and those formed later are more likely to become beta cells
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica Teaw
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kuanwei Sheng
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuelin Kong
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,The Texas Heart Institute, Houston, TX, 77030, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Ramond C, Beydag-Tasöz BS, Azad A, van de Bunt M, Petersen MBK, Beer NL, Glaser N, Berthault C, Gloyn AL, Hansson M, McCarthy MI, Honoré C, Grapin-Botton A, Scharfmann R. Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development 2018; 145:dev.165480. [PMID: 30042179 PMCID: PMC6124547 DOI: 10.1242/dev.165480] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived in vitro from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes in vitro.
Collapse
Affiliation(s)
- Cyrille Ramond
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ajuna Azad
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Martijn van de Bunt
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Global Research Informatics, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Maja Borup Kjær Petersen
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark,Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Nicola L. Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Nicolas Glaser
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Claire Berthault
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Mattias Hansson
- Stem Cell Research, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Christian Honoré
- Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark,Authors for correspondence (; )
| | - Raphael Scharfmann
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France,Authors for correspondence (; )
| |
Collapse
|
24
|
Wang Y, Chang L, Zhai J, Wu Q, Wang D, Wang Y. Generation of carbamoyl phosphate synthetase 1 reporter cell lines for the assessment of ammonia metabolism. J Cell Mol Med 2017; 21:3214-3223. [PMID: 28557353 PMCID: PMC5706564 DOI: 10.1111/jcmm.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/09/2017] [Indexed: 01/25/2023] Open
Abstract
Both primary hepatocytes and stem cells-derived hepatocyte-like cells (HLCs) are major sources for bioartificial liver (BAL). Maintenance of hepatocellular functions and induction of functional maturity of HLCs are critical for BAL's support effect. It remains difficult to assess and improve detoxification functions inherent to hepatocytes, including ammonia clearance. Here, we aim to assess ammonia metabolism and identify ammonia detoxification enhancer by developing an imaging strategy. In hepatoma cell line HepG2, and immortalized hepatic cell line LO2, carbamoyl phosphate synthetase 1 (CPS1) gene, the first enzyme of ammonia-eliminating urea cycle, was labelled with fluorescence protein via CRISPR/Cas9 system. With the reporter-based screening approach, cellular detoxification enhancers were selected among a collection of 182 small molecules. In both CPS1 reporter cell lines, the fluorescence intensity is positively correlated with cellular CPS1 mRNA expression, ammonia elimination and secreted urea, and reflected ammonia detoxification in a dose-dependent manner. Surprisingly, high-level CPS1 reporter clones also reserved many other critical hepatocellular functions, for example albumin secretion and cytochrome 450 metabolic functions. Sodium phenylbutyrate and resveratrol were identified to enhance metabolism-related gene expression and liver-enriched transcription factors C/EBPα, HNF4α. In conclusion, the CPS1-reporter system provides an economic and effective platform for assessment of cellular metabolic function and high-throughput identification of chemical compounds that improve detoxification activities in hepatic lineage cells.
Collapse
Affiliation(s)
- Yi Wang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Le Chang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Jiahui Zhai
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Qiao Wu
- Capital Medical University Youan hospitalBeijingChina
| | - Donggen Wang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| | - Yunfang Wang
- Stem Cell and Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijingChina
| |
Collapse
|
25
|
Zhou C, Jiang H, Zhang Z, Zhang G, Wang H, Zhang Q, Sun P, Xiang R, Yang S. ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget 2017; 8:54388-54401. [PMID: 28903350 PMCID: PMC5589589 DOI: 10.18632/oncotarget.17077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells believed to be implicated in cancer initiation, progression, and recurrence. Here, we report that ectopic expression of zinc finger E-box binding homeobox 1 protein (ZEB1) results in the acquisition of CSC properties by breast cancer cells, leading to tumor initiation and progression in vitro and in vivo. The neurogenin 3 gene (Ngn3) is a bona fide target of ZEB1, and its repression is a key factor contributing to ZEB1-induced cancer cell stemness. ZEB1 suppressed Ngn3 transcription by forming a ZEB1/DNA methyltransferase (DNMT)3B/histone deacetylase 1 (HDAC1) complex on the Ngn3 promoter, leading to promoter hypermethylation and gene silencing. The rescue of Ngn3 expression attenuated ZEB1-induced cancer stemness and symmetric CSC division. Immunohistological analysis of human breast cancer specimens revealed a strong inverse relationship between ZEB1 and NGN3 protein expression. Thus, our findings suggest ZEB1-mediated silencing of Ngn3 is required for breast tumor initiation and maintenance. Targeted therapies against the ZEB1/Ngn3 axis may be highly valuable for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Guomin Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Rong Xiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical School of Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Ramond C, Glaser N, Berthault C, Ameri J, Kirkegaard JS, Hansson M, Honoré C, Semb H, Scharfmann R. Reconstructing human pancreatic differentiation by mapping specific cell populations during development. eLife 2017; 6. [PMID: 28731406 PMCID: PMC5540466 DOI: 10.7554/elife.27564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated. DOI:http://dx.doi.org/10.7554/eLife.27564.001
Collapse
Affiliation(s)
- Cyrille Ramond
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Paris, France
| | - Nicolas Glaser
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Paris, France
| | | | - Jacqueline Ameri
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Denmark, Europe
| | | | - Mattias Hansson
- Global Research External Affairs, Novo Nordisk A/S, Denmark, Europe
| | - Christian Honoré
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Denmark, Europe
| | - Henrik Semb
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Denmark, Europe
| | - Raphaël Scharfmann
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Paris, France
| |
Collapse
|
27
|
Lu J, Xia Q, Zhou Q. How to make insulin-producing pancreatic β cells for diabetes treatment. SCIENCE CHINA-LIFE SCIENCES 2016; 60:239-248. [DOI: 10.1007/s11427-016-0211-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
|
28
|
Johnson JD. The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia 2016; 59:2047-57. [PMID: 27473069 DOI: 10.1007/s00125-016-4059-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023]
Abstract
The production of fully functional insulin-secreting cells to treat diabetes is a major goal of regenerative medicine. In this article, I review progress towards this goal over the last 15 years from the perspective of a beta cell biologist. I describe the current state-of-the-art, and speculate on the general approaches that will be required to identify and achieve our ultimate goal of producing functional beta cells. The need for deeper phenotyping of heterogeneous cultures of stem cell derived islet-like cells in parallel with a better understanding of the heterogeneity of the target cell type(s) is emphasised. This deep phenotyping should include high-throughput single-cell analysis, as well as comprehensive 'omics technologies to provide unbiased characterisation of cell products and human beta cells. There are justified calls for more detailed and well-powered studies of primary human pancreatic beta cell physiology, and I propose online databases of standardised human beta cell responses to physiological stimuli, including both functional and metabolomic/proteomic/transcriptomic profiles. With a concerted, community-wide effort, including both basic and applied scientists, beta cell replacement will become a clinical reality for patients with diabetes.
Collapse
Affiliation(s)
- James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, 5358-2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
29
|
Beer NL, Gloyn AL. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Res 2016; 5:F1000 Faculty Rev-1711. [PMID: 27508066 PMCID: PMC4955023 DOI: 10.12688/f1000research.8682.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding 'islet regulome' for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type.
Collapse
Affiliation(s)
- Nicola L. Beer
- Oxford Centre for Diabetes Endocrinology and Metabolism, Churchill Hospital, Oxford, UK,
| | - Anna L. Gloyn
- Oxford Centre for Diabetes Endocrinology and Metabolism, Churchill Hospital, Oxford, UK,Wellcome Trust Centre for Human Genetics, Oxford, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
30
|
Carpino G, Renzi A, Cardinale V, Franchitto A, Onori P, Overi D, Rossi M, Berloco PB, Alvaro D, Reid LM, Gaudio E. Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat 2015; 228:474-86. [PMID: 26610370 DOI: 10.1111/joa.12418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic duct glands (PDGs) are tubule-alveolar glands associated with the pancreatic duct system and can be considered the anatomical counterpart of peribiliary glands (PBGs) found within the biliary tree. Recently, we demonstrated that endodermal precursor niches exist fetally and postnatally and are composed functionally of stem cells and progenitors within PBGs and of committed progenitors within PDGs. Here we have characterized more extensively the anatomy of human PDGs as novel niches containing cells with multiple phenotypes of committed progenitors. Human pancreata (n = 15) were obtained from cadaveric adult donors. Specimens were processed for histology, immunohistochemistry and immunofluorescence. PDGs were found in the walls of larger pancreatic ducts (diameters > 300 μm) and constituted nearly 4% of the duct wall area. All of the cells identified were negative for nuclear expression of Oct4, a pluripotency gene, and so are presumably committed progenitors and not stem cells. In the main pancreatic duct and in large interlobular ducts, Sox9(+) cells represented 5-30% of the cells within PDGs and were located primarily at the bottom of PDGs, whereas rare and scattered Sox9(+) cells were present within the surface epithelium. The expression of PCNA, a marker of cell proliferation, paralleled the distribution of Sox9 expression. Sox9(+) PDG cells proved to be Pdx1(+) /Ngn3(+/-) /Oct4A(-) . Nearly 10% of PDG cells were positive for insulin or glucagon. Intercalated ducts contained Sox9(+) /Pdx1(+) /Ngn3(+) cells, a phenotype that is presumptive of committed endocrine progenitors. Some intercalated ducts appeared in continuity with clusters of insulin-positive cells organized in small pancreatic islet-like structures. In summary, PDGs represent niches of a population of Sox9(+) cells exhibiting a pattern of phenotypic traits implicating a radial axis of maturation from the bottoms of the PDGs to the surface of pancreatic ducts. Our results complete the anatomical background that links biliary and pancreatic tracts and could have important implications for the common patho-physiology of biliary tract and pancreas.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | | | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Soria B, Gauthier BR, Martín F, Tejedo JR, Bedoya FJ, Rojas A, Hmadcha A. Using stem cells to produce insulin. Expert Opin Biol Ther 2015; 15:1469-89. [PMID: 26156425 DOI: 10.1517/14712598.2015.1066330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tremendous progress has been made in generating insulin-producing cells from pluripotent stem cells. The best outcome of the refined protocols became apparent in the first clinical trial announced by ViaCyte, based on the implantation of pancreatic progenitors that would further mature into functional insulin-producing cells inside the patient's body. AREAS COVERED Several groups, including ours, have contributed to improve strategies to generate insulin-producing cells. Of note, the latest results have gained a substantial amount of interest as a method to create a potentially functional and limitless supply of β-cell to revert diabetes mellitus. This review analyzes the accomplishments that have taken place over the last few decades, summarizes the state-of-art methods for β-cell replacement therapies based on the differentiation of embryonic stem cells into glucose-responsive and insulin-producing cells in a dish and discusses alternative approaches to obtain new sources of insulin-producing cells. EXPERT OPINION Undoubtedly, recent events preface the beginning of a new era in diabetes therapy. However, in our opinion, a number of significant hurdles still stand in the way of clinical application. We believe that the combination of the private and public sectors will accelerate the process of obtaining the desired safe and functional β-cell surrogates.
Collapse
Affiliation(s)
- Bernat Soria
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Benoit R Gauthier
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ;
| | - Franz Martín
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Juan R Tejedo
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Francisco J Bedoya
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Anabel Rojas
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Abdelkrim Hmadcha
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| |
Collapse
|
32
|
Roost MS, van Iperen L, Ariyurek Y, Buermans HP, Arindrarto W, Devalla HD, Passier R, Mummery CL, Carlotti F, de Koning EJP, van Zwet EW, Goeman JJ, Chuva de Sousa Lopes SM. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas. Stem Cell Reports 2015; 4:1112-24. [PMID: 26028532 PMCID: PMC4472038 DOI: 10.1016/j.stemcr.2015.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022] Open
Abstract
Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents in vivo. Cellular identity and signaling pathways directing differentiation are usually determined by extrapolating information from either human adult tissue or model organisms, assuming conservation with humans. To resolve this, we generated a collection of human fetal transcriptional profiles at different developmental stages. Moreover, we developed an algorithm, KeyGenes, which uses this dataset to quantify the extent to which next-generation sequencing or microarray data resemble specific cell or tissue types in the human fetus. Using KeyGenes combined with the human fetal atlas, we identified multiple cell and tissue samples unambiguously on a limited set of features. We thus provide a flexible and expandable platform to monitor and evaluate the efficiency of differentiation in vitro. NGS-derived transcriptional profiles of human fetal tissues/organs are generated Algorithm called KeyGenes uses a training set to predict the identity of a test set KeyGenes using the fetal atlas identifies NGS- and microarray-derived data KeyGenes is a flexible and expandable platform to monitor stem cell differentiations
Collapse
Affiliation(s)
- Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Henk P Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Wibowo Arindrarto
- Sequence Analysis Support Core, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Erik W van Zwet
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jelle J Goeman
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
33
|
Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 2015; 34:1759-72. [PMID: 25908839 DOI: 10.15252/embj.201591058] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/01/2015] [Indexed: 12/25/2022] Open
Abstract
Directed differentiation of human pluripotent stem cells into functional insulin-producing beta-like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non-functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1(+) and subsequent PDX1(+)/NKX6.1(+) pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1(+)/NKX6.1(+) progenitors produces glucose-responsive beta-like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short-term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta-like cells.
Collapse
Affiliation(s)
- Holger A Russ
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer J Ringler
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Thomas G Hennings
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mayya Shveygert
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Tingxia Guo
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Sapna Puri
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Brehm Tower Ann Arbor, MI, USA
| | - Vincenzo Cirulli
- Diabetes and Obesity Center of Excellence, Department of Medicine, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Robert Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Greg L Szot
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Brehm Tower Ann Arbor, MI, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|