1
|
Mohammadi S, Asbaghi O, Dolatshahi S, Omran HS, Amirani N, Koozehkanani FJ, Garmjani HB, Goudarzi K, Ashtary-Larky D. Effects of supplementation with milk protein on glycemic parameters: a GRADE-assessed systematic review and dose-response meta-analysis. Nutr J 2023; 22:49. [PMID: 37798798 PMCID: PMC10557355 DOI: 10.1186/s12937-023-00878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND It is suggested that supplementation with milk protein (MP) has the potential to ameliorate the glycemic profile; however, the exact impact and certainty of the findings have yet to be evaluated. This systematic review and dose-response meta-analysis of randomized controlled trials (RCTs) assessed the impact of MP supplementation on the glycemic parameters in adults. METHODS A systematic search was carried out among online databases to determine eligible RCTs published up to November 2022. A random-effects model was performed for the meta-analysis. RESULTS A total of 36 RCTs with 1851 participants were included in the pooled analysis. It was displayed that supplementation with MP effectively reduced levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -1.83 mg/dL, 95% CI: -3.28, -0.38; P = 0.013), fasting insulin (WMD: -1.06 uU/mL, 95% CI: -1.76, -0.36; P = 0.003), and homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.27, 95% CI: -0.40, -0.14; P < 0.001) while making no remarkable changes in serum hemoglobin A1c (HbA1c) values (WMD: 0.01%, 95% CI: -0.14, 0.16; P = 0.891). However, there was a significant decline in serum levels of HbA1c among participants with normal baseline body mass index (BMI) based on sub-group analyses. In addition, HOMA-IR values were significantly lower in the MP supplement-treated group than their untreated counterparts in short- and long-term supplementation (≤ 8 and > 8 weeks) with high or moderate doses (≥ 60 or 30-60 g/d) of MP or whey protein (WP). Serum FBG levels were considerably reduced upon short-term administration of a low daily dose of WP (< 30 g). Furthermore, the levels of serum fasting insulin were remarkably decreased during long-term supplementation with high or moderate daily doses of WP. CONCLUSION The findings of this study suggest that supplementation with MP may improve glycemic control in adults by reducing the values of fasting insulin, FBG, and HOMA-IR. Additional trials with longer durations are required to confirm these findings.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dolatshahi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahangir Koozehkanani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Dericioglu D, Oldham S, Methven L, Shafat A, Clegg ME. Macronutrients effects on satiety and food intake in older and younger adults: A randomised controlled trial. Appetite 2023; 189:106982. [PMID: 37507052 DOI: 10.1016/j.appet.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Older adults are advised to increase their protein intake to maintain their muscle mass. However, protein is considered the most satiating macronutrient and this recommendation may cause a decrease in total energy intake. To date, satiety studies comparing all three macronutrients have been undertaken in young adults, and it is unclear if the same response is seen in older adults. The objective of this study was to compare the effect of preloads high in protein, fat, and carbohydrate but equal in energy (∼300 kcal) and volume (250 ml) on energy intake, perceived appetite, and gastric emptying in younger and older adults. Twenty older and 20 younger adults completed a single-blinded randomised crossover trial involving three study visits. Participants consumed a standard breakfast, followed by a preload milkshake high in either carbohydrate, fat, or protein. Three hours after the preload, participants were offered an ad libitum meal to assess food intake. Visual analogue scales were used to measure perceived appetite and gastric emptying was measured via the 13C-octanoic acid breath test. There was no significant effect of preload type or age on energy intake either at the ad libitum meal, self-recorded food intake for the rest of the test day or subjective appetite ratings. There was a significant effect of preload type on gastric emptying latency phase and ascension time, and an effect of age on gastric emptying latency and lag phase such that older adults had faster emptying. In conclusion, energy intake, and perceived appetite were not affected by macronutrient content of the preloads in both younger and older adults, but gastric emptying times differed.
Collapse
Affiliation(s)
- Dilara Dericioglu
- Hugh Sinclair Human of Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| | - Stephanie Oldham
- Hugh Sinclair Human of Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| | - Lisa Methven
- Food Research Group, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| | - Amir Shafat
- Physiology, School of Medicine, University of Galway, Galway, H91 W5P7, Ireland.
| | - Miriam E Clegg
- Hugh Sinclair Human of Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| |
Collapse
|
3
|
Xie Q, Jia X, Zhang W, Xu Y, Zhu M, Zhao Z, Hao J, Li H, Du J, Liu Y, Feng H, Li H. Effects of Poria cocos extract and protein powder mixture on glucolipid metabolism and rhythm changes in obese mice. Food Sci Nutr 2023; 11:2356-2371. [PMID: 37181308 PMCID: PMC10171496 DOI: 10.1002/fsn3.3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 03/11/2023] Open
Abstract
Herein, we explored the effects of Poria cocos extract, protein powder mixture, and their combined intervention on weight loss in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were selected and fed a HFD for 8 weeks; obese mice that were successfully modeled were divided into modeling and five intervention groups, and given the corresponding treatment for 10 weeks. Body weight, fat, and muscle tissue, blood glucose, lipids, inflammatory factors, and other glucose and lipid metabolism-related indicators were measured to evaluate the effect of P. cocos and protein powder intervention on weight loss in obese mice. The body weight of the intervention group was reduced compared with the HFD group. Fat content of mice in F3PM group decreased significantly (p < .05). Levels of blood glucose, lipids, adiponectin, leptin, and inflammatory factors, including interleukin-1 β and tumor necrosis factor- α showed improvement. Lipoprotein lipase (lower about 2.97 pg/ml, vs. HFD mice 10.65 mmoL/ml) and sterol regulatory element-binding transcription factor (lower about 1413.63 pg/ml, vs. HFD mice 3915.33 pg/ml) levels in liver tissue were decreased. The respiratory exchange rate (RER) of mice in the HFD and subject intervention groups had no circadian rhythm and was maintained at approximately 0.80. The protein powder mixture (PM) group had the lowest RER (p < .05), the P. cocos extract (FL) and F1PM groups had similar RER to the HFD group (p < .05), and the F2PM group had a higher RER than the HFD group (p < .05). And food intake and energy metabolism returned to circadian rhythm, with an increase in the dose of P. cocos extract, the feeding rhythms of F1PM, F2PM, and F3PM were closer to that of the normal diet (ND) group. Feeding intervention with P. cocos and protein powder improved fat distribution, glucolipid metabolism, and energy metabolism, with the combination of F3PM showing more diverse benefits.
Collapse
Affiliation(s)
- Qiaoling Xie
- School of Public HealthXiamen UniversityXiamenChina
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Wei Zhang
- School of Public HealthXiamen UniversityXiamenChina
| | - Yuhan Xu
- School of Public HealthXiamen UniversityXiamenChina
| | - Meizhen Zhu
- School of Public HealthXiamen UniversityXiamenChina
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Hongwei Li
- School of Public HealthXiamen UniversityXiamenChina
| |
Collapse
|
4
|
Braden ML, Gwin JA, Leidy HJ. Protein Source Influences Acute Appetite and Satiety but not Subsequent Food Intake in Healthy Adults. J Nutr 2023:S0022-3166(23)35542-1. [PMID: 37030593 DOI: 10.1016/j.tjnut.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Although current recommendations encourage plant-based dietary patterns, data is limited as to whether the equivalent substitution of animal-based protein-rich foods with plant-based versions impacts ingestive behavior. OBJECTIVE To compare higher-protein preloads, varying in protein source, on appetite, satiety, and subsequent energy intake. METHODS Thirty-two adults (Age: 25±1y; Body Mass Index (BMI): 24.2±0.5kg/m) randomly consumed 250kcal, protein-preload beverages (24g protein), varying in protein source (whey, soy, pea protein isolates (WHEY, SOY, PEA) or micellar casein (CAS)) each morning for 3 acclimation days/preload. On day 4, participants completed a 4-h clinical testing day in which the respective preload was consumed followed by blood sampling and questionnaires every 30min for appetite and satiety. An ad libitum lunch was provided 4-h post-preload. On day 5, participants consumed the respective preload at home followed by an ad libitum breakfast 30min afterwards. For normally-distributed data, repeated-measures analysis of variance (ANOVA) or Friedman non-parametric test were utilized to compare main effects of protein source on study outcomes. Post-hoc pairwise comparisons using least significant differences (LSD) were then performed. RESULTS CAS (-3330±690mm*240min) and PEA (-2840±930mm*240min) reduced 4-h appetite vs. SOY (-1440±936mm*240min; both, P<0.05). WHEY was not different (-2290±930mm*240min). CAS (3520±84pg/ml*240min) and PEA (3860±864pg/ml*240min) increased 4-h PYY concentrations vs. SOY (2200±869pg/ml*240min; both, P<0.05). WHEY was not different (3870±932pg/ml*240 min). No differences in ad libitum energy intake were observed. CONCLUSIONS CAS and PEA, but not WHEY, elicited greater acute changes in appetite and satiety vs. SOY in healthy adults, supporting that not all protein sources are equivalent. This trial is registered at clinicaltrials.gov (NCT03154606).
Collapse
|
5
|
Giglio BM, Lobo PCB, Pimentel GD. Effects of whey protein supplementation on adiposity, body weight, and glycemic parameters: A synthesis of evidence. Nutr Metab Cardiovasc Dis 2023; 33:258-274. [PMID: 36543706 DOI: 10.1016/j.numecd.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
AIMS The aim of this review was to analyze the evidence of whey protein supplementation on body weight, fat mass, lean mass and glycemic parameters in subjects with overweight or type 2 diabetes mellitus (T2DM) undergoing calorie restriction or with ad libitum intake. DATA SYNTHESIS Overweight and obesity are considered risk factors for the development of chronic noncommunicable diseases such as T2DM. Calorie restriction is a dietary therapy that reduces weight and fat mass, promotes the improvement of glycemic parameters, and decreases muscle mass. The maintenance of muscle mass during weight loss is necessary in view of its implication in preventing chronic diseases and improving functional capacity and quality of life. The effects of increased protein consumption on attenuating muscle loss and reducing body fat during calorie restriction or ad libitum intake in overweight individuals are discussed. Some studies have demonstrated the positive effects of whey protein supplementation on improving satiety and postprandial glycemic control in short term; however, it remains unclear whether long-term whey protein supplementation can positively affect glycemic parameters. CONCLUSIONS Although whey protein is considered to have a high nutritional quality, its effects in the treatment of overweight, obese individuals and those with T2DM undergoing calorie restriction or ad libitum intake are still inconclusive.
Collapse
Affiliation(s)
- Bruna M Giglio
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Patrícia C B Lobo
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | | |
Collapse
|
6
|
Yanagisawa Y. How dietary amino acids and high protein diets influence insulin secretion. Physiol Rep 2023; 11:e15577. [PMID: 36695783 PMCID: PMC9875820 DOI: 10.14814/phy2.15577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023] Open
Abstract
Glucose homeostasis is the maintenance and regulation of blood glucose concentration within a tight physiological range, essential for the functioning of most tissues and organs. This is primarily achieved by pancreatic secretion of insulin and glucagon. Deficient pancreatic endocrine function, coupled with or without peripheral insulin resistance leads to prolonged hyperglycemia with chronic impairment of glucose homeostasis, most commonly seen in diabetes mellitus. High protein diets (HPDs) are thought to modulate glucose homeostasis through various metabolic pathways. Insulin secretion can be directly modulated by the amino acid products of protein digestion, which activate nutrient receptors and nutrient transporters expressed by the endocrine pancreas. Insulin secretion can also be modulated indirectly, through incretin release from enteroendocrine cells, and via vagal neuronal pathways. Additionally, glucose homeostasis can be promoted by the satiating effects of anorectic hormones released following HPD consumption. This review summarizes the insulinotropic mechanisms by which amino acids and HPDs may influence glucose homeostasis, with a particular focus on their applicability in the management of Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yuuki Yanagisawa
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
7
|
Chungchunlam SMS, Montoya CA, Stroebinger N, Moughan PJ. Effects of the maize-derived protein zein, and the milk proteins casein, whey, and α-lactalbumin, on subjective measures of satiety and food intake in normal-weight young men. Appetite 2023; 180:106339. [PMID: 36216216 DOI: 10.1016/j.appet.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022]
Abstract
Protein is considered to be the most satiating food macronutrient and the satiating effect may be dependent on the source of the protein. The maize-derived protein zein and milk protein casein have been shown previously to lower stomach emptying rate more than dairy whey protein, but the effect of zein on satiety has not been evaluated. The objective was to compare the satiating effects of zein and casein, with whey protein and its protein component α-lactalbumin. The study was a randomised crossover design with thirteen normal-weight men (mean age 27.8 years and mean BMI 24.4 kg/m2) consuming isoenergetic (∼4000 kJ, ∼990 kcal) preload mixed meals enriched with Zein, Casein, whey protein isolate (Whey), α-lactalbumin (ALac), or maltodextrin carbohydrate (Carb). Consumption of an ad libitum standardised test meal of chicken fried rice and water provided 360 min following ingestion of the preload meal was measured, and subjective feelings of appetite (hunger, fullness, desire to eat, and prospective food consumption) were assessed using 100-mm visual analogue scales (VAS). There were no differences among the five preload mixed meals in the amount of chicken fried rice consumed at the ad libitum test meal (mean ± sem: 531.6 ± 35.0 g, p = 0.47) or total (preload + test meal) energy intakes (mean ± sem: 5780.5 ± 146.0 kJ, p = 0.29). The subjective VAS appetite ratings and total area under the curve responses for hunger, fullness, desire to eat, and prospective food consumption, were not different following consumption of all five preload mixed meals (p > 0.05). The findings indicate that the effects of zein and casein on satiety were not different from the satiating effects of whey protein and α-lactalbumin.
Collapse
Affiliation(s)
| | - Carlos A Montoya
- Riddet Institute, Massey University, Palmerston North, 4474, New Zealand; Smart Foods & Bioproducts, AgResearch Limited, Te Ohu Rangahau Kai Facility, Palmerston North, 4474, New Zealand
| | | | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
8
|
The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Effect of Whey Protein Supplementation on Weight and Body Composition Indicators: A Meta-Analysis of Randomized Clinical Trials. Clin Nutr ESPEN 2022; 50:74-83. [DOI: 10.1016/j.clnesp.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
10
|
Whey-Adapted versus Natural Cow's Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods 2022; 11:foods11020141. [PMID: 35053873 PMCID: PMC8774298 DOI: 10.3390/foods11020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The natural 20:80 whey:casein ratio in cow’s milk (CM) for adults and infants is adjusted to reflect the 60:40 ratio of human milk, but the feeding and metabolic consequences of this adjustment have been understudied. In adult human subjects, the 60:40 CM differently affects glucose metabolism and hormone release than the 20:80 CM. In laboratory animals, whey-adapted goat’s milk is consumed in larger quantities. It is unknown whether whey enhancement of CM would have similar consequences on appetite and whether it would affect feeding-relevant brain regulatory mechanisms. In this set of studies utilizing laboratory mice, we found that the 60:40 CM was consumed more avidly than the 20:80 control formulation by animals motivated to eat by energy deprivation and by palatability (in the absence of hunger) and that this hyperphagia stemmed from prolongation of the meal. Furthermore, in two-bottle choice paradigms, whey-adapted CM was preferred against the natural 20:80 milk. The intake of the whey-adapted CM induced neuronal activation (assessed through analysis of c-Fos expression in neurons) in brain sites promoting satiation, but importantly, this activation was less pronounced than after ingestion of the natural 20:80 whey:casein CM. Activation of hypothalamic neurons synthesizing anorexigenic neuropeptide oxytocin (OT) was also less robust after the 60:40 CM intake than after the 20:80 CM. Pharmacological blockade of the OT receptor in mice led to an increase in the consumption only of the 20:80 CM, thus, of the milk that induced greater activation of OT neurons. We conclude that the whey-adapted CM is overconsumed compared to the natural 20:80 CM and that this overconsumption is associated with weakened responsiveness of central networks involved in satiety signalling, including OT.
Collapse
|
11
|
De Pergola G, Zupo R, Lampignano L, Paradiso S, Murro I, Cecere A, Bartolomeo N, Ciccone MM, Giannelli G, Triggiani V. Effects of a Low Carb Diet and Whey Proteins on Anthropometric, Hematochemical, and Cardiovascular Parameters in Subjects with Obesity. Endocr Metab Immune Disord Drug Targets 2021; 20:1719-1725. [PMID: 32520693 PMCID: PMC8226150 DOI: 10.2174/1871530320666200610143724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The best way to lose body weight, without using drugs and/or suffering hunger and stress, has not yet been defined. The present study tested a low carbohydrate diet, enriched with proteins, in subjects with overweight and obesity. METHODS The study enrolled 22 uncomplicated overweight and obese subjects. Several parameters were examined before and after 6 weeks of a low-carbohydrate diet, enriched with 18 g of whey proteins. Anthropometric (body mass index, waist circumference) variables, fasting hormones (insulin, TSH, FT3, FT4), and metabolic (glucose, prealbumin, and lipid levels) parameters were measured. 25- OH-vitamin D (25 (OH) D), parathyroid hormone (PTH) and osteocalcin, were also quantified. Body composition parameters (fat mass, fat-free mass, body cell mass, total body water) were measured by electrical bioimpedance analysis. As cardiovascular parameters, blood pressure, endothelium flowmediated dilation (FMD), and common carotid artery intima-media thickness were also measured. RESULTS The low-carbohydrate diet integrated with proteins induced a significant decrease in body weight (P < 0.001), waist circumference (P < 0.001), fat mass (P < 0.001), diastolic blood pressure (P < 0.01), triglycerides (P < 0.001), total cholesterol (P < 0.001), pre-albumin (P < 0.001), insulin (P < 0.001), HOMAIR (P < 0.001), FT3 (P < 0.05), and c-IMT (P < 0.001), and a significant increase in FMD (P < 0.001) and 25 (OH) D (P < 0.001) was also observed. CONCLUSION All these results suggest that a short-term non-prescriptive low carbohydrate diet, enriched with whey proteins, may be a good way to start losing fat mass and increase health.
Collapse
Affiliation(s)
- Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Roberta Zupo
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Luisa Lampignano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Silvia Paradiso
- Clinical Nutrition Unit, Medical Oncology, Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Isanna Murro
- Clinical Nutrition Unit, Medical Oncology, Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Annagrazia Cecere
- Section of Cardiovascular Disease, Department of Organ Transplantation, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Nicola Bartolomeo
- Medical Statistics, Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marco M Ciccone
- Section of Cardiovascular Disease, Department of Organ Transplantation, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Vincenzo Triggiani
- Section of Endocrinology and Metabolic Diseases, Department of Emergency and Organ Transplantation University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
12
|
Lewgood J, Oliveira B, Korzepa M, Forbes SC, Little JP, Breen L, Bailie R, Candow DG. Efficacy of Dietary and Supplementation Interventions for Individuals with Type 2 Diabetes. Nutrients 2021; 13:2378. [PMID: 34371888 PMCID: PMC8308746 DOI: 10.3390/nu13072378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of Type 2 diabetes (T2D) is increasing, which creates a large economic burden. Diet is a critical factor in the treatment and management of T2D; however, there are a large number of dietary approaches and a general lack of consensus regarding the efficacy of each. Therefore, the purpose of this narrative review is twofold: (1) to critically evaluate the effects of various dietary strategies on diabetes management and treatment, such as Mediterranean diet, plant-based diet, low-calorie and very low-calorie diets, intermittent fasting, low-carbohydrate and very low-carbohydrate diets, and low glycemic diets and (2) to examine several purported supplements, such as protein, branched-chain amino acids, creatine, and vitamin D to improve glucose control and body composition. This review can serve as a resource for those wanting to evaluate the evidence supporting the various dietary strategies and supplements that may help manage T2D.
Collapse
Affiliation(s)
- Jessica Lewgood
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada; (J.L.); (R.B.)
| | - Barbara Oliveira
- Okanagan Campus, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC V1V1V7, Canada; (B.O.); (J.P.L.)
| | - Marie Korzepa
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (M.K.); (L.B.)
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A6A9, Canada;
| | - Jonathan P. Little
- Okanagan Campus, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC V1V1V7, Canada; (B.O.); (J.P.L.)
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (M.K.); (L.B.)
| | - Robert Bailie
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada; (J.L.); (R.B.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada; (J.L.); (R.B.)
| |
Collapse
|
13
|
Comparative Assessment of the Acute Effects of Whey, Rice and Potato Protein Isolate Intake on Markers of Glycaemic Regulation and Appetite in Healthy Males Using a Randomised Study Design. Nutrients 2021; 13:nu13072157. [PMID: 34201703 PMCID: PMC8308460 DOI: 10.3390/nu13072157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023] Open
Abstract
Global protein consumption has been increasing for decades due to changes in demographics and consumer shifts towards higher protein intake to gain health benefits in performance nutrition and appetite regulation. Plant-derived proteins may provide a more environmentally sustainable alternative to animal-derived proteins. This study, therefore, aimed to investigate, for the first time, the acute effects on glycaemic indices, gut hormones, and subjective appetite ratings of two high-quality, plant-derived protein isolates (potato and rice), in comparison to a whey protein isolate in a single-blind, triple-crossover design study with nine male participants (30.8 ± 9.3 yrs). Following a 12 h overnight fast, participants consumed an equal volume of the three isocaloric protein shakes on different days, with at least a one-week washout period. Glycaemic indices and gut hormones were measured at baseline, then at 30, 60, 120, 180 min at each visit. Subjective palatability and appetite ratings were measured using visual analogue scales (VAS) over the 3 h, at each visit. This data showed significant differences in insulin secretion with an increase in whey (+141.8 ± 35.1 pmol/L; p = 0.011) and rice (−64.4 ± 20.9 pmol/L; p = 0.046) at 30 min compared to potato protein. A significantly larger total incremental area under the curve (iAUC) was observed with whey versus potato and rice with p < 0.001 and p = 0.010, respectively. There was no significant difference observed in average appetite perception between the different proteins. In conclusion, this study suggests that both plant-derived proteins had a lower insulinaemic response and improved glucose maintenance compared to whey protein.
Collapse
|
14
|
Traylor DA, Kamal M, Nunes EA, Prior T, Gorissen SHM, Lees M, Gesel F, Lim C, Phillips SM. Consumption of High-Leucine-Containing Protein Bar Following Breakfast Impacts Aminoacidemia and Subjective Appetite in Older Persons. Curr Dev Nutr 2021; 5:nzab080. [PMID: 34104852 PMCID: PMC8178109 DOI: 10.1093/cdn/nzab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Limited data are available examining dietary interventions for optimizing protein and leucine intake to stimulate muscle protein synthesis (MPS) in older humans. OBJECTIVES We aimed to investigate the aminoacidemia and appetite responses of older adults after consuming breakfast, a meal frequently consumed with high-carbohydrate and below-par amounts of protein and leucine for stimulating MPS. METHODS Five men and 3 women (means ± SD; age: 74 ± 7 y, BMI: 25.7 ± 4.9 kg/m2, fat- and bone-free mass: 63 ± 7 kg) took part in this experiment in which they consumed breakfasts with low-protein (LP = 13 ± 2 g), high-protein (HP = 32 ± 5 g), and LP followed by a protein- and leucine-enriched bar formulation 2 h later (LP + Bar = 29 ± 2 g). The LP, HP, and LP + Bar breakfast conditions contained 519 ± 86 kcal, 535 ± 83 kcal, and 739 ± 86 kcal, respectively. Blood samples were drawn for 6 h and analyzed for amino acid, insulin, and glucose concentrations. Visual analog scales were assessed for hunger, fullness, and desire to eat. RESULTS The net AUC for essential amino acid (EAA) exposure was similar between the LP + Bar and HP conditions but greater in the HP condition compared with the LP condition. Peak leucinemia was higher in the LP + Bar condition compared with the HP, and both were greater than the LP condition. Net leucine exposure was similar between HP and LP + Bar, and both were greater than LP. Hunger was similarly reduced in LP + Bar and HP, and LP + Bar resulted in a greater hunger reduction than LP. Both LP + Bar and HP resulted in greater net fullness scores than LP. CONCLUSIONS Consuming our bar formulation increased blood leucine availability and net exposure to EAAs to a similar degree as consuming a high-protein meal. High-protein at breakfast results in a greater net exposure to EAAs and leucine, which could support MPS in older persons. This study was registered at clinicaltrials.gov as NCT03712761.
Collapse
Affiliation(s)
- Daniel A Traylor
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, Brazil
| | - Todd Prior
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stefan H M Gorissen
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Lees
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Fran Gesel
- Department of Kinesiology, University of New Hampshire,
Durham, NH, USA
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
D'Souza K, Acquah C, Mercer A, Paudel Y, Pulinilkunnil T, Udenigwe CC, Kienesberger PC. Whey peptides exacerbate body weight gain and perturb systemic glucose and tissue lipid metabolism in male high-fat fed mice. Food Funct 2021; 12:3552-3561. [PMID: 33900305 DOI: 10.1039/d0fo02610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumption of milk-derived whey proteins has been demonstrated to have insulin-sensitizing effects in mice and humans, in part through the generation of bioactive whey peptides. While whey peptides can prevent insulin resistance in vitro, it is unclear whether consumption of whey peptides can prevent obesity-induced metabolic dysfunction in vivo. We sought to determine whether whey peptides consumption can protect from high fat (HF) diet-induced obesity and dysregulation of glucose homeostasis. Male C57BL/6J mice were fed either a low or HF diet for 13 weeks. HF diet fed mice were provided drinking water with no addition (control), undigested whey protein isolate (WPI, 1 mg ml-1) or whey protein hydrolysate (WPH, 1 mg ml-1) throughout the diet regimen. Mice consuming WPH gained more body weight and were more glucose intolerant compared to those consuming WPI or water only. Despite increased body weight gain, perigonadal adipose tissue weight and lipid accumulation were unchanged. However, excess lipids accumulated ectopically in the liver and skeletal muscle in mice consuming WPH, which was associated with elevated inflammatory markers systemically and in adipose tissue, liver, and skeletal muscle. In skeletal muscle, mitochondrial fat oxidation and electron transport chain proteins were decreased with WPH consumption, indicative of mitochondrial dysfunction. Taken together, our results demonstrate that WPH, but not WPI, exacerbates HF-induced body weight gain and impairs glucose homeostasis, which is accompanied by increased inflammation, ectopic fat accumulation and mitochondrial dysfunction. Thus, our results argue against the use of dietary whey peptide supplementation as a preventative option against HF diet-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Adjustment of Whey:Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021; 10:foods10030658. [PMID: 33808819 PMCID: PMC8003661 DOI: 10.3390/foods10030658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adjustment of protein content in milk formulations modifies protein and energy levels, ensures amino acid intake and affects satiety. The shift from the natural whey:casein ratio of ~20:80 in animal milk is oftentimes done to reflect the 60:40 ratio of human milk. Studies show that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone release; these data parallel animal model findings. It is unknown whether the adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food intake. In this set of studies, we focused on the impact of the 20:80 vs. 60:40 whey:casein content in milk on food intake and feeding-related brain processes in the adult organism. By utilising laboratory mice, we found that the 20:80 whey:casein milk formulation was consumed less avidly and was less preferred than the 60:40 formulation in short-term choice and no-choice feeding paradigms. The relative PCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein milk intake upregulated genes involved in early termination of feeding and in an interplay between reward and satiety, such as melanocortin 3 receptor (MC3R), oxytocin (OXT), proopiomelanocortin (POMC) and glucagon-like peptide-1 receptor (GLP1R). The 20:80 versus 60:40 whey:casein formulation intake differently affected brain neuronal activation (assessed through c-Fos, an immediate-early gene product) in the nucleus of the solitary tract, area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. We conclude that the shift from the 20:80 to 60:40 whey:casein ratio in milk affects short-term feeding and relevant brain processes.
Collapse
|
17
|
Bottani M, Cattaneo S, Pica V, Stuknytė M, Gomarasca M, Lombardi G, Banfi G, Noni ID, Ferraretto A. Gastrointestinal In Vitro Digests of Infant Biscuits Formulated with Bovine Milk Proteins Positively Affect In Vitro Differentiation of Human Osteoblast-Like Cells. Foods 2020; 9:foods9101510. [PMID: 33096628 PMCID: PMC7589107 DOI: 10.3390/foods9101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Infant biscuits (IBs) are part of complementary feeding from weaning up to the age of five years. They normally contain bovine milk proteins, which can influence bone development. This potential effect was investigated using experimental baked IBs, which were prepared from doughs containing different type of dairy proteins: milk protein concentrate (IB1), whey protein isolate (IB2), and skimmed milk powder (IB3). Dairy protein-free (IB0) and gluten-free (IB4) biscuits were also formulated. The in vitro gastrointestinal digests of IBs (IBDs) were tested on a co-culture of Caco-2/HT-29 70/30 cells as an in vitro model of human small intestine. None of the IBDs influenced cell viability and monolayer integrity, while IBD0 and IBD4 increased Peptide-YY production. The basolateral contents of Transwell plates seeded with Caco-2/HT-29 70/30 co-culture, mimicking metabolized IBDs (MIBDs), were tested on Saos-2 cells, an in vitro model of human osteoblast-like cells. After incubation, MIBD0, lacking dairy proteins, decreased the cell viability, while MIBD2, containing whey protein isolate, increased both the viability and the number of cells. MIBD2 and MIBD4, the latter containing both casein and whey proteins, increased alkaline phosphatase activity, a bone differentiation marker. These results highlight that IBs containing dairy proteins positively affect bone development.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
| | - Valentina Pica
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
| | - Milda Stuknytė
- Unitech COSPECT—University Technological Platforms Office, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
- Correspondence: ; Tel.: +39-02-503-16680
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy;
| |
Collapse
|
18
|
Fuglsang-Nielsen R, Rakvaag E, Langdahl B, Knudsen KEB, Hartmann B, Holst JJ, Hermansen K, Gregersen S. Effects of whey protein and dietary fiber intake on insulin sensitivity, body composition, energy expenditure, blood pressure, and appetite in subjects with abdominal obesity. Eur J Clin Nutr 2020; 75:611-619. [PMID: 32948867 DOI: 10.1038/s41430-020-00759-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recently, we demonstrated that whey protein (WP) combined with low dietary fiber improved lipemia, a risk factor for cardiovascular disease in subjects with abdominal obesity. In the present study, we investigated the effects of intake of WP and dietary fiber from enzyme-treated wheat bran on other metabolic parameters of the metabolic syndrome. METHODS The study was a 12-week, double-blind, randomized, controlled, parallel intervention study. We randomized 73 subjects with abdominal obesity to 1 of 4 iso-energetic dietary interventions: 60 g per day of either WP hydrolysate or maltodextrin (MD) combined with high-fiber (HiFi; 30 g dietary fiber/day) or low-fiber (LoFi; 10 g dietary fiber/day) cereal products. We assessed changes in insulin sensitivity, gut hormones (GLP-1, GLP-2, GIP, and peptide YY), body composition, 24-h BP, resting energy expenditure and respiratory exchange ratio (RER), and appetite. RESULTS Sixty-five subjects completed the trial. Subjective hunger ratings were lower after 12 weeks of WP compared with MD, independent of fiber content (P = 0.02). We found no effects on ratings of satiety, fullness or prospective food consumption for either of the interventions. Intake of WP combined with LoFi increased the postprandial peptide YY response. There were no effects of WP or fiber on insulin sensitivity, body composition, energy expenditure, incretins, or 24-h BP. CONCLUSIONS WP consumption for 12 weeks reduced subjective ratings of hunger in subjects with abdominal obesity. Neither WP nor dietary fiber from wheat bran affected insulin sensitivity, 24-h BP, gut hormone responses, body composition, or energy expenditure compared with MD and low dietary fiber.
Collapse
Affiliation(s)
- Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark. .,Department of Internal Medicine, Regional Hospital Horsens, Horsens, Denmark. .,Steno Diabetes Center Aarhus, Aarhus, Denmark.
| | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus, Denmark
| |
Collapse
|
19
|
Abstract
Dietary proteins have been used for years to treat obesity. Body weight loss is beneficial when it concerns fat mass, but loss of fat free mass - especially muscle might be detrimental. This occurs because protein breakdown predominates over synthesis, thus administering anabolic dietary compounds like proteins might counter fat free mass loss while allowing for fat mass loss.Indeed, varying the quantity of proteins will decrease muscle anabolic response and increase hyperphagia in rodents fed a low protein diet; but it will favor lean mass maintenance and promote satiety, in certain age groups of humans fed a high protein diet. Beyond protein quantity, protein source is an important metabolic regulator: whey protein and plant based diets exercize favorable effects on the risk of developing obesity, body composition, metabolic parameters or fat free mass preservation of obese patients. Specific amino-acids like branched chain amino acids (BCAA), methionine, tryptophan and its metabolites, and glutamate can also positively influence parameters and complications of obesity especially in rodent models, with less studies translating this in humans.Tuning the quality and quantity of proteins or even specific amino-acids can thus be seen as a potential therapeutic intervention on the body composition, metabolic syndrome parameters and appetite regulation of obese patients. Since these effects vary across age groups and much of the data comes from murine models, long-term prospective studies modulating proteins and amino acids in the human diet are needed.
Collapse
Affiliation(s)
- Mathilde Simonson
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Yves Boirie
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| | - Christelle Guillet
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
20
|
Kohanmoo A, Faghih S, Akhlaghi M. Effect of short- and long-term protein consumption on appetite and appetite-regulating gastrointestinal hormones, a systematic review and meta-analysis of randomized controlled trials. Physiol Behav 2020; 226:113123. [PMID: 32768415 DOI: 10.1016/j.physbeh.2020.113123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023]
Abstract
AIM High-protein diets are considered as useful diets for weight loss programs. We collected randomized controlled trials that evaluated the effect of protein on appetite and gastrointestinal hormones involved in appetite regulation. METHODS Trials were included if participants were healthy adults and isocaloric treatments were used in control and treatment arms. Random-effects model was used to calculate mean difference and 95% confidence intervals. RESULTS In total, 49 publications for acute and 19 articles for long-term effect of protein were included. In acute interventions, protein decreased hunger (-7 mm visual analogue scale (VAS), P<0.001), desire to eat (-5 mm, P = 0.045), and prospective food consumption (-5 mm, P = 0.001) and increased fullness (10 mm, P<0.001) and satiety (4 mm, P<0.001). There was also a decrease in ghrelin (-20 pg/ml, P<0.001) and increase in cholecystokinin (30 pg/ml, P<0.001) and glucagon-like peptide-1 (GLP-1) (21 ng/ml, P<0.001), but no change in gastric inhibitory polypeptide and peptide YY was observed. Appetite markers were affected by protein doses < 35 g but ghrelin, cholecystokinin, and GLP-1 changed significantly after doses ≥ 35 g. Long-term ingestion of protein did not affect these outcomes, except for GLP-1 which showed a significant decrease. CONCLUSION Results of this meta-analysis showed that acute ingestion of protein suppresses appetite, decreases ghrelin, and augments cholecystokinin and GLP-1. Results of long-term trials are inconclusive and further trials are required before a clear and sound conclusion on these trials could be made.
Collapse
Affiliation(s)
- Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Boscaini S, Cabrera‐Rubio R, Nychyk O, Roger Speakman J, Francis Cryan J, David Cotter P, Nilaweera KN. Age- and duration-dependent effects of whey protein on high-fat diet-induced changes in body weight, lipid metabolism, and gut microbiota in mice. Physiol Rep 2020; 8:e14523. [PMID: 32748559 PMCID: PMC7399378 DOI: 10.14814/phy2.14523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine whey protein has been demonstrated to exert a positive effect on energy balance, lipid metabolism, and nutrient absorption. Additionally, it affects gut microbiota configuration. Thus, whey protein is considered as good dietary candidate to prevent or ameliorate metabolic diseases, such as obesity. However, the relationship that links energy balance, metabolism, and intestinal microbial population mediated by whey protein intake remains poorly understood. In this study, we investigated the beneficial effects attributed to whey protein in the context of high-fat diet (HFD) in mice at two different ages, with short or longer durations of whey protein supplementation. Here, a 5-week dietary intervention with HFD in combination with either whey protein isolate (WPI) or the control nonwhey milk protein casein (CAS) was performed using 5-week or 10-week-old C57BL/6J mice. Notably, the younger mice had no prior history of ingestion of WPI, while older mice did. 5-week-old HFD-WPI-fed mice showed a decrease in weight gain and changes in the expression of genes within the epidydimal white adipose tissue including those encoding leptin, inflammatory marker CD68, fasting-induced adipose factor FIAF and enzymes involved in fatty acids catabolism, relative to HFD-CAS-fed mice. Differences in β-diversity and higher proportions of Lactobacillus murinus, and related functions, were evident within the gut microbiota of HFD-WPI mice. However, none of these changes were observed in mice that started the HFD dietary intervention at 10-weeks-old, with an extended period of WPI supplementation. These results suggest that the effect of whey protein on mouse body weight, adipose tissue, and intestinal parameters depends on diet duration and stage of life during which the diet is provided. In some instances, WPI influences gut microbiota composition and functional potential, which might orchestrate observed metabolic and physiological modifications.
Collapse
Affiliation(s)
- Serena Boscaini
- Food Biosciences DepartmentTeagasc Food Research Centre, MooreparkFermoyIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Raul Cabrera‐Rubio
- Food Biosciences DepartmentTeagasc Food Research Centre, MooreparkFermoyIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Oleksandr Nychyk
- Food Biosciences DepartmentTeagasc Food Research Centre, MooreparkFermoyIreland
| | - John Roger Speakman
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotland
| | - John Francis Cryan
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Paul David Cotter
- Food Biosciences DepartmentTeagasc Food Research Centre, MooreparkFermoyIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | | |
Collapse
|
22
|
Effects of biscuit fortified with whey protein isolate and wheat bran on weight loss, energy intake, appetite score, and appetite regulating hormones among overweight or obese adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Allerton DM, West DJ, Stevenson EJ. Whey protein consumption following fasted exercise reduces early postprandial glycaemia in centrally obese males: a randomised controlled trial. Eur J Nutr 2020; 60:999-1011. [PMID: 32572617 PMCID: PMC7900064 DOI: 10.1007/s00394-020-02304-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Purpose Acute submaximal exercise and whey protein supplementation have been reported to improve postprandial metabolic and appetite responses to a subsequent meal independently. We aimed to examine the combination of these strategies on postprandial responses to a carbohydrate-rich breakfast. Methods Twelve centrally obese males (age 41 ± 3 years, waist circumference 123.4 ± 2.9 cm), completed three trials in a single-blind, crossover design. Participants rested for 30 min (CON) or completed 30 min low–moderate-intensity treadmill walking (51 ± 1% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\dot{V}O}}_{\text{2peak}}$$\end{document}V˙O2peak) followed immediately by ingestion of 20 g whey protein (EX + PRO) or placebo (EX). After 15 min, a standardised breakfast was consumed and blood, expired gas and subjective appetite were sampled postprandially. After 240 min, an ad libitum lunch meal was provided to assess energy intake. Results During EX + PRO, post-breakfast peak blood glucose was reduced when compared with EX and CON (EX + PRO: 7.6 ± 0.4 vs EX: 8.4 ± 0.3; CON: 8.3 ± 0.3 mmol l−1, p ≤ 0.04). Early postprandial glucose AUC0–60 min was significantly lower under EX + PRO than EX (p = 0.011), but not CON (p = 0.12). Over the full postprandial period, AUC0–240 min during EX + PRO did not differ from other trials (p > 0.05). Peak plasma insulin concentrations and AUC0–240 min were higher during EX + PRO than CON, but similar to EX. Plasma triglyceride concentrations, substrate oxidation and subjective appetite responses were similar across trials and ad libitum energy intake was not influenced by prior fasted exercise, nor its combination with whey protein supplementation (p > 0.05). Conclusion Following fasted low–moderate-intensity exercise, consuming whey protein before breakfast may improve postprandial glucose excursions, without influencing appetite or subsequent energy intake, in centrally obese males. Trial registration number NCT02714309.
Collapse
Affiliation(s)
- Dean M Allerton
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
24
|
Obesity and adiposity: the culprit of dietary protein efficacy. Clin Sci (Lond) 2020; 134:389-401. [DOI: 10.1042/cs20190583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
AbstractObesity and increased body adiposity have been alarmingly increasing over the past decades and have been linked to a rise in food intake. Many dietary restrictive approaches aiming at reducing weight have resulted in contradictory results. Additionally, some policies to reduce sugar or fat intake were not able to decrease the surge of obesity. This suggests that food intake is controlled by a physiological mechanism and that any behavioural change only leads to a short-term success. Several hypotheses have been postulated, and many of them have been rejected due to some limitations and exceptions. The present review aims at presenting a new theory behind the regulation of energy intake, therefore providing an eye-opening field for energy balance and a potential strategy for obesity management.
Collapse
|
25
|
Chen W, Hira T, Nakajima S, Hara H. Wheat gluten hydrolysate potently stimulates peptide-YY secretion and suppresses food intake in rats. Biosci Biotechnol Biochem 2018; 82:1992-1999. [DOI: 10.1080/09168451.2018.1505482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The study was aimed to compare the satiating effect of various protein hydrolysates in rats and examine the underlying mechanism associated with the satiety hormones. Food intake and portal satiety hormone levels were measured in rats. Enteroendocrine cell-lines were employed to study the direct effect of protein hydrolysates on gut hormone secretions. The results showed that oral preload of wheat gluten hydrolysate (WGH) suppressed food intake greater and longer than other hydrolysates. The portal peptide-YY levels in WGH-treated rats at 2 h and 3 h were higher than those in control- and lactalbumin hydrolysate (LAH)-treated rats. In a distal enteroendocrine cell model, WGH more potently stimulated glucagon-like peptide-1 secretion than LAH, and the effect was largely enhanced by pepsin/pancreatin digestion of WGH. These results suggest WGH is potent in activating enteroendocrine cells to release satiety hormones leading to the prolonged suppression of food intake.
Collapse
Affiliation(s)
- Wenya Chen
- Academy of State Administration of Grain, Beijing, P.R. China
- Division of Applied Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tohru Hira
- Research Group of Bioscience and Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shingo Nakajima
- Research Group of Bioscience and Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Hara
- Research Group of Bioscience and Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
26
|
van den Broek M, de Heide LJM, Emous M, Wijma RB, Veeger NJGM, Wolthuis A, Laskewitz AJ, Heiner-Fokkema MR, Muller Kobold AC, Wolffenbuttel BHR, van Beek AP. Satiety and gastrointestinal hormones during a Mixed Meal Tolerance Test after gastric bypass surgery: association with plasma amino acid concentrations. Surg Obes Relat Dis 2018; 14:1106-1117. [PMID: 29937240 DOI: 10.1016/j.soard.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Circulating amino acids have been associated with both appetite and the secretion of anorexigenic hormones in healthy and obese populations. This effect has not been investigated in subjects having undergone Roux-en-Y gastric bypass surgery (RYGB). OBJECTIVE To investigate the association between postprandial plasma concentrations of amino acids and the anorexigenic hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY), the orexigenic hormone ghrelin, and satiety and hunger in post-RYGB subjects. SETTING A Dutch surgical department. METHODS Participants after primary RYGB were studied during a Mixed Meal Tolerance Test (MMTT). Satiety and hunger were assessed every 30 minutes on visual analogue scales. Blood samples were collected at baseline, every 10 minutes during the first half hour and every 30 minutes until 210 minutes after the start. The samples were assessed for 24 amino acids and 3 gastrointestinal hormones. Incremental areas under the curve (iAUCs) were calculated. Exploratory analyses were performed in which subjects were divided into high and low responders depending on the median iAUC. RESULTS 42 subjects, aged 48 ± 11 (mean ± SD) years, 31 to 76 months post-RYGB and with total weight loss of 30 ± 9% completed the MMTT. Subjects with high satiety scores had more than a 25% higher net iAUC of PYY and GLP-1 and at least a 10% higher net iAUC of 10 amino acids compared to subjects with low scores (P < 0.05). The net iAUC of five of these amino acids (i.e. arginine, asparagine, histidine, serine and threonine) was more than 10% higher in subjects with high responses on GLP-1 and/or PYY (P < 0.05). CONCLUSIONS Certain postprandial amino acids were associated with satiety and anorexigenic hormones and could therefore play a role in appetite regulation after RYGB; either by a direct effect on satiety, indirectly through gastrointestinal hormones, or both.
Collapse
Affiliation(s)
- Merel van den Broek
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands.
| | - Loek J M de Heide
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Marloes Emous
- Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Centre for Obesity Netherlands (CON), Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Ragnhild B Wijma
- Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Centre for Obesity Netherlands (CON), Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Nic J G M Veeger
- Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Wolthuis
- Department of Clinical Chemistry, CERTE, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Anke J Laskewitz
- Department of Clinical Chemistry, CERTE, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anneke C Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - André P van Beek
- Centre for Obesity Netherlands (CON), Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Bolster DR, Rahn M, Kamil AG, Bristol LT, Goltz SR, Leidy HJ, Blaze Mt M, Nunez MA, Guo E, Wang J, Harkness LS. Consuming Lower-Protein Nutrition Bars with Added Leucine Elicits Postprandial Changes in Appetite Sensations in Healthy Women. J Nutr 2018; 148:693-701. [PMID: 29897544 DOI: 10.1093/jn/nxy023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Higher-protein meals (>25 g protein/meal) have been associated with enhanced satiety but the role of amino acids is unclear. Leucine has been proposed to stimulate satiety in rodents but has not been assessed in humans. OBJECTIVE We assessed the acute effects of lower-protein nutrition bars, enhanced with a leucine peptide (LP), on postprandial appetite sensations in combination with plasma leucine and peptide YY (PYY) in healthy women. METHODS Utilizing a double-blind randomized crossover design, 40 healthy women [28 ± 7.5 y; body mass index (BMI, in kg/m2): 23.5 ± 2.4] consumed the following isocaloric (180 kcal) pre-loads on 3 separate visits: control bar [9 g protein with 0 g added LP (0-g LP)] or treatment bars [11 g protein with 2 g added LP (2-g LP) or 13 g protein with 3 g added LP (3-g LP)]. Pre- and postprandial hunger, desire to eat, prospective food consumption (PFC), fullness, and plasma leucine were assessed every 30 min for 240 min. Plasma PYY was assessed hourly for 240 min (n = 24). RESULTS Main effects of time (P < 0.0001) and treatment (P < 0.03) were detected for postprandial hunger, desire to eat, PFC, and fullness. Post hoc analyses revealed that the 2-g and 3-g LP bars elicited greater increases in fullness and greater decreases in PFC compared with 0-g LP (all, P < 0.05) with no differences between the 2-g and 3-g LP bars. The 2-g bar elicited greater decreases in hunger and desire to eat compared with the 0-g LP bar (both, P ≤ 0.01), whereas 3-g LP did not. Appetite incremental areas under the curves (iAUCs) and PYY outcomes were not different between bars. A treatment × time interaction was detected for plasma leucine with increases occurring in a leucine-dose-dependent manner (P < 0.0001). CONCLUSION Despite the dose-dependent increases in plasma leucine following the consumption of lower-protein bars enhanced with LP, only the 2-g LP bar elicited consistent postprandial changes in select appetite sensations compared with the 0-g LP bar. This study was registered on clinicaltrials.gov as NCT02091570.
Collapse
Affiliation(s)
| | - Maike Rahn
- PepsiCo R&D Nutrition Sciences, Purchase, NY
| | | | | | | | - Heather J Leidy
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | | | | | | | | | | |
Collapse
|
28
|
Dougkas A, Östman E. Comparable effects of breakfast meals varying in protein source on appetite and subsequent energy intake in healthy males. Eur J Nutr 2018; 57:1097-1108. [PMID: 28243787 DOI: 10.1007/s00394-017-1392-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE The satiating effect of animal vs plant proteins remains unknown. The present study examined the effects of breakfasts containing animal proteins [milk (AP)], a blend of plant proteins [oat, pea and potato (VP)] or 50:50 mixture of the two (MP) compared with a carbohydrate-rich meal (CHO) on appetite, energy intake (EI) and metabolic measures. METHODS A total of 28 males [mean age 27.4 (±SD 4.2) years, BMI 23.4 (±2.1) kg/m2] consumed three isoenergetic (1674 kJ) rice puddings matched for energy density and macronutrient content as breakfast (25% E from protein) in a single-blind, randomised, cross over design. Appetite ratings and blood samples were collected and assessed at baseline and every 30 and 60 min, respectively, until an ad libitum test meal was served 3.5 h later. Free-living appetite was recorded hourly and EI in weighed food records for the remainder of the day. RESULTS No differences in subjective appetite ratings were observed after consumption of the AP, VP and MP. Furthermore, there were no differences between the AP, VP, MP and CHO breakfasts in ad libitum EI and self-reported EI during the remainder of the day. Although insulin metabolism was not affected, CHO induced a higher glucose response (P = 0.001) and total amino acids concentration was in the order of AP = MP > VP > CHO breakfast (P = 0.001). CONCLUSION Manipulating the protein source of foods consumed as breakfast, elicited comparable effects on appetite and EI at both laboratory and free-living environment in healthy men.
Collapse
Affiliation(s)
- Anestis Dougkas
- Food for Health Science Center, Lund University, Lund, 221 00, Sweden.
- Institut Paul Bocuse Research Centre, 6913, Ecully, France.
| | - Elin Östman
- Food for Health Science Center, Lund University, Lund, 221 00, Sweden
| |
Collapse
|
29
|
Zapata RC, Singh A, Chelikani PK. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats. FASEB J 2018; 32:850-861. [PMID: 29042449 DOI: 10.1096/fj.201700519rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dairy proteins-whey protein, in particular-are satiating and often recommended for weight control; however, little is known about the mechanisms by which whey protein and its components promote satiety and weight loss. We used diet-induced obese rats to determine whether the hypophagic effects of diets that are enriched with whey and its fractions, lactalbumin and lactoferrin, are mediated by the gut hormone, peptide YY (PYY). We demonstrate that high protein diets that contain whey, lactalbumin, and lactoferrin decreased food intake and body weight with a concurrent increase in PYY mRNA abundance in the colon and/or plasma PYY concentrations. Of importance, blockade of PYY neuropeptide Y receptor subtype 2 (Y2) receptors with a peripherally restricted antagonist attenuated the hypophagic effects of diets that are enriched with whey protein fractions. Diets that are enriched with whey fractions were less preferred; however, in a modified conditioned taste preference test, PYY Y2 receptor blockade induced hyperphagia of a lactoferrin diet, but caused a reduction in preference for Y2 antagonist-paired flavor, which suggested that PYY signaling is important for lactoferrin-induced satiety, but not essential for preference for lactoferrin-enriched diets. Taken together, these data provide evidence that the satiety of diets that are enriched with whey protein components is mediated, in part, via enhanced PYY secretion and action in obese male rats.-Zapata, R. C., Singh, A., Chelikani, P. K. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Drummen M, Tischmann L, Gatta-Cherifi B, Adam T, Westerterp-Plantenga M. Dietary Protein and Energy Balance in Relation to Obesity and Co-morbidities. Front Endocrinol (Lausanne) 2018; 9:443. [PMID: 30127768 PMCID: PMC6087750 DOI: 10.3389/fendo.2018.00443] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Dietary protein is effective for body-weight management, in that it promotes satiety, energy expenditure, and changes body-composition in favor of fat-free body mass. With respect to body-weight management, the effects of diets varying in protein differ according to energy balance. During energy restriction, sustaining protein intake at the level of requirement appears to be sufficient to aid body weight loss and fat loss. An additional increase of protein intake does not induce a larger loss of body weight, but can be effective to maintain a larger amount of fat-free mass. Protein induced satiety is likely a combined expression with direct and indirect effects of elevated plasma amino acid and anorexigenic hormone concentrations, increased diet-induced thermogenesis, and ketogenic state, all feed-back on the central nervous system. The decline in energy expenditure and sleeping metabolic rate as a result of body weight loss is less on a high-protein than on a medium-protein diet. In addition, higher rates of energy expenditure have been observed as acute responses to energy-balanced high-protein diets. In energy balance, high protein diets may be beneficial to prevent the development of a positive energy balance, whereas low-protein diets may facilitate this. High protein-low carbohydrate diets may be favorable for the control of intrahepatic triglyceride IHTG in healthy humans, likely as a result of combined effects involving changes in protein and carbohydrate intake. Body weight loss and subsequent weight maintenance usually shows favorable effects in relation to insulin sensitivity, although some risks may be present. Promotion of insulin sensitivity beyond its effect on body-weight loss and subsequent body-weight maintenance seems unlikely. In conclusion, higher-protein diets may reduce overweight and obesity, yet whether high-protein diets, beyond their effect on body-weight management, contribute to prevention of increases in non-alcoholic fatty liver disease NAFLD, type 2 diabetes and cardiovascular diseases is inconclusive.
Collapse
Affiliation(s)
- Mathijs Drummen
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Lea Tischmann
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Blandine Gatta-Cherifi
- Department of Endocrinology, Diabetology and Nutrition, Universite de Bordeaux, Bordeaux, France
| | - Tanja Adam
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Margriet Westerterp-Plantenga
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
- *Correspondence: Margriet Westerterp-Plantenga
| |
Collapse
|
31
|
Abstract
Epidemiological studies demonstrate that poor glycaemic control is an independent risk factor for CVD. Postprandial glycaemia has been demonstrated as a better predictor of glycated Hb, the gold standard of glycaemic control, when compared with fasting blood glucose. There is a need for more refined strategies to tightly control postprandial glycaemia, particularly in those with type 2 diabetes, and nutritional strategies around meal consumption may be effective in enhancing subsequent glycaemic control. Whey protein administration around meal times has been demonstrated to reduce postprandial glycaemia, mediated through various mechanisms including an enhancement of insulin secretion. Whey protein ingestion has also been shown to elicit an incretin effect, enhancing the secretion of glucose-dependent insulinotropic peptide and glucagon-like peptide-1, which may also influence appetite regulation. Acute intervention studies have shown some promising results however many have used large dosages (50-55 g) of whey protein alongside high-glycaemic index test meals, such as instant powdered potato mixed with glucose, which does not reflect realistic dietary strategies. Long-term intervention studies using realistic strategies around timing, format and amount of whey protein in relevant population groups are required.
Collapse
|
32
|
Rubio-Martín E, García-Escobar E, Ruiz de Adana MS, Lima-Rubio F, Peláez L, Caracuel AM, Bermúdez-Silva FJ, Soriguer F, Rojo-Martínez G, Olveira G. Comparison of the Effects of Goat Dairy and Cow Dairy Based Breakfasts on Satiety, Appetite Hormones, and Metabolic Profile. Nutrients 2017; 9:nu9080877. [PMID: 28809789 PMCID: PMC5579670 DOI: 10.3390/nu9080877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 01/14/2023] Open
Abstract
The satiating effects of cow dairy have been thoroughly investigated; however, the effects of goat dairy on appetite have not been reported so far. Our study investigates the satiating effect of two breakfasts based on goat or cow dairy and their association with appetite related hormones and metabolic profile. Healthy adults consumed two breakfasts based on goat (G-Breakfast) or cow (C-Breakfast) dairy products. Blood samples were taken and VAS tests were performed at different time points. Blood metabolites were measured and Combined Satiety Index (CSI) and areas under the curves (AUC) were calculated. Desire to eat rating was significantly lower (breakfast & time interaction p < 0.01) and hunger rating tended to be lower (breakfast & time interaction p = 0.06) after the G-breakfast. None of the blood parameters studied were different between breakfasts; however, AUCGLP-1 was inversely associated with the AUChunger and AUCdesire-to-eat after the G-Breakfast, whereas triglyceride levels were directly associated with AUCCSI after the C-Breakfast. Our results suggest a slightly higher satiating effect of goat dairy when compared to cow dairy products, and pointed to a potential association of GLP-1 and triglyceride levels with the mechanisms by which dairy products might affect satiety after the G-Breakfast and C-Breakfast, respectively.
Collapse
Affiliation(s)
- Elehazara Rubio-Martín
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| | - Eva García-Escobar
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| | - Maria-Soledad Ruiz de Adana
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| | - Fuensanta Lima-Rubio
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
| | - Laura Peláez
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
| | - Angel-María Caracuel
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
| | - Francisco-Javier Bermúdez-Silva
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| | - Federico Soriguer
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| | - Gemma Rojo-Martínez
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| | - Gabriel Olveira
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga/Universidad de Málaga, 29009 Malaga, Spain.
- Centro de Investigación Biomédica en Red (CIBERDEM CB07/08/0019), Instituto de Salud Carlos III, 29009 Malaga, Spain.
| |
Collapse
|
33
|
Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2017; 20:34-40. [DOI: 10.1016/j.clnesp.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023]
|
34
|
Chungchunlam SMS, Henare SJ, Ganesh S, Moughan PJ. Effects of whey protein and its two major protein components on satiety and food intake in normal-weight women. Physiol Behav 2017; 175:113-118. [PMID: 28389248 DOI: 10.1016/j.physbeh.2017.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
Protein is the most satiating macronutrient and is source dependent, with whey protein thought to be particularly satiating. The purported satiating effect of whey protein may be due to the unique mixture of proteins in whey or to the major constituent individual proteins (β-lactoglobulin and α-lactalbumin). The objective of the study was to compare the effects of isoenergetic (~2100kJ, ~500kcal) preload meals enriched (~50g protein) with either whey protein isolate (WP), β-lactoglobulin (BL) isolate or α-lactalbumin (AL) isolate, on food intake at an ad libitum test meal 120min later and subjective ratings of appetite (hunger, desire to eat, prospective food consumption and fullness) using visual analogue scales (VAS). Twenty adult normal-weight women (mean age 24.2±0.8years; mean BMI 22.7±0.4kg/m2) participated in the study which used a single-blind completely randomised block design, where each subject consumed each of the three preload meals. Energy intake at the ad libitum test meal and total energy intakes (preload+test meal) did not differ between the three preload meals (p>0.05). There were no significant differences observed for the VAS scores and net incremental area under the curve (net iAUC) during the 120min following consumption of the three preload meals for subjective ratings of appetite (p>0.05). The findings show that the satiating effect of whey protein was similar to that of BL or AL individually and suggest that the major whey protein components BL and AL do not mediate the satiating effect of whey protein. The present human trial was registered with the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12615000344594.
Collapse
Affiliation(s)
| | - Sharon J Henare
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Siva Ganesh
- AgResearch Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
35
|
Moura CS, Lollo PCB, Morato PN, Risso EM, Amaya-Farfan J. Bioactivity of food peptides: biological response of rats to bovine milk whey peptides following acute exercise. Food Nutr Res 2017; 61:1290740. [PMID: 28326005 PMCID: PMC5345594 DOI: 10.1080/16546628.2017.1290740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Several physiologically beneficial effects of consuming a whey protein hydrolysate (WPH) have been attributed to the greater availability of bioactive peptides. Aims: The aim was to investigate the effect of four branched-chain amino acid- (BCAA-)containing dipeptides, present in WPH, on immune modulation, stimulation of HSP expression, muscle protein synthesis, glycogen content, satiety signals and the impact of these peptides on the plasma free amino acid profiles. Methods: The animals were divided in groups: control (rest, without gavage), vehicle (water), L-isoleucyl-L-leucine (lle-Leu), L-leucyl-L-isoleucine (Leu-lle), L-valyl-Lleucine (Val-Leu), L-leucyl-L-valine (Leu-Val) and WPH. All animals were submitted to acute exercise, except for control. Results: lle-Leu stimulated immune response, hepatic and muscle glycogen and HSP60 expression, whereas Leu-Val enhanced HSP90 expression. All dipeptides reduced glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, no changes were observed on leptin. All peptides inhibited NF-kB expression. The plasma amino acid time-course showed peptide-specific and isomer-specific metabolic features, including increases of the BCAAs. Conclusion: The data indicate that lle-Leu was effective to attenuate immune-suppression exercise-induced, promoted glycogen content and stimulated anti-stress effect (HSP). Furthermore, Leu-Val increased HSP90, p-4EBP1, p-mTOR and p-AMPK expression. The data suggest the involvement of these peptides in various beneficial functions of WPH consumption.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Food and Nutrition Department, Protein Resources Laboratory, Faculty of Food Engineering, University of Campinas (UNICAMP) , Campinas , Brazil
| | - Pablo Christiano Barboza Lollo
- Food and Nutrition Department, Protein Resources Laboratory, Faculty of Food Engineering, University of Campinas (UNICAMP) , Campinas , Brazil
| | - Priscila Neder Morato
- Food and Nutrition Department, Protein Resources Laboratory, Faculty of Food Engineering, University of Campinas (UNICAMP) , Campinas , Brazil
| | - Eder Muller Risso
- Food and Nutrition Department, Protein Resources Laboratory, Faculty of Food Engineering, University of Campinas (UNICAMP) , Campinas , Brazil
| | - Jaime Amaya-Farfan
- Food and Nutrition Department, Protein Resources Laboratory, Faculty of Food Engineering, University of Campinas (UNICAMP) , Campinas , Brazil
| |
Collapse
|
36
|
van den Broek M, de Heide LJM, Veeger NJGM, van der Wal-Oost AM, van Beek AP. Influence of dietary protein and its amino acid composition on postoperative outcomes after gastric bypass surgery: a systematic review. Nutr Rev 2016; 74:749-773. [PMID: 27864536 DOI: 10.1093/nutrit/nuw042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Bariatric surgery is an effective method to reduce morbid obesity. Nutritional counseling is essential to achieve maximal treatment success and to avoid long-term complications. Increased dietary protein intake may improve various postoperative results. OBJECTIVE The aim of this systematic review is to examine the relationship between intake of dietary protein or supplementation with amino acids and postoperative outcomes after gastric bypass surgery. DATA SOURCES A systematic literature search was conducted in 4 electronic databases: Cochrane, Embase, PubMed, and Scopus. STUDY SELECTION The initial search retrieved 7333 hits, which included 2390 duplicates. DATA EXTRACTION Tweny-three studies with varying study designs, interventions, and outcomes were included. RESULTS Studies did not provide convincing evidence of a beneficial effect on any postoperative outcome. CONCLUSIONS The study of the influence of protein and its amino acid composition represents an important developing domain of knowledge and warrants further attention considering the popularity of bariatric surgery. Future studies should include a clear description of the quantity and composition of proteins and amino acids in the diet or supplement.
Collapse
Affiliation(s)
- Merel van den Broek
- M. van den Broek and L.J.M. de Heide are with the Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. A.M. van der Wal-Oost is with the MCL Academy, Medical Center Leeuwarden, Leeuwarden, the Netherlands. A.P. van Beek is with the Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Loek J M de Heide
- M. van den Broek and L.J.M. de Heide are with the Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. A.M. van der Wal-Oost is with the MCL Academy, Medical Center Leeuwarden, Leeuwarden, the Netherlands. A.P. van Beek is with the Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nic J G M Veeger
- M. van den Broek and L.J.M. de Heide are with the Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. A.M. van der Wal-Oost is with the MCL Academy, Medical Center Leeuwarden, Leeuwarden, the Netherlands. A.P. van Beek is with the Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alies M van der Wal-Oost
- M. van den Broek and L.J.M. de Heide are with the Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. A.M. van der Wal-Oost is with the MCL Academy, Medical Center Leeuwarden, Leeuwarden, the Netherlands. A.P. van Beek is with the Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - André P van Beek
- M. van den Broek and L.J.M. de Heide are with the Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands. N.J.G.M. Veeger is with the Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. A.M. van der Wal-Oost is with the MCL Academy, Medical Center Leeuwarden, Leeuwarden, the Netherlands. A.P. van Beek is with the Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Effect of whey protein and a free amino acid mixture simulating whey protein on measures of satiety in normal-weight women. Br J Nutr 2016; 116:1666-1673. [DOI: 10.1017/s0007114516003767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractDietary protein is considered more satiating than carbohydrate, and whey protein is more satiating than other protein sources. The purported satiating effect of whey protein may be due to direct effects of the unique mixture of proteins in whey, due to the effects of peptides released upon digestion and/or its amino acid composition. The objective of the present study was to compare the satiating effects of intact whey protein isolate (WPI) or a free amino acid mixture (AAM) simulating the amino acid composition of the WPI. A single-blind completely randomised block design included twenty, healthy, adult women (age 24·2 (sem 0·8) years) of normal weight (BMI 22·7 (sem 0·4) kg/m2). Following consumption of isoenergetic (approximately 1800 kJ) preload meals enriched (52 g amino acid equivalent) with WPI or AAM, consumption of an ad libitum test meal 120 min later and subjective feelings of appetite using visual analogue scales (VAS) were determined. There were no significant differences (P=0·24) in the ad libitum test meal intakes between the WPI (268·5 (sem 27·3) g) and the AAM (238·4 (sem 22·7) g) preload meals. Subjective VAS ratings of appetite did not differ significantly between the WPI and the AAM preload meals (P>0·05). Intact whey protein and a free AAM simulating the whey protein showed similar effects on satiety. This suggests that the satiating effect of whey protein may be related to its specific amino acid composition.
Collapse
|
38
|
Singh A, Pezeshki A, Zapata RC, Yee NJ, Knight CG, Tuor UI, Chelikani PK. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. J Nutr Biochem 2016; 37:47-59. [DOI: 10.1016/j.jnutbio.2016.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 07/15/2016] [Indexed: 01/11/2023]
|
39
|
Phillips SM. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr Metab (Lond) 2016; 13:64. [PMID: 27708684 PMCID: PMC5041535 DOI: 10.1186/s12986-016-0124-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation during resistance exercise training augments hypertrophic gains. Protein ingestion and the resultant hyperaminoacidemia provides the building blocks (indispensable amino acids - IAA) for, and also triggers an increase in, muscle protein synthesis (MPS), suppression of muscle protein breakdown (MPB), and net positive protein balance (i.e., MPS > MPB). The key amino acid triggering the rise in MPS is leucine, which stimulates the mechanistic target of rapamycin complex-1, a key signalling protein, and triggers a rise in MPS. As such, ingested proteins with a high leucine content would be advantageous in triggering a rise in MPS. Thus, protein quality (reflected in IAA content and protein digestibility) has an impact on changes in MPS and could ultimately affect skeletal muscle mass. Protein quality has been measured by the protein digestibility-corrected amino acid score (PDCAAS); however, the digestible indispensable amino acid score (DIAAS) has been recommended as a better method for protein quality scoring. Under DIAAS there is the recognition that amino acids are individual nutrients and that protein quality is contingent on IAA content and ileal (as opposed to fecal) digestibility. Differences in protein quality may have important ramifications for exercise-induced changes in muscle mass gains made with resistance exercise as well as muscle remodelling. Thus, the purpose of this review is a critical appraisal of studies examining the effects of protein quality in supplementation on changes in muscle mass and strength as well as body composition during resistance training.
Collapse
Affiliation(s)
- Stuart M. Phillips
- Department of Kinesiology, McMaster University, 1280 Main St., West Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
40
|
Carreiro AL, Dhillon J, Gordon S, Jacobs AG, Higgins KA, McArthur BM, Redan BW, Rivera RL, Schmidt LR, Mattes RD. The Macronutrients, Appetite, and Energy Intake. Annu Rev Nutr 2016; 36:73-103. [PMID: 27431364 PMCID: PMC4960974 DOI: 10.1146/annurev-nutr-121415-112624] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each of the macronutrients-carbohydrate, protein, and fat-has a unique set of properties that influences health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, thinking has progressed regarding the mechanisms by which each macronutrient may contribute to energy balance. At the beginning of this period, metabolic signals that initiated eating events (i.e., determined eating frequency) were emphasized. This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain, where the reward signals elicited by the macronutrients are viewed as potentially problematic (e.g., contribute to disordered eating). At this point, the predictive power of the macronutrients for energy intake remains limited.
Collapse
Affiliation(s)
- Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Jaapna Dhillon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Susannah Gordon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Ashley G Jacobs
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Kelly A Higgins
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | | | - Benjamin W Redan
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Rebecca L Rivera
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Leigh R Schmidt
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
41
|
Arciero PJ, Edmonds RC, Bunsawat K, Gentile CL, Ketcham C, Darin C, Renna M, Zheng Q, Zhang JZ, Ormsbee MJ. Protein-Pacing from Food or Supplementation Improves Physical Performance in Overweight Men and Women: The PRISE 2 Study. Nutrients 2016; 8:nu8050288. [PMID: 27187451 PMCID: PMC4882701 DOI: 10.3390/nu8050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
We recently reported that protein-pacing (P; six meals/day @ 1.4 g/kg body weight (BW), three of which included whey protein (WP) supplementation) combined with a multi-mode fitness program consisting of resistance, interval sprint, stretching, and endurance exercise training (RISE) improves body composition in overweight individuals. The purpose of this study was to extend these findings and determine whether protein-pacing with only food protein (FP) is comparable to WP supplementation during RISE training on physical performance outcomes in overweight/obese individuals. Thirty weight-matched volunteers were prescribed RISE training and a P diet derived from either whey protein supplementation (WP, n = 15) or food protein sources (FP, n = 15) for 16 weeks. Twenty-one participants completed the intervention (WP, n = 9; FP, n = 12). Measures of body composition and physical performance were significantly improved in both groups (p < 0.05), with no effect of protein source. Likewise, markers of cardiometabolic disease risk (e.g., LDL (low-density lipoprotein) cholesterol, glucose, insulin, adiponectin, systolic blood pressure) were significantly improved (p < 0.05) to a similar extent in both groups. These results demonstrate that both whey protein and food protein sources combined with multimodal RISE training are equally effective at improving physical performance and cardiometabolic health in obese individuals.
Collapse
Affiliation(s)
- Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Rohan C Edmonds
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Kanokwan Bunsawat
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Christopher L Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| | - Caitlin Ketcham
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Christopher Darin
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Mariale Renna
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Qian Zheng
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Jun Zhu Zhang
- Human Nutrition and Metabolism Laboratory, Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Michael J Ormsbee
- Florida State University, Institute of Sports Sciences & Medicine, Department of Nutrition, Food and Exercise Sciences, Tallahassee, FL 32304, USA.
- Discipline of Biokinetics, Exercise, and Leisure Studies, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
42
|
Allerton DM, Campbell MD, Gonzalez JT, Rumbold PLS, West DJ, Stevenson EJ. Co-Ingestion of Whey Protein with a Carbohydrate-Rich Breakfast Does Not Affect Glycemia, Insulinemia or Subjective Appetite Following a Subsequent Meal in Healthy Males. Nutrients 2016; 8:116. [PMID: 26927166 PMCID: PMC4808846 DOI: 10.3390/nu8030116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
We aimed to assess postprandial metabolic and appetite responses to a mixed-macronutrient lunch following prior addition of whey protein to a carbohydrate-rich breakfast. Ten healthy males (age: 24 ± 1 years; body mass index (BMI): 24.5 ± 0.7 kg/m2) completed three trials in a non-isocaloric, crossover design. A carbohydrate-rich breakfast (93 g carbohydrate; 1799 kJ) was consumed with (CHO + WP) or without (CHO) 20 g whey protein isolate (373 kJ), or breakfast was omitted (NB). At 180 min, participants consumed a mixed-macronutrient lunch meal. Venous blood was sampled at 15 min intervals following each meal and every 30 min thereafter, while subjective appetite sensations were collected every 30 min throughout. Post-breakfast insulinemia was greater after CHO + WP (time-averaged area under the curve (AUC0–180 min): 193.1 ± 26.3 pmol/L), compared to CHO (154.7 ± 18.5 pmol/L) and NB (46.1 ± 8.0 pmol/L; p < 0.05), with no difference in post-breakfast (0–180 min) glycemia (CHO + WP, 3.8 ± 0.2 mmol/L; CHO, 4.2 ± 0.2 mmol/L; NB, 4.2 ± 0.1 mmol/L; p = 0.247). There were no post-lunch (0–180 min) effects of condition on glycemia (p = 0.492), insulinemia (p = 0.338) or subjective appetite (p > 0.05). Adding whey protein to a carbohydrate-rich breakfast enhanced the acute postprandial insulin response, without influencing metabolic or appetite responses following a subsequent mixed-macronutrient meal.
Collapse
Affiliation(s)
- Dean M Allerton
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Matthew D Campbell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- School of Sport, Carnegie Faculty, Leeds Beckett University, Leeds LS6 3QT, UK.
| | - Javier T Gonzalez
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- Department for Health, University of Bath, Bath BA2 7AY, UK.
| | - Penny L S Rumbold
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Daniel J West
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Emma J Stevenson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
43
|
Pasiakos SM. Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycemic regulation, and bone. J Food Sci 2015; 80 Suppl 1:A2-7. [PMID: 25757894 DOI: 10.1111/1750-3841.12804] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 01/23/2023]
Abstract
The Inst. of Medicine and World Health Organization have determined that 0.8 to 0.83 g protein·kg(-1) ·d(-1) is the quantity of protein required to establish nitrogen balance in nearly all healthy individuals. However, consuming higher protein diets may be metabolically advantageous, particularly for overweight and obese adults attempting weight loss, and for physically active individuals such as athletes and military personnel. Studies have demonstrated that higher protein diets may spare lean body mass during weight loss, promote weight management, enhance glycemic regulation, and increase intestinal calcium absorption, which may result in long-term improvements in bone health. The extent to which higher protein diets are beneficial is largely attributed to the digestive and absorptive properties, and also to the essential amino acid (EAA) content of the protein. Proteins that are rapidly digested and absorbed likely contribute to the metabolic advantages conferred by consuming higher protein diets. The EAA profiles, as well as the digestive and absorptive properties of dairy proteins, such as whey protein and casein, are particularly advantageous because they facilitate a rapid, robust, and sustained delivery of EAAs to the periphery. This article reviews the scientific literature assessing metabolic advantages associated with higher protein diets on weight management, glycemic regulation, and bone, with emphasis given to studies evaluating the potential benefits associated with dairy.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Div, US Army Research Inst. of Environmental Medicine, Natick, MA, U.S.A
| |
Collapse
|