1
|
Jiraanont P, Zafarullah M, Sulaiman N, Espinal GM, Randol JL, Durbin-Johnson B, Schneider A, Hagerman RJ, Hagerman PJ, Tassone F. FMR1 Protein Expression Correlates with Intelligence Quotient in Both Peripheral Blood Mononuclear Cells and Fibroblasts from Individuals with an FMR1 Mutation. J Mol Diagn 2024; 26:498-509. [PMID: 38522837 DOI: 10.1016/j.jmoldx.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Division of Molecular and Cellular Medicine, Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Noor Sulaiman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Blythe Durbin-Johnson
- Division of Biostatistics, University of California, Davis, School of Medicine, Davis, California
| | - Andrea Schneider
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California.
| |
Collapse
|
2
|
Ding T, Shang Z, Zhao H, Song R, Xiong J, He C, Liu D, Yi B. Anoikis-related gene signatures in colorectal cancer: implications for cell differentiation, immune infiltration, and prognostic prediction. Sci Rep 2024; 14:11525. [PMID: 38773226 PMCID: PMC11109202 DOI: 10.1038/s41598-024-62370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor originating from epithelial cells of the colon or rectum, and its invasion and metastasis could be regulated by anoikis. However, the key genes and pathways regulating anoikis in CRC are still unclear and require further research. The single cell transcriptome dataset GSE221575 of GEO database was downloaded and applied to cell subpopulation type identification, intercellular communication, pseudo time cell trajectory analysis, and receptor ligand expression analysis of CRC. Meanwhile, the RNA transcriptome dataset of TCGA, the GSE39582, GSE17536, and GSE17537 datasets of GEO were downloaded and merged into one bulk transcriptome dataset. The differentially expressed genes (DEGs) related to anoikis were extracted from these data sets, and key marker genes were obtained after feature selection. A clinical prognosis prediction model was constructed based on the marker genes and the predictive effect was analyzed. Subsequently, gene pathway analysis, immune infiltration analysis, immunosuppressive point analysis, drug sensitivity analysis, and immunotherapy efficacy based on the key marker genes were conducted for the model. In this study, we used single cell datasets to determine the anoikis activity of cells and analyzed the DEGs of cells based on the score to identify the genes involved in anoikis and extracted DEGs related to the disease from the transcriptome dataset. After dimensionality reduction selection, 7 marker genes were obtained, including TIMP1, VEGFA, MYC, MSLN, EPHA2, ABHD2, and CD24. The prognostic risk model scoring system built by these 7 genes, along with patient clinical data (age, tumor stage, grade), were incorporated to create a nomogram, which predicted the 1-, 3-, and 5-years survival of CRC with accuracy of 0.818, 0.821, and 0.824. By using the scoring system, the CRC samples were divided into high/low anoikis-related prognosis risk groups, there are significant differences in immune infiltration, distribution of immune checkpoints, sensitivity to chemotherapy drugs, and efficacy of immunotherapy between these two risk groups. Anoikis genes participate in the differentiation of colorectal cancer tumor cells, promote tumor development, and could predict the prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Taohui Ding
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Zhao Shang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hu Zhao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Renfeng Song
- Department of Digestive Oncology, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Jianyong Xiong
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Chuan He
- Department of Digestive Oncology, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China
| | - Dan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Bo Yi
- 2nd Abdominal Surgery Department, Jiangxi Cancer Institute, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Clifton NE, Lin JQ, Holt CE, O'Donovan MC, Mill J. Enrichment of the Local Synaptic Translatome for Genetic Risk Associated With Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2024; 95:888-895. [PMID: 38103876 DOI: 10.1016/j.biopsych.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity. METHODS We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. RESULTS Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with messenger RNAs in somata, but not in dendrites, while ASD association was related to FMRP binding in either compartment. CONCLUSIONS Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but they do not characterize the associations attributed to current sets of FMRP targets.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| | - Julie Qiaojin Lin
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, King's College London, London, United Kingdom
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michael C O'Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
5
|
Wang N, Lv L, Huang X, Shi M, Dai Y, Wei Y, Xu B, Fu C, Huang H, Shi H, Liu Y, Hu X, Qin D. Gene editing in monogenic autism spectrum disorder: animal models and gene therapies. Front Mol Neurosci 2022; 15:1043018. [PMID: 36590912 PMCID: PMC9794862 DOI: 10.3389/fnmol.2022.1043018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disease, and its diagnosis is dependent on behavioral manifestation, such as impaired reciprocal social interactions, stereotyped repetitive behaviors, as well as restricted interests. However, ASD etiology has eluded researchers to date. In the past decades, based on strong genetic evidence including mutations in a single gene, gene editing technology has become an essential tool for exploring the pathogenetic mechanisms of ASD via constructing genetically modified animal models which validates the casual relationship between genetic risk factors and the development of ASD, thus contributing to developing ideal candidates for gene therapies. The present review discusses the progress in gene editing techniques and genetic research, animal models established by gene editing, as well as gene therapies in ASD. Future research should focus on improving the validity of animal models, and reliable DNA diagnostics and accurate prediction of the functional effects of the mutation will likely be equally crucial for the safe application of gene therapies.
Collapse
Affiliation(s)
- Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
6
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
7
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|
8
|
Zhang Y, Lu Q, Ye Y, Huang K, Liu W, Wu Y, Zhong X, Li B, Yu Z, Travers BG, Werling DM, Li JJ, Zhao H. SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol 2021; 22:262. [PMID: 34493297 PMCID: PMC8422619 DOI: 10.1186/s13059-021-02478-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions. However, accurate estimation of local genetic correlation remains challenging, due to linkage disequilibrium in local genomic regions and sample overlap across studies. We introduce SUPERGNOVA, a statistical framework to estimate local genetic correlations using summary statistics from genome-wide association studies. We demonstrate that SUPERGNOVA outperforms existing methods through simulations and analyses of 30 complex traits. In particular, we show that the positive yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically distinct genetic signatures with bidirectional local genetic correlations.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yixuan Ye
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Kunling Huang
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Yuchang Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiaoyuan Zhong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Zhaolong Yu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Brittany G Travers
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Donna M Werling
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - James J Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
9
|
Clifton NE, Rees E, Holmans PA, Pardiñas AF, Harwood JC, Di Florio A, Kirov G, Walters JTR, O'Donovan MC, Owen MJ, Hall J, Pocklington AJ. Genetic association of FMRP targets with psychiatric disorders. Mol Psychiatry 2021; 26:2977-2990. [PMID: 33077856 PMCID: PMC8505260 DOI: 10.1038/s41380-020-00912-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Arianna Di Florio
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
10
|
Arnett AB, Wang T, Eichler EE, Bernier RA. Reflections on the genetics-first approach to advancements in molecular genetic and neurobiological research on neurodevelopmental disorders. J Neurodev Disord 2021; 13:24. [PMID: 34148555 PMCID: PMC8215789 DOI: 10.1186/s11689-021-09371-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are common diagnoses with highly heterogeneous phenotypes and etiology. The genetics-first approach to research on NDDs has led to the identification of hundreds of genes conferring risk for ASD, ID, and related symptoms. MAIN BODY Although relatively few individuals with NDDs share likely gene-disruptive (LGD) mutations in the same gene, characterization of overlapping functions, protein networks, and temporospatial expression patterns among these genes has led to increased understanding of the neurobiological etiology of NDDs. This shift in focus away from single genes and toward broader gene-brain-behavior pathways has been accelerated by the development of publicly available transcriptomic databases, cell type-specific research methods, and sequencing of non-coding genomic regions. CONCLUSIONS The genetics-first approach to research on NDDs has advanced the identification of critical protein function pathways and temporospatial expression patterns, expanding the impact of this research beyond individuals with single-gene mutations to the broader population of patients with NDDs.
Collapse
Affiliation(s)
- Anne B Arnett
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD, Box 357920, Seattle, WA, 98195, USA.
- Department of Psychiatry and Behavioral Medicine, Seattle Children's Hospital, Seattle, WA, USA.
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD, Box 357920, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Do Autism Spectrum and Autoimmune Disorders Share Predisposition Gene Signature Due to mTOR Signaling Pathway Controlling Expression? Int J Mol Sci 2021; 22:ijms22105248. [PMID: 34065644 PMCID: PMC8156237 DOI: 10.3390/ijms22105248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by uncommon genetic heterogeneity and a high heritability concurrently. Most autoimmune disorders (AID), similarly to ASD, are characterized by impressive genetic heterogeneity and heritability. We conducted gene-set analyses and revealed that 584 out of 992 genes (59%) included in a new release of the SFARI Gene database and 439 out of 871 AID-associated genes (50%) could be attributed to one of four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, and 4. vitamin D3-sensitive genes. With the exception of FMRP targets, which are obviously associated with the direct involvement of local translation disturbance in the pathological mechanisms of ASD, the remaining categories are represented among AID genes in a very similar percentage as among ASD predisposition genes. Thus, mTOR signaling pathway genes make up 4% of ASD and 3% of AID genes, mTOR-modulated genes-31% of both ASD and AID genes, and vitamin D-sensitive genes-20% of ASD and 23% of AID genes. The network analysis revealed 3124 interactions between 528 out of 729 AID genes for the 0.7 cutoff, so the great majority (up to 67%) of AID genes are related to the mTOR signaling pathway directly or indirectly. Our present research and available published data allow us to hypothesize that both a certain part of ASD and AID comprise a connected set of disorders sharing a common aberrant pathway (mTOR signaling) rather than a vast set of different disorders. Furthermore, an immune subtype of the autism spectrum might be a specific type of autoimmune disorder with an early manifestation of a unique set of predominantly behavioral symptoms.
Collapse
|
12
|
Cameli C, Viggiano M, Rochat MJ, Maresca A, Caporali L, Fiorini C, Palombo F, Magini P, Duardo RC, Ceroni F, Scaduto MC, Posar A, Seri M, Carelli V, Visconti P, Bacchelli E, Maestrini E. An increased burden of rare exonic variants in NRXN1 microdeletion carriers is likely to enhance the penetrance for autism spectrum disorder. J Cell Mol Med 2021; 25:2459-2470. [PMID: 33476483 PMCID: PMC7933976 DOI: 10.1111/jcmm.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%‐30%) presenting a rare large‐effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD‐associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole‐exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion‐transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10−5). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low‐level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large‐effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Pamela Magini
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Renée C Duardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Maria C Scaduto
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Annio Posar
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Paola Visconti
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Tsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, Stuhrmann M, Dion Y, Rouleau GA, Aschauer H, Stamenkovic M, Schlögelhofer M, Sandor P, Barr CL, Grados MA, Singer HS, Nöthen MM, Hebebrand J, Hinney A, King RA, Fernandez TV, Barta C, Tarnok Z, Nagy P, Depienne C, Worbe Y, Hartmann A, Budman CL, Rizzo R, Lyon GJ, McMahon WM, Batterson JR, Cath DC, Malaty IA, Okun MS, Berlin C, Woods DW, Lee PC, Jankovic J, Robertson MM, Gilbert DL, Brown LW, Coffey BJ, Dietrich A, Hoekstra PJ, Kuperman S, Zinner SH, Wagner M, Knowles JA, Jeremy Willsey A, Tischfield JA, Heiman GA, Cox NJ, Freimer NB, Neale BM, Davis LK, Coppola G, Mathews CA, Scharf JM, Paschou P, Barr CL, Batterson JR, Berlin C, Budman CL, Cath DC, Coppola G, Cox NJ, Darrow S, Davis LK, Dion Y, Freimer NB, Grados MA, Greenberg E, Hirschtritt ME, Huang AY, Illmann C, King RA, Kurlan R, Leckman JF, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Neale BM, Okun MS, Osiecki L, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Singer HS, Smit JH, Sul JH, Yu D, Aschauer HAH, Barta C, Budman CL, Cath DC, Depienne C, Hartmann A, Hebebrand J, Konstantinidis A, Mathews CA, Müller-Vahl K, Nagy P, Nöthen MM, Paschou P, Rizzo R, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Stamenkovic M, Stuhrmann M, Tsetsos F, Tarnok Z, Wolanczyk T, Worbe Y, Brown L, Cheon KA, Coffey BJ, Dietrich A, Fernandez TV, Garcia-Delgar B, Gilbert D, Grice DE, Hagstrøm J, Hedderly T, Heiman GA, Heyman I, Hoekstra PJ, Huyser C, Kim YK, Kim YS, King RA, Koh YJ, Kook S, Kuperman S, Leventhal BL, Madruga-Garrido M, Mir P, Morer A, Münchau A, Plessen KJ, Roessner V, Shin EY, Song DH, Song J, Tischfield JA, Willsey AJ, Zinner S, Aschauer H, Barr CL, Barta C, Batterson JR, Berlin C, Brown L, Budman CL, Cath DC, Coffey BJ, Coppola G, Cox NJ, Darrow S, Davis LK, Depienne C, Dietrich A, Dion Y, Fernandez T, Freimer NB, Gilbert D, Grados MA, Greenberg E, Hartmann A, Hebebrand J, Heiman G, Hirschtritt ME, Hoekstra P, Huang AY, Illmann C, Jankovic J, King RA, Kuperman S, Lee PC, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Müller-Vahl K, Nagy P, Neale BM, Nöthen MM, Okun MS, Osiecki L, Paschou P, Rizzo R, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Singer HS, Stamenkovic M, Stuhrmann M, Sul JH, Tarnok Z, Tischfield J, Tsetsos F, Willsey AJ, Woods D, Worbe Y, Yu D, Zinner S. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl Psychiatry 2021; 11:56. [PMID: 33462189 PMCID: PMC7814139 DOI: 10.1038/s41398-020-01082-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS.
Collapse
Grants
- R01 NS102371 NINDS NIH HHS
- R01 NS096207 NINDS NIH HHS
- R01 NS096008 NINDS NIH HHS
- R01 MH115958 NIMH NIH HHS
- K08 MH099424 NIMH NIH HHS
- U24 NS095914 NINDS NIH HHS
- K02 NS085048 NINDS NIH HHS
- R01 MH115963 NIMH NIH HHS
- U01 HG009086 NHGRI NIH HHS
- R56 MH120736 NIMH NIH HHS
- U54 MD010722 NIMHD NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R01 DC016977 NIDCD NIH HHS
- R01 NS105746 NINDS NIH HHS
- R01 MH118233 NIMH NIH HHS
- DP2 HD098859 NICHD NIH HHS
- R01 MH115961 NIMH NIH HHS
- U24 MH068457 NIMH NIH HHS
- R25 NS108939 NINDS NIH HHS
- R01 MH114927 NIMH NIH HHS
- R01 NR014852 NINR NIH HHS
- R21 HG010652 NHGRI NIH HHS
- R01 MH113362 NIMH NIH HHS
- RM1 HG009034 NHGRI NIH HHS
- FT is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY)
- KMV has received financial or material research support from the EU (FP7-HEALTH-2011 No. 278367, FP7-PEOPLE-2012-ITN No. 316978), the German Research Foundation (DFG: GZ MU 1527/3-1), the German Ministry of Education and Research (BMBF: 01KG1421), the National Institute of Mental Health (NIMH), the Tourette Gesellschaft Deutschland e.V., the Else-Kroner-Fresenius-Stiftung, and GW, Almirall, Abide Therapeutics, and Therapix Biosiences and has received consultant’s honoraria from Abide Therapeutics, Tilray, Resalo Vertrieb GmbH, and Wayland Group, speaker’s fees from Tilray and Cogitando GmbH, and royalties from Medizinisch Wissenschaftliche Verlagsgesellschaft Berlin, Elsevier, and Kohlhammer; and is a consultant for Nuvelution TS Pharma Inc., Zynerba Pharmaceuticals, Resalo Vertrieb GmbH, CannaXan GmbH, Therapix Biosiences, Syqe, Nomovo Pharma, and Columbia Care.
- MMN has received fees for memberships in Scientific Advisory Boards from the Lundbeck Foundation and the Robert-Bosch-Stiftung, and for membership in the Medical-Scientific Editorial Office of the Deutsches Ärzteblatt. MMN was reimbursed travel expenses for a conference participation by Shire Deutschland GmbH. MMN receives salary payments from Life & Brain GmbH and holds shares in Life & Brain GmbH. All this concerned activities outside the submitted work.
- IM has participated in research funded by the Parkinson Foundation, Tourette Association, Dystonia Coalition, AbbVie, Biogen, Boston Scientific, Eli Lilly, Impax, Neuroderm, Prilenia, Revance, Teva but has no owner interest in any pharmaceutical company. She has received travel compensation or honoraria from the Tourette Association of America, Parkinson Foundation, International Association of Parkinsonism and Related Disorders, Medscape, and Cleveland Clinic, and royalties for writing a book with Robert rose publishers.
- MSO serves as a consultant for the Parkinson’s Foundation, and has received research grants from NIH, Parkinson’s Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the UF Foundation. MSO’s DBS research is supported by: NIH R01 NR014852 and R01NS096008. MSO is PI of the NIH R25NS108939 Training Grant. MSO has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, Perseus, Robert Rose, Oxford and Cambridge (movement disorders books). MSO is an associate editor for New England Journal of Medicine Journal Watch Neurology. MSO has participated in CME and educational activities on movement disorders sponsored by the Academy for Healthcare Learning, PeerView, Prime, QuantiaMD, WebMD/Medscape, Medicus, MedNet, Einstein, MedNet, Henry Stewart, American Academy of Neurology, Movement Disorders Society and by Vanderbilt University. The institution and not MSO receives grants from Medtronic, Abbvie, Boston Scientific, Abbott and Allergan and the PI has no financial interest in these grants. MSO has participated as a site PI and/or co-I for several NIH, foundation, and industry sponsored trials over the years but has not received honoraria. Research projects at the University of Florida receive device and drug donations.
- DW receives royalties for books on Tourette Syndrome with Guilford Press, Oxford University Press, and Springer Press.
- BMN is a member of the scientific advisory board at Deep Genomics and consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen.
Collapse
Affiliation(s)
- Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Sabrina M Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kirsten R Muller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Douglas W Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Donald L Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | | | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samuel H Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Overlook Hospital, Summit, NJ, USA
| | - James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jan H Smit
- Department of Psychiatry, VU UniversityMedical Center, Amsterdam, The Netherlands
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harald Aschauer Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anastasios Konstantinidis
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Center for Mental Health Muldenstrasse, BBRZMed, Linz, Austria
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, 00-001, Warsaw, Poland
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keun-Ah Cheon
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Blanca Garcia-Delgar
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Dorothy E Grice
- Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Hagstrøm
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
| | - Tammy Hedderly
- Tic and Neurodevelopmental Movements Service (TANDeM), Evelina Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
- Paediatric Neurosciences, Kings College London, London, UK
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Isobel Heyman
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Psychological and Mental Health Services, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chaim Huyser
- De Bascule, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | | | - Young-Shin Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yun-Joo Koh
- The Korea Institute for Children's Social Development, Rudolph Child Research Center, Seoul, South Korea
| | - Sodahm Kook
- Kangbuk Samsung Hospital, Seoul, South Korea
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bennett L Leventhal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Marcos Madruga-Garrido
- Sección de Neuropediatría, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Kerstin J Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav CarusTU Dresden, Dresden, Germany
| | - Eun-Young Shin
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Dong-Ho Song
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Jungeun Song
- National Health Insurance Service Ilsan Hospital, Goyang-Si, South Korea
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Thomas Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Pieter Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Jay Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Douglas Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Li D, Choque-Olsson N, Jiao H, Norgren N, Jonsson U, Bölte S, Tammimies K. The influence of common polygenic risk and gene sets on social skills group training response in autism spectrum disorder. NPJ Genom Med 2020; 5:45. [PMID: 33083014 PMCID: PMC7550579 DOI: 10.1038/s41525-020-00152-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Social skills group training (SSGT) is a frequently used behavioral intervention in autism spectrum disorder (ASD), but the effects are moderate and heterogeneous. Here, we analyzed the effect of polygenic risk score (PRS) and common variants in gene sets on the intervention outcome. Participants from the largest randomized clinical trial of SSGT in ASD to date were selected (N = 188, 99 from SSGT, 89 from standard care) to calculate association between the outcomes in the SSGT trial and PRSs for ASD, attention-deficit hyperactivity disorder (ADHD), and educational attainment. In addition, specific gene sets were selected to evaluate their role on intervention outcomes. Among all participants in the trial, higher PRS for ADHD was associated with significant improvement in the outcome measure, the parental-rated Social Responsiveness Scale. The significant association was due to better outcomes in the standard care group for individuals with higher PRS for ADHD (post-intervention: β = −4.747, P = 0.0129; follow-up: β = −5.309, P = 0.0083). However, when contrasting the SSGT and standard care group, an inferior outcome in the SSGT group was associated with higher ADHD PRS at follow-up (β = 6.67, P = 0.016). Five gene sets within the synaptic category showed a nominal association with reduced response to interventions. We provide preliminary evidence that genetic liability calculated from common variants could influence the intervention outcomes. In the future, larger cohorts should be used to investigate how genetic contribution affects individual response to ASD interventions.
Collapse
Affiliation(s)
- Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Nora Choque-Olsson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, and Clinical Research Centre, Karolinska University Hospital, Huddinge, Sweden
| | - Nina Norgren
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Umeå University, 901 87 Umeå, Sweden
| | - Ulf Jonsson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA Australia
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm County Council, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
15
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
16
|
Hammerschlag AR, de Leeuw CA, Middeldorp CM, Polderman TJC. Synaptic and brain-expressed gene sets relate to the shared genetic risk across five psychiatric disorders. Psychol Med 2020; 50:1695-1705. [PMID: 31328717 PMCID: PMC7408577 DOI: 10.1017/s0033291719001776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mounting evidence shows genetic overlap between multiple psychiatric disorders. However, the biological underpinnings of shared risk for psychiatric disorders are not yet fully uncovered. The identification of underlying biological mechanisms is crucial for the progress in the treatment of these disorders. METHODS We applied gene-set analysis including 7372 gene sets, and 53 tissue-type specific gene-expression profiles to identify sets of genes that are involved in the etiology of multiple psychiatric disorders. We included genome-wide meta-association data of the five psychiatric disorders schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder. The total dataset contained 159 219 cases and 262 481 controls. RESULTS We identified 19 gene sets that were significantly associated with the five psychiatric disorders combined, of which we excluded five sets because their associations were likely driven by schizophrenia only. Conditional analyses showed independent effects of several gene sets that in particular relate to the synapse. In addition, we found independent effects of gene expression levels in the cerebellum and frontal cortex. CONCLUSIONS We obtained novel evidence for shared biological mechanisms that act across psychiatric disorders and we showed that several gene sets that have been related to individual disorders play a role in a broader range of psychiatric disorders.
Collapse
Affiliation(s)
- Anke R. Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Department of Biological Psychology, Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan A. de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christel M. Middeldorp
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Department of Biological Psychology, Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Tinca J. C. Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Trifonova EA, Klimenko AI, Mustafin ZS, Lashin SA, Kochetov AV. The mTOR Signaling Pathway Activity and Vitamin D Availability Control the Expression of Most Autism Predisposition Genes. Int J Mol Sci 2019; 20:ijms20246332. [PMID: 31847491 PMCID: PMC6940974 DOI: 10.3390/ijms20246332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) has a strong and complex genetic component with an estimate of more than 1000 genes implicated cataloged in SFARI (Simon′s Foundation Autism Research Initiative) gene database. A significant part of both syndromic and idiopathic autism cases can be attributed to disorders caused by the mechanistic target of rapamycin (mTOR)-dependent translation deregulation. We conducted gene-set analyses and revealed that 606 out of 1053 genes (58%) included in the SFARI Gene database and 179 out of 281 genes (64%) included in the first three categories of the database (“high confidence”, “strong candidate”, and “suggestive evidence”) could be attributed to one of the four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, 4. vitamin D3 sensitive genes. The additional gene network analysis revealed 43 new genes and 127 new interactions, so in the whole 222 out of 281 (79%) high scored genes from SFARI Gene database were connected with mTOR signaling activity and/or dependent on vitamin D3 availability directly or indirectly. We hypothesized that genetic and/or environment mTOR hyperactivation, including provocation by vitamin D deficiency, might be a common mechanism controlling the expressivity of most autism predisposition genes and even core symptoms of autism.
Collapse
Affiliation(s)
- Ekaterina A. Trifonova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (Z.S.M.); (S.A.L.); (A.V.K.)
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk 630090, Russia
- Correspondence:
| | - Alexandra I. Klimenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (Z.S.M.); (S.A.L.); (A.V.K.)
| | - Zakhar S. Mustafin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (Z.S.M.); (S.A.L.); (A.V.K.)
| | - Sergey A. Lashin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (Z.S.M.); (S.A.L.); (A.V.K.)
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk 630090, Russia
| | - Alex V. Kochetov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (Z.S.M.); (S.A.L.); (A.V.K.)
- Department of Natural Sciences, Novosibirsk National Research State University, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Waltes R, Freitag CM, Herlt T, Lempp T, Seitz C, Palmason H, Meyer J, Chiocchetti AG. Impact of autism-associated genetic variants in interaction with environmental factors on ADHD comorbidities: an exploratory pilot study. J Neural Transm (Vienna) 2019; 126:1679-1693. [PMID: 31707462 DOI: 10.1007/s00702-019-02101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is determined by genetic and environmental factors, and shares genetic risk with ASD. Functional single-nucleotide polymorphisms of the metabotropic glutamatergic signaling pathway are reported to increase the risk for ASD. The aim of this pilot study was to explore the main effects of respective ASD variants as well as their interaction effects with well-replicated ADHD environmental risk factors on the risk for ADHD, ADHD symptom severities, and comorbidities. We included 318 children with ADHD, aged 5-13 years, and their parents (N = 164 trios, N = 113 duos, N = 41 singletons). Interaction of ASD risk variants CYFIP1-rs7170637, CYFIP1-rs3693, CAMK4-rs25925, and GRM1-rs6923492 with prenatal biological and lifetime psychosocial risk factors was explored in a subsample with complete environmental risk factors (N = 139 trios, N = 83 duos, two singletons) by transmission disequilibrium test and stepwise regression analyses. We identified nominally significant (alpha < 0.05) GxE interactions of acute life events with CYFIP1-rs3693 on ADHD diagnosis (p = 0.004; fdr = 0.096) but no significant association of any single marker. Further results suggest that the risk for comorbid disruptive disorders was significantly modulated by GxE interactions between familial risk factors and CAMK4-rs25925 (p = 0.001; fdr = 0.018) and prenatal alcohol exposure with CYFIP1-rs3693 (p = 0.003; fdr = 0.027); both findings survived correction for multiple testing (fdr value < 0.05). Nominal significant GxE interactions moderating the risk for anxiety disorders have also been identified, but did not pass multiple testing corrections. This pilot study suggests that common ASD variants of the glutamatergic system interact with prenatal and lifetime psychosocial risk factors influencing the risk for ADHD common comorbidities and thus warrants replication in larger samples.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Timo Herlt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Thomas Lempp
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Christiane Seitz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Saarland University Hospital, 66421, Homburg, Germany
| | - Haukur Palmason
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, 54290, Trier, Germany
| | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, 54290, Trier, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Skogstrand K, Hagen CM, Borbye-Lorenzen N, Christiansen M, Bybjerg-Grauholm J, Bækvad-Hansen M, Werge T, Børglum A, Mors O, Nordentoft M, Mortensen PB, Hougaard DM. Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Transl Psychiatry 2019; 9:252. [PMID: 31591381 PMCID: PMC6779749 DOI: 10.1038/s41398-019-0587-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Mental disorders have for the majority of cases an unknown etiology, but several studies indicate that neurodevelopmental changes happen in utero or early after birth. We performed a nested case-control study of the relation between blood levels of neuro-developmental (S100B, BDNF, and VEGF-A) and inflammatory (MCP-1, TARC, IL-8, IL-18, CRP, and IgA) biomarkers in newborns, and later development of autism spectrum disorders (ASD, N = 751), attention deficit hyperactivity disorders (ADHD, N = 801), schizophrenia (N = 1969), affective (N = 641) or bipolar disorders (N = 641). Samples and controls were obtained as part of the iPSYCH Danish Case-Cohort Study using dried blood spot samples collected between 1981 and 2004, and stored frozen at the Danish National Biobank. In newborns lower blood level of BDNF was significantly associated with increased odds (OR 1.15) of developing ASD (p = 0.001). This difference could not be explained by genetic variation in the BDNF coding gene region. A tendency of decreased levels of all the neurotrophic markers and increased levels of all inflammatory markers was noted. The low newborn blood levels of BDNF in children developing ASD is an important finding, suggesting that lower BDNF levels in newborns contributes to the etiology of ASD and indicates new directions for further research. It may also help identifying a long-sought marker for high-ASD risk in, e.g., younger siblings of ASD children.
Collapse
Affiliation(s)
- Kristin Skogstrand
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
| | - Christian Munch Hagen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Nis Borbye-Lorenzen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Christiansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine and iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Merethe Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Preben Bo Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedicine and iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - David Michael Hougaard
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| |
Collapse
|
20
|
Bludau A, Royer M, Meister G, Neumann ID, Menon R. Epigenetic Regulation of the Social Brain. Trends Neurosci 2019; 42:471-484. [PMID: 31103351 DOI: 10.1016/j.tins.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Social behavior, a highly adaptive and crucial component of mammalian life, is regulated by particularly sensitive regulatory brain mechanisms. Substantial evidence implicates classical epigenetic mechanisms including histone modifications, DNA methylation, and nucleosome remodeling as well as nonclassical mechanisms mediated by noncoding RNA in the regulation of social behavior. These mechanisms collectively form the 'epigenetic network' that orchestrates genomic integration of salient and transient social experiences. Consequently, its dysregulation has been linked to behavioral deficits and psychopathologies. This review focuses on the role of the epigenetic network in regulating the enduring effects of social experiences during early-life, adolescence, and adulthood. We discuss research in animal models, primarily rodents, and associations between dysregulation of epigenetic mechanisms and human psychopathologies, specifically autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Anna Bludau
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Xie S, Karlsson H, Dalman C, Widman L, Rai D, Gardner RM, Magnusson C, Schendel DE, Newschaffer CJ, Lee BK. Family History of Mental and Neurological Disorders and Risk of Autism. JAMA Netw Open 2019; 2:e190154. [PMID: 30821823 PMCID: PMC6484646 DOI: 10.1001/jamanetworkopen.2019.0154] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Familial aggregation of mental and neurological disorders is often observed in autism spectrum disorders (ASD), but reports have generally focused on single disorders and are limited to first-degree relatives. OBJECTIVES To examine family history of mental and neurological disorders among first- to fourth-degree relatives and risk of ASD with and without intellectual disability (ID) in index persons. DESIGN, SETTING, AND PARTICIPANTS In this population-based cohort study, 567 436 index persons were identified from the Stockholm Youth Cohort, an ongoing longitudinal register-linkage cohort study of the total population aged 0 to 17 years residing in Stockholm County, Sweden. Index persons were nonadopted singleton births born between 1984 and 2009 who were at least 2 years of age at the end of follow-up on December 31, 2011, had resided in Stockholm County for at least 2 years since birth, and could be linked to both biological parents. Data analysis was conducted from May 2017 to December 2018. EXPOSURE Mental and neurological diagnoses of relatives of the index persons. MAIN OUTCOMES AND MEASURES Diagnosis of ASD, with or without co-occurring ID, in the index persons. RESULTS The cohort included 567 436 index persons (291 191 [51.3%] male; mean [SD] age at the end of follow-up, 14.3 [7.5] years). The prevalence of ASD with and without ID was 0.4% and 1.5%, respectively. Positive family history of mental and neurological disorders was associated with higher odds of ASD in index persons; 6895 (63.1%) of index persons with ASD had a parent with history of mental and/or neurological disorders, compared with 252 454 (45.4%) of index persons without ASD. Family history of multiple disorders was associated with higher odds of ASD in index persons, including history of ASD (odds ratio among first-degree relatives for ASD with and without ID: 14.2, 9.0), intellectual disability (7.6, 2.3), attention-deficit/hyperactivity disorder (3.3, 4.7), obsessive compulsive disorder (1.9, 2.1), schizophrenia and other nonaffective psychotic disorders (2.1, 1.8), depression (1.4, 2.0), bipolar disorder (1.4, 2.2), personality disorder (2.1, 2.6), cerebral palsy (2.2, 1.5), and epilepsy (2.0, 1.3). The more closely related the affected family member was, the higher the odds was of ASD for the index person. ASD without intellectual disability was associated with more disorders compared to ASD with intellectual disability. ASD with intellectual disability exhibited a weaker familial association with other mental disorder diagnoses but a stronger familial association with some neurological diagnoses as compared to ASD without intellectual disability. CONCLUSIONS AND RELEVANCE This study suggests that family history of mental and neurological disorders is associated with increased risk of ASD. The familial component of ASD etiology may differ by presence or absence of co-occurring ID.
Collapse
Affiliation(s)
- Sherlly Xie
- Drexel University School of Public Health, Philadelphia, Pennsylvania
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christina Dalman
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Linnea Widman
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Dheeraj Rai
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Avon and Wiltshire Partnership National Health Service Mental Health Trust, Bath, United Kingdom
| | - Renee M. Gardner
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Magnusson
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Diana E. Schendel
- Department of Public Health, University of Aarhus, Aarhus, Denmark
- Department of Economics and Business Economics, University of Aarhus, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, University of Aarhus, Aarhus, Denmark
| | - Craig J. Newschaffer
- Drexel University School of Public Health, Philadelphia, Pennsylvania
- A. J. Drexel Autism Institute, Philadelphia, Pennsylvania
| | - Brian K. Lee
- Drexel University School of Public Health, Philadelphia, Pennsylvania
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- A. J. Drexel Autism Institute, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Bacchelli E, Loi E, Cameli C, Moi L, Vega-Benedetti AF, Blois S, Fadda A, Bonora E, Mattu S, Fadda R, Chessa R, Maestrini E, Doneddu G, Zavattari P. Analysis of a Sardinian Multiplex Family with Autism Spectrum Disorder Points to Post-Synaptic Density Gene Variants and Identifies CAPG as a Functionally Relevant Candidate Gene. J Clin Med 2019; 8:E212. [PMID: 30736458 PMCID: PMC6406497 DOI: 10.3390/jcm8020212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with high heritability, although their underlying genetic factors are still largely unknown. Here we present a comprehensive genetic characterization of two ASD siblings from Sardinia by genome-wide copy number variation analysis and whole exome sequencing (WES), to identify novel genetic alterations associated with this disorder. Single nucleotide polymorphism (SNP) array data revealed a rare microdeletion involving CAPG, ELMOD3, and SH2D6 genes, in both siblings. CAPG encodes for a postsynaptic density (PSD) protein known to regulate spine morphogenesis and synaptic formation. The reduced CAPG mRNA and protein expression levels in ASD patients, in the presence of hemizygosity or a particular genetic and/or epigenetic background, highlighted the functional relevance of CAPG as a candidate gene for ASD. WES analysis led to the identification in both affected siblings of a rare frameshift mutation in VDAC3, a gene intolerant to loss of function mutation, encoding for a voltage-dependent anion channel localized on PSD. Moreover, four missense damaging variants were identified in genes intolerant to loss of function variation encoding for PSD proteins: PLXNA2, KCTD16, ARHGAP21, and SLC4A1. This study identifies CAPG and VDAC3 as candidate genes and provides additional support for genes encoding PSD proteins in ASD susceptibility.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | | | - Sylvain Blois
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Antonio Fadda
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Sandra Mattu
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, 09124 Cagliari, Italy.
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy.
| | - Rita Chessa
- Center for Pervasive Developmental Disorders, AO Brotzu, 09134 Cagliari, Italy.
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Doneddu
- Center for Pervasive Developmental Disorders, AO Brotzu, 09134 Cagliari, Italy.
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| |
Collapse
|
23
|
Multi-marker analysis of genomic annotation on gastric cancer GWAS data from Chinese populations. Gastric Cancer 2019; 22:60-68. [PMID: 29859005 DOI: 10.1007/s10120-018-0841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the high-incidence and high-mortality cancers all over the world. Though genome-wide association studies (GWASs) have found some genetic loci related to GC, they could only explain a small fraction of the potential pathogenesis for GC. METHODS We used multi-marker analysis of genomic annotation (MAGMA) to analyze pathways from four public pathway databases based on Chinese GWAS data including 2631 GC cases and 4373 controls. The differential expressions of selected genes in certain pathways were assessed on the basis of The Cancer Genome Atlas database. Immunohistochemistry was also conducted on 55 GC and paired normal tissues of Chinese patients to localize the expression of genes and further validate the differential expression. RESULTS We identified three pathways including chemokine signaling pathway, potassium ion import pathway, and interleukin-7 (IL7) pathway, all of which were associated with GC risk. NMI in IL7 pathway and RAC1 in chemokine signaling pathway might be two new candidate genes involved in GC pathogenesis. Additionally, NMI and RAC1 were overexpressed in GC tissues than normal tissues. CONCLUSION Immune and inflammatory associated processes and potassium transporting might participate in the development of GC. Besides, NMI and RAC1 might represent two new key genes related to GC. Our findings might give new insight into the biological mechanism and immunotherapy for GC.
Collapse
|
24
|
Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, Nguyen TB, Hsiao YHE, Lee C, Pratt GA, Martínez-Cerdeño V, Hagerman RJ, Yeo GW, Geschwind DH, Xiao X. Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 2019; 22:25-36. [PMID: 30559470 PMCID: PMC6375307 DOI: 10.1038/s41593-018-0287-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
Transcriptomic analyses of postmortem brains have begun to elucidate molecular abnormalities in autism spectrum disorder (ASD). However, a crucial pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of postmortem brains of people with ASD. We observed a global bias for hypoediting in ASD brains, which was shared across brain regions and involved many synaptic genes. We show that the Fragile X proteins FMRP and FXR1P interact with RNA-editing enzymes (ADAR proteins) and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA-editing alterations in ASD and Fragile X syndrome, establishing this as a molecular link between these related diseases. Our findings, which are corroborated across multiple data sets, including dup15q (genomic duplication of 15q11.2-13.1) cases associated with intellectual disability, highlight RNA-editing dysregulation in ASD and reveal new mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Stephen S Tran
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Adel Azghadi
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Gokul Ramaswami
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Changhoon Lee
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | | | - Randi J Hagerman
- The MIND Institute, Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|