1
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Hagai T, Sironi M. Evolutionary analysis of ZAP and its cofactors identifies intrinsically disordered regions as central elements in host-pathogen interactions. Comput Struct Biotechnol J 2024; 23:3143-3154. [PMID: 39234301 PMCID: PMC11372611 DOI: 10.1016/j.csbj.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is an innate immunity sensor of non-self nucleic acids. Its antiviral activity is exerted through the physical interaction with different cofactors, including TRIM25, Riplet and KHNYN. Cellular proteins that interact with infectious agents are expected to be engaged in genetic conflicts that often result in their rapid evolution. To test this possibility and to identify the regions most strongly targeted by natural selection, we applied in silico molecular evolution tools to analyze the evolutionary history of ZAP and cofactors in four mammalian groups. We report evidence of positive selection in all genes and in most mammalian groups. On average, the intrinsically disordered regions (IDRs) embedded in the four proteins evolve significantly faster than folded domains and most positively selected sites fall within IDRs. In ZAP, the PARP domain also shows abundant signals of selection, and independent evolution in different mammalian groups suggests modulation of its ADP-ribose binding ability. Detailed analyses of the biophysical properties of IDRs revealed that chain compaction and conformational entropy are conserved across mammals. The IDRs in ZAP and KHNYN are particularly compact, indicating that they may promote phase separation (PS). In line with this hypothesis, we predicted several PS-promoting regions in ZAP and KHNYN, as well as in TRIM25. Positively selected sites are abundant in these regions, suggesting that PS may be important for the antiviral functions of these proteins and the evolutionary arms race with viruses. Our data shed light into the evolution of ZAP and cofactors and indicate that IDRs represent central elements in host-pathogen interactions.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
2
|
Qin D, Song H, Wang C, Ma X, Fu Y, Zhao C, Zhao W, Zhang L, Zhang W. ZC3HAV1 facilitates STING activation and enhances inflammation. Commun Biol 2024; 7:1418. [PMID: 39478149 PMCID: PMC11526107 DOI: 10.1038/s42003-024-07116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Stimulator of interferon genes (STING) is vital in the cytosolic DNA-sensing process and critical for initiating the innate immune response, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases. Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) specifically binds the CpG dinucleotides in the viral RNAs of multiple viruses and promotes their degradation. ZAPS (ZC3HAV1 short isoform) is a potent stimulator of retinoid acid-inducible gene I (RIG-I) signaling during the antiviral response. However, how ZC3HAV1 controls STING signaling is unclear. Here, we show that ZC3HAV1 specifically potentiates STING activation by associating with STING to promote its oligomerization and translocation from the endoplasmic reticulum (ER) to the Golgi, which facilitates activation of IRF3 and NF-κB pathway. Accordingly, Zc3hav1 deficiency protects mice against herpes simplex virus-1 (HSV-1) infection- or 5,6-dimethylxanthenone-4-acetic acid (DMXAA)-induced inflammation in a STING-dependent manner. These results indicate that ZC3HAV1 is a key regulator of STING signaling, which suggests its possible use as a therapeutic target for STING-dependent inflammation.
Collapse
Affiliation(s)
- Danhui Qin
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiwei Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaojie Ma
- Department of Rheumatology and immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Fu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Chunyuan Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China.
| | - Weifang Zhang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Lee H, Park SK, Lim J. Dual Roles of Host Zinc Finger Proteins in Viral RNA Regulation: Decay or Stabilization. Int J Mol Sci 2024; 25:11138. [PMID: 39456919 PMCID: PMC11508327 DOI: 10.3390/ijms252011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Host defense mechanisms against viral infections have been extensively studied over the past few decades and continue to be a crucial area of research in understanding human diseases caused by acute and chronic viral infections. Among various host mechanisms, recent findings have revealed that several host RNA-binding proteins play pivotal roles in regulating viral RNA to suppress viral replication and eliminate infection. We have focused on identifying host proteins that function as regulators of viral RNA, specifically targeting viral components without adversely affecting host cells. Interestingly, these proteins exhibit dual roles in either restricting viral infections or promoting viral persistence by interacting with cofactors to either degrade viral genomes or stabilize them. In this review, we discuss RNA-binding zinc finger proteins as viral RNA regulators, classified into two major types: ZCCCH-type and ZCCHC-type. By highlighting the functional diversity of these zinc finger proteins, this review provides insights into their potential as therapeutic targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Hyokyoung Lee
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Álvarez L, Haubrich K, Iselin L, Gillioz L, Ruscica V, Lapouge K, Augsten S, Huppertz I, Choudhury NR, Simon B, Masiewicz P, Lethier M, Cusack S, Rittinger K, Gabel F, Leitner A, Michlewski G, Hentze MW, Allain FHT, Castello A, Hennig J. The molecular dissection of TRIM25's RNA-binding mechanism provides key insights into its antiviral activity. Nat Commun 2024; 15:8485. [PMID: 39353916 PMCID: PMC11445558 DOI: 10.1038/s41467-024-52918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
TRIM25 is an RNA-binding ubiquitin E3 ligase with central but poorly understood roles in the innate immune response to RNA viruses. The link between TRIM25's RNA binding and its role in innate immunity has not been established. Thus, we utilized a multitude of biophysical techniques to identify key RNA-binding residues of TRIM25 and developed an RNA-binding deficient mutant (TRIM25-m9). Using iCLIP2 in virus-infected and uninfected cells, we identified TRIM25's RNA sequence and structure specificity, that it binds specifically to viral RNA, and that the interaction with RNA is critical for its antiviral activity.
Collapse
Affiliation(s)
- Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Kevin Haubrich
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Louisa Iselin
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Laurent Gillioz
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Vincenzo Ruscica
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Karine Lapouge
- Protein expression and purification facility, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Sandra Augsten
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Ina Huppertz
- Director's Research, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Nila Roy Choudhury
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Pawel Masiewicz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Mathilde Lethier
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble Cedex, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble Cedex, France
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Frank Gabel
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Biologie Structurale, Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Gracjan Michlewski
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | - Matthias W Hentze
- Director's Research, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Frédéric H T Allain
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany.
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
5
|
Shao R, Visser I, Fros JJ, Yin X. Versatility of the Zinc-Finger Antiviral Protein (ZAP) As a Modulator of Viral Infections. Int J Biol Sci 2024; 20:4585-4600. [PMID: 39309436 PMCID: PMC11414379 DOI: 10.7150/ijbs.98029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is a restriction factor that proficiently impedes the replication of a variety of RNA and DNA viruses. In recent years, the affinity of ZAP's zinc-fingers for single-stranded RNA (ssRNA) rich in CpG dinucleotides was uncovered. High frequencies of CpGs in RNA may suggest a non-self origin, which underscores the importance of ZAP as a potential cellular sensor of (viral) RNA. Upon binding viral RNA, ZAP recruits cellular cofactors to orchestrate a finely tuned antiviral response that limits virus replication via distinct mechanisms. These include promoting degradation of viral RNA, inhibiting RNA translation, and synergizing with other immune pathways. Depending on the viral species and experimental set-up, different isoforms and cellular cofactors have been reported to be dominant in shaping the ZAP-mediated antiviral response. Here we review how ZAP differentially affects viral replication depending on distinct interactions with RNA, cellular cofactors, and viral proteins to discuss how these interactions shape the antiviral mechanisms that have thus far been reported for ZAP. Importantly, we zoom in on the unknown aspects of ZAP's antiviral system and its therapeutic potential to be employed in vaccine design.
Collapse
Affiliation(s)
- Ran Shao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Kmiec D, Kirchhoff F. Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered. J Mol Cell Biol 2024; 16:mjae005. [PMID: 38318650 PMCID: PMC11334937 DOI: 10.1093/jmcb/mjae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Jäger N, Pöhlmann S, Rodnina MV, Ayyub SA. Interferon-Stimulated Genes that Target Retrovirus Translation. Viruses 2024; 16:933. [PMID: 38932225 PMCID: PMC11209297 DOI: 10.3390/v16060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| |
Collapse
|
9
|
Busa VF, Ando Y, Aigner S, Yee BA, Yeo GW, Leung AK. Transcriptome regulation by PARP13 in basal and antiviral states in human cells. iScience 2024; 27:109251. [PMID: 38495826 PMCID: PMC10943485 DOI: 10.1016/j.isci.2024.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
The RNA-binding protein PARP13 is a primary factor in the innate antiviral response, which suppresses translation and drives decay of bound viral and host RNA. PARP13 interacts with many proteins encoded by interferon-stimulated genes (ISG) to activate antiviral pathways including co-translational addition of ISG15, or ISGylation. We performed enhanced crosslinking immunoprecipitation (eCLIP) and RNA-seq in human cells to investigate PARP13's role in transcriptome regulation for both basal and antiviral states. We find that the antiviral response shifts PARP13 target localization, but not its binding preferences, and that PARP13 supports the expression of ISGylation-related genes, including PARP13's cofactor, TRIM25. PARP13 associates with TRIM25 via RNA-protein interactions, and we elucidate a transcriptome-wide periodicity of PARP13 binding around TRIM25. Taken together, our study implicates PARP13 in creating and maintaining a cellular environment poised for an antiviral response through limiting PARP13 translation, regulating access to distinct mRNA pools, and elevating ISGylation machinery expression.
Collapse
Affiliation(s)
- Veronica F. Busa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoshinari Ando
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anthony K.L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Liu J, Liu L, Zeng S, Meng X, Lei N, Yang H, Li R, Mu X, Guo X. Inhibition of EV71 replication by an interferon-stimulated gene product L3HYPDH. Virus Res 2024; 342:199336. [PMID: 38342315 PMCID: PMC10875296 DOI: 10.1016/j.virusres.2024.199336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Enterovirus 71 (EV71) is the common causative agent of hand-foot-mouth disease (HFMD). Despite evidence in mice model suggested that the interferon (IFN) signaling pathways play a role in defending against this virus, knowledge on the IFN-mediated antiviral response is still limited. Here we identified an IFN-stimulated gene (ISG) called L3HYPDH, whose expression inhibits EV71 replication. Mapping assay indicated that amino acids 61-120 and 295-354 are critical for its optimal antiviral activity. Mechanismly, L3HYPDH specifically inhibits protein translation mediated by EV71 internal ribosome entry site (IRES). Our data thus uncovered a new mechanism utilized by the host cell to restrict EV71 replication.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Logen Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Shinuan Zeng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaobin Meng
- Meizhou People's Hospital, Meizhou 514031, China
| | - Nanfeng Lei
- Meizhou People's Hospital, Meizhou 514031, China
| | - Hai Yang
- Meizhou People's Hospital, Meizhou 514031, China
| | - Runcai Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xuemin Guo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China; Meizhou People's Hospital, Meizhou 514031, China; Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou 514031, China.
| |
Collapse
|
11
|
Ventoso I, Berlanga JJ, Toribio R, Díaz-López I. Translational Control of Alphavirus-Host Interactions: Implications in Viral Evolution, Tropism and Antiviral Response. Viruses 2024; 16:205. [PMID: 38399981 PMCID: PMC10893052 DOI: 10.3390/v16020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN.
Collapse
Affiliation(s)
- Iván Ventoso
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Juan José Berlanga
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA), 28049 Madrid, Spain;
| | | |
Collapse
|
12
|
de Andrade KQ, Cirne-Santos CC. Antiviral Activity of Zinc Finger Antiviral Protein (ZAP) in Different Virus Families. Pathogens 2023; 12:1461. [PMID: 38133344 PMCID: PMC10747524 DOI: 10.3390/pathogens12121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The CCCH-type zinc finger antiviral protein (ZAP) in humans, specifically isoforms ZAP-L and ZAP-S, is a crucial component of the cell's intrinsic immune response. ZAP acts as a post-transcriptional RNA restriction factor, exhibiting its activity during infections caused by retroviruses and alphaviruses. Its function involves binding to CpG (cytosine-phosphate-guanine) dinucleotide sequences present in viral RNA, thereby directing it towards degradation. Since vertebrate cells have a suppressed frequency of CpG dinucleotides, ZAP is capable of distinguishing foreign genetic elements. The expression of ZAP leads to the reduction of viral replication and impedes the assembly of new virus particles. However, the specific mechanisms underlying these effects have yet to be fully understood. Several questions regarding ZAP's mechanism of action remain unanswered, including the impact of CpG dinucleotide quantity on ZAP's activity, whether this sequence is solely required for the binding between ZAP and viral RNA, and whether the recruitment of cofactors is dependent on cell type, among others. This review aims to integrate the findings from studies that elucidate ZAP's antiviral role in various viral infections, discuss gaps that need to be filled through further studies, and shed light on new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kívia Queiroz de Andrade
- Laboratory of Immunology of Infectious Disease, Immunology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Claudio Cesar Cirne-Santos
- Laboratory of Molecular Virology and Marine Biotechnology, Department of Cellular and Molecular Biology, Institute of Biology, Federal Fluminense University, Niterói 24020-150, RJ, Brazil
| |
Collapse
|
13
|
Maurya R, Swaminathan A, Shamim U, Arora S, Mishra P, Raina A, Ravi V, Tarai B, Budhiraja S, Pandey R. Co-evolution of SARS-CoV-2 variants and host immune response trajectories underlie COVID-19 pandemic to epidemic transition. iScience 2023; 26:108336. [PMID: 38025778 PMCID: PMC10663816 DOI: 10.1016/j.isci.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19 pandemic saw emergence of multiple SAR-CoV-2 variants. Exacerbated risk of severe outcome and hospital admissions led us to comprehend differential host-immune kinetics associated with SARS-CoV-2 variants. Longitudinal investigation was conducted through different time periods of Pre-VOC and VOCs (Delta & Omicron) mapping host transcriptome features. Robust antiviral type-1 interferon response marked Omicron infection, which was largely missing during Pre-VOC and Delta waves. SARS-CoV-2-host protein-protein interactions and docking complexes highlighted N protein to interact with HNRNPA1 in Pre-VOC, demonstrating its functional role for enhanced viral replication. Omicron revealed enhanced binding efficiency of LARP1 to N protein, probably potentiating antiviral effects of LARP1. Differential expression of zinc finger protein genes, especially in Omicron, mechanistically support induction of strong IFN (Interferon) response, thereby strengthening early viral clearance. Study highlights eventual adaptation of host to immune activation patterns that interrupt virus evolution with enhanced immune-evasion mutations and counteraction mechanisms, delimiting the next phase of COVID-19 pandemic.
Collapse
Affiliation(s)
- Ranjeet Maurya
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Smriti Arora
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aakarshan Raina
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Tapryal N, Chakraborty A, Saha K, Islam A, Pan L, Hosoki K, Sayed IM, Duran JM, Alcantara J, Castillo V, Tindle C, Sarker AH, Wakamiya M, Cardenas VJ, Sharma G, Crotty Alexander LE, Sur S, Sahoo D, Ghosh G, Das S, Ghosh P, Boldogh I, Hazra TK. The DNA glycosylase NEIL2 is protective during SARS-CoV-2 infection. Nat Commun 2023; 14:8169. [PMID: 38071370 PMCID: PMC10710473 DOI: 10.1038/s41467-023-43938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.
Collapse
Affiliation(s)
- Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaushik Saha
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92037, USA
- Department of Biological Sciences, School of Engineering and Sciences, SRM University-AP, Guntur District, Andhra Pradesh, 522240, India
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Koa Hosoki
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical and Nutritional Science, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Jason M Duran
- Department of Internal Medicine, Division of Cardiology, UC San Diego Medical Center, La Jolla, CA, 92037, USA
| | - Joshua Alcantara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Altaf H Sarker
- Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Victor J Cardenas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Sanjiv Sur
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
- Department of Biomedical and Nutritional Science, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
15
|
Lo R, Gonçalves-Carneiro D. Sensing nucleotide composition in virus RNA. Biosci Rep 2023; 43:BSR20230372. [PMID: 37606964 PMCID: PMC10500230 DOI: 10.1042/bsr20230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023] Open
Abstract
Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Raymon Lo
- Imperial College London, Department of Infectious Disease, Imperial College London, London, U.K
| | | |
Collapse
|
16
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
17
|
Lista MJ, Witney AA, Nichols J, Davison AJ, Wilson H, Latham KA, Ravenhill BJ, Nightingale K, Stanton RJ, Weekes MP, Neil SJD, Swanson CM, Strang BL. Strain-Dependent Restriction of Human Cytomegalovirus by Zinc Finger Antiviral Proteins. J Virol 2023; 97:e0184622. [PMID: 36916924 PMCID: PMC10062169 DOI: 10.1128/jvi.01846-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.
Collapse
Affiliation(s)
- Maria Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Adam A. Witney
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Jenna Nichols
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Katie A. Latham
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
18
|
Characterization of Live-Attenuated Powassan Virus Vaccine Candidates Identifies an Efficacious Prime-Boost Strategy for Mitigating Powassan Virus Disease in a Murine Model. Vaccines (Basel) 2023; 11:vaccines11030612. [PMID: 36992196 PMCID: PMC10058527 DOI: 10.3390/vaccines11030612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne virus and cause of lethal encephalitis in humans. The lack of treatment or prevention strategies for POWV disease underscores the need for an effective POWV vaccine. Here, we took two independent approaches to develop vaccine candidates. First, we recoded the POWV genome to increase the dinucleotide frequencies of CpG and UpA to potentially attenuate the virus by raising its susceptibility to host innate immune factors, such as the zinc-finger antiviral protein (ZAP). Secondly, we took advantage of the live-attenuated yellow fever virus vaccine 17D strain (YFV-17D) as a vector to express the structural genes pre-membrane (prM) and envelope (E) of POWV. The chimeric YFV-17D-POWV vaccine candidate was further attenuated for in vivo application by removing an N-linked glycosylation site within the nonstructural protein (NS)1 of YFV-17D. This live-attenuated chimeric vaccine candidate significantly protected mice from POWV disease, conferring a 70% survival rate after lethal challenge when administered in a homologous two-dose regimen. Importantly, when given in a heterologous prime-boost vaccination scheme, in which vaccination with the initial chimeric virus was followed by a protein boost with the envelope protein domain III (EDIII), 100% of the mice were protected without showing any signs of morbidity. Combinations of this live-attenuated chimeric YFV-17D-POWV vaccine candidate with an EDIII protein boost warrant further studies for the development of an effective vaccine strategy for the prevention of POWV disease.
Collapse
|
19
|
Lista MJ, Ficarelli M, Wilson H, Kmiec D, Youle RL, Wanford J, Winstone H, Odendall C, Taylor IA, Neil SJD, Swanson CM. A Nuclear Export Signal in KHNYN Required for Its Antiviral Activity Evolved as ZAP Emerged in Tetrapods. J Virol 2023; 97:e0087222. [PMID: 36633408 PMCID: PMC9888277 DOI: 10.1128/jvi.00872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.
Collapse
Affiliation(s)
- Maria J. Lista
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Mattia Ficarelli
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Harry Wilson
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Dorota Kmiec
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Rebecca L. Youle
- King’s College London, Department of Infectious Diseases, London, United Kingdom
- The Francis Crick Institute, Macromolecular Structure Laboratory, London, United Kingdom
| | - Joseph Wanford
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Helena Winstone
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Charlotte Odendall
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Ian A. Taylor
- The Francis Crick Institute, Macromolecular Structure Laboratory, London, United Kingdom
| | - Stuart J. D. Neil
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Chad M. Swanson
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| |
Collapse
|
20
|
Riplet Binds the Zinc Finger Antiviral Protein (ZAP) and Augments ZAP-Mediated Restriction of HIV-1. J Virol 2022; 96:e0052622. [PMID: 35913217 PMCID: PMC9400502 DOI: 10.1128/jvi.00526-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The zinc finger antiviral protein (ZAP) is an interferon-stimulated gene (ISG) with potent intrinsic antiviral activity. ZAP inhibits the replication of retroviruses, including murine leukemia virus (MLV) and HIV-1, as well as alphaviruses, filoviruses, and hepatitis B virus, and also the retrotransposition of LINE-1 and Alu retroelements. ZAP operates posttranscriptionally to reduce the levels of viral transcripts available for translation in the cytoplasm, although additional functions might be involved. Recent studies have shown that ZAP preferentially binds viral mRNAs containing clusters of CpG dinucleotides via its four CCCH-type zinc fingers. ZAP lacks enzymatic activity and utilizes other cellular proteins to suppress viral replication. Tripartite motif 25 (TRIM25) and the nuclease KHNYN have been identified as ZAP cofactors. In this study, we identify Riplet, a protein known to play a central role in the activation of the retinoic acid-inducible gene I (RIG-I), as a novel ZAP cofactor. Overexpression of Riplet acts to strongly augment ZAP's antiviral activity. Riplet is an E3 ubiquitin ligase containing three domains, an N-terminal RING finger domain, a central coiled-coil domain, and a C-terminal P/SPRY domain. We show that Riplet interacts with ZAP via its P/SPRY domain and that the ubiquitin ligase activity of Riplet is not required to stimulate ZAP-mediated virus inhibition. Moreover, we show that Riplet interacts with TRIM25, suggesting that both Riplet and TRIM25 may operate as a complex to augment ZAP activity. IMPORTANCE The ZAP is a potent restriction factor inhibiting replication of many RNA viruses by binding directly to viral RNAs and targeting them for degradation. We here identify RIPLET as a cofactor that stimulates ZAP activity. The finding connects ZAP to other innate immunity pathways and suggests oligomerization as a common theme in sensing pathogenic RNAs.
Collapse
|
21
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
22
|
Udenze D, Trus I, Berube N, Karniychuk U. CpG content in the Zika virus genome affects infection phenotypes in the adult brain and fetal lymph nodes. Front Immunol 2022; 13:943481. [PMID: 35983032 PMCID: PMC9379343 DOI: 10.3389/fimmu.2022.943481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing the number of CpG dinucleotides in RNA viral genomes, while preserving the original amino acid composition, leads to impaired infection which does not cause disease. Beneficially, impaired infection evokes antiviral host immune responses providing a cutting-edge vaccine approach. For example, we previously showed that CpG-enriched Zika virus variants cause attenuated infection phenotypes and protect against lethal challenge in mice. While CpG recoding is an emerging and promising vaccine approach, little is known about infection phenotypes caused by recoded viruses in vivo, particularly in non-rodent species. Here, we used well-established mouse and porcine models to study infection phenotypes of the CpG-enriched neurotropic and congenital virus—Zika virus, directly in the target tissues—the brain and placenta. Specifically, we used the uttermost challenge and directly injected mice intracerebrally to compare infection phenotypes caused by wild-type and two CpG-recoded Zika variants and model the scenario where vaccine strains breach the blood-brain barrier. Also, we directly injected porcine fetuses to compare in utero infection phenotypes and model the scenario where recoded vaccine strains breach the placental barrier. While overall infection kinetics were comparable between wild-type and recoded virus variants, we found convergent phenotypical differences characterized by reduced pathology in the mouse brain and reduced replication of CpG-enriched variants in fetal lymph nodes. Next, using next-generation sequencing for the whole virus genome, we compared the stability of de novo introduced CpG dinucleotides during prolonged virus infection in the brain and placenta. Most de novo introduced CpG dinucleotides were preserved in sequences of recoded Zika viruses showing the stability of vaccine variants. Altogether, our study emphasized further directions to fine-tune the CpG recoding vaccine approach for better safety and can inform future immunization strategies.
Collapse
Affiliation(s)
- Daniel Udenze
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ivan Trus
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Uladzimir Karniychuk,
| |
Collapse
|
23
|
Odon V, Fiddaman SR, Smith AL, Simmonds P. Comparison of CpG- and UpA-mediated restriction of RNA virus replication in mammalian and avian cells and investigation of potential ZAP-mediated shaping of host transcriptome compositions. RNA (NEW YORK, N.Y.) 2022; 28:1089-1109. [PMID: 35675984 PMCID: PMC9297844 DOI: 10.1261/rna.079102.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The ability of zinc finger antiviral protein (ZAP) to recognize and respond to RNA virus sequences with elevated frequencies of CpG dinucleotides has been proposed as a functional part of the vertebrate innate immune antiviral response. It has been further proposed that ZAP activity shapes compositions of cytoplasmic mRNA sequences to avoid self-recognition, particularly mRNAs for interferons (IFNs) and IFN-stimulated genes (ISGs) expressed during the antiviral state. We investigated whether restriction of the replication of mutants of influenza A virus (IAV) and the echovirus 7 (E7) replicon with high CpG and UpA frequencies varied in different species of mammals and birds. Cell lines from different bird orders showed substantial variability in restriction of CpG-high mutants of IAV and E7 replicons, whereas none restricted UpA-high mutants, in marked contrast to universal restriction of both mutants in mammalian cells. Dinucleotide representation in ISGs and IFN genes was compared with those of cellular transcriptomes to determine whether potential differences in inferred ZAP activity between species shaped dinucleotide compositions of highly expressed genes during the antiviral state. While mammalian type 1 IFN genes typically showed often profound suppression of CpG and UpA frequencies, there was no oversuppression of either in ISGs in any species, irrespective of their ability to restrict CpG- or UpA-high mutants. Similarly, genome sequences of mammalian and avian RNA viruses were compositionally equivalent, as were IAV strains recovered from ducks, chickens and humans. Overall, we found no evidence for host variability in inferred ZAP function shaping host or viral transcriptome compositions.
Collapse
Affiliation(s)
- Valerie Odon
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Steven R Fiddaman
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Adrian L Smith
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
24
|
Yang E, Nguyen LP, Wisherop CA, Kan RL, Li MM. The Role of ZAP and TRIM25 RNA Binding in Restricting Viral Translation. Front Cell Infect Microbiol 2022; 12:886929. [PMID: 35800389 PMCID: PMC9253567 DOI: 10.3389/fcimb.2022.886929] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The innate immune response controls the acute phase of virus infections; critical to this response is the induction of type I interferon (IFN) and resultant IFN-stimulated genes to establish an antiviral environment. One such gene, zinc finger antiviral protein (ZAP), is a potent antiviral factor that inhibits replication of diverse RNA and DNA viruses by binding preferentially to CpG-rich viral RNA. ZAP restricts alphaviruses and the flavivirus Japanese encephalitis virus (JEV) by inhibiting translation of their positive-sense RNA genomes. While ZAP residues important for RNA binding and CpG specificity have been identified by recent structural studies, their role in viral translation inhibition has yet to be characterized. Additionally, the ubiquitin E3 ligase tripartite motif-containing protein 25 (TRIM25) has recently been uncovered as a critical co-factor for ZAP's suppression of alphavirus translation. While TRIM25 RNA binding is required for efficient TRIM25 ligase activity, its importance in the context of ZAP translation inhibition remains unclear. Here, we characterized the effects of ZAP and TRIM25 RNA binding on translation inhibition in the context of the prototype alphavirus Sindbis virus (SINV) and JEV. To do so, we generated a series of ZAP and TRIM25 RNA binding mutants, characterized loss of their binding to SINV genomic RNA, and assessed their ability to interact with each other and to suppress SINV replication, SINV translation, and JEV translation. We found that mutations compromising general RNA binding of ZAP and TRIM25 impact their ability to restrict SINV replication, but mutations specifically targeting ZAP CpG-mediated RNA binding have a greater effect on SINV and JEV translation inhibition. Interestingly, ZAP-TRIM25 interaction is a critical determinant of JEV translation inhibition. Taken together, these findings illuminate the contribution of RNA binding and co-factor interaction to the synergistic inhibition of viral translation by ZAP and TRIM25.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - LeAnn P. Nguyen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlyn A. Wisherop
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan L. Kan
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melody M.H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Hazra T, Tapryal N, Chakraborty A, Rayavara K, Wakamiya M, Islam A, Pan L, Hsu J, Tat V, Maruyama J, Hosoki K, Sayed I, Alcantara J, Castillo V, Tindle C, Sarker A, Cardenas V, Sharma G, Alexander LC, Sur S, Ghosh G, Paessler S, Sahoo D, Ghosh P, Das S, Boldogh I, Tseng CT. The DNA glycosylase NEIL2 plays a vital role in combating SARS-CoV-2 infection. RESEARCH SQUARE 2022:rs.3.rs-1690354. [PMID: 35665009 PMCID: PMC9164514 DOI: 10.21203/rs.3.rs-1690354/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.
Collapse
Affiliation(s)
- Tapas Hazra
- The University of Texas Medical Branch at Galveston
| | | | | | | | | | | | - Lang Pan
- The University of Texas Medical Branch at Galveston
| | - Jason Hsu
- The University of Texas Medical Branch
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
27
|
Esposito S, D’Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and Viral Zinc-Finger Proteins in COVID-19. Int J Mol Sci 2022; 23:ijms23073711. [PMID: 35409070 PMCID: PMC8998646 DOI: 10.3390/ijms23073711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.
Collapse
|
28
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
29
|
Xue G, Braczyk K, Gonçalves-Carneiro D, Dawidziak DM, Sanchez K, Ong H, Wan Y, Zadrozny KK, Ganser-Pornillos BK, Bieniasz PD, Pornillos O. Poly(ADP-ribose) potentiates ZAP antiviral activity. PLoS Pathog 2022; 18:e1009202. [PMID: 35130321 PMCID: PMC8853533 DOI: 10.1371/journal.ppat.1009202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Zinc-finger antiviral protein (ZAP), also known as poly(ADP-ribose) polymerase 13 (PARP13), is an antiviral factor that selectively targets viral RNA for degradation. ZAP is active against both DNA and RNA viruses, including important human pathogens such as hepatitis B virus and type 1 human immunodeficiency virus (HIV-1). ZAP selectively binds CpG dinucleotides through its N-terminal RNA-binding domain, which consists of four zinc fingers. ZAP also contains a central region that consists of a fifth zinc finger and two WWE domains. Through structural and biochemical studies, we found that the fifth zinc finger and tandem WWEs of ZAP combine into a single integrated domain that binds to poly(ADP-ribose) (PAR), a cellular polynucleotide. PAR binding is mediated by the second WWE module of ZAP and likely involves specific recognition of an adenosine diphosphate-containing unit of PAR. Mutation of the PAR binding site in ZAP abrogates the interaction in vitro and diminishes ZAP activity against a CpG-rich HIV-1 reporter virus and murine leukemia virus. In cells, PAR facilitates formation of non-membranous sub-cellular compartments such as DNA repair foci, spindle poles and cytosolic RNA stress granules. Our results suggest that ZAP-mediated viral mRNA degradation is facilitated by PAR, and provides a biophysical rationale for the reported association of ZAP with RNA stress granules.
Collapse
Affiliation(s)
- Guangai Xue
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Klaudia Braczyk
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Gonçalves-Carneiro
- Laboratory of Retrovirology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Daria M. Dawidziak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katarzyna Sanchez
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Heley Ong
- Laboratory of Retrovirology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Yueping Wan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kaneil K. Zadrozny
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
31
|
NAD+-consuming enzymes in immune defense against viral infection. Biochem J 2021; 478:4071-4092. [PMID: 34871367 PMCID: PMC8718269 DOI: 10.1042/bcj20210181] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.
Collapse
|
32
|
Sertkaya H, Hidalgo L, Ficarelli M, Kmiec D, Signell AW, Ali S, Parker H, Wilson H, Neil SJ, Malim MH, Vink CA, Swanson CM. Minimal impact of ZAP on lentiviral vector production and transduction efficiency. Mol Ther Methods Clin Dev 2021; 23:147-157. [PMID: 34703838 PMCID: PMC8517000 DOI: 10.1016/j.omtm.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The antiviral protein ZAP binds CpG dinucleotides in viral RNA to inhibit replication. This has likely led to the CpG suppression observed in many RNA viruses, including retroviruses. Sequences added to retroviral vector genomes, such as internal promoters, transgenes, or regulatory elements, substantially increase CpG abundance. Because these CpGs could allow retroviral vector RNA to be targeted by ZAP, we analyzed whether it restricts vector production, transduction efficiency, and transgene expression. Surprisingly, even though CpG-high HIV-1 was efficiently inhibited by ZAP in HEK293T cells, depleting ZAP did not substantially increase lentiviral vector titer using several packaging and genome plasmids. ZAP overexpression also did not inhibit lentiviral vector titer. In addition, decreasing CpG abundance in a lentiviral vector genome did not increase its titer, and a gammaretroviral vector derived from murine leukemia virus was not substantially restricted by ZAP. Overall, we show that the increased CpG abundance in retroviral vectors relative to the wild-type retroviruses they are derived from does not intrinsically sensitize them to ZAP. Further understanding of how ZAP specifically targets transcripts to inhibit their expression may allow the development of CpG sequence contexts that efficiently recruit or evade this antiviral system.
Collapse
Affiliation(s)
- Helin Sertkaya
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Laura Hidalgo
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Adrian W. Signell
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Sadfer Ali
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Hannah Parker
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Harry Wilson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Stuart J.D. Neil
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Conrad A. Vink
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| |
Collapse
|
33
|
Kmiec D, Lista MJ, Ficarelli M, Swanson CM, Neil SJD. S-farnesylation is essential for antiviral activity of the long ZAP isoform against RNA viruses with diverse replication strategies. PLoS Pathog 2021; 17:e1009726. [PMID: 34695163 PMCID: PMC8568172 DOI: 10.1371/journal.ppat.1009726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/04/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.
Collapse
Affiliation(s)
- Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - María José Lista
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
34
|
Chowdhury A, Sajid M, Jahan N, Adelusi TI, Maitra P, Yin G, Wu X, Gao Y, Wang S. A secondary approach with conventional medicines and supplements to recuperate current COVID-19 status. Biomed Pharmacother 2021; 142:111956. [PMID: 34332377 PMCID: PMC8313489 DOI: 10.1016/j.biopha.2021.111956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Novel coronavirus 2019 (COVID-19) is a zoonosis that revised the global economic and societal progress since early 2020. The SARS-CoV-2 has been recognized as the responsible pathogen for COVID-19 with high infection and mortality rate potential. It has spread in 192 countries and infected about 1.5% of the world population, and still, a proper therapeutic approach is not unveiled. COVID-19 indication starts with fever to shortness of breathing, leading to ICU admission with the ventilation support in severe conditions. Besides the symptomatic mainstay clinical therapeutic approach, only Remdesivir has been approved by the FDA. Several pharmaceutical companies claimed different vaccines with exceptionally high efficacy (90-95%) against COVID-19; how long these vaccines can protect and long-term safety with the new variants are unpredictable. After the worldwide spread of the COVID-19 pandemic, numerous clinical trials with different phases are being performed to find the most appropriate solution to this condition. Some of these trials with old FDA-approved drugs showed promising results. In this review, we have precisely compiled the efforts to curb the disease and discussed the clinical findings of Ivermectin, Doxycycline, Vitamin-D, Vitamin-C, Zinc, and cannabidiol and their combinations. Additionally, the correlation of these molecules on the prophylactic and diseased ministration against COVID-19 has been explored.
Collapse
Affiliation(s)
- Apu Chowdhury
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Nabila Jahan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Pulak Maitra
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Guolian Yin
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
35
|
Paparisto E, Hunt NR, Labach DS, Coleman MD, Di Gravio EJ, Dodge MJ, Friesen NJ, Côté M, Müller A, Hoenen T, Barr SD. Interferon-Induced HERC5 Inhibits Ebola Virus Particle Production and Is Antagonized by Ebola Glycoprotein. Cells 2021; 10:cells10092399. [PMID: 34572049 PMCID: PMC8472148 DOI: 10.3390/cells10092399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel ‘protagonist–antagonistic’ relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nina R. Hunt
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Daniel S. Labach
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Macon D. Coleman
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Eric J. Di Gravio
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nicole J. Friesen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Roger-Guindon Hall Room 4214, Ottawa, ON K1H 8M5 , Canada;
| | - Andreas Müller
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
- Correspondence:
| |
Collapse
|
36
|
Mino T, Takeuchi O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol Rev 2021; 304:97-110. [PMID: 34514623 DOI: 10.1111/imr.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Hoch NC. Host ADP-ribosylation and the SARS-CoV-2 macrodomain. Biochem Soc Trans 2021; 49:1711-1721. [PMID: 34351418 PMCID: PMC8421052 DOI: 10.1042/bst20201212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic has prompted intense research efforts into elucidating mechanisms of coronavirus pathogenesis and to propose antiviral interventions. The interferon (IFN) response is the main antiviral component of human innate immunity and is actively suppressed by several non-structural SARS-CoV-2 proteins, allowing viral replication within human cells. Differences in IFN signalling efficiency and timing have emerged as central determinants of the variability of COVID-19 disease severity between patients, highlighting the need for an improved understanding of host-pathogen interactions that affect the IFN response. ADP-ribosylation is an underexplored post-translational modification catalyzed by ADP-ribosyl transferases collectively termed poly(ADP-ribose) polymerases (PARPs). Several human PARPs are induced by the IFN response and participate in antiviral defences by regulating IFN signalling itself, modulating host processes such as translation and protein trafficking, as well as directly modifying and inhibiting viral target proteins. SARS-CoV-2 and other viruses encode a macrodomain that hydrolyzes ADP-ribose modifications, thus counteracting antiviral PARP activity. This mini-review provides a brief overview of the known targets of IFN-induced ADP-ribosylation and the functions of viral macrodomains, highlighting several open questions in the field.
Collapse
Affiliation(s)
- Nicolas C. Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Wollen KL, Hagen L, Vågbø CB, Rabe R, Iveland TS, Aas PA, Sharma A, Sporsheim B, Erlandsen HO, Palibrk V, Bjørås M, Fonseca DM, Mosammaparast N, Slupphaug G. ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. J Transl Med 2021; 19:287. [PMID: 34217309 PMCID: PMC8254245 DOI: 10.1186/s12967-021-02948-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. Methods Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. Results MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. Conclusions Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02948-6.
Collapse
Affiliation(s)
- Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Renana Rabe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Hilde O Erlandsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Davi M Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway. .,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway.
| |
Collapse
|
39
|
Lee S, Lee YS, Choi Y, Son A, Park Y, Lee KM, Kim J, Kim JS, Kim VN. The SARS-CoV-2 RNA interactome. Mol Cell 2021; 81:2838-2850.e6. [PMID: 33989516 PMCID: PMC8075806 DOI: 10.1016/j.molcel.2021.04.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA-binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 proviral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Sungyul Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ahyeon Son
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngran Park
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Min Lee
- International Vaccine Institute, Seoul, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Zinc finger antiviral protein (ZAP) inhibits small ruminant morbillivirus replication in vitro. Vet Microbiol 2021; 260:109163. [PMID: 34311269 DOI: 10.1016/j.vetmic.2021.109163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Small ruminant morbillivirus (SRMV) is a highly contagious and economically important viral disease of small domestic and wild ruminants. Difficulty with its stable proliferation in ovis aries-derived cells has led to a relative lag in the study of its natural immunity and pathogenesis. Here we report the antiviral properties of ZAP against SRMV, a single-stranded negative-stranded RNA virus of the genus Morbillivirus. ZAP expression was significantly induced in sheep endometrial epithelial cells following SRMV infection. ZAP inhibited SRMV replication in cells after infection, while its overexpression in Vero-SLAM cells significantly increased their resistance to SRMV replication. The ZAP protein co-localized with SRMV RNA in the cytoplasm and ZAP-responsive elements were mapped to the 5' untranslated region of SRMV nucleocapsid, phosphoprotein, matrix, and fusion. In summary, ZAP confers resistance to SRMV infection by directly targeting viral RNA and inhibiting viral replication. Our findings further extend the ranges of viral targets of ZAP and help elucidate the mechanism of SRMV replication.
Collapse
|
41
|
Ficarelli M, Neil SJD, Swanson CM. Targeted Restriction of Viral Gene Expression and Replication by the ZAP Antiviral System. Annu Rev Virol 2021; 8:265-283. [PMID: 34129371 DOI: 10.1146/annurev-virology-091919-104213] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The zinc finger antiviral protein (ZAP) restricts the replication of a broad range of RNA and DNA viruses. ZAP directly binds viral RNA, targeting it for degradation and inhibiting its translation. While the full scope of RNA determinants involved in mediating selective ZAP activity are unclear, ZAP binds CpG dinucleotides, dictating at least part of its target specificity. ZAP interacts with many cellular proteins, although only a few have been demonstrated to be essential for its antiviral activity, including the 3'-5' exoribonuclease exosome complex, TRIM25, and KHNYN. In addition to inhibiting viral gene expression, ZAP also directly and indirectly targets a subset of cellular messenger RNAs to regulate the innate immune response. Overall, ZAP protects a cell from viral infection by restricting viral replication and regulating cellular gene expression. Further understanding of the ZAP antiviral system may allow for novel viral vaccine and anticancer therapy development. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mattia Ficarelli
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, United Kingdom;
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, United Kingdom;
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
42
|
Zhang R, He Y, Zhu X, Wen G, Luo Q, Zhang T, Lu Q, Liu S, Xiao S, Fang L, Shao H. Molecular characterization and functional analysis of duck CCCH-type zinc finger antiviral protein (ZAP). Biochem Biophys Res Commun 2021; 561:52-58. [PMID: 34020141 DOI: 10.1016/j.bbrc.2021.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022]
Abstract
This is the first study to clone duck CCCH-type zinc finger antiviral protein (duZAP) from Jingjiang duck (Anas platyrhynchos). Full-length duZAP cDNA was 2154 bp and encoded a 717-amino acid polypeptide containing four highly conserved CCCH-type finger motifs, a WWE domain and a poly (ADP-ribose) polymerase (PARP) domain. duZAP was expressed in multiple duck tissues, with the highest mRNA expression in the spleen. Overexpression of duZAP in duck embryo fibroblast cells (DEFs) led to activation of the transcription factors IRF1 and NF-κB, and induction of IFN-β. Analysis of deletion mutants revealed that both the WWE and PARP domains of duZAP were essential for activating the IFN-β promoter. Knockdown of duZAP in DEFs significantly reduced poly (I:C)- and duck Tembusu virus (DTMUV)-induced IFN-β activation. Our findings further the understanding of the role of duZAP in the duck innate immune response.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan He
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xinyu Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs) and Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
43
|
Wang G, Zheng C. Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. FEMS Microbiol Rev 2021; 45:fuaa059. [PMID: 33175962 DOI: 10.1093/femsre/fuaa059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc finger proteins (ZFPs) are a huge family comprised of massive, structurally diverse proteins characterized by zinc ion coordinating. They engage in the host-virus interplay in-depth and occupy a significant portion of the host antiviral arsenal. Nucleic acid-binding is the basic property of certain ZFPs, which draws increasing attention due to their immense influence on viral infections. ZFPs exert multiple roles on the viral replications and host cell transcription profiles by recognizing viral genomes and host mRNAs. Their roles could be either antiviral or proviral and were separately discussed. Our review covers the recent research progress and provides a comprehensive understanding of ZFPs in antiviral immunity based on their DNA/RNA binding property.
Collapse
Affiliation(s)
- Guanming Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada, AB T2N 4N1
| |
Collapse
|
44
|
Markiewicz L, Drazkowska K, Sikorski PJ. Tricks and threats of RNA viruses - towards understanding the fate of viral RNA. RNA Biol 2021; 18:669-687. [PMID: 33618611 PMCID: PMC8078519 DOI: 10.1080/15476286.2021.1875680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
Human innate cellular defence pathways have evolved to sense and eliminate pathogens, of which, viruses are considered one of the most dangerous. Their relatively simple structure makes the identification of viral invasion a difficult task for cells. In the course of evolution, viral nucleic acids have become one of the strongest and most reliable early identifiers of infection. When considering RNA virus recognition, RNA sensing is the central mechanism in human innate immunity, and effectiveness of this sensing is crucial for triggering an appropriate antiviral response. Although human cells are armed with a variety of highly specialized receptors designed to respond only to pathogenic viral RNA, RNA viruses have developed an array of mechanisms to avoid being recognized by human interferon-mediated cellular defence systems. The repertoire of viral evasion strategies is extremely wide, ranging from masking pathogenic RNA through end modification, to utilizing sophisticated techniques to deceive host cellular RNA degrading enzymes, and hijacking the most basic metabolic pathways in host cells. In this review, we aim to dissect human RNA sensing mechanisms crucial for antiviral immune defences, as well as the strategies adopted by RNA viruses to avoid detection and degradation by host cells. We believe that understanding the fate of viral RNA upon infection, and detailing the molecular mechanisms behind virus-host interactions, may be helpful for developing more effective antiviral strategies; which are urgently needed to prevent the far-reaching consequences of widespread, highly pathogenic viral infections.
Collapse
|
45
|
Fros JJ, Visser I, Tang B, Yan K, Nakayama E, Visser TM, Koenraadt CJM, van Oers MM, Pijlman GP, Suhrbier A, Simmonds P. The dinucleotide composition of the Zika virus genome is shaped by conflicting evolutionary pressures in mammalian hosts and mosquito vectors. PLoS Biol 2021; 19:e3001201. [PMID: 33872300 PMCID: PMC8084339 DOI: 10.1371/journal.pbio.3001201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Most vertebrate RNA viruses show pervasive suppression of CpG and UpA dinucleotides, closely resembling the dinucleotide composition of host cell transcriptomes. In contrast, CpG suppression is absent in both invertebrate mRNA and RNA viruses that exclusively infect arthropods. Arthropod-borne (arbo) viruses are transmitted between vertebrate hosts by invertebrate vectors and thus encounter potentially conflicting evolutionary pressures in the different cytoplasmic environments. Using a newly developed Zika virus (ZIKV) model, we have investigated how demands for CpG suppression in vertebrate cells can be reconciled with potentially quite different compositional requirements in invertebrates and how this affects ZIKV replication and transmission. Mutant viruses with synonymously elevated CpG or UpA dinucleotide frequencies showed attenuated replication in vertebrate cell lines, which was rescued by knockout of the zinc-finger antiviral protein (ZAP). Conversely, in mosquito cells, ZIKV mutants with elevated CpG dinucleotide frequencies showed substantially enhanced replication compared to wild type. Host-driven effects on virus replication attenuation and enhancement were even more apparent in mouse and mosquito models. Infections with CpG- or UpA-high ZIKV mutants in mice did not cause typical ZIKV-induced tissue damage and completely protected mice during subsequent challenge with wild-type virus, which demonstrates their potential as live-attenuated vaccines. In contrast, the CpG-high mutants displayed enhanced replication in Aedes aegypti mosquitoes and a larger proportion of mosquitoes carried infectious virus in their saliva. These findings show that mosquito cells are also capable of discriminating RNA based on dinucleotide composition. However, the evolutionary pressure on the CpG dinucleotides of viral genomes in arthropod vectors directly opposes the pressure present in vertebrate host cells, which provides evidence that an adaptive compromise is required for arbovirus transmission. This suggests that the genome composition of arbo flaviviruses is crucial to maintain the balance between high-level replication in the vertebrate host and persistent replication in the mosquito vector. The genome of the flavivirus Zika virus is stuck in a tug-of-war between two directly opposing evolutionary pressures that are present in the cells of mammalian host organisms and mosquito vectors; this results in an adaptive compromise, as manifested in the virus’s genome dinucleotide composition.
Collapse
Affiliation(s)
- Jelke J. Fros
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- * E-mail:
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Malgras M, Garcia M, Jousselin C, Bodet C, Lévêque N. The Antiviral Activities of Poly-ADP-Ribose Polymerases. Viruses 2021; 13:v13040582. [PMID: 33808354 PMCID: PMC8066025 DOI: 10.3390/v13040582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The poly-adenosine diphosphate (ADP)-ribose polymerases (PARPs) are responsible for ADP-ribosylation, a reversible post-translational modification involved in many cellular processes including DNA damage repair, chromatin remodeling, regulation of translation and cell death. In addition to these physiological functions, recent studies have highlighted the role of PARPs in host defenses against viruses, either by direct antiviral activity, targeting certain steps of virus replication cycle, or indirect antiviral activity, via modulation of the innate immune response. This review focuses on the antiviral activity of PARPs, as well as strategies developed by viruses to escape their action.
Collapse
Affiliation(s)
- Mathilde Malgras
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Clément Jousselin
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France; (M.M.); (M.G.); (C.J.); (C.B.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
- Correspondence: nicolas.lévê; Tel.: +33-(0)5-49-44-38-17
| |
Collapse
|
47
|
Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses 2021; 13:v13040573. [PMID: 33805437 PMCID: PMC8066048 DOI: 10.3390/v13040573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Flavivirus contains pathogenic vertebrate-infecting flaviviruses (VIFs) and insect-specific flaviviruses (ISF). ISF transmission to vertebrates is inhibited at multiple stages of the cellular infection cycle, via yet to be elucidated specific antiviral responses. The zinc-finger antiviral protein (ZAP) in vertebrate cells can bind CpG dinucleotides in viral RNA, limiting virus replication. Interestingly, the genomes of ISFs contain more CpG dinucleotides compared to VIFs. In this study, we investigated whether ZAP prevents two recently discovered lineage II ISFs, Binjari (BinJV) and Hidden Valley viruses (HVV) from replicating in vertebrate cells. BinJV protein and dsRNA replication intermediates were readily observed in human ZAP knockout cells when cultured at 34 °C. In ZAP-expressing cells, inhibition of the interferon response via interferon response factors 3/7 did not improve BinJV protein expression, whereas treatment with kinase inhibitor C16, known to reduce ZAP’s antiviral function, did. Importantly, at 34 °C, both BinJV and HVV successfully completed the infection cycle in human ZAP knockout cells evident from infectious progeny virus in the cell culture supernatant. Therefore, we identify vertebrate ZAP as an important barrier that protects vertebrate cells from ISF infection. This provides new insights into flavivirus evolution and the mechanisms associated with host switching.
Collapse
|
48
|
Ali AS, ASattar MA, Karim S, Kutbi D, Aljohani H, Bakhshwin D, Alsieni M, Alkreathy HM. Pharmacological basis for the potential role of Azithromycin and Doxycycline in management of COVID-19. ARAB J CHEM 2021; 14:102983. [PMID: 34909062 PMCID: PMC7797177 DOI: 10.1016/j.arabjc.2020.102983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
A novel corona virus SARS-CoV-2 has led to an outbreak of the highly infectious pandemic COVID-19 complicated viral pneumonia. Patients with risk factors frequently develop secondary infections where the role of appropriate antibiotics is mandatory. However, the efforts of drug repurposing lead to recognizing the role of certain antibiotics beyond the management of infection. The current review provided the detailed antiviral, immunomodulatory effect, unique pharmacokinetic profile of two antibiotics namely azithromycin (AZ) and doxycycline (DOX). It summarizes current clinical trials and concerns regarding safety issues of these drugs. Azithromycin (AZ) has amazing lung tissue access, wide range antibacterial efficacy, conceivable antiviral action against COVID-19. It also showed efficacy when combined with other antiviral drugs in limited clinical trials, but many clinicians raise concerns regarding cardiovascular risk in susceptible patients. DOX has a considerable role in the management of pneumonia, it has some advantages including cardiac safety, very good access to lung tissue, potential antiviral, and immunomodulation impact by several mechanisms. The pharmacological profiles of both drugs are heightening considering these medications for further studies in the management of COVID-19.
Collapse
Affiliation(s)
- Ahmed S Ali
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
- Department of Pharmaceutics Faculty of Pharmacy, Assiut University, Egypt
| | - Mai A ASattar
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Dina Kutbi
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Hanin Aljohani
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Duaa Bakhshwin
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
49
|
Association of Zinc Finger Antiviral Protein Binding to Viral Genomic RNA with Attenuation of Replication of Echovirus 7. mSphere 2021; 6:6/1/e01138-20. [PMID: 33408233 PMCID: PMC7845596 DOI: 10.1128/msphere.01138-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have implicated both zinc finger antiviral protein (ZAP) and oligoadenylate synthetase 3 (OAS3)/RNase L in the attenuation of RNA viruses with elevated CpG and UpA dinucleotides. Mechanisms and interrelationships between these two pathways were investigated using an echovirus 7 (E7) replicon with compositionally modified sequences inserted into the 3' untranslated region. ZAP and OAS3 immunoprecipitation (IP) assays provided complementary data on dinucleotide composition effects on binding. Elevated frequencies of alternative pyrimidine/purine (CpA and UpG) and reversed (GpC and ApU) dinucleotides showed no attenuating effect on replication or specific binding to ZAP by IP. However, the bases 3' and 5' of CpG motifs influenced replication and ZAP binding; UCGU enhanced CpG-mediated attenuation and ZAP binding, while A residues shielded CpGs from ZAP recognition. Attenuating effects of elevated frequencies of UpA on replication occurred independently of CpG dinucleotides and bound noncompetitively with CpG-enriched RNA, consistent with a separate recognition site from CpG. Remarkably, immunoprecipitation with OAS3 antibody reproduced the specific binding to CpG- and UpA-enriched RNA sequences. However, OAS3 and ZAP were coimmunoprecipitated in both ZAP and OAS3 IP and colocalized with E7 and stress granules (SGs) by confocal microscopy analysis of infected cells. ZAP's association with larger cellular complexes may mediate the recruitment of OAS3/RNase L, KHNYN, and other RNA degradation pathways.IMPORTANCE We recently discovered that the OAS3/RNase L antiviral pathway is essential for restriction of CpG- and UpA-enriched viruses, in addition to the requirement for zinc finger antiviral protein (ZAP). The current study provides evidence for the specific dinucleotide and wider recognition contexts associated with virus recognition and attenuation. It further documents the association of ZAP and OAS3 and association with stress granules and a wider protein interactome that may mediate antiviral effects in different cellular compartments. The study provides a striking reconceptualization of the pathways associated with this aspect of antiviral defense.
Collapse
|
50
|
Luo X, Wang X, Gao Y, Zhu J, Liu S, Gao G, Gao P. Molecular Mechanism of RNA Recognition by Zinc-Finger Antiviral Protein. Cell Rep 2021; 30:46-52.e4. [PMID: 31914396 DOI: 10.1016/j.celrep.2019.11.116] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
Zinc-finger antiviral protein (ZAP) is a host antiviral factor that specifically restricts a wide range of viruses. ZAP selectively binds to CG-dinucleotide-enriched RNA sequences and recruits multiple RNA degradation machines to degrade target viral RNA. However, the molecular mechanism and structural basis for ZAP recognition of specific RNA are not clear. Here, we report the crystal structure of the ZAP N-terminal domain bound to a CG-rich single-stranded RNA, providing the molecular basis for its specific recognition of a CG dinucleotide and additional guanine and cytosine. The four zinc fingers of ZAP adopt a unique architecture and form extensive interactions with RNA. Mutations of both protein and RNA at the RNA-ZAP interacting surface reduce the in vitro binding affinity and cellular antiviral activity. This work reveals the molecular mechanism of ZAP recognition of specific target RNA and also provides insights into the mechanism by which ZAP coordinates downstream RNA degradation processes.
Collapse
Affiliation(s)
- Xiu Luo
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yina Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingpeng Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songqing Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|