1
|
Paul ME, Chen D, Vish KJ, Lartey NL, Hughes E, Freeman ZT, Saunders TL, Stiegler AL, King PD, Boggon TJ. The C2 domain augments Ras GTPase-activating protein catalytic activity. Proc Natl Acad Sci U S A 2025; 122:e2418433122. [PMID: 39899710 PMCID: PMC11831179 DOI: 10.1073/pnas.2418433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Regulation of Ras GTPases by GTPase-activating proteins (GAPs) is essential for their normal signaling. Nine of the ten GAPs for Ras contain a C2 domain immediately proximal to their canonical GAP domain, and in RasGAP (p120GAP, p120RasGAP; RASA1) mutation of this domain is associated with vascular malformations in humans. Here, we show that the C2 domain of RasGAP is required for full catalytic activity toward Ras. Analyses of the RasGAP C2-GAP crystal structure, AlphaFold models, and sequence conservation reveal direct C2 domain interaction with the Ras allosteric lobe. This is achieved by an evolutionarily conserved surface centered around RasGAP residue R707, point mutation of which impairs the catalytic advantage conferred by the C2 domain in vitro. In mice, R707C mutation phenocopies the vascular and signaling defects resulting from constitutive disruption of the RASA1 gene. In SynGAP, mutation of the equivalent conserved C2 domain surface impairs catalytic activity. Our results indicate that the C2 domain is required to achieve full catalytic activity of GAPs for Ras.
Collapse
Affiliation(s)
- Maxum E. Paul
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Kimberly J. Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Nathaniel L. Lartey
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Elizabeth Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
| | - Zachary T. Freeman
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Amy L. Stiegler
- Department of Pharmacology, Yale University, New Haven, CT06520
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
- Department of Pharmacology, Yale University, New Haven, CT06520
- Yale Cancer Center, Yale University, New Haven, CT06520
| |
Collapse
|
2
|
Hong L, Yuan Q. Genotype-Phenotype Correlations in SYNGAP1-Related Mental Retardation Type 5. Clin Genet 2025; 107:136-146. [PMID: 39647930 DOI: 10.1111/cge.14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Variants in the SYNGAP1 gene leading to decreased SynGAP protein expression are critical for the pathogenesis of mental retardation type 5 (MRD5). This study aims to explore the relationship between SYNGAP1 genotype and clinical phenotype through an expanded sample size, thereby enhancing the understanding of the specific mechanisms underlying MRD5. Data from previously published cases of patients with SYNGAP1 mutations were collected, and the relationship between genotype and clinical phenotype was analyzed. A total of 246 MRD5 patients were included in the analysis. Among them, 98.7% (224/227) were diagnosed with intellectual disability (ID), 91.6% (208/227) with epilepsy, and 57.3% (137/239) with autism spectrum disorder (ASD). The clinical phenotypes of MRD5 patients were found to be associated with their genotypes. Variants located in exons 1 to 6 may correlate with milder ID and reduced risk of ASD, yet they are more likely to present as refractory epilepsy.
Collapse
Affiliation(s)
- Liying Hong
- Department of Functional (ECG Room), Nanchang First Hospital, Nanchang, China
| | - Qifeng Yuan
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Haetzel LM, Iafrati J, Cording KR, Farhan M, Noveir SD, Rumbaugh G, Bateup HS. Haploinsufficiency of Syngap1 in Striatal Indirect Pathway Neurons Alters Motor and Goal-Directed Behaviors in Mice. J Neurosci 2024; 44:e1264232024. [PMID: 39358043 PMCID: PMC11604145 DOI: 10.1523/jneurosci.1264-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
SYNGAP1 is a high-confidence autism spectrum disorder (ASD) risk gene, and mutations in SYNGAP1 lead to a neurodevelopmental disorder (NDD) that presents with epilepsy, ASD, motor developmental delay, and intellectual disability. SYNGAP1 codes for Ras/Rap GTP-ase activating protein SynGAP (SynGAP). SynGAP is located in the postsynaptic density of glutamatergic synapses and regulates glutamate receptor trafficking in an activity-dependent manner. In addition to forebrain glutamatergic neurons, Syngap1 is highly expressed in the striatum, although the functions of SynGAP in the striatum have not been extensively studied. Here we show that Syngap1 is expressed in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs) in mice of both sexes. In a mouse model of Syngap1 haploinsufficiency, dendritic spine density, morphology, and intrinsic excitability are altered primarily in iSPNs, but not dSPNs. At the behavioral level, SynGAP reduction alters striatal-dependent motor learning and goal-directed behavior. Several behavioral phenotypes are reproduced by iSPN-specific Syngap1 reduction and, in turn, prevented by iSPN-specific Syngap1 rescue. These results establish the importance of SynGAP to striatal neuron function and pinpoint the indirect pathway as a key circuit in the neurobiology of SYNGAP1-related NDD.
Collapse
Affiliation(s)
- Laura M Haetzel
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Jillian Iafrati
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Katherine R Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
- Neuroscience, University of California, Berkeley, California 94720
| | - Mahmoud Farhan
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Sasan D Noveir
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Gavin Rumbaugh
- Departments of Neuroscience and Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, Florida 33458
| | - Helen S Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
- Neuroscience, University of California, Berkeley, California 94720
- Weill Neurohub Investigator, University of California, Berkeley, California 94720
| |
Collapse
|
4
|
Fenton TA, Haouchine OY, Hallam EB, Smith EM, Jackson KC, Rahbarian D, Canales CP, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-related intellectual disability. Transl Psychiatry 2024; 14:405. [PMID: 39358332 PMCID: PMC11447000 DOI: 10.1038/s41398-024-03077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability (ID), motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicating the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered, identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data that was collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated that primary neurons from Syngap1+/- mice displayed: 1) increased network firing activity, 2) greater bursts, 3) and shorter inter-burst intervals between peaks, by utilizing high density microelectrode arrays (HD-MEA). Our work bridges in vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Elizabeth B Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Kiya C Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Alex S Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
5
|
Katsanevaki D, Till SM, Buller-Peralta I, Nawaz MS, Louros SR, Kapgal V, Tiwari S, Walsh D, Anstey NJ, Petrović NG, Cormack A, Salazar-Sanchez V, Harris A, Farnworth-Rowson W, Sutherland A, Watson TC, Dimitrov S, Jackson AD, Arkell D, Biswal S, Dissanayake KN, Mizen LAM, Perentos N, Jones MW, Cousin MA, Booker SA, Osterweil EK, Chattarji S, Wyllie DJA, Gonzalez-Sulser A, Hardt O, Wood ER, Kind PC. Key roles of C2/GAP domains in SYNGAP1-related pathophysiology. Cell Rep 2024; 43:114733. [PMID: 39269903 DOI: 10.1016/j.celrep.2024.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Mutations in SYNGAP1 are a common genetic cause of intellectual disability (ID) and a risk factor for autism. SYNGAP1 encodes a synaptic GTPase-activating protein (GAP) that has both signaling and scaffolding roles. Most pathogenic variants of SYNGAP1 are predicted to result in haploinsufficiency. However, some affected individuals carry missense mutations in its calcium/lipid binding (C2) and GAP domains, suggesting that many clinical features result from loss of functions carried out by these domains. To test this hypothesis, we targeted the exons encoding the C2 and GAP domains of SYNGAP. Rats heterozygous for this deletion exhibit reduced exploration and fear extinction, altered social investigation, and spontaneous seizures-key phenotypes shared with Syngap heterozygous null rats. Together, these findings indicate that the reduction of SYNGAP C2/GAP domain function is a main feature of SYNGAP haploinsufficiency. This rat model provides an important system for the study of ID, autism, and epilepsy.
Collapse
Affiliation(s)
- Danai Katsanevaki
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Sally M Till
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Ingrid Buller-Peralta
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Mohammad Sarfaraz Nawaz
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Susana R Louros
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Vijayakumar Kapgal
- Centre for Brain Development and Repair, Instem, Bangalore 560065, India; The University of Transdisciplinary Health Sciences and Technology, Bangalore 560065, India
| | - Shashank Tiwari
- Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Darren Walsh
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Natasha J Anstey
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Nina G Petrović
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Alison Cormack
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Vanesa Salazar-Sanchez
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Anjanette Harris
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - William Farnworth-Rowson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Andrew Sutherland
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Thomas C Watson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Siyan Dimitrov
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Adam D Jackson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Daisy Arkell
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | | | - Kosala N Dissanayake
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Lindsay A M Mizen
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Nikolas Perentos
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Matt W Jones
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| | - Michael A Cousin
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Emily K Osterweil
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Sumantra Chattarji
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India; Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada
| | - Emma R Wood
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Peter C Kind
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India.
| |
Collapse
|
6
|
Ali AE, Li LL, Courtney MJ, Pentikäinen OT, Postila PA. Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. Brief Bioinform 2024; 25:bbae458. [PMID: 39311700 PMCID: PMC11418247 DOI: 10.1093/bib/bbae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
De novo mutations in the synaptic GTPase activating protein (SynGAP) are associated with neurological disorders like intellectual disability, epilepsy, and autism. SynGAP is also implicated in Alzheimer's disease and cancer. Although pathogenic variants are highly penetrant in neurodevelopmental conditions, a substantial number of them are caused by missense mutations that are difficult to diagnose. Hence, in silico mutagenesis was performed for probing the missense effects within the N-terminal region of SynGAP structure. Through extensive molecular dynamics simulations, encompassing three 150-ns replicates for 211 variants, the impact of missense mutations on the protein fold was assessed. The effect of the mutations on the folding stability was also quantitatively assessed using free energy calculations. The mutations were categorized as potentially pathogenic or benign based on their structural impacts. Finally, the study introduces wild-type-SynGAP in complex with RasGTPase at the inner membrane, while considering the potential effects of mutations on these key interactions. This study provides structural perspective to the clinical assessment of SynGAP missense variants and lays the foundation for future structure-based drug discovery.
Collapse
Affiliation(s)
- Aliaa E Ali
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Li-Li Li
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Michael J Courtney
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli T Pentikäinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Pekka A Postila
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
7
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-Related Intellectual Disability. RESEARCH SQUARE 2024:rs.3.rs-4067746. [PMID: 38562838 PMCID: PMC10984035 DOI: 10.21203/rs.3.rs-4067746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability, motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicting the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated primary neurons from Syngap1+/- mice displayed increased network firing activity, greater bursts, and shorter inter-burst intervals between peaks by employing high density microelectrode arrays (HD-MEA). Our work bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Elizabeth L Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Kiya C. Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Cesar Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Alexander S. Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| |
Collapse
|
8
|
Tat-SynGAP improves angiogenesis and post-stroke recovery by inhibiting MST1/JNK signaling. Brain Res Bull 2022; 180:38-45. [PMID: 34990733 DOI: 10.1016/j.brainresbull.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 01/28/2023]
Abstract
Small G protein Ras induces the activation of apoptosis-related molecule mammalian Ste20-like kinase1 (MST1)/JNK signal pathway, which is involved in the regulation of tissue damage under pathological conditions such as ischemic stroke. Our previous study indicated that GTPase-activating protein for Ras (SynGAP), a negative regulator of Ras, could bind with postsynaptic density protein-93 (PSD-93) and Tat-SynGAP (670-685aa) small peptide to exhibit neuroprotective role. Here, we report that Tat-SynGAP (670-685aa) reduced cerebral edema at acute cerebral ischemia/reperfusion (I/R), improved integrity of blood-brain barrier, and decreased cortical and striatum neuronal injury. Mechanistically, Tat-SynGAP (670-685aa) not only inhibited the phosphorylation of MST1 and JNK and the cleavage of caspase-3, but also facilitated the expression of angiogenesis related molecules VEGF and Ang-1. In conclusion, Tat-SynGAP (670-685aa) reduces neuronal apoptosis and cerebral infarction volume and maintains vascular stability and blood-brain barrier integrity by inhibiting MST1/JNK signaling pathway.
Collapse
|
9
|
Miningou Zobon NT, Jędrzejewska-Szmek J, Blackwell KT. Temporal pattern and synergy influence activity of ERK signaling pathways during L-LTP induction. eLife 2021; 10:e64644. [PMID: 34374340 PMCID: PMC8363267 DOI: 10.7554/elife.64644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Long-lasting long-term potentiation (L-LTP) is a cellular mechanism of learning and memory storage. Studies have demonstrated a requirement for extracellular signal-regulated kinase (ERK) activation in L-LTP produced by a diversity of temporal stimulation patterns. Multiple signaling pathways converge to activate ERK, with different pathways being required for different stimulation patterns. To answer whether and how different temporal patterns select different signaling pathways for ERK activation, we developed a computational model of five signaling pathways (including two novel pathways) leading to ERK activation during L-LTP induction. We show that calcium and cAMP work synergistically to activate ERK and that stimuli given with large intertrial intervals activate more ERK than shorter intervals. Furthermore, these pathways contribute to different dynamics of ERK activation. These results suggest that signaling pathways with different temporal sensitivities facilitate ERK activation to diversity of temporal patterns.
Collapse
Affiliation(s)
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatic, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, Bioengineering Department, George Mason UniversityFairfaxUnited States
- Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
| |
Collapse
|
10
|
Multi-parametric analysis of 57 SYNGAP1 variants reveal impacts on GTPase signaling, localization, and protein stability. Am J Hum Genet 2021; 108:148-162. [PMID: 33308442 DOI: 10.1016/j.ajhg.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
SYNGAP1 is a neuronal Ras and Rap GTPase-activating protein with important roles in regulating excitatory synaptic plasticity. While many SYNGAP1 missense and nonsense mutations have been associated with intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder (ASD), whether and how they contribute to individual disease phenotypes is often unknown. Here, we characterize 57 variants in seven assays that examine multiple aspects of SYNGAP1 function. Specifically, we used multiplex phospho-flow cytometry to measure variant impact on protein stability, pERK, pGSK3β, pp38, pCREB, and high-content imaging to examine subcellular localization. We find variants ranging from complete loss-of-function (LoF) to wild-type (WT)-like in their regulation of pERK and pGSK3β, while all variants retain at least partial ability to dephosphorylate pCREB. Interestingly, our assays reveal that a larger proportion of variants located within the disordered domain of unknown function (DUF) comprising the C-terminal half of SYNGAP1 exhibited higher LoF, compared to variants within the better studied catalytic domain. Moreover, we find protein instability to be a major contributor to dysfunction for only two missense variants, both located within the catalytic domain. Using high-content imaging, we find variants located within the C2 domain known to mediate membrane lipid interactions exhibit significantly larger cytoplasmic speckles than WT SYNGAP1. Moreover, this subcellular phenotype shows both correlation with altered catalytic activity and unique deviation from signaling assay results, highlighting multiple independent molecular mechanisms underlying variant dysfunction. Our multidimensional dataset allows clustering of variants based on functional phenotypes and provides high-confidence, multi-functional measures for making pathogenicity predictions.
Collapse
|
11
|
Gou G, Roca-Fernandez A, Kilinc M, Serrano E, Reig-Viader R, Araki Y, Huganir RL, de Quintana-Schmidt C, Rumbaugh G, Bayés À. SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain. J Neurochem 2020; 154:618-634. [PMID: 32068252 PMCID: PMC7754318 DOI: 10.1111/jnc.14988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
Abstract
The SynGAP protein is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. SynGAP has been involved in multiple signaling pathways and can regulate small GTPases with very different roles. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate understanding their multiple functions. Using isoform-specific antibodies recognizing SynGAP in mouse and human samples we found distinctive developmental expression patterns for all SynGAP isoforms in five mouse brain areas. Particularly noticeable was the delayed expression of SynGAP-α1 isoforms, which directly bind to postsynaptic density-95, in cortex and hippocampus during the first 2 weeks of postnatal development. Suggesting that during this period other isoforms would have a more prominent role. Furthermore, we observed subcellular localization differences between isoforms, particularly throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, SynGAP was predominantly found in non-synaptic locations in a period of early postnatal development highly sensitive to SynGAP levels. While, α1 isoforms were always found enriched in the postsynaptic density, α2 isoforms changed from a non-synaptic to a mostly postsynaptic density localization with age and β isoforms were always found enriched in non-synaptic locations. The differential expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy.
Collapse
Affiliation(s)
- Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Elena Serrano
- Biobank, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Yoichi Araki
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
12
|
Twenty Years of SynGAP Research: From Synapses to Cognition. J Neurosci 2020; 40:1596-1605. [PMID: 32075947 DOI: 10.1523/jneurosci.0420-19.2020] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
SynGAP is a potent regulator of biochemical signaling in neurons and plays critical roles in neuronal function. It was first identified in 1998, and has since been extensively characterized as a mediator of synaptic plasticity. Because of its involvement in synaptic plasticity, SynGAP has emerged as a critical protein for normal cognitive function. In recent years, mutations in the SYNGAP1 gene have been shown to cause intellectual disability in humans and have been linked to other neurodevelopmental disorders, such as autism spectrum disorders and schizophrenia. While the structure and biochemical function of SynGAP have been well characterized, a unified understanding of the various roles of SynGAP at the synapse and its contributions to neuronal function remains to be achieved. In this review, we summarize and discuss the current understanding of the multifactorial role of SynGAP in regulating neuronal function gathered over the last two decades.
Collapse
|
13
|
Yan W, Markegard E, Dharmaiah S, Urisman A, Drew M, Esposito D, Scheffzek K, Nissley DV, McCormick F, Simanshu DK. Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Rep 2020; 32:107909. [PMID: 32697994 PMCID: PMC7437355 DOI: 10.1016/j.celrep.2020.107909] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Sprouty-related, EVH1 domain-containing (SPRED) proteins negatively regulate RAS/mitogen-activated protein kinase (MAPK) signaling following growth factor stimulation. This inhibition of RAS is thought to occur primarily through SPRED1 binding and recruitment of neurofibromin, a RasGAP, to the plasma membrane. Here, we report the structure of neurofibromin (GTPase-activating protein [GAP]-related domain) complexed with SPRED1 (EVH1 domain) and KRAS. The structure provides insight into how the membrane targeting of neurofibromin by SPRED1 allows simultaneous interaction with activated KRAS. SPRED1 and NF1 loss-of-function mutations occur across multiple cancer types and developmental diseases. Analysis of the neurofibromin-SPRED1 interface provides a rationale for mutations observed in Legius syndrome and suggests why SPRED1 can bind to neurofibromin but no other RasGAPs. We show that oncogenic EGFR(L858R) signaling leads to the phosphorylation of SPRED1 on serine 105, disrupting the SPRED1-neurofibromin complex. The structural, biochemical, and biological results provide new mechanistic insights about how SPRED1 interacts with neurofibromin and regulates active KRAS levels in normal and pathologic conditions.
Collapse
Affiliation(s)
- Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Evan Markegard
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anatoly Urisman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Klaus Scheffzek
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA.
| |
Collapse
|
14
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
15
|
Araki Y, Hong I, Gamache TR, Ju S, Collado-Torres L, Shin JH, Huganir RL. SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. eLife 2020; 9:56273. [PMID: 32579114 PMCID: PMC7314543 DOI: 10.7554/elife.56273] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/07/2020] [Indexed: 11/14/2022] Open
Abstract
SynGAP is a synaptic Ras GTPase-activating protein (GAP) with four C-terminal splice variants: α1, α2, β, and γ. Although studies have implicated SYNGAP1 in several cognitive disorders, it is not clear which SynGAP isoforms contribute to disease. Here, we demonstrate that SynGAP isoforms exhibit unique spatiotemporal expression patterns and play distinct roles in neuronal and synaptic development in mouse neurons. SynGAP-α1, which undergoes liquid-liquid phase separation with PSD-95, is highly enriched in synapses and is required for LTP. In contrast, SynGAP-β, which does not bind PSD-95 PDZ domains, is less synaptically targeted and promotes dendritic arborization. A mutation in SynGAP-α1 that disrupts phase separation and synaptic targeting abolishes its ability to regulate plasticity and instead causes it to drive dendritic development like SynGAP-β. These results demonstrate that distinct intrinsic biochemical properties of SynGAP isoforms determine their function, and individual isoforms may differentially contribute to the pathogenesis of SYNGAP1-related cognitive disorders.
Collapse
Affiliation(s)
- Yoichi Araki
- Johns Hopkins University School of Medicine, Department of Neuroscience, Kavli Neuroscience Discovery Institute, Baltimore, United States
| | - Ingie Hong
- Johns Hopkins University School of Medicine, Department of Neuroscience, Kavli Neuroscience Discovery Institute, Baltimore, United States
| | - Timothy R Gamache
- Johns Hopkins University School of Medicine, Department of Neuroscience, Kavli Neuroscience Discovery Institute, Baltimore, United States
| | - Shaowen Ju
- Johns Hopkins University School of Medicine, Department of Neuroscience, Kavli Neuroscience Discovery Institute, Baltimore, United States
| | | | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, United States
| | - Richard L Huganir
- Johns Hopkins University School of Medicine, Department of Neuroscience, Kavli Neuroscience Discovery Institute, Baltimore, United States
| |
Collapse
|
16
|
Sullivan BJ, Ammanuel S, Kipnis PA, Araki Y, Huganir RL, Kadam SD. Low-Dose Perampanel Rescues Cortical Gamma Dysregulation Associated With Parvalbumin Interneuron GluA2 Upregulation in Epileptic Syngap1 +/- Mice. Biol Psychiatry 2020; 87:829-842. [PMID: 32107006 PMCID: PMC7166168 DOI: 10.1016/j.biopsych.2019.12.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Loss-of-function SYNGAP1 mutations cause a neurodevelopmental disorder characterized by intellectual disability and epilepsy. SYNGAP1 is a Ras GTPase-activating protein that underlies the formation and experience-dependent regulation of postsynaptic densities. The mechanisms that contribute to this proposed monogenic cause of intellectual disability and epilepsy remain unresolved. METHODS We established the phenotype of the epileptogenesis in a Syngap1+/- mouse model using 24-hour video electroencephalography (vEEG)/electromyography recordings at advancing ages. We administered an acute low dose of perampanel, a Food and Drug Administration-approved AMPA receptor (AMPAR) antagonist, during a follow-on 24-hour vEEG to investigate the role of AMPARs in Syngap1 haploinsufficiency. Immunohistochemistry was performed to determine the region- and location-specific differences in the expression of the GluA2 AMPAR subunit. RESULTS A progressive worsening of the epilepsy with emergence of multiple seizure phenotypes, interictal spike frequency, sleep dysfunction, and hyperactivity was identified in Syngap1+/- mice. Interictal spikes emerged predominantly during non-rapid eye movement sleep in 24-hour vEEG of Syngap1+/- mice. Myoclonic seizures occurred at behavioral-state transitions both in Syngap1+/- mice and during an overnight EEG from a child with SYNGAP1 haploinsufficiency. In Syngap1+/- mice, EEG spectral power analyses identified a significant loss of gamma power modulation during behavioral-state transitions. A significant region-specific increase of GluA2 AMPAR subunit expression in the somas of parvalbumin-positive interneurons was identified. CONCLUSIONS Acute dosing with perampanel significantly rescued behavioral state-dependent cortical gamma homeostasis, identifying a novel mechanism implicating Ca2+-impermeable AMPARs on parvalbumin-positive interneurons underlying circuit dysfunction in SYNGAP1 haploinsufficiency.
Collapse
Affiliation(s)
- Brennan J Sullivan
- Neuroscience Laboratory, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland
| | - Simon Ammanuel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Pavel A Kipnis
- Neuroscience Laboratory, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland
| | - Yoichi Araki
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Abstract
Emerging evidence indicates that liquid-liquid phase separation, the formation of a condensed molecular assembly within another diluted aqueous solution, is a means for cells to organize highly condensed biological assemblies (also known as biological condensates or membraneless compartments) with very broad functions and regulatory properties in different subcellular regions. Molecular machineries dictating synaptic transmissions in both presynaptic boutons and postsynaptic densities of neuronal synapses may be such biological condensates. Here we review recent developments showing how phase separation can build dense synaptic molecular clusters, highlight unique features of such condensed clusters in the context of synaptic development and signaling, discuss how aberrant phase-separation-mediated synaptic assembly formation may contribute to dysfunctional signaling in psychiatric disorders, and present some challenges and opportunities of phase separation in synaptic biology.
Collapse
|
18
|
Cai Q, Hosokawa T, Zeng M, Hayashi Y, Zhang M. Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure 2019; 28:290-300.e4. [PMID: 31879129 DOI: 10.1016/j.str.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Shank1/2/3, major scaffold proteins in excitatory synapses, are frequently mutated in patients with psychiatric disorders. Although the Shank N-terminal domain and ankyrin repeats domain tandem (NTD-ANK) is known to bind to Ras and Rap1, the molecular mechanism underlying and functional significance of the bindings in synapses are unknown. Here, we demonstrate that Shank3 NTD-ANK specifically binds to the guanosine triphosphate (GTP)-bound form of HRas and Rap1. In addition to the canonical site mediated by the Ras-association domain and common to both GTPases, Shank3 contains an unconventional Rap1 binding site formed by NTD and ANK together. Binding of Shank3 to the GTP-loaded Rap1 slows down its GTP hydrolysis by SynGAP. We further show that the interactions between Shank3 and HRas/Rap1 at excitatory synapses are promoted by synaptic activation. Thus, Shank3 may be able to modulate signaling of the Ras family proteins via directly binding to and stabilizing the GTP-bound form of the enzymes.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
19
|
Pathogenic Mutations Associated with Legius Syndrome Modify the Spred1 Surface and Are Involved in Direct Binding to the Ras Inactivator Neurofibromin. J Mol Biol 2019; 431:3889-3899. [DOI: 10.1016/j.jmb.2019.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/20/2023]
|
20
|
Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep 2019; 39:223-237. [PMID: 31323176 PMCID: PMC7292322 DOI: 10.1002/npr2.12073] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Synaptic Ras GTPase-activating protein 1 (SYNGAP1) regulates synaptic plasticity through AMPA receptor trafficking. SYNGAP1 mutations have been found in human patients with intellectual disability (ID) and autism spectrum disorder (ASD). Almost every individual with SYNGAP1-related ID develops epilepsy, and approximately 50% have ASD. SYNGAP1-related ID is estimated to account for at least 1% of ID cases. In mouse models with Syngap1 mutations, strong cognitive and affective dysfunctions have been reported, yet some findings are inconsistent across studies. To further understand the behavioral significance of the SYNGAP1 gene, we assessed various domains of behavior in Syngap1 heterozygous mutant mice using a behavioral test battery. METHODS Male mice with a heterozygous mutation in the Syngap1 gene (Syngap1-/+ mice) created by Seth Grant's group were subjected to a battery of comprehensive behavioral tests, which examined general health, and neurological screens, rotarod, hot plate, open field, light/dark transition, elevated plus maze, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, gait analysis, T-maze, Y-maze, Barnes maze, contextual and cued fear conditioning, and home cage locomotor activity. To control for type I errors due to multiple-hypothesis testing, P-values below the false discovery rate calculated by the Benjamini-Hochberg method were considered as study-wide statistically significant. RESULTS Syngap1-/+ mice showed increased locomotor activity, decreased prepulse inhibition, and impaired working and reference spatial memory, consistent with preceding studies. Impairment of context fear memory and increased startle reflex in Syngap1 mutant mice could not be reproduced. Significant decreases in sensitivity to painful stimuli and impaired motor function were observed in Syngap1-/+ mice. Decreased anxiety-like behavior and depression-like behavior were noted, although increased locomotor activity is a potential confounding factor of these phenotypes. Increased home cage locomotor activity indicated hyperlocomotor activity not only in specific behavioral test conditions but also in familiar environments. CONCLUSION In Syngap1-/+ mice, we could reproduce most of the previously reported cognitive and emotional deficits. The decreased sensitivity to painful stimuli and impaired motor function that we found in Syngap1-/+ mice are consistent with the common characteristics of patients with SYNGAP-related ID. We further confirmed that the Syngap1 heterozygote mouse recapitulates the symptoms of ID and ASD patients.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research CenterUniversity of ToyamaToyamaJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Noboru H. Komiyama
- Centre for Clinical Brain Sciences, The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual DisabilitiesThe University of EdinburghEdinburghUK
| | - Seth G. N. Grant
- Genes to Cognition Program, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|
21
|
Agarwal M, Johnston MV, Stafstrom CE. SYNGAP1 mutations: Clinical, genetic, and pathophysiological features. Int J Dev Neurosci 2019; 78:65-76. [PMID: 31454529 DOI: 10.1016/j.ijdevneu.2019.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
SYNGAP1 is a gene that encodes the cytosolic protein SYNGAP1 (SYNaptic GTPase Activating Protein), an essential component of the postsynaptic density at excitatory glutamatergic neurons. SYNGAP1 plays critical roles in synaptic development, structure, function, and plasticity. Mutations in SYNGAP1 result in a neurodevelopmental disorder termed Mental retardation-type 5 (MRD5, OMIM #612621) with a phenotype consisting of intellectual disability, motor impairments, and epilepsy, attesting to the importance of this protein for normal brain development. Here we review the clinical and pathophysiological aspects of SYNGAP1 mutations with a focus on their effect on synaptogenesis, neural circuit function, and cellular plasticity. We conclude by comparing the molecular pathogenesis of SYNGAP1 mutations with those of another neurodevelopmental disorder that affects dendritic function and cellular plasticity, fragile X syndrome. Insights into the molecular similarities and differences underlying these disorders could lead to rationale therapy development.
Collapse
Affiliation(s)
- Mudit Agarwal
- All India Institute of Medical Sciences, New Delhi, India
| | - Michael V Johnston
- Department of Neurology and Developmental Medicine, The Kennedy Krieger Institute, Baltimore, MD, United States
| | - Carl E Stafstrom
- Division of Pediatric Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
23
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
24
|
Phosphorylation of synaptic GTPase-activating protein (synGAP) by polo-like kinase (Plk2) alters the ratio of its GAP activity toward HRas, Rap1 and Rap2 GTPases. Biochem Biophys Res Commun 2018; 503:1599-1604. [PMID: 30049443 DOI: 10.1016/j.bbrc.2018.07.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022]
Abstract
SynGAP is a Ras and Rap GTPase-activating protein (GAP) found in high concentration in the postsynaptic density (PSD) fraction from mammalian forebrain where it binds to PDZ domains of PSD-95. Phosphorylation of pure recombinant synGAP by Ca2+/calmodulin-dependent protein kinase II (CaMKII) shifts the balance of synGAP's GAP activity toward inactivation of Rap1; whereas phosphorylation by cyclin-dependent kinase 5 (CDK5) has the opposite effect, shifting the balance toward inactivation of HRas. These shifts in balance contribute to regulation of the numbers of surface AMPA receptors, which rise during synaptic potentiation (CaMKII) and fall during synaptic scaling (CDK5). Polo-like kinase 2 (Plk2/SNK), like CDK5, contributes to synaptic scaling. These two kinases act in concert to reduce the number of surface AMPA receptors following elevated neuronal activity by tagging spine-associated RapGAP protein (SPAR) for degradation, thus raising the level of activated Rap. Here we show that Plk2 also phosphorylates and regulates synGAP. Phosphorylation of synGAP by Plk2 stimulates its GAP activity toward HRas by 65%, and toward Rap1 by 16%. Simultaneous phosphorylation of synGAP by Plk2 and CDK5 at distinct sites produces an additive increase in GAP activity toward HRas (∼230%) and a smaller, non-additive increase in activity toward Rap1 (∼15%). Dual phosphorylation also produces an increase in GAP activity toward Rap2 (∼40-50%), an effect not produced by either kinase alone. As we previously observed for CDK5, addition of Ca2+/CaM causes a substrate-directed doubling of the rate and stoichiometry of phosphorylation of synGAP by Plk2, targeting residues also phosphorylated by CaMKII. In summary, phosphorylation by Plk2, like CDK5, shifts the ratio of GAP activity of synGAP to produce a greater decrease in active Ras than in active Rap, which would produce a shift toward a decrease in the number of surface AMPA receptors in neuronal dendrites.
Collapse
|
25
|
Kilinc M, Creson T, Rojas C, Aceti M, Ellegood J, Vaissiere T, Lerch JP, Rumbaugh G. Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders. Mol Cell Neurosci 2018; 91:140-150. [PMID: 29580901 DOI: 10.1016/j.mcn.2018.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/22/2023] Open
Abstract
SYNGAP1 loss-of-function variants are causally associated with intellectual disability, severe epilepsy, autism spectrum disorder and schizophrenia. While there are hundreds of genetic risk factors for neurodevelopmental disorders (NDDs), this gene is somewhat unique because of the frequency and penetrance of loss-of-function variants found in patients combined with the range of brain disorders associated with SYNGAP1 pathogenicity. These clinical findings indicate that SYNGAP1 regulates fundamental neurodevelopmental processes that are necessary for brain development. Here, we describe four phenotypic domains that are controlled by Syngap1 expression across vertebrate species. Two domains, the maturation of cognitive functions and maintenance of excitatory-inhibitory balance, are defined exclusively through a review of the current literature. Two additional domains are defined by integrating the current literature with new data indicating that SYNGAP1/Syngap1 regulates innate survival behaviors and brain structure. These four phenotypic domains are commonly disrupted in NDDs, suggesting that a deeper understanding of developmental Syngap1 functions will be generalizable to other NDDs of known or unknown etiology. Therefore, we discuss the known molecular and cellular functions of Syngap1 and consider how these functions may contribute to the emergence of disease-relevant phenotypes. Finally, we identify major unexplored areas of Syngap1 neurobiology and discuss how a deeper understanding of this gene may uncover general principles of NDD pathobiology.
Collapse
Affiliation(s)
- Murat Kilinc
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, United States
| | - Thomas Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ONT, Canada
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ONT, Canada; Medical Biophysics, University of Toronto, Toronto, ONT, Canada
| | - Gavin Rumbaugh
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States.
| |
Collapse
|
26
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
27
|
Cuellar J, Valpuesta JM, Wittinghofer A, Sot B. Domain topology of human Rasal. Biol Chem 2017; 399:63-72. [PMID: 28885980 DOI: 10.1515/hsz-2017-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
Abstract
Rasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BP and Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BP and Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.
Collapse
Affiliation(s)
- Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain
| | - Alfred Wittinghofer
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Begoña Sot
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain.,IMDEA-Nanociencia, Faraday 9, Campus Universitario de Cantoblanco, 28048 Madrid, Spain
| |
Collapse
|
28
|
Luo X, Li C, Tan R, Xu X, Wu WKK, Satoh A, Wang T, Yu S. A RasGAP, DAB2IP, regulates lipid droplet homeostasis by serving as GAP toward RAB40C. Oncotarget 2017; 8:85415-85427. [PMID: 29156729 PMCID: PMC5689619 DOI: 10.18632/oncotarget.19960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Lipid droplet (LD) homeostasis involves activities of various RAB small GTPases. Recently, we found RAB40C was one of the RAB proteins regulating LD homeostasis. RAB40C contains a unique SOCS domain that is required for clustering of LDs. However, its precise functional role in LD homeostasis and mechanism of regulation remain largely unknown. In this study, we observed over-accumulation of LDs in cells with RAB40C deleted by Crispr-Cas9 editing. RAB40C appeared to reduce LD accumulation after long term incubation of cells with oleic acid (24 hours). Unexpectedly, we found that Ras GTPase activating protein (GAP), DAB2IP, bound to RAB40C mainly via its GAP domain and could serve as RAB40C GAP. Studies involving overexpression of DAB2IP and its GAP defective mutant and siRNA depletion of DAB2IP all confirmed that DAB2IP negatively regulated the effect of RAB40C on LD homeostasis. These results provide a novel perspective on the regulation of RAB40C and implicate various signalling pathways regulated by DAB2IP, which may play a role in LD homeostasis via RAB40C.
Collapse
Affiliation(s)
- Xiaomin Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, P.R. China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chunman Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Ran Tan
- Department of Anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Xiaohui Xu
- Department of Anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - William K K Wu
- School of Pharmaceutical Sciences, Xiamen University, Fujian, P.R. China
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tuanlao Wang
- Department of Anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China.,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
29
|
Mozzi A, Forni D, Cagliani R, Pozzoli U, Clerici M, Sironi M. Distinct selective forces and Neanderthal introgression shaped genetic diversity at genes involved in neurodevelopmental disorders. Sci Rep 2017; 7:6116. [PMID: 28733602 PMCID: PMC5522412 DOI: 10.1038/s41598-017-06440-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
In addition to high intelligence, humans evolved specialized social-cognitive skills, which are specifically affected in children with autism spectrum disorder (ASD). Genes affected in ASD represent suitable candidates to study the evolution of human social cognition. We performed an evolutionary analysis on 68 genes associated to neurodevelopmental disorders; our data indicate that genetic diversity was shaped by distinct selective forces, including natural selection and introgression from archaic hominins. We discuss the possibility that segregation distortion during spermatogenesis accounts for a subset of ASD mutations. Finally, we detected modern-human-specific alleles in DYRK1A and TCF4. These variants are located within regions that display chromatin features typical of transcriptional enhancers in several brain areas, strongly suggesting a regulatory role. These SNPs thus represent candidates for association with neurodevelopmental disorders, and await experimental validation in future studies.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20100, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| |
Collapse
|
30
|
Zeng M, Bai G, Zhang M. Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. Small GTPases 2017; 10:296-304. [PMID: 28524815 DOI: 10.1080/21541248.2017.1320350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SynGAP, encoded by SYNGAP1, is a Ras/Rap GTPase activator specifically expressed in the nervous systems. SynGAP is one of the most abundant proteins in the postsynaptic densities (PSDs) of excitatory synapses and acts as a critical synaptic activity brake by tuning down synaptic GTPase activities. Mutations of SYNGAP1 have been frequently linked to brain disorders including intellectual disability, autisms, and seizure. SynGAP has been shown to undergo fast dispersions from synapses in response to stimulations, a strategy that neurons use to control the specific activities of the enzyme within the tiny, semi-open compartments in dendritic spines. However, the mechanism governing the activity-dependent synaptic localization modulations of SynGAP is poorly understood. It has been shown recently that SynGAP α1, via specifically binding to PSD-95, can undergo liquid-liquid phase separation forming membraneless, condensed protein-rich sub-compartments. This phase transition-mediated, PSD-95-dependent synaptic enrichment of SynGAP α1 not only suggests a dynamic anchoring mechanism of the protein within the PSD, but also implies a new model for the PSD formation in living neurons.
Collapse
Affiliation(s)
- Menglong Zeng
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| | - Guanhua Bai
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| | - Mingjie Zhang
- a Division of Life Science , State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China.,b Center of Systems Biology and Human Health , Hong Kong University of Science and Technology, Clear Water Bay , Kowloon, Hong Kong , China
| |
Collapse
|
31
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
32
|
Shi J, Chen WF, Zhang B, Fan SH, Ai X, Liu NN, Rety S, Xi XG. A helical bundle in the N-terminal domain of the BLM helicase mediates dimer and potentially hexamer formation. J Biol Chem 2017; 292:5909-5920. [PMID: 28228481 DOI: 10.1074/jbc.m116.761510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.
Collapse
Affiliation(s)
- Jing Shi
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Zhang
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - San-Hong Fan
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephane Rety
- the Institut de Biochimie et Chimie des Protéines, CNRS UMR 5086, 7 Passage du Vercors, 69367 Lyon, France, and
| | - Xu-Guang Xi
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China, .,the Laboratoire de Biologie et Pharmacologie Appliquée, ENS de Cachan, Université Paris-Saclay, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
33
|
Kennedy MB. Biochemistry and neuroscience: the twain need to meet. Curr Opin Neurobiol 2017; 43:79-86. [PMID: 28160757 DOI: 10.1016/j.conb.2017.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Neuroscience has come to mean the study of electrophysiology of neurons and synapses, micro and macro-scale neuroanatomy, and the functional organization of brain areas. The molecular axis of the field, as reflected in textbooks, often includes only descriptions of the structure and function of individual channels and receptor proteins, and the extracellular signals that guide development and repair. Studies of cytosolic 'molecular machines', large assemblies of proteins that orchestrate regulation of neuronal functions, have been neglected. However, a complete understanding of brain function that will enable new strategies for treatment of the most intractable neural disorders will require that in vitro biochemical studies of molecular machines be reintegrated into the field of neuroscience.
Collapse
Affiliation(s)
- Mary B Kennedy
- Division of Biology and Biochemical Engineering, Mail Code 216-76, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
34
|
Kennedy MB, Mastro TL. Liquid Phase Transition in the Postsynaptic Density? Trends Biochem Sci 2016; 42:2-4. [PMID: 27955862 DOI: 10.1016/j.tibs.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Mary B Kennedy
- Division of Biology and Biological Engineering, Mail Code 216-76, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.
| | - Tara L Mastro
- Division of Biology and Biological Engineering, Mail Code 216-76, California Institute of Technology (Caltech), Pasadena, CA 91125, USA
| |
Collapse
|
35
|
The Structural Basis for Cdc42-Induced Dimerization of IQGAPs. Structure 2016; 24:1499-508. [PMID: 27524202 DOI: 10.1016/j.str.2016.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023]
Abstract
In signaling, Rho-family GTPases bind effector proteins and alter their behavior. Here we present the crystal structure of Cdc42·GTP bound to the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP2. Four molecules of Cdc42 are bound to two GRD molecules, which bind each other in a parallel dimer. Two Cdc42s bind very similarly to the Ras/RasGAP interaction, while the other two bind primarily to "extra domain" sequences from both GRDs, tying the GRDs together. Calorimetry confirms two-site binding of Cdc42·GTP for the GRDs of both IQGAP2 and IQGAP1. Mutation of important extra domain residues reduces binding to single-site and abrogates Cdc42 binding to a much larger IQGAP1 fragment. Importantly, Rac1·GTP displays only single-site binding to the GRDs, indicating that only Cdc42 promotes IQGAP dimerization. The structure identifies an unexpected role for Cdc42 in protein dimerization, thus expanding the repertoire of interactions of Ras family proteins with their targets.
Collapse
|
36
|
The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation. Proc Natl Acad Sci U S A 2016; 113:7497-502. [PMID: 27313208 DOI: 10.1073/pnas.1607298113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs.
Collapse
|
37
|
Dong JM, Tay FPL, Swa HLF, Gunaratne J, Leung T, Burke B, Manser E. Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Sci Signal 2016; 9:rs4. [PMID: 27303058 DOI: 10.1126/scisignal.aaf3572] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Focal adhesions are protein complexes that link metazoan cells to the extracellular matrix through the integrin family of transmembrane proteins. Integrins recruit many proteins to these complexes, referred to as the "adhesome." We used proximity-dependent biotinylation (BioID) in U2OS osteosarcoma cells to label proteins within 15 to 25 nm of paxillin, a cytoplasmic focal adhesion protein, and kindlin-2, which directly binds β integrins. Using mass spectrometry analysis of the biotinylated proteins, we identified 27 known adhesome proteins and 8 previously unknown components close to paxillin. However, only seven of these proteins interacted directly with paxillin, one of which was the adaptor protein Kank2. The proteins in proximity to β integrin included 15 of the adhesion proteins identified in the paxillin BioID data set. BioID also correctly established kindlin-2 as a cell-cell junction protein. By focusing on this smaller data set, new partners for kindlin-2 were found, namely, the endocytosis-promoting proteins liprin β1 and EFR3A, but, contrary to previous reports, not the filamin-binding protein migfilin. A model adhesome based on both data sets suggests that focal adhesions contain fewer components than previously suspected and that paxillin lies away from the plasma membrane. These data not only illustrate the power of using BioID and stable isotope-labeled mass spectrometry to define macromolecular complexes but also enable the correct identification of therapeutic targets within the adhesome.
Collapse
Affiliation(s)
- Jing-Ming Dong
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Felicia Pei-Ling Tay
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hannah Lee-Foon Swa
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore. Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Thomas Leung
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Brian Burke
- Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos Building, Singapore 138648, Singapore
| | - Ed Manser
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore. Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos Building, Singapore 138648, Singapore. Department of Pharmacology, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
38
|
Ryu HH, Lee YS. Cell type-specific roles of RAS-MAPK signaling in learning and memory: Implications in neurodevelopmental disorders. Neurobiol Learn Mem 2016; 135:13-21. [PMID: 27296701 DOI: 10.1016/j.nlm.2016.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/28/2016] [Accepted: 06/09/2016] [Indexed: 01/17/2023]
Abstract
The RAS-mitogen-activated protein kinase (MAPK) signaling pathway plays critical roles in brain function, including learning and memory. Mutations of molecules in the RAS-MAPK pathway are associated with a group of disorders called RASopathies, which include Noonan syndrome, neurofibromatosis type 1, Costello syndrome, Noonan syndrome with multiple lentigines, Legius syndrome, and cardio-facio-cutaneous syndrome. RASopathies share certain clinical symptoms, including craniofacial abnormalities, heart defects, delayed growth, and cognitive deficits such as learning disabilities, while each individual syndrome also displays unique phenotypes. Recent studies using mouse models of RASopathies showed that each disorder may have a distinct molecular and cellular etiology depending on the cellular specificity of the mutated molecules. Here, we review the cell-type specific roles of the regulators of the RAS-MAPK pathway in cognitive function (learning and memory) and their contribution to the development of RASopathies. We also discussed recent technical advances in analyzing cell type-specific transcriptomes and proteomes in the nervous system. Understanding specific mechanisms for these similar but distinct disorders would facilitate the development of mechanism-based individualized treatment for RASopathies.
Collapse
Affiliation(s)
- Hyun-Hee Ryu
- Department of Life Science, College of Natural Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
39
|
Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I. Ras activation revisited: role of GEF and GAP systems. Biol Chem 2016; 396:831-48. [PMID: 25781681 DOI: 10.1515/hsz-2014-0257] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.
Collapse
|
40
|
Abstract
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngap1 mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Narayana Nethralaya Post-Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City Bangalore, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India
| |
Collapse
|
41
|
Yung YL, Cheung MY, Miao R, Fong YH, Li KP, Yu MH, Chye ML, Wong KB, Lam HM. Site-directed Mutagenesis Shows the Significance of Interactions with Phospholipids and the G-protein OsYchF1 for the Physiological Functions of the Rice GTPase-activating Protein 1 (OsGAP1). J Biol Chem 2015; 290:23984-96. [PMID: 26286751 PMCID: PMC4583037 DOI: 10.1074/jbc.m115.655639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
The C2 domain is one of the most diverse phospholipid-binding domains mediating cellular signaling. One group of C2-domain proteins are plant-specific and are characterized by their small sizes and simple structures. We have previously reported that a member of this group, OsGAP1, is able to alleviate salt stress and stimulate defense responses, and bind to both phospholipids and an unconventional G-protein, OsYchF1. Here we solved the crystal structure of OsGAP1 to a resolution of 1.63 Å. Using site-directed mutagenesis, we successfully differentiated between the clusters of surface residues that are required for binding to phospholipids versus OsYchF1, which, in turn, is critical for its role in stimulating defense responses. On the other hand, the ability to alleviate salt stress by OsGAP1 is dependent only on its ability to bind OsYchF1 and is independent of its phospholipid-binding activity.
Collapse
Affiliation(s)
- Yuk-Lin Yung
- From the School of Life Sciences, Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, and
| | - Ming-Yan Cheung
- From the School of Life Sciences, Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, and
| | - Rui Miao
- From the School of Life Sciences, Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, and the School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yu-Hang Fong
- From the School of Life Sciences, Center for Protein Sciences and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China and
| | - Kwan-Pok Li
- From the School of Life Sciences, Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, and
| | - Mei-Hui Yu
- From the School of Life Sciences, Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, and
| | - Mee-Len Chye
- the School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kam-Bo Wong
- From the School of Life Sciences, Center for Protein Sciences and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China and
| | - Hon-Ming Lam
- From the School of Life Sciences, Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, and
| |
Collapse
|
42
|
Araki Y, Zeng M, Zhang M, Huganir RL. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 2015; 85:173-189. [PMID: 25569349 DOI: 10.1016/j.neuron.2014.12.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
SynGAP is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. Previous studies have shown that CaMKII and the RAS-ERK pathway are critical for several forms of synaptic plasticity including LTP. NMDA receptor-dependent calcium influx has been shown to regulate the RAS-ERK pathway and downstream events that result in AMPA receptor synaptic accumulation, spine enlargement, and synaptic strengthening during LTP. However, the cellular mechanisms whereby calcium influx and CaMKII control Ras activity remain elusive. Using live-imaging techniques, we have found that SynGAP is rapidly dispersed from spines upon LTP induction in hippocampal neurons, and this dispersion depends on phosphorylation of SynGAP by CaMKII. Moreover, the degree of acute dispersion predicts the maintenance of spine enlargement. Thus, the synaptic dispersion of SynGAP by CaMKII phosphorylation during LTP represents a key signaling component that transduces CaMKII activity to small G protein-mediated spine enlargement, AMPA receptor synaptic incorporation, and synaptic potentiation.
Collapse
Affiliation(s)
- Yoichi Araki
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Menglong Zeng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Mingjie Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:161-8. [PMID: 25824683 DOI: 10.1016/j.pbiomolbio.2015.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/03/2023]
Abstract
Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.
Collapse
Affiliation(s)
- Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Qiao S, Homayouni R. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex. Dev Neurosci 2015; 37:131-41. [PMID: 25721469 DOI: 10.1159/000369092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023] Open
Abstract
Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling.
Collapse
Affiliation(s)
- Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis Tenn., USA
| | | |
Collapse
|
45
|
Walkup WG, Washburn L, Sweredoski MJ, Carlisle HJ, Graham RL, Hess S, Kennedy MB. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. J Biol Chem 2014; 290:4908-4927. [PMID: 25533468 DOI: 10.1074/jbc.m114.614420] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.
Collapse
Affiliation(s)
| | | | - Michael J Sweredoski
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | | | - Robert L Graham
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Sonja Hess
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
46
|
Lee KJ, Hoe HS, Pak DT. Plk2 Raps up Ras to subdue synapses. Small GTPases 2014; 2:162-166. [PMID: 21776418 DOI: 10.4161/sgtp.2.3.16454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways.
Collapse
Affiliation(s)
- Kea Joo Lee
- Department of Pharmacology; Georgetown University; Medical Center; Washington, DC USA
| | | | | |
Collapse
|
47
|
van Dam TJP, Bos JL, Snel B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2014; 2:4-16. [PMID: 21686276 DOI: 10.4161/sgtp.2.1.15113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/28/2023] Open
Abstract
Small GTPases are molecular switches at the hub of many signaling pathways and the expansion of this protein family is interwoven with the origin of unique eukaryotic cell features. We have previously reported on the evolution of CDC25 Homology Domain containing proteins, which act as guanine nucleotide exchange factors (GEFs) for Ras-like proteins. We now report on the evolution of both the Ras-like small GTPases as well as the GTPase activating proteins (GAPs) for Ras-like small GTPases. We performed an in depth phylogenetic analysis in 64 genomes of diverse eukaryotic species. These analyses revealed that multiple ancestral Ras-like GTPases and GAPs were already present in the Last Eukaryotic Common Ancestor (LECA), compatible with the presence of RasGEFs in LECA . Furthermore, we endeavor to reconstruct in which order the different Ras-like GTPases diverged from each other. We identified striking differences between the expansion of the various types of Ras-like GTPases and their respective GAPs and GEFs. Altogether, our analysis forms an extensive evolutionary framework for Ras-like signaling pathways and provides specific predictions for molecular biologists and biochemists.
Collapse
Affiliation(s)
- Teunis J P van Dam
- Theoretical Biology and Bioinformatics; Department of Biology; Science Faculty; Utrecht University; Utrecht, The Netherlands
| | | | | |
Collapse
|
48
|
Walkup WG, Kennedy MB. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands. Protein Expr Purif 2014; 98:46-62. [PMID: 24607360 DOI: 10.1016/j.pep.2014.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022]
Abstract
PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.
Collapse
Affiliation(s)
- Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd, Mail Code 216-76, Pasadena, CA 91125, USA.
| | - Mary B Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd, Mail Code 216-76, Pasadena, CA 91125, USA
| |
Collapse
|
49
|
Abstract
During NMDA receptor-mediated long-term potentiation (LTP), synapses are strengthened by trafficking AMPA receptors to the synapse through a calcium-dependent kinase cascade following activation of NMDA receptors. This process results in a long-lasting increase in synaptic strength that is thought to be a cellular mechanism for learning and memory. Over the past 20 years, many signaling pathways have been shown to be involved in the induction and maintenance of LTP including the MAPK cascade. However, the crucial link between NMDA receptors and the signaling cascades involved in AMPA receptor trafficking during LTP remains elusive. In this study, we aimed to identify and characterize NMDA receptor signaling proteins that link NMDA receptor activation to downstream signaling pathways that lead to trafficking of AMPA receptors. We have identified a novel NMDA receptor interacting signaling protein, AGAP3. AGAP3 contains multiple signaling domains, a GTPase-like domain, a pleckstrin homology domain, and an ArfGAP domain, and exists as a component of the NMDA receptor complex. In addition, we found that AGAP3 regulates NMDA receptor-mediated Ras/ERK and Arf6 signaling pathways during chemically induced LTP in rat primary neuronal cultures. Finally, knocking down AGAP3 expression leads to occlusion of AMPA receptor trafficking during chemically induced LTP. Together, AGAP3 is an essential signaling component of the NMDA receptor complex that links NMDA receptor activation to AMPA receptor trafficking.
Collapse
|
50
|
Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2013; 2:e01279. [PMID: 24137545 PMCID: PMC3787391 DOI: 10.7554/elife.01279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huawei He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|