1
|
Tushabe D, Altmann F, Koehler E, Woods S, Kahl S, Rosbakh S. Adaptation and Acclimation of Gametophytic Traits to Heat Stress in a Widely Distributed Wild Plant Along a Steep Climatic Gradient. Ecol Evol 2025; 15:e71199. [PMID: 40170828 PMCID: PMC11955256 DOI: 10.1002/ece3.71199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Climate change-induced heat waves often reduce seed yields and quality via high-temperature effects in the gametophytic phase. Yet, in contrast to model and crop species, the ability of pollen and ovules to adapt or acclimate to heat stress in wild plants remains poorly understood. To address this gap, we examined the adaptation and acclimation potential of six gametophytic traits in 11 wild Silene vulgaris populations across a temperature gradient in Europe. First, we cultivated plants in a common garden to reveal differences in gametophytic traits indicative of adaptation. Next, we assessed their acclimation potential by subjecting flowering plants to two chronic heat stress (CHS) treatments: moderate (35°C/30°C) and severe (40°C/35°C) for 18 days. Also, we estimated the CHS effects on seed quantity and quality. The common garden experiment showed no intraspecific variation in gametophytic traits across the temperature gradient, suggesting these traits may not influence reproductive adaptation to local habitats. During CHS, the female gametophyte was less temperature-sensitive than the male. Moderate CHS led to larger ovaries with more large-sized ovules, while severe CHS reduced ovule numbers but increased their size. Both CHS treatments decreased pollen grain numbers, size, and anther length, with severe CHS causing greater reductions. These reductions in gametophytic traits led to lower seed yield and quality. Under both CHS treatments, acclimation potential did not vary along the temperature gradient, except for pollen size under severe CHS, which was larger in warmer climates. Our findings revealed the lack of adaptation and acclimation mechanisms in the gametophytic traits (except for pollen size) of wild Silene vulgaris populations along the temperature gradient. These findings suggest that Silene plants may rely on alternative strategies, such as shifts in gametophyte physiology and biochemistry or flowering phenology, to respond to thermal stress associated with heat waves.
Collapse
Affiliation(s)
- Donam Tushabe
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Franziska Altmann
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Erik Koehler
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Sebastian Woods
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Sandra Kahl
- Biodiversity Research/Systematic Botany, Institute of Biochemistry Und BiologyUniversity of PotsdamPotsdamGermany
| | - Sergey Rosbakh
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
2
|
Moraga C, Branco C, Rougemont Q, Jedlička P, Mendoza-Galindo E, Veltsos P, Hanique M, de la Vega RCR, Tannier E, Liu X, Lemaitre C, Fields PD, Cruaud C, Labadie K, Belser C, Briolay J, Santoni S, Cegan R, Linheiro R, Adam G, Filali AE, Mossion V, Boualem A, Tavares R, Chebbi A, Cordaux R, Fruchard C, Prentout D, Velt A, Spataro B, Delmotte S, Weingartner L, Toegelová H, Tulpová Z, Cápal P, Šimková H, Štorchová H, Krüger M, Abeyawardana OAJ, Taylor DR, Olson MS, Sloan DB, Karrenberg S, Delph LF, Charlesworth D, Muyle A, Giraud T, Bendahmane A, Di Genova A, Madoui MA, Hobza R, Marais GAB. The Silene latifolia genome and its giant Y chromosome. Science 2025; 387:630-636. [PMID: 39913565 PMCID: PMC11890086 DOI: 10.1126/science.adj7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plant Silene latifolia has a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago.
Collapse
Affiliation(s)
- Carol Moraga
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
| | - Catarina Branco
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Quentin Rougemont
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eddy Mendoza-Galindo
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Paris Veltsos
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melissa Hanique
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Ricardo C. Rodríguez de la Vega
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Eric Tannier
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Inria Lyon Research Center, Villeurbanne, France
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claire Lemaitre
- Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes, Inria, CNRS, Rennes, France
| | - Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Jerome Briolay
- Développement de Techniques et Analyse Moléculaire de la Biodiversité (DTAMB), Université Claude Bernard Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Sylvain Santoni
- Genomic Platform, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Raquel Linheiro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gabriele Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Adil El Filali
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Vinciane Mossion
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Raquel Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Amine Chebbi
- Efor, Grosspeter Tower (Spaces), Basel, Switzerland
| | - Richard Cordaux
- Évolution Génomes Comportement Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Cécile Fruchard
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amandine Velt
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Colmar, France
| | - Bruno Spataro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stephane Delmotte
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Weingartner
- University of Louisville School of Medicine, Undergraduate Medical Education, Louisville, KY, USA
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Douglas R. Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Matthew S. Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Lynda F. Delph
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Aline Muyle
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Alex Di Genova
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
- Center for Mathematical Modeling, UMI-CNRS 2807, Santiago, Chile
| | - Mohammed-Amin Madoui
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriel A. B. Marais
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- GreenUPorto–Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
3
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z, Rodríguez Lorenzo JL, Novotná P, Hudzieczek V. Sexy ways: approaches to studying plant sex chromosomes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5204-5219. [PMID: 38652048 PMCID: PMC11389836 DOI: 10.1093/jxb/erae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Bohuslav Janoušek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - José Luis Rodríguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavla Novotná
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
5
|
Chen DV, Slowinski SP, Kido AK, Bruns EL. High temperatures reduce growth, infection, and transmission of a naturally occurring fungal plant pathogen. Ecology 2024; 105:e4373. [PMID: 38923499 DOI: 10.1002/ecy.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Climate change is rapidly altering the distribution of suitable habitats for many species as well as their pathogenic microbes. For many pathogens, including vector-borne diseases of humans and agricultural pathogens, climate change is expected to increase transmission and lead to pathogen range expansions. However, if pathogens have a lower heat tolerance than their host, increased warming could generate so-called thermal refugia for hosts. Predicting the outcomes of warming on disease transmission requires detailed knowledge of the thermal tolerances of both the host and the pathogen. Such thermal tolerance studies are generally lacking for fungal pathogens of wild plant populations, despite the fact that plants form the base of all terrestrial communities. Here, we quantified three aspects of the thermal tolerance (growth, infection, and propagule production) of the naturally occurring fungal pathogen Microbotryum lychnidis-dioicae, which causes a sterilizing anther-smut disease on the herbaceous plant Silene latifolia. We also quantified two aspects of host thermal tolerance: seedling survival and flowering rate. We found that temperatures >30°C reduced the ability of anther-smut spores to germinate, grow, and conjugate in vitro. In addition, we found that high temperatures (30°C) during or shortly after the time of inoculation strongly reduced the likelihood of infection in seedlings. Finally, we found that high summer temperatures in the field temporarily cured infected plants, likely reducing transmission. Notably, high temperatures did not reduce survival or flowering of the host plants. Taken together, our results show that the fungus is considerably more sensitive to high temperatures than its host plant. A warming climate could therefore result in reduced disease spread or even local pathogen extirpation, leading to thermal refugia for the host.
Collapse
Affiliation(s)
- Dalia V Chen
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Samuel P Slowinski
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Allyson K Kido
- Biology, University of Maryland at College Park, College Park, Maryland, USA
- Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Emily L Bruns
- Biology, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
6
|
Marcel H, Javier MGJ, Emilio C, Roman H, Jose Luis RL. Seed shape and size of Silene latifolia, differences between sexes, and influence of the parental genome in hybrids with Silene dioica. FRONTIERS IN PLANT SCIENCE 2024; 15:1297676. [PMID: 38529065 PMCID: PMC10961389 DOI: 10.3389/fpls.2024.1297676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
Introduction Plants undergo various natural changes that dramatically modify their genomes. One is polyploidization and the second is hybridization. Both are regarded as key factors in plant evolution and result in phenotypic differences in different plant organs. In Silene, we can find both examples in nature, and this genus has a seed shape diversity that has long been recognized as a valuable source of information for infrageneric classification. Methods Morphometric analysis is a statistical study of shape and size and their covariations with other variables. Traditionally, seed shape description was limited to an approximate comparison with geometric figures (rounded, globular, reniform, or heart-shaped). Seed shape quantification has been based on direct measurements, such as area, perimeter, length, and width, narrowing statistical analysis. We used seed images and processed them to obtain silhouettes. We performed geometric morphometric analyses, such as similarity to geometric models and elliptic Fourier analysis, to study the hybrid offspring of S. latifolia and S. dioica. Results We generated synthetic tetraploids of Silene latifolia and performed controlled crosses between diploid S. latifolia and Silene dioica to analyze seed morphology. After imaging capture and post-processing, statistical analysis revealed differences in seed size, but not in shape, between S. latifolia diploids and tetraploids, as well as some differences in shape among the parentals and hybrids. A detailed inspection using fluorescence microscopy allowed for the identification of shape differences in the cells of the seed coat. In the case of hybrids, differences were found in circularity and solidity. Overal seed shape is maternally regulated for both species, whereas cell shape cannot be associated with any of the sexes. Discussion Our results provide additional tools useful for the combination of morphology with genetics, ecology or taxonomy. Seed shape is a robust indicator that can be used as a complementary tool for the genetic and phylogenetic analyses of Silene hybrid populations.
Collapse
Affiliation(s)
- Hubinský Marcel
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Cervantes Emilio
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA)-CSIC, Salamanca, Spain
| | - Hobza Roman
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Rodríguez Lorenzo Jose Luis
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
7
|
Hood ME, Nelson S, Cho J, Launi M, Antonovics J, Bruns EL. Quantitative disease resistance in wild Silene vulgaris to its endemic pathogen Microbotryum silenes-inflatae. Ecol Evol 2023; 13:e10797. [PMID: 38125956 PMCID: PMC10731388 DOI: 10.1002/ece3.10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The evolution of disease resistances is an expected feature of plant-pathogen systems, but whether the genetics of this trait most often produces qualitative or quantitative phenotypic variation is a significant gap in our understanding of natural populations. These two forms of resistance variation are often associated with differences in number of underlying loci, the specificities of host-pathogen coevolution, as well as contrasting mechanisms of preventing or slowing the infection process. Anther-smut disease is a commonly studied model for disease of wild species, where infection has severe fitness impacts, and prior studies have suggested resistance variation in several host species. However, because the outcome of exposing the individual host to this pathogen is binary (healthy or diseased), resistance has been previously measured at the family level, as the proportion of siblings that become diseased. This leaves uncertain whether among-family variation reflects contrasting ratios of segregating discrete phenotypes or continuous trait variation among individuals. In the host Silene vulgaris, plants were replicated by vegetative propagation in order to quantify the infection rates of the individual genotype with the endemic anther-smut pathogen, Microbotryum silenes-inflatae. The variance among field-collected families for disease resistance was significant, while there was unimodal continuous variation in resistance among genotypes. Using crosses between genotypes within ranked resistance quartiles, the offspring infection rate was predicted by the parental resistance values. While the potential remains in this system for resistance genes having major effects, as there were suggestions of such qualitative resistance in a prior study, here the quantitative disease resistance to the endemic anther-smut pathogen is indicated for S. vulgaris. The variation in natural populations and strong heritability of the trait, combined with severe fitness consequences of anther-smut disease, suggests that resistance in these host populations is highly capable of responding to disease-induced selection.
Collapse
Affiliation(s)
| | - Sydney Nelson
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | - Jae‐Hoon Cho
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | - Michelle Launi
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | - Janis Antonovics
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily L. Bruns
- Department of BiologyUniversity of Maryland at College ParkCollege ParkMarylandUSA
| |
Collapse
|
8
|
Fields PD, Weber MM, Waneka G, Broz AK, Sloan DB. Chromosome-Level Genome Assembly for the Angiosperm Silene conica. Genome Biol Evol 2023; 15:evad192. [PMID: 37862134 PMCID: PMC10630074 DOI: 10.1093/gbe/evad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on Pacific Bioscience HiFi, Hi-C, and Bionano technologies. The assembly produced 10 scaffolds (1 per chromosome) with a total length of 862 Mb and only ∼1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes.
Collapse
Affiliation(s)
- Peter D Fields
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Melody M Weber
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Fields PD, Weber MM, Waneka G, Broz AK, Sloan DB. Chromosome-level genome assembly for the angiosperm Silene conica. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556365. [PMID: 37732249 PMCID: PMC10508779 DOI: 10.1101/2023.09.05.556365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on PacBio HiFi, Hi-C and Bionano technologies. The assembly produced 10 scaffolds (one per chromosome) with a total length of 862 Mb and only ~1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes. Significance Whole-genome sequences have been largely lacking for species in the genus Silene even though these flowering plants have been used for studying ecology, evolution, and genetics for over a century. Here, we address this gap by providing a high-quality nuclear genome assembly for S. conica, a species known to have greatly accelerated rates of sequence and structural divergence in its mitochondrial and plastid genomes. This resource will be valuable in understanding the coevolutionary interactions between nuclear and cytoplasmic genomes and in comparative analyses across this highly diverse genus.
Collapse
Affiliation(s)
- Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Melody M. Weber
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
Cervantes E, Rodríguez-Lorenzo JL, Martín-Gómez JJ, Tocino Á. Curvature Analysis of Seed Silhouettes in Silene L. PLANTS (BASEL, SWITZERLAND) 2023; 12:2439. [PMID: 37447000 DOI: 10.3390/plants12132439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The application of seed morphology to descriptive systematics requires methods for shape analysis and quantification. The complexity of lateral and dorsal views of seeds of Silene species is investigated here by the application of the Elliptic Fourier Transform (EFT) to representative seeds of four morphological types: smooth, rugose, echinate and papillose. The silhouettes of seed images in the lateral and dorsal views are converted to trigonometric functions, whose graphical representations reproduce them with different levels of accuracy depending on the number of harmonics. A general definition of seed shape in Silene species is obtained by equations based on 40 points and 20 harmonics, while the detailed representation of individual tubercles in each seed image requires between 100 and 200 points and 60-80 harmonics depending on their number and complexity. Smooth-type seeds are accurately represented with a low number of harmonics, while rugose, echinate and papillose seeds require a higher number. Fourier equations provide information about tubercle number and distribution and allow the analysis of curvature. Further estimation of curvature values in individual tubercles reveals differences between seeds, with higher values of curvature in S. latifolia, representative of echinate seeds, and lower in S. chlorifolia with rugose seeds.
Collapse
Affiliation(s)
- Emilio Cervantes
- Instituto de Recursos Naturales y Agrobiología (Consejo Superior de Investigaciones Científicas), Cordel de Merinas 40, 37008 Salamanca, Spain
| | - José Luis Rodríguez-Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - José Javier Martín-Gómez
- Instituto de Recursos Naturales y Agrobiología (Consejo Superior de Investigaciones Científicas), Cordel de Merinas 40, 37008 Salamanca, Spain
| | - Ángel Tocino
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
| |
Collapse
|
11
|
Hulse SV, Antonovics J, Hood ME, Bruns EL. Specific resistance prevents the evolution of general resistance and facilitates disease emergence. J Evol Biol 2023; 36:753-763. [PMID: 36971466 DOI: 10.1111/jeb.14170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
Host-shifts, where pathogens jump from an ancestral host to a novel host, can be facilitated or impeded by standing variation in disease resistance, but only if resistance provides broad-spectrum general resistance against multiple pathogen species. Host resistance comes in many forms and includes both general resistance, as well as specific resistance, which may only be effective against a single pathogen species or even genotype. However, most evolutionary models consider only one of these forms of resistance, and we have less understanding of how these two forms of resistance evolve in tandem. Here, we develop a model that allows for the joint evolution of specific and general resistance and asks if the evolution of specific resistance drives a decrease in the evolution of general resistance. We also explore how these evolutionary outcomes affect the risk of foreign pathogen invasion and persistence. We show that in the presence of a single endemic pathogen, the two forms of resistance are strongly exclusionary. Critically, we find that specific resistance polymorphisms can prevent the evolution of general resistance, facilitating the invasion of foreign pathogens. We also show that specific resistance polymorphisms are a necessary condition for the successful establishment of foreign pathogens following invasion, as they prevent the exclusion of the foreign pathogen by the more transmissible endemic pathogen. Our results demonstrate the importance of considering the joint evolution of multiple forms of resistance when evaluating a population's susceptibility to foreign pathogens.
Collapse
Affiliation(s)
- Samuel V Hulse
- University of Maryland at College Park, College Park, Maryland, USA
| | | | | | - Emily L Bruns
- University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
12
|
Heterochiasmy and Sex Chromosome Evolution in Silene. Genes (Basel) 2023; 14:genes14030543. [PMID: 36980816 PMCID: PMC10048291 DOI: 10.3390/genes14030543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of recombination in the NRY defines its main properties—genetic degeneration and accumulation of repetitive DNA, making X and Y chromosomes very different from each other. How and why recombination suppression on sex chromosomes evolves remains controversial. A strong difference in recombination rates between the sexes (heterochiasmy) can facilitate or even cause recombination suppression. In the extreme case—complete lack of recombination in the heterogametic sex (achiasmy)—the entire sex-specific chromosome is automatically non-recombining. In this study, I analyse sex-specific recombination rates in a dioecious plant Silene latifolia (Caryophyllaceae), which evolved separate sexes and sex chromosomes ~11 million years ago. I reconstruct high-density RNAseq-based genetic maps including over five thousand genic markers for the two sexes separately. The comparison of the male and female maps reveals only modest heterochiasmy across the genome, with the exception of the sex chromosomes, where recombination is suppressed in males. This indicates that heterochiasmy likely played only a minor, if any, role in NRY evolution in S. latifolia, as recombination suppression is specific to NRY rather than to the entire genome in males. Other mechanisms such as structural rearrangements and/or epigenetic modifications were likely involved, and comparative genome analysis and genetic mapping in multiple Silene species will help to shed light on the mechanism(s) of recombination suppression that led to the evolution of sex chromosomes.
Collapse
|
13
|
Antonovics J, Amoroso CR, Bruns E, Hood M. Host density shapes the relative contribution of vector-based and aerial transmission of a pathogenic fungus. Ecology 2022; 104:e3970. [PMID: 36576452 PMCID: PMC10073241 DOI: 10.1002/ecy.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Pathogen transmission mode is a key determinant of epidemiological outcomes. Theory shows that host density can influence the spread of pathogens differentially depending on their mode of transmission. Host density could therefore play an important role in determining the pathogen transmission mode. We tested theoretical expectations using floral arrays of the alpine carnation Dianthus pavonius in field experiments of spore dispersal of the anther-smut fungus, Microbotryum, by vector (pollinator)-based floral transmission and passive aerial transmission at a range of host densities. Pollinators deposited fewer spores per plant at high host density than at lower density (ranging from a 0.2-2 m spacing between plants), and vector-based spore deposition at higher densities declined more steeply with distance from diseased plant sources. In contrast, while aerial spore deposition declined with distance from the diseased source, the steepness of this decline was independent of host density. Our study indicates that the amount and distance of vector-based transmission are likely to be a nonmonotonic function of host density as a result of vector behavior, which is not readily encapsulated by fixed dispersal functions. We conclude that the spatial spread of pathogens by vectors is likely to be greater at lower and intermediate densities, whereas the spatial spread of aerially transmitted pathogens would be greater at high densities. These contrasting patterns could lead to differential importance of each transmission mode in terms of its contribution to subsequent infections across host densities.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Caroline R Amoroso
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Emily Bruns
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Hood
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Grazing and light modify Silene latifolia responses to nutrients and future climate. PLoS One 2022; 17:e0276789. [DOI: 10.1371/journal.pone.0276789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Altered climate, nutrient enrichment and changes in grazing patterns are important environmental and biotic changes in temperate grassland systems. Singly and in concert these factors can influence plant performance and traits, with consequences for species competitive ability, and thus for species coexistence, community composition and diversity. However, we lack experimental tests of the mechanisms, such as competition for light, driving plant performance and traits under nutrient enrichment, grazer exclusion and future climate. We used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant responses to interactions among climate, nutrients, grazing and light. We recorded transplant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light addition via LED-lamps. Future climate and fertilization together increased transplant height but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions when protected from grazers. In general, grazing had a strong negative effect on all measured variables regardless of added nutrients and light. Our results show that competition for light may lead to taller individuals and interacts with climate and nutrients to affect traits related to resource-use. Furthermore, our study suggests grazing may counteract the benefits of future climate on the biomass of species such as Silene latifolia. Consequently, grazers and light may be important modulators of individual plant performance and traits under nutrient enrichment and future climatic conditions.
Collapse
|
15
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
16
|
Gordeeva NI. Mating Systems and Seed Reproduction in Gynodioecious Geranium asiaticum (Geraniaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 506:179-183. [PMID: 36301427 DOI: 10.1134/s0012496622050039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/16/2023]
Abstract
Mating systems and seed reproduction in gynodioecious Geranium asiaticum Serg. (G. bifolium Patrin.) were studied in four coenopopulations of Western Siberia (Novosibirsk region). The bisexual flower of hermaphrodite individuals of G. asiaticum is characterized by a longer flowering (2.5-3.5 days) than the pistillate flower of female individuals (2-2.5 days), due to the passage of the male (staminate) phase at the beginning of morphogenesis: G. asiaticum is characterized by strict protandry. Mating of individuals of G. asiaticum occurs according to the type of xenogamy, autogamy is completely excluded. In an experiment to isolate individual flowers, 100% of isolated pistillate and bisexual flowers dried up without fertilization. In an experiment on artificial pollination of flowers, 85% (17 out of 20 flowers) of pistillate flowers formed fruits, whereas only 10% (3 out of 30 flowers) of bisexual flowers formed fruits. There were no significant differences in the number of flowers on the generative shoot in female and hermaphrodite individuals. Significant differences were found between heterosexual individuals in terms of the number of fruits and the number of seeds per generative shoot: female individuals formed 16.1-22.1 times more fruits and 13.8-28.3 times more seeds than hermaphrodites. Pistillate flowers formed an average of 1.85 ± 0.08 seeds per flower, and bisexual flowers 0.07 ± 0.02 seeds per flower, i.e., on average, female plants form 26.4 times more seeds than hermaphrodites. It was found that the fruits and seeds were formed mainly by female individuals, but hermaphrodite individuals produced the pollen necessary for fertilization. The different degree of sexual differentiation of G. asiaticum and Geranium sylvaticum L. suggests that in genus Geranium there are transformations in direction of the formation of dioecy.
Collapse
Affiliation(s)
- N I Gordeeva
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| |
Collapse
|
17
|
Cauret CMS, Mortimer SME, Roberti MC, Ashman TL, Liston A. Chromosome-scale assembly with a phased sex-determining region resolves features of early Z and W chromosome differentiation in a wild octoploid strawberry. G3 (BETHESDA, MD.) 2022; 12:6603112. [PMID: 35666193 PMCID: PMC9339316 DOI: 10.1093/g3journal/jkac139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
When sex chromosomes stop recombining, they start to accumulate differences. The sex-limited chromosome (Y or W) especially is expected to degenerate via the loss of nucleotide sequence and the accumulation of repetitive sequences. However, how early signs of degeneration can be detected in a new sex chromosome is still unclear. The sex-determining region of the octoploid strawberries is young, small, and dynamic. Using PacBio HiFi reads, we obtained a chromosome-scale assembly of a female (ZW) Fragaria chiloensis plant carrying the youngest and largest of the known sex-determining region on the W in strawberries. We fully characterized the previously incomplete sex-determining region, confirming its gene content, genomic location, and evolutionary history. Resolution of gaps in the previous characterization of the sex-determining region added 10 kb of sequence including a noncanonical long terminal repeat-retrotransposon; whereas the Z sequence revealed a Harbinger transposable element adjoining the sex-determining region insertion site. Limited genetic differentiation of the sex chromosomes coupled with structural variation may indicate an early stage of W degeneration. The sex chromosomes have a similar percentage of repeats but differ in their repeat distribution. Differences in the pattern of repeats (transposable element polymorphism) apparently precede sex chromosome differentiation, thus potentially contributing to recombination cessation as opposed to being a consequence of it.
Collapse
Affiliation(s)
- Caroline M S Cauret
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sebastian M E Mortimer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marcelina C Roberti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Filatov DA. Recent expansion of the non-recombining sex-linked region on Silene latifolia sex chromosomes. J Evol Biol 2022; 35:1696-1708. [PMID: 35834179 PMCID: PMC10083954 DOI: 10.1111/jeb.14063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Evolution of a non-recombining sex-specific region on the Y (or W) chromosome (NRY) is a key step in sex chromosome evolution, but how recombination suppression evolves is not well understood. Studies in many different organisms indicated that NRY evolution often involves several expansion steps. Why such NRY expansions occur remains unclear, although it is though that they are likely driven by sexually antagonistic selection. This paper describes a recent NRY expansion due to shift of the pseudoautosomal boundary on the sex chromosomes of a dioecious plant Silene latifolia. The shift resulted in inclusion of at least 16 pseudoautosomal genes into the NRY. This region is pseudoautosomal in closely related Silene dioica and Silene diclinis, indicating that the NRY expansion occurred in S. latifolia after it speciated from the other species ~120 thousand years ago. As S. latifolia and S. dioica actively hybridise across Europe, interspecific gene flow could blur the PAR boundary in these species. The pseudoautosomal genes have significantly elevated genetic diversity (π ~ 3% at synonymous sites), which is consistent with balancing selection maintaining diversity in this region. The recent shift of the PAR boundary in S. latifolia offers an opportunity to study the process of on-going NRY expansion.
Collapse
|
19
|
Muyle A, Marais GAB, Bačovský V, Hobza R, Lenormand T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210222. [PMID: 35306896 PMCID: PMC8935305 DOI: 10.1098/rstb.2021.0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France
| | - Gabriel A B Marais
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Thomas Lenormand
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
20
|
New Geometric Models for Shape Quantification of the Dorsal View in Seeds of Silene Species. PLANTS 2022; 11:plants11070958. [PMID: 35406938 PMCID: PMC9002935 DOI: 10.3390/plants11070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
The description of shape in Silene seeds is based on adjectives coined by naturalists in the 19th century. The expressions reniform, dorso plana, and dorso canaliculata were applied in reference to lateral or dorsal views of seeds, but the characters described can be submitted now to an analytical description by quantitative methods, allowing shape quantification and the comparison between species or populations. A quantitative morphological analysis is based on the comparison with geometric models that adjust to the shape of seeds. Morphological analysis of the dorsal view of Silene seeds based on geometric models is applied here to 26 seed populations belonging to 12 species. According to their dorsal views, the seeds are classified as convex and non-convex. New geometric models are presented for both types, including figures such as super-ellipses and modified ellipses. The values of J index (percent of similarity of a seed image with the model) are obtained in representative seed samples from diverse populations and species. The quantitative description of seed shape based on the comparison with geometric models allows the study of variation in shape between species and in populations, as well as the identification of seeds in Silene species. The method is of application to other plant species.
Collapse
|
21
|
Wong ACS, Massel K, Lam Y, Hintzsche J, Chauhan BS. Biotechnological Road Map for Innovative Weed Management. FRONTIERS IN PLANT SCIENCE 2022; 13:887723. [PMID: 35548307 PMCID: PMC9082642 DOI: 10.3389/fpls.2022.887723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 05/07/2023]
Abstract
In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of herbicide-resistant weeds globally. Moreover, weedy traits that contribute to weed seed bank persistence further exacerbate the challenges in weed management. Despite ongoing efforts in identifying and improving current weed management processes, the pressing need for novel control techniques in agricultural weed management should not be overlooked. The advent of CRISPR/Cas9 gene-editing systems, coupled with the recent advances in "omics" and cheaper sequencing technologies, has brought into focus the potential of managing weeds in farmlands through direct genetic control approaches, but could be achieved stably or transiently. These approaches encompass a range of technologies that could potentially manipulate expression of key genes in weeds to reduce its fitness and competitiveness, or, by altering the crop to improve its competitiveness or herbicide tolerance. The push for reducing or circumventing the use of chemicals in farmlands has provided an added incentive to develop practical and feasible molecular approaches for weed management, although there are significant technical, practical, and regulatory challenges for utilizing these prospective molecular technologies in weed management.
Collapse
Affiliation(s)
- Albert Chern Sun Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Albert Chern Sun Wong,
| | - Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Hintzsche
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bhagirath Singh Chauhan
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
22
|
Williams AM, Itgen MW, Broz AK, Carter OG, Sloan DB. Long-read transcriptome and other genomic resources for the angiosperm Silene noctiflora. G3 (BETHESDA, MD.) 2021; 11:jkab189. [PMID: 34849814 PMCID: PMC8496259 DOI: 10.1093/g3journal/jkab189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
The angiosperm genus Silene is a model system for several traits of ecological and evolutionary significance in plants, including breeding system and sex chromosome evolution, host-pathogen interactions, invasive species biology, heavy metal tolerance, and cytonuclear interactions. Despite its importance, genomic resources for this large genus of approximately 850 species are scarce, with only one published whole-genome sequence (from the dioecious species Silene latifolia). Here, we provide genomic and transcriptomic resources for a hermaphroditic representative of this genus (S. noctiflora), including a PacBio Iso-Seq transcriptome, which uses long-read, single-molecule sequencing technology to analyze full-length mRNA transcripts. Using these data, we have assembled and annotated high-quality full-length cDNA sequences for approximately 14,126 S. noctiflora genes and 25,317 isoforms. We demonstrated the utility of these data to distinguish between recent and highly similar gene duplicates by identifying novel paralogous genes in an essential protease complex. Furthermore, we provide a draft assembly for the approximately 2.7-Gb genome of this species, which is near the upper range of genome-size values reported for diploids in this genus and threefold larger than the 0.9-Gb genome of Silene conica, another species in the same subgenus. Karyotyping confirmed that S. noctiflora is a diploid, indicating that its large genome size is not due to polyploidization. These resources should facilitate further study and development of this genus as a model in plant ecology and evolution.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia G Carter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Bruns EL, Antonovics J, Hood ME. From generalist to specialists: Variation in the host range and performance of anther-smut pathogens on Dianthus. Evolution 2021; 75:2494-2508. [PMID: 33983636 DOI: 10.1111/evo.14264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/05/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Determining the processes that drive the evolution of pathogen host range can inform our understanding of disease dynamics and the potential for host shifts. In natural populations, patterns of host range could be driven by genetically based differences in pathogen infectivity or ecological differences in host availability. In northwestern Italy, four reproductively isolated lineages of the fungal plant-pathogen Microbotryum have been shown to co-occur on several species in the genus Dianthus. We carried out cross-inoculation experiments to determine whether patterns of realized host range in these four lineages were driven by differences in infectivity and to test whether there was evidence of a trade-off between host range and within-host reproduction. We found strong concordance between field patterns of host range and pathogen infectivity on different Dianthus species using experimental inoculation, indicating that infection ability is a major driving force of host range. However, we found no evidence of a trade-off between the ability to infect a wider range of host species and spore production on a shared host.
Collapse
Affiliation(s)
- Emily L Bruns
- Current Address: Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002
| |
Collapse
|
24
|
Kučera J, Svitok M, Gbúrová Štubňová E, Mártonfiová L, Lafon Placette C, Slovák M. Eunuchs or Females? Causes and Consequences of Gynodioecy on Morphology, Ploidy, and Ecology of Stellaria graminea L. (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:589093. [PMID: 33912199 PMCID: PMC8072285 DOI: 10.3389/fpls.2021.589093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Plant speciation results from intricate processes such as polyploidization, reproductive strategy shifts and adaptation. These evolutionary processes often co-occur, blurring their respective contributions and interactions in the speciation continuum. Here, relying on a large-scale study, we tested whether gynodioecy triggers the divergent evolution of flower morphology and genome between sexes, and contributes to the establishment of polyploids and colonization of ecological niches in Stellaria graminea. We found that gynodioecy in S. graminea leads to flower morphology divergence between females and hermaphrodites, likely due to sexual selection. Contrary to our expectations, gynodioecy occurs evenly in diploids and tetraploids, suggesting that this reproductive strategy was not involved in the establishment of polyploids. Both diploid and tetraploid females have a larger genome size than hermaphrodites, suggesting the presence of sex chromosomes. Finally, ecology differs between cytotypes and to a lesser extent between sexes, suggesting that the link between environment and presence of females is indirect and likely explained by other aspects of the species' life history. Our study shows that gynodioecy leads to the consistent evolution of sexual traits across a wide range of populations, cytotypes and environments within a given species, and this likely contributes to the phenotypic and genetic distinctiveness of the species from its sister clades.
Collapse
Affiliation(s)
- Jaromír Kučera
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Eliška Gbúrová Štubňová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Slovak National Museum, Natural History Museum, Bratislava, Slovakia
| | | | | | - Marek Slovák
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Charles University, Prague, Czechia
| |
Collapse
|
25
|
Muyle A, Martin H, Zemp N, Mollion M, Gallina S, Tavares R, Silva A, Bataillon T, Widmer A, Glémin S, Touzet P, Marais GAB. Dioecy Is Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus Silene. Mol Biol Evol 2021; 38:805-818. [PMID: 32926156 PMCID: PMC7947750 DOI: 10.1093/molbev/msaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About 15,000 angiosperm species (∼6%) have separate sexes, a phenomenon known as dioecy. Why dioecious taxa are so rare is still an open question. Early work reported lower species richness in dioecious compared with nondioecious sister clades, raising the hypothesis that dioecy may be an evolutionary dead-end. This hypothesis has been recently challenged by macroevolutionary analyses that detected no or even positive effect of dioecy on diversification. However, the possible genetic consequences of dioecy at the population level, which could drive the long-term fate of dioecious lineages, have not been tested so far. Here, we used a population genomics approach in the Silene genus to look for possible effects of dioecy, especially for potential evidence of evolutionary handicaps of dioecy underlying the dead-end hypothesis. We collected individual-based RNA-seq data from several populations in 13 closely related species with different sexual systems: seven dioecious, three hermaphroditic, and three gynodioecious species. We show that dioecy is associated with increased genetic diversity, as well as higher selection efficacy both against deleterious mutations and for beneficial mutations. The results hold after controlling for phylogenetic inertia, differences in species census population sizes and geographic ranges. We conclude that dioecious Silene species neither show signs of increased mutational load nor genetic evidence for extinction risk. We discuss these observations in the light of the possible demographic differences between dioecious and self-compatible hermaphroditic species and how this could be related to alternatives to the dead-end hypothesis to explain the rarity of dioecy.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA
| | - Hélène Martin
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
- Département de Biologie, Institut de Biologie Integrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Niklaus Zemp
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Maéva Mollion
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Sophie Gallina
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Raquel Tavares
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Alexandre Silva
- Centro de Interpretação da Serra da Estrela (CISE), Seia, Portugal
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Sylvain Glémin
- CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)]—UMR 6553, University of Rennes, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Touzet
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
26
|
Leite Montalvão AP, Kersten B, Fladung M, Müller NA. The Diversity and Dynamics of Sex Determination in Dioecious Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:580488. [PMID: 33519840 PMCID: PMC7843427 DOI: 10.3389/fpls.2020.580488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/23/2020] [Indexed: 05/03/2023]
Abstract
The diversity of inflorescences among flowering plants is captivating. Such charm is not only due to the variety of sizes, shapes, colors, and flowers displayed, but also to the range of reproductive systems. For instance, hermaphrodites occur abundantly throughout the plant kingdom with both stamens and carpels within the same flower. Nevertheless, 10% of flowering plants have separate unisexual flowers, either in different locations of the same individual (monoecy) or on different individuals (dioecy). Despite their rarity, dioecious plants provide an excellent opportunity to investigate the mechanisms involved in sex expression and the evolution of sex-determining regions (SDRs) and sex chromosomes. The SDRs and the evolution of dioecy have been studied in many species ranging from Ginkgo to important fruit crops. Some of these studies, for example in asparagus or kiwifruit, identified two sex-determining genes within the non-recombining SDR and may thus be consistent with the classical model for the evolution of dioecy from hermaphroditism via gynodioecy, that predicts two successive mutations, the first one affecting male and the second one female function, becoming linked in a region of suppressed recombination. On the other hand, aided by genome sequencing and gene editing, single factor sex determination has emerged in other species, such as persimmon or poplar. Despite the diversity of sex-determining mechanisms, a tentative comparative analysis of the known sex-determining genes and candidates in different species suggests that similar genes and pathways may be employed repeatedly for the evolution of dioecy. The cytokinin signaling pathway appears important for sex determination in several species regardless of the underlying genetic system. Additionally, tapetum-related genes often seem to act as male-promoting factors when sex is determined via two genes. We present a unified model that synthesizes the genetic networks of sex determination in monoecious and dioecious plants and will support the generation of hypothesis regarding candidate sex determinants in future studies.
Collapse
Affiliation(s)
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Großhansdorf, Germany
| | | | | |
Collapse
|
27
|
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion. Cells 2020; 9:cells9122700. [PMID: 33339225 PMCID: PMC7766179 DOI: 10.3390/cells9122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Collapse
Affiliation(s)
- Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Oushadee A. J. Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Claudia Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Correspondence: ; Tel.: +420-225-106-828
| |
Collapse
|
28
|
Martín-Gómez JJ, Rewicz A, Rodríguez-Lorenzo JL, Janoušek B, Cervantes E. Seed Morphology in Silene Based on Geometric Models. PLANTS 2020; 9:plants9121787. [PMID: 33339395 PMCID: PMC7766405 DOI: 10.3390/plants9121787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
Seed description in morphology is often based on adjectives such as “spherical”, “globular”, or “reniform”, but this does not provide a quantitative method. A new morphological approach based on the comparison of seed images with geometric models provides a seed description in Silene species on a quantitative basis. The novelty of the proposed method is based in the comparison of the seed images with geometric models according to a cardioid shape. The J index is a measurement that indicates the seed percentage of similarity with a cardioid or cardioid-derived figures used as models. The seeds of Silene species have high values of similarity with the cardioid and cardioid-derived models (J index superior to 90). The comparison with different figures allows species description and differentiation. The method is applied here to seeds of 21 species and models are proposed for some of them including S. diclinis, an endangered species. The method is discussed in the context of previous comparison with the measures used in traditional morphometric analysis. The similarity of seed images with geometric figures opens a new perspective for the automatized taxonomical evaluation of samples linking seed morphology to functional traits in endangered Silene species.
Collapse
Affiliation(s)
| | - Agnieszka Rewicz
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, 1/3 Banacha Str., 90-237 Lodz, Poland;
| | - José Luis Rodríguez-Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (J.L.R.-L.); (B.J.)
| | - Bohuslav Janoušek
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (J.L.R.-L.); (B.J.)
| | - Emilio Cervantes
- IRNASA-CSIC, Cordel de Merinas 40, 37008 Salamanca, Spain;
- Correspondence:
| |
Collapse
|
29
|
Becher H, Brown MR, Powell G, Metherell C, Riddiford NJ, Twyford AD. Maintenance of Species Differences in Closely Related Tetraploid Parasitic Euphrasia (Orobanchaceae) on an Isolated Island. PLANT COMMUNICATIONS 2020; 1:100105. [PMID: 33367265 PMCID: PMC7748025 DOI: 10.1016/j.xplc.2020.100105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 05/02/2023]
Abstract
Polyploidy is pervasive in angiosperm evolution and plays important roles in adaptation and speciation. However, polyploid groups are understudied due to complex sequence homology, challenging genome assembly, and taxonomic complexity. Here, we study adaptive divergence in taxonomically complex eyebrights (Euphrasia), where recent divergence, phenotypic plasticity, and hybridization blur species boundaries. We focus on three closely related tetraploid species with contrasting ecological preferences that are sympatric on Fair Isle, a small isolated island in the British Isles. Using a common garden experiment, we show a genetic component to the morphological differences present between these species. Using whole-genome sequencing and a novel k-mer approach we call "Tetmer", we demonstrate that the species are of allopolyploid origin, with a sub-genome divergence of approximately 5%. Using ∼2 million SNPs, we show sub-genome homology across species, with a very low sequence divergence characteristic of recent speciation. This genetic variation is broadly structured by species, with clear divergence of Fair Isle heathland Euphrasia micrantha, while grassland Euphrasia arctica and coastal Euphrasia foulaensis are more closely related. Overall, we show that tetraploid Euphrasia is a system of allopolyploids of postglacial species divergence, where adaptation to novel environments may be conferred by old variants rearranged into new genetic lineages.
Collapse
Affiliation(s)
- Hannes Becher
- University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Corresponding author
| | - Max R. Brown
- University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gavin Powell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Chris Metherell
- Botanical Society of Britain and Ireland, 4 High Firs Crescent, Harpenden, Hertfordshire AL5 1NA, UK
| | | | - Alex D. Twyford
- University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
- Corresponding author
| |
Collapse
|
30
|
Boom MP, Spoelstra K, Biere A, Knop E, Visser ME. Pollination and fruit infestation under artificial light at night:light colour matters. Sci Rep 2020; 10:18389. [PMID: 33110135 PMCID: PMC7591485 DOI: 10.1038/s41598-020-75471-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/06/2020] [Indexed: 12/04/2022] Open
Abstract
Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light–dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant–insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant–insect interactions in the Silene latifolia–Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant–insect interactions differently, with direct consequences for plant fitness.
Collapse
Affiliation(s)
- Michiel P Boom
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Eva Knop
- Department of Evoluationary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland.,Agroscope, Agroecology and Environment, Reckenholzstr. 191, 8046, Zürich, Switzerland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| |
Collapse
|
31
|
Baskin JM, Baskin CC. Seed germination of gynodioecious species: theoretical considerations and a comparison of females and hermaphrodites. PLANTA 2020; 252:73. [PMID: 33025176 DOI: 10.1007/s00425-020-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Better seed germination of females than of hermaphrodites is not a major contributor to the greater geometric lifetime fitness that females require to be maintained in a gynodioecious population. Gynodioecy is a sexually dimorphic breeding system in which females (F, male sterile) and hermaphrodites (H) coexist in the same population. For plants with nuclear (biparental) inheritance of male sterility, theory predicts that except when the product of selfing rate (s) and inbreeding depression (δ) in H is high (sδ > 0.50), F must compensate (female advantage) for the loss of gene transmission via pollen production by producing more or higher-quality offspring than H to be maintained in the population. For species with cytoplasmic (maternal) inheritance of male sterility, the female requires only a small compensation in seed production or some other offspring fitness trait to persist. Reallocation to seeds of resources saved by loss of pollen production is expected to increase the quantity (number) and/or quality (mass, germinability) of seeds produced by F, thus compensating for the lack of pollen production. The primary aim of our study was to compare seed germination of F and H via a literature review. Based on theoretical considerations, we hypothesized that seeds of F should germinate better or equally as well as those of H. We found that of 235 case studies for 47 species Fgerm > Hgerm in 48.1%, Fgerm = Hgerm in 38.3% and Fgerm < Hgerm in 13.6%. Our results are very similar to those of a previously published meta-analysis that included germination of F and H for 12 species. For 162 cases on seed size, F > H in 29.0%, F = H in 63.6% and F < H in 7.4%. Since [(Fgerm > Hgerm) < (Fgerm ≤ Hgerm)] and [(Fseedsize > Hseedsize) < (Fseedsize ≤ Hseedsize)], these results suggest that seed quality is not a major fitness component of female advantage.
Collapse
Affiliation(s)
- Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA.
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
| |
Collapse
|
32
|
Wiszniewska A, Kamińska I, Hanus-Fajerska E, Sliwinska E, Koźmińska A. Distinct co-tolerance responses to combined salinity and cadmium exposure in metallicolous and non-metallicolous ecotypes of Silene vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110823. [PMID: 32540619 DOI: 10.1016/j.ecoenv.2020.110823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
This study compared co-tolerance to salinity and cadmium and investigated its mechanisms in a facultative metallophyte Silene vulgaris originating from distinct habitats. Shoots of calamine (Cal) and non-metallicolous (N-Cal) ecotypes grown in vitro were exposed to 10 and 100 mM NaCl, 5 μM CdCl2 and their combinations. Stress effects were evaluated based on growth, oxidative stress parameters, and DNA content and damage. Tolerance mechanisms were assessed by analyzing non-enzymatic antioxidants, osmolytes and ion accumulation. Irrespective of the ecotype, Cd stimulated shoot proliferation (micropropagation coefficients MC = 15.2 and 12.1 for Cal and N-Cal, respectively, growth tolerance index GTI = 148.1 and 156.7%). In Cal ecotype this was attributed to an increase in glutathione content and reorganization of cell membrane structures under Cd exposure, whereas in N-Cal to enhanced synthesis of other non-enzymatic antioxidants, mainly carotenoids and ascorbate. Low salinity stimulated growth of Cal ecotype due to optimizing Cl- content. High salinity inhibited growth, especially in Cal ecotype, where it enhanced DNA damage and disturbed ionic homeostasis. Species-specific reaction to combined salinity and Cd involved a mutual inhibition of Na+, Cl- and Cd2+ uptake. N-Cal ecotype responded to combined stresses by enhancing its antioxidant defense, presumably induced by Cd, whereas the metallicolous ecotype triggered osmotic adjustment. The study revealed that in S. vulgaris Cd application ameliorated metabolic responses to simultaneous salinity exposure. It also shed a light on distinct strategies of coping with combined abiotic stresses in two ecotypes of the species showing high plasticity in environmental conditions.
Collapse
Affiliation(s)
- Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology, Al. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
33
|
Giavi S, Blösch S, Schuster G, Knop E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci Rep 2020; 10:11870. [PMID: 32681056 PMCID: PMC7368033 DOI: 10.1038/s41598-020-68667-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.
Collapse
Affiliation(s)
- Simone Giavi
- Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, 3012, Bern, Switzerland.,Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Sina Blösch
- Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, 3012, Bern, Switzerland.,Bernese School of Agricultural, Forest and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Guido Schuster
- Department of Electrical Engineering, University of Applied Sciences of Eastern Switzerland, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Eva Knop
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zürich, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland.
| |
Collapse
|
34
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
35
|
The Location of the Pseudoautosomal Boundary in Silene latifolia. Genes (Basel) 2020; 11:genes11060610. [PMID: 32486434 PMCID: PMC7348893 DOI: 10.3390/genes11060610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Y-chromosomes contain a non-recombining region (NRY), and in many organisms it was shown that the NRY expanded over time. How and why the NRY expands remains unclear. Young sex chromosomes, where NRY expansion occurred recently or is on-going, offer an opportunity to study the causes of this process. Here, we used the plant Silene latifolia, where sex chromosomes evolved ~11 million years ago, to study the location of the boundary between the NRY and the recombining pseudoautosomal region (PAR). The previous work devoted to the NRY/PAR boundary in S. latifolia was based on a handful of genes with locations approximately known from the genetic map. Here, we report the analysis of 86 pseudoautosomal and sex-linked genes adjacent to the S. latifolia NRY/PAR boundary to establish the location of the boundary more precisely. We take advantage of the dense genetic map and polymorphism data from wild populations to identify 20 partially sex-linked genes located in the “fuzzy boundary”, that rarely recombines in male meiosis. Genes proximal to this fuzzy boundary show no evidence of recombination in males, while the genes distal to this partially-sex-linked region are actively recombining in males. Our results provide a more accurate location for the PAR boundary in S. latifolia, which will help to elucidate the causes of PAR boundary shifts leading to NRY expansion over time.
Collapse
|
36
|
Villacañas de Castro C, Hoffmeister TS. Friend or foe? A parasitic wasp shifts the cost/benefit ratio in a nursery pollination system impacting plant fitness. Ecol Evol 2020; 10:4220-4232. [PMID: 32489591 PMCID: PMC7246216 DOI: 10.1002/ece3.6190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
Nursery pollination systems are species interactions where pollinators also act as fruit/seed herbivores of the plant partner. While the plants depend on associated insects for pollination, the insects depend on the plants' reproductive structures for larval development. The outcome of these interactions is thus placed on a gradient between mutualism and antagonism. Less specialized interactions may fluctuate along this gradient with the ecological context, where natural enemies can play an important role. We studied whether a natural enemy may impact the level of seed consumption of a nursery pollinator and how this in turn may influence individual plant fitness. We used the plant Silene latifolia, its herbivore Hadena bicruris, and its ectoparasitoid Bracon variator as a model plant-herbivore-natural enemy system. We investigated seed output, germination, survival, and flower production as proxies for individual plant fitness. We show that B. variator decreases the level of seed consumption by H. bicruris larvae which in turn increased seed output in S. latifolia plants, suggesting that parasitism by B. variator may act as a regulator in the system. However, our results also show that plant survival and flower production decrease with higher seed densities, and therefore, an increase in seed output may be less beneficial for plant fitness than estimated from seed output alone. Our study should add another layer to the complex discussion of whether parasitoids contribute to plant fitness, as we show that taking simple proxies such as seed output is insufficient to determine the net effect of multitrophic interactions.
Collapse
Affiliation(s)
| | - Thomas S. Hoffmeister
- Population and Evolutionary Ecology GroupInstitute of EcologyFB 02University of BremenBremenGermany
| |
Collapse
|
37
|
Hartmann FE, Snirc A, Cornille A, Godé C, Touzet P, Van Rossum F, Fournier E, Le Prieur S, Shykoff J, Giraud T. Congruent population genetic structures and divergence histories in anther‐smut fungi and their host plants
Silene italica
and the
Silene nutans
species complex. Mol Ecol 2020; 29:1154-1172. [DOI: 10.1111/mec.15387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Alodie Snirc
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Amandine Cornille
- Genetique Quantitative et Evolution–Le Moulon AgroParisTech CNRS INRAE Universite Paris‐Saclay Gif‐sur‐Yvette France
| | - Cécile Godé
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Pascal Touzet
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Fabienne Van Rossum
- Meise Botanic Garden Meise Belgium
- Fédération Wallonie–Bruxelles Brussels Belgium
| | | | - Stéphanie Le Prieur
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Jacqui Shykoff
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Tatiana Giraud
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| |
Collapse
|
38
|
Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R. The Formation of Sex Chromosomes in Silene latifolia and S. dioica Was Accompanied by Multiple Chromosomal Rearrangements. FRONTIERS IN PLANT SCIENCE 2020; 11:205. [PMID: 32180787 PMCID: PMC7059608 DOI: 10.3389/fpls.2020.00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 05/02/2023]
Abstract
The genus Silene includes a plethora of dioecious and gynodioecious species. Two species, Silene latifolia (white campion) and Silene dioica (red campion), are dioecious plants, having heteromorphic sex chromosomes with an XX/XY sex determination system. The X and Y chromosomes differ mainly in size, DNA content and posttranslational histone modifications. Although it is generally assumed that the sex chromosomes evolved from a single pair of autosomes, it is difficult to distinguish the ancestral pair of chromosomes in related gynodioecious and hermaphroditic plants. We designed an oligo painting probe enriched for X-linked scaffolds from currently available genomic data and used this probe on metaphase chromosomes of S. latifolia (2n = 24, XY), S. dioica (2n = 24, XY), and two gynodioecious species, S. vulgaris (2n = 24) and S. maritima (2n = 24). The X chromosome-specific oligo probe produces a signal specifically on the X and Y chromosomes in S. latifolia and S. dioica, mainly in the subtelomeric regions. Surprisingly, in S. vulgaris and S. maritima, the probe hybridized to three pairs of autosomes labeling their p-arms. This distribution suggests that sex chromosome evolution was accompanied by extensive chromosomal rearrangements in studied dioecious plants.
Collapse
Affiliation(s)
- Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- *Correspondence: Václav Bačovský,
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Roman Hobza,
| |
Collapse
|
39
|
Wei J, Huang JK, Du J, Bian B, Li S, Wang D. Effect of the geometry of precursor crucibles on the growth of MoS 2 flakes by chemical vapor deposition. NEW J CHEM 2020. [DOI: 10.1039/d0nj05486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition (CVD) employing a furnace with multiple temperature zones is still the best and most widely used method for preparing high-quality MoS2 flakes.
Collapse
Affiliation(s)
- Jinlei Wei
- School of Science, Jiangnan University
- Wuxi 214122
- China
- School of Materials Science and Engineering, The University of New South Wales
- Sydney
| | - Jing-Kai Huang
- School of Materials Science and Engineering, The University of New South Wales
- Sydney
- Australia
| | - Jianhao Du
- School of Materials Science and Engineering, The University of New South Wales
- Sydney
- Australia
| | - Baoan Bian
- School of Science, Jiangnan University
- Wuxi 214122
- China
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales
- Sydney
- Australia
| | - Danyang Wang
- School of Materials Science and Engineering, The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
40
|
del Valle JC, Casimiro-Soriguer I, Buide ML, Narbona E, Whittall JB. Whole Plastome Sequencing Within Silene Section Psammophilae Reveals Mainland Hybridization and Divergence With the Balearic Island Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:1466. [PMID: 31803208 PMCID: PMC6872646 DOI: 10.3389/fpls.2019.01466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/22/2019] [Indexed: 05/29/2023]
Abstract
Reconstructing the phylogenetic relationships within Caryophyllaceae tribe Sileneae has been obscured by hybridization and incomplete lineage sorting. Silene is the largest genus in the Caryophyllaceae, and unraveling its evolutionary history has been particularly challenging. In order to infer the phylogenetic relationships among the five species in Silene section Psammophilae, we have performed a genome skimming approach to acquire the complete plastid genome (cpDNA), nuclear ribosomal cistron (nrDNA), and partial mitochondrial genome (mtDNA). We have included 26 populations, representing the range of each species' distribution. This section includes five morphologically similar species endemic to the Iberian Peninsula and Balearic Islands (Ibiza and Formentera), yet some of them occupy distinct edaphic habitats (e.g. maritime sands, calcareous sandstones). In addition to phylogeographic analyses, genetic structuring using the chloroplast data set was inferred with Discriminant Analysis of Principal Components (DAPC), analyses of molecular variance (AMOVA), and a partial Mantel test. Reference-guided assembly of 50 bp single-end and 250 bp paired-end Illumina reads produced the nearly complete cpDNA genome (154 kbp), partial mtDNA genome (from 81 to 114 kbp), and the nrDNA cistron (6.4 kbp). Selected variable regions of the cpDNA and mtDNA assemblies were confirmed by Sanger sequencing. Phylogenetic analyses of the mainland populations reveal incongruence among the three genomes. None of the three data sets produced relationships consistent with taxonomy or geography. In contrast, Silene cambessedesii, present in the Balearic Islands, is the only species that forms a strongly supported monophyletic clade in the cpDNA genome and is strongly differentiated with respect to the remaining taxa of the Iberian Peninsula. These results contrast with those obtained for mainland populations. Across the entire analysis, only one well-supported mainland clade of Silene littorea and Silene stockenii emerges from the southern region of the Iberian Peninsula. DAPC and AMOVA results suggest the absence of genetic structure among mainland populations of Silene section Psammophilae, whereas partial Mantel test discarded spatial correlation of genetic differentiation. The widespread incongruence between morphology-based taxonomic boundaries and phylogeography suggests a history of interspecific hybridization, in which only a substantial geographic barrier, like isolation by the Mediterranean Sea, was sufficient to create and maintain species boundaries in Silene section Psammophilae.
Collapse
Affiliation(s)
- José Carlos del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Inés Casimiro-Soriguer
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Mᵃ Luisa Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
41
|
Hartmann FE, Rodríguez de la Vega RC, Carpentier F, Gladieux P, Cornille A, Hood ME, Giraud T. Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:431-457. [PMID: 31337277 DOI: 10.1146/annurev-phyto-082718-095947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anther-smut fungi provide a powerful system to study host-pathogen specialization and coevolution, with hundreds of Microbotryum species specialized on diverse Caryophyllaceae plants, castrating their hosts through manipulation of the hosts' reproductive organs to facilitate disease transmission. Microbotryum fungi have exceptional genomic characteristics, including dimorphic mating-type chromosomes, that make this genus anexcellent model for studying the evolution of mating systems and their influence on population genetics structure and adaptive potential. Important insights into adaptation, coevolution, host specialization, and mating system evolution have been gained using anther-smut fungi, with new insights made possible by the recent advent of genomic approaches. We illustrate with Microbotryum case studies how using a combination of comparative genomics, population genomics, and transcriptomics approaches enables the integration of different evolutionary perspectives across different timescales. We also highlight current challenges and suggest future studies that will contribute to advancing our understanding of the mechanisms underlying adaptive processes in populations of fungal pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | | | - Fantin Carpentier
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Pierre Gladieux
- UMR BGPI, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Amandine Cornille
- Génétique Quantitative et Evolution-Le Moulon, INRA; Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, Massachusetts 01002-5000, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
42
|
Kawamoto H, Yamanaka K, Koizumi A, Ishii K, Kazama Y, Abe T, Kawano S. An asexual flower of Silene latifolia and Microbotryum lychnidis-dioicae promotes sex-organ development. PLoS One 2019; 14:e0217329. [PMID: 31419225 PMCID: PMC6697354 DOI: 10.1371/journal.pone.0217329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/03/2019] [Indexed: 12/01/2022] Open
Abstract
Silene latifolia is a dioecious flowering plant with sex chromosomes in the family Caryophyllaceae. Development of a gynoecium and stamens are suppressed in the male and female flowers of S. latifolia, respectively. Microbotryum lychnidis-dioicae promotes stamen development when it infects the female flower. If suppression of the stamen and gynoecium development is regulated by the same mechanism, suppression of gynoecium and stamen development is released simultaneously with the infection by M. lychnidis-dioicae. To assess this hypothesis, an asexual mutant without a gynoecium or stamen was infected with M. lychnidis-dioicae. A filament of the stamen in the infected asexual mutant was elongated at stages 11 and 12 of flower bud development as well as in the male, but the gynoecium did not form. Instead of the gynoecium, a filamentous structure was suppressed as in the male flower. Developmental suppression of the stamen was released by M. lychnidis-dioicae, but that of gynoecium development was not released. M. lychnidis-dioicae would have a function similar to stamen-promoting factor (SPF), since the elongation of the stamen that is not observed in the healthy asexual mutant was observed after stage 8 of flower bud development. An infection experiment also revealed that a deletion on the Y chromosome of the asexual mutant eliminated genes for maturation of tapetal cells because the tapetal cells did not mature in the asexual mutant infected with M. lychnidis-dioicae.
Collapse
Affiliation(s)
- Hiroki Kawamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, FSB, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Kaori Yamanaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, FSB, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Ayako Koizumi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, FSB, Kashiwanoha, Kashiwa, Chiba, Japan
| | | | | | - Tomoko Abe
- RIKEN Nishina Center, Hirosawa, Wako, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, FSB, Kashiwanoha, Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
43
|
Tang H, Hood ME, Ren Z, Li H, Zhao Y, Wolfe LM, Li D, Wang H. Specificity and seasonal prevalence of anther smut disease
Microbotryum
on sympatric Himalayan
Silene
species. J Evol Biol 2019; 32:451-462. [DOI: 10.1111/jeb.13427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Hui Tang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming Yunnan China
| | | | - Zong‐Xin Ren
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
| | - Hai‐Dong Li
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
| | - Yan‐Hui Zhao
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
| | - Lorne M. Wolfe
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
| | - De‐Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming Yunnan China
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of Sciences Kunming Yunnan China
| |
Collapse
|
44
|
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. Evolution of Young Sex Chromosomes in Two Dioecious Sister Plant Species with Distinct Sex Determination Systems. Genome Biol Evol 2019; 11:350-361. [PMID: 30649306 PMCID: PMC6364797 DOI: 10.1093/gbe/evz001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections. In the latter, sex chromosomes could be younger than in the section Melandrium, based on phylogenetic studies and as no heteromorphic sex chromosomes have been detected. This section might also exhibit lability in sex determination, because male heterogamy and female heterogamy have been suggested to occur. In this study, we investigated the sex determination system of two dioecious species in the section Otites (Silene otites and its close relative Silene pseudotites). Applying the new probabilistic method SEX-DETector on RNA-seq data from cross-controlled progenies, we inferred their most likely sex determination system and a list of putative autosomal and sex-linked contigs. We showed that the two phylogenetically close species differed in their sex determination system (XY versus ZW) with sex chromosomes that derived from two different pairs of autosomes. We built a genetic map of the sex chromosomes and showed that both pairs exhibited a large region with lack of recombination. However, the sex-limited chromosomes exhibited no strong degeneration. Finally, using the “ancestral” autosomal expression of sex-linked orthologs of nondioecious S. nutans, we found a slight signature of dosage compensation in the heterogametic females of S. otites.
Collapse
Affiliation(s)
- Hélène Martin
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Fantin Carpentier
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Ecologie Systématique Evolution, Université Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Eric Schmitt
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
45
|
Park S, Son S, Shin M, Fujii N, Hoshino T, Park S. Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae). BMC PLANT BIOLOGY 2019; 19:14. [PMID: 30621589 PMCID: PMC6325733 DOI: 10.1186/s12870-018-1621-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants. RESULTS Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from - 0.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens. CONCLUSIONS The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Sungwon Son
- Plant Conservation Division, Korea National Arboretum, Pocheon, Gyeonggi 11186 South Korea
| | - Myungju Shin
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Noriyuki Fujii
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Takuji Hoshino
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku, Okayama, 700-0005 Japan
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
46
|
Karrenberg S, Liu X, Hallander E, Favre A, Herforth-Rahmé J, Widmer A. Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution 2018; 73:245-261. [PMID: 30499144 DOI: 10.1111/evo.13652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/13/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near-complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.
Collapse
Affiliation(s)
- Sophie Karrenberg
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Xiaodong Liu
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden
| | - Emelie Hallander
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, 75236, Uppsala, Sweden.,Current Address: Swedish Board of Agriculture, Vallgatan 8, 551 82, Jönköping, Sweden
| | - Adrien Favre
- Department of Diversity and Evolution of Higher Plants, Institute of Ecology, Evolution and Diversity, Goethe-University, 60439, Frankfurt am Main, Germany.,Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Joelle Herforth-Rahmé
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland.,Current Address: Research Institute of Organic Agriculture FiBL, Department of Soil Sciences, Ackerstrasse 113, Box 219, 5070, Frick, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
47
|
Bruns EL, Miller I, Hood ME, Carasso V, Antonovics J. The role of infectious disease in the evolution of females: Evidence from anther-smut disease on a gynodioecious alpine carnation. Evolution 2018; 73:497-510. [PMID: 30411338 DOI: 10.1111/evo.13640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/17/2018] [Accepted: 11/01/2018] [Indexed: 12/01/2022]
Abstract
In flowering plants, the evolution of females is widely hypothesized to be the first step in the evolutionary pathway to separate male and female sexes, or dioecy. Natural enemies have the potential to drive this evolution if they preferentially attack hermaphrodites over females. We studied sex-based differences in exposure to anther-smut (Microbotryum), a sterilizing pollinator-transmitted disease, in Dianthus pavonius, a gynodioecious perennial herb. We found that within a heavily diseased population, females consistently had lower levels of Microbotryum spore deposition relative to hermaphrodites and that this difference was driven by rapid floral closing in females following successful pollination. We further show that this protective closing behavior is frequency dependent; females close faster when they are rare. These results indicate that anther-smut disease is an important source of selection for females, especially since we found in a common garden experiment no evidence that females have any inherent fecundity advantages over hermaphrodites. Finally, we show that among populations, those where anther-smut is present have a significantly higher frequency of females than those where the disease is absent. Taken together our results indicate that anther-smut disease is likely an important biotic factor driving the evolution and maintenance of females in this gynodioecious species.
Collapse
Affiliation(s)
- Emily L Bruns
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | - Ian Miller
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.,Current Address: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, 08544
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002
| | | | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
48
|
Zhou J, Zimmer EA, Fenster CB, Dudash MR. Characterization of the mating system of a native perennial tetraploid herb, Silene stellata. AMERICAN JOURNAL OF BOTANY 2018; 105:1643-1652. [PMID: 30276803 DOI: 10.1002/ajb2.1158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Nursery pollination systems can range from obligate to facultative. In a system where generalists provide substantial pollination service, an important question is whether the cost of seed predation outweighs the benefit provided by the nursery pollinator to cause the plant to evolve toward more generalized pollination. Using a facultative system native to North America, we tested whether nursery pollinator vs. strictly mutualistic generalists affect mating-system parameters of the host plant and explored the implications for long-term coevolution. METHODS We used paternity analyses with 11 microsatellite markers to characterize the mating system of Silene stellata when pollination service is primarily through the nursery pollinator Hadena ectypa and generalist moths. KEY RESULTS Our experimental population of S. stellata was predominantly outcrossing (average outcrossing rate t = 0.83), and mating-system parameters were similar between pollinator groups. We detected significant correlations in both selfing and outcrossed paternity at the fruit and maternal family level, corresponding to limited pollen dispersal (mean = 3.9 m). Among individuals, variation in anther-stigma separation was positively associated with outcrossing rate, which suggests the importance of herkogamy in preventing selfing. CONCLUSIONS Correlated paternity suggests that seeds from the same fruit and/or plants are sired by a limited number of pollen donors, resulting from low pollen dispersal and potential male-male competition. The similar mating-system parameters of the two pollinator groups suggest that selection for higher outcrossing in S. stellata is likely to be through floral design rather than through increased pollinator specialization with H. ectypa.
Collapse
Affiliation(s)
- Juannan Zhou
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, D.C., 20013, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Michele R Dudash
- Department of Natural Resource Management, South Dakota State University, Brookings, South Dakota, 57007, USA
| |
Collapse
|
49
|
Filatov DA. The two "rules of speciation" in species with young sex chromosomes. Mol Ecol 2018; 27:3799-3810. [PMID: 29781541 DOI: 10.1111/mec.14721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/17/2023]
Abstract
The two "rules of speciation," Haldane's rule (HR) and the large-X effect (LXE), are thought to be caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. Thus, the reports of HR and the LXE in species with recently evolved non- or partially degenerate Y-chromosomes, such as Silene latifolia and its relatives, were surprising. Here, I argue that rapid species-specific degeneration of Y-linked genes and associated adjustment of expression of X-linked gametologs (dosage compensation) may lead to rapid evolution of sex-linked species incompatibilities. This process is likely to be too slow in species with old degenerate Y-chromosomes (e.g., in mammals), but Y-degeneration in species with young gene-rich sex chromosomes may be fast enough to play a significant role in speciation. To illustrate this point, I report the analysis of Y-degeneration and the associated evolution of gene expression on the X-chromosome of S. latifolia and Silene dioica, a close relative that shares the same recently evolved sex chromosomes. Despite the recent (≤1MY) divergence of the two species, ~7% of Y-linked genes have undergone degeneration in one but not the other species. This species-specific degeneration appears to drive faster expression divergence of X-linked genes, which may account for HR and the LXE reported for these species. Furthermore, I suggest that "exposure" of autosomal or sex-linked recessive species incompatibilities in the haploid plant gametophyte may mimic the presence of HR in plants. Both haploid expression and species-specific Y-degeneration need to receive more attention if we are to understand the role of these processes in speciation.
Collapse
|
50
|
Antonovics J, Abbate JL, Bruns EL, Fields PD, Forrester NJ, Gilbert KJ, Hood ME, Park T, Taylor DR. Effect of the anther-smut fungus Microbotryum on the juvenile growth of its host Silene latifolia. AMERICAN JOURNAL OF BOTANY 2018; 105:1088-1095. [PMID: 29995339 DOI: 10.1002/ajb2.1114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Plant pathogens that form persistent systemic infections within plants have the potential to affect multiple plant life history traits, yet we tend to focus only on visible symptoms. Anther smut of Silene latifolia caused by the fungus Microbotryum lychnidis-dioicae induces the anthers of its host to support fungal spore production instead of pollen, and the pathogen is primarily transmitted among flowering plants by pollinators. Nevertheless, most of its life cycle is spent in the asymptomatic vegetative phase, and spores falling on seedlings or nonflowering plants can also infect the host. The purpose of this study was to ask whether the fungus also had an effect on its host plant in the juvenile vegetative phase before flowering as this is important for the disease dynamics in species where infection of seedlings is commonplace. METHODS Leaf length and leaf number of inoculated and uninoculated juvenile plants were compared in greenhouse experiments, and in one experiment, disease status of the plants at flowering was determined. KEY RESULTS Inoculated plants had shorter but more leaves, and reduced root mass at the early juvenile (preflowering) stage. Some of these effects were detectable in plants that were inoculated but showed no disease symptoms at flowering. CONCLUSIONS These results show that pathogenic fungi can have endophyte-like effects even in the total absence of their typical and more charismatic symptoms, and conversely that the assessment of endophyte effects on the fitness of their hosts should include all stages of the host life cycle.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jessica L Abbate
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Emily L Bruns
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Peter D Fields
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | | | | | - Michael E Hood
- Biology Department, Amherst College, Amherst, MA, 01003, USA
| | - Timothy Park
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|