1
|
Goh W, Sudholz H, Foroutan M, Scheer S, Pfefferle A, Delconte RB, Meng X, Shen Z, Hennessey R, Kong IY, Schuster IS, Andoniou CE, Davis MJ, Hediyeh-Zadeh S, Souza-Fonseca-Guimaraes F, Parish IA, Beavis P, Thiele D, Chopin M, Degli-Esposti MA, Cursons J, Kallies A, Rautela J, Nutt SL, Huntington ND. IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development. Nat Immunol 2024; 25:240-255. [PMID: 38182668 DOI: 10.1038/s41590-023-01718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.
Collapse
Affiliation(s)
- Wilford Goh
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Harrison Sudholz
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Momeneh Foroutan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aline Pfefferle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiangpeng Meng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Zihan Shen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert Hennessey
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
- The South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Joe Cursons
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology & Immunology, Faculty of Medicine, Dentistry and Health Sciences & Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Mayall JR, Horvat JC, Mangan NE, Chevalier A, McCarthy H, Hampsey D, Donovan C, Brown AC, Matthews AY, de Weerd NA, de Geus ED, Starkey MR, Kim RY, Daly K, Goggins BJ, Keely S, Maltby S, Baldwin R, Foster PS, Boyle MJ, Tanwar PS, Huntington ND, Hertzog PJ, Hansbro PM. Interferon-epsilon is a novel regulator of NK cell responses in the uterus. EMBO Mol Med 2024; 16:267-293. [PMID: 38263527 PMCID: PMC10897320 DOI: 10.1038/s44321-023-00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection.
Collapse
Affiliation(s)
- Jemma R Mayall
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Anne Chevalier
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Huw McCarthy
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Daniel Hampsey
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia
| | - Alexandra C Brown
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Eveline D de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Malcolm R Starkey
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Immunology and Pathology, Central Clinical School, Monash University, Clayton, VIC, 3168, Australia
| | - Richard Y Kim
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia
| | - Katie Daly
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Bridie J Goggins
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Simon Keely
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Steven Maltby
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Rennay Baldwin
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Paul S Foster
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Michael J Boyle
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Immunology and Infectious Diseases Unit, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Pradeep S Tanwar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Nicholas D Huntington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia.
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia.
| |
Collapse
|
3
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
5
|
Song L, Soomro MA, Wang L, Song Y, Hu G. Identification and functional analysis of histone 1.2-like in red sea bream (Pagrus major). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104529. [PMID: 36087785 DOI: 10.1016/j.dci.2022.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Histone H1 acts as an essential chromatin component and participates in the formation of higher chromatin structures together with core histones. In addition, H1 also has important functions in physiological processes such as gene expression regulation, DNA repair, and the immune response. In this study, the histone homologous protein Pm-H1.2-like was identified from the transcriptome database of Pagrus major we studied previously. Conservatism of evolution was investigated by sequence alignment and phylogenetic analysis. Transcripts of Pm-H1.2-like were detected in P. major tissues. The highest expression level was found in gill and skin tissues. Consistent with the data from the transcriptome database, we observed that the expression of Pm-H1.2-like was rapidly induced in nonspecific cytotoxic cells (NCCs) infected with inactivated Vibrio anguillarum. Gene silencing of Pm-H1.2-like by RNAi significantly suppressed the expression of NK-lysin and GZMB in NCCs at 12 h after pathogen stimulation, but had no significant effect on IFN-γ expression. Next, we obtained the fusion proteins rPm-H1.2-like and rPm-H1.2-like (36-80) through prokaryotic expression. ELISA showed that rPm-H1.2-like bound to oligonucleotide (ODN) in a concentration-dependent manner, while no binding activity of rPm-H1.2-like (36-80) with ODN was observed. This study confirmed that Pm-H1.2-like actively participates in the immune response of NCCs to bacterial infection, deepening the understanding of the immune features of histone H1 in fish.
Collapse
Affiliation(s)
- Lianfei Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Maqsood Ahmed Soomro
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingshu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Antosova Z, Podzimkova N, Tomala J, Augustynkova K, Sajnerova K, Nedvedova E, Sirova M, de Martynoff G, Bechard D, Moebius U, Kovar M, Spisek R, Adkins I. SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front Immunol 2022; 13:989895. [PMID: 36300122 PMCID: PMC9590108 DOI: 10.3389/fimmu.2022.989895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
SOT101 is a superagonist fusion protein of interleukin (IL)-15 and the IL-15 receptor α (IL-15Rα) sushi+ domain, representing a promising clinical candidate for the treatment of cancer. SOT101 among other immune cells specifically stimulates natural killer (NK) cells and memory CD8+ T cells with no significant expansion or activation of the regulatory T cell compartment. In this study, we showed that SOT101 induced expression of cytotoxic receptors NKp30, DNAM-1 and NKG2D on human NK cells. SOT101 stimulated dose-dependent proliferation and the relative expansion of both major subsets of human NK cells, CD56brightCD16- and CD56dimCD16+, and these displayed an enhanced cytotoxicity in vitro. Using human PBMCs and isolated NK cells, we showed that SOT101 added concomitantly or used for immune cell pre-stimulation potentiated clinically approved monoclonal antibodies Cetuximab, Daratumumab and Obinutuzumab in killing of tumor cells in vitro. The anti-tumor efficacy of SOT101 in combination with Daratumumab was assessed in a solid multiple myeloma xenograft in CB17 SCID mouse model testing several combination schedules of administration in the early and late therapeutic setting of established tumors in vivo. SOT101 and Daratumumab monotherapies decreased with various efficacy tumor growth in vivo in dependence on the advancement of the tumor development. The combination of both drugs showed the strongest anti-tumor efficacy. Specifically, the sequencing of both drugs did not matter in the early therapeutic setting where a complete tumor regression was observed in all animals. In the late therapeutic treatment of established tumors Daratumumab followed by SOT101 administration or a concomitant administration of both drugs showed a significant anti-tumor efficacy over the respective monotherapies. These results suggest that SOT101 might significantly augment the anti-tumor activity of therapeutic antibodies by increasing NK cell-mediated activity in patients. These results support the evaluation of SOT101 in combination with Daratumumab in clinical studies and present a rationale for an optimal clinical dosing schedule selection.
Collapse
Affiliation(s)
| | - Nada Podzimkova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Jakub Tomala
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Eva Nedvedova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Milada Sirova
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Ulrich Moebius
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radek Spisek
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
- *Correspondence: Irena Adkins,
| |
Collapse
|
8
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
9
|
Aryee K, Burzenski LM, Yao L, Keck JG, Greiner D, Shultz LD, Brehm MA. Enhanced development of functional human NK cells in NOD-scid-IL2rg null mice expressing human IL15. FASEB J 2022; 36:e22476. [PMID: 35959876 PMCID: PMC9383543 DOI: 10.1096/fj.202200045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.
Collapse
Affiliation(s)
- Ken‐Edwin Aryee
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Li‐Chin Yao
- The Jackson LaboratorySacramentoCaliforniaUSA
| | | | - Dale L. Greiner
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael A. Brehm
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
10
|
Park A, Yang Y, Lee Y, Jung H, Kim TD, Noh JY, Lee S, Yoon SR. Aurantii Fructus Immaturus enhances natural killer cytolytic activity and anticancer efficacy in vitro and in vivo. Front Med (Lausanne) 2022; 9:973681. [PMID: 36059847 PMCID: PMC9433751 DOI: 10.3389/fmed.2022.973681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aurantii Fructus Immaturus (AFI), extensively used in traditional herbal medicine, is known to have diverse physiological effects against various diseases, including obesity, diabetes, and cardiovascular disease. However, the effects of AFI on the immune system, especially natural killer (NK) cells, remain largely unknown. We aimed to investigate the effect of AFI on NK cell activity in vitro and in vivo and to elucidate the underlying mechanisms. Further, we verified the anticancer efficacy of AFI in a mouse lung metastasis model, underscoring the therapeutic potential of AFI in cancer therapy. Our results revealed that AFI significantly enhanced the cytolytic activity of NK cells in a dose-dependent manner, accompanied by an increase in the expression of NK cell-activating receptors, especially NKp30 and NKp46. AFI treatment also increased the expression of cytolytic granules, including granzyme B and perforin. Furthermore, the expression of CD107a, a degranulation marker, was increased upon treatment with AFI. A signaling study using western blot analysis demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was involved in increasing the NK cell activity following AFI treatment. In the in vivo study performed in mice, oral administration of AFI markedly enhanced the cytotoxic activity of spleen mononuclear cells against YAC-1 cells, which was accompanied by NKp46 upregulation. In addition, we confirmed that cancer metastasis was inhibited in a mouse cancer metastasis model, established using the mouse melanoma B16F10 cell line, by the administration of AFI in vivo. Collectively, these results indicate that AFI enhances NK cell-mediated cytotoxicity in vitro and in vivo via activation of the ERK signaling pathway and suggest that AFI could be a potential supplement for cancer immunotherapy.
Collapse
Affiliation(s)
- Arum Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yunjeong Yang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seungjin Lee
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- *Correspondence: Suk Ran Yoon,
| |
Collapse
|
11
|
Khalil RG, Abdel-Moneim A, Arafa AA, Allam G, El-Senousy WM, Mabrouk D. Possible association of rotavirus IgG with cytokine expression levels and dyslipidemia in rotavirus-infected type 1 diabetic children. Mol Biol Rep 2022; 49:7587-7599. [PMID: 35733062 PMCID: PMC9216291 DOI: 10.1007/s11033-022-07573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Background Rotavirus (RV) has been postulated as a viral trigger for the onset of autoimmune disorders, such as type 1 diabetes (T1D). This study aimed to examine the conceivable association of RV IgG with cytokine levels and dyslipidemia in the pathogenesis of pediatric T1D. Methods This study included 30 healthy controls and 80 children with T1D who were divided into two groups based on the time since their T1D diagnosis: newly diagnosed (ND ≤ 1 year; n = 30) and previously diagnosed (PD > 1 year; n = 50). ND and PD patients were also separated into negative and positive according to IgG detection (RV IgG−, ND−, and PD−; RV IgG+, ND+, and PD+). Results Positive polymerase chain reaction for RVs was evidenced in 7.5% of children with T1D. Anti-RV IgG was 30% and 36% in ND and PD, respectively, compared to healthy controls (2 of 30, 6.6%; P < 0.05). Fasting blood sugar and hemoglobin A1c significantly increased in PD+ compared to PD−. Interferon-γ and interleukin (IL)-15 levels significantly increased. IL-12 and IL-22 mRNA expression was upregulated in ND+ patients compared to that in ND− patients. IL-37 mRNA expression was significantly downregulated in ND− and ND+ patients compared to that in healthy controls. Total cholesterol and high- and low-density lipoprotein-cholesterol levels were significantly lower in PD+ than in PD−; whereas triglyceride levels were higher than those in healthy controls. Conclusions This study suggested that anti-RV IgG may have a role in the pathogenesis, development, and progression of T1D, and RV infections are implicated in dyslipidemia and inflammation status. Supplementary information The online version contains supplementary material available at 10.1007/s11033-022-07573-0.
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt. Salah Salem St, 62511, Beni-Suef, Egypt.
| | - Amany A Arafa
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Waled M El-Senousy
- Department of Water Pollution Research, Environmental Research Division, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Doaa Mabrouk
- Department of Microbiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Bunting MD, Vyas M, Requesens M, Langenbucher A, Schiferle EB, Manguso RT, Lawrence MS, Demehri S. Extracellular matrix proteins regulate NK cell function in peripheral tissues. SCIENCE ADVANCES 2022; 8:eabk3327. [PMID: 35294229 PMCID: PMC8926340 DOI: 10.1126/sciadv.abk3327] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural killer (NK) cells reject major histocompatibility complex class I (MHC-I)-deficient bone marrow through direct cytotoxicity but not solid organ transplants devoid of MHC-I. Here, we demonstrate an immediate switch in NK cell function upon exit from the circulation, characterized by a shift from direct cytotoxicity to chemokine/cytokine production. In the skin transplant paradigm, combining an NK cell-specific activating ligand, m157, with missing self MHC-I resulted in complete graft rejection, which was dependent on NK cells as potential helpers and T cells as effectors. Extracellular matrix proteins, collagen I, collagen III, and elastin, blocked NK cell cytotoxicity and promoted their chemokine/cytokine production. NK cell cytotoxicity against MHC-I-deficient melanoma in the skin was markedly increased by blocking tumor collagen deposition. MHC-I down-regulation occurred in solid human cancers but not leukemias, which could be directly targeted by circulating cytotoxic NK cells. Our findings uncover a fundamental mechanism that restricts direct NK cell cytotoxicity in peripheral tissues.
Collapse
Affiliation(s)
- Mark D. Bunting
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maulik Vyas
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marta Requesens
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Adam Langenbucher
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Erik B. Schiferle
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Robert T. Manguso
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael S. Lawrence
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
13
|
Bou-Tayeh B, Laletin V, Salem N, Just-Landi S, Fares J, Leblanc R, Balzano M, Kerdiles YM, Bidaut G, Hérault O, Olive D, Aurrand-Lions M, Walzer T, Nunès JA, Fauriat C. Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Front Immunol 2021; 12:730970. [PMID: 34975835 PMCID: PMC8718679 DOI: 10.3389/fimmu.2021.730970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rβ expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.
Collapse
Affiliation(s)
- Berna Bou-Tayeh
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Vladimir Laletin
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Nassim Salem
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Sylvaine Just-Landi
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Joanna Fares
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Raphael Leblanc
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Marielle Balzano
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Yann M. Kerdiles
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Ghislain Bidaut
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- Cibi Technological Platform, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Olivier Hérault
- Centre National de la Recherche Scientifique (CNRS) UMR 7292, LNOx Team, François Rabelais University, Tours, France
| | - Daniel Olive
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Jacques A. Nunès
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- *Correspondence: Cyril Fauriat,
| |
Collapse
|
14
|
Mousavizadeh L, Soltani R, Abedini K, Ghasemi S. The Relation of the Viral Structure of SARS-CoV2, High-Risk Condition, and Plasma Levels of IL-4, IL-10, and IL-15 in COVID-19 Patients compared to SARS and MERS Infections. Curr Mol Med 2021; 22:584-593. [PMID: 34607539 DOI: 10.2174/1566524021666211004110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has high mortality due to the widespread infection and the strong immune system reaction. Interleukins (ILs) are among the main immune factors contributing to the deterioration of the immune response and the formation of cytokine storms in coronavirus disease 2019 (COVID-19) infections. INTRODUCTION This review article investigated the relationship between virus structure, risk factors, and patient plasma interleukin levels in infections caused by the coronavirus family. METHOD The keywords "interleukin," "coronavirus structure," "plasma," and "risk factors" were the main words searched to find a relationship among different interleukins, coronavirus structures, and risk factors in ISI, PUBMED, SCOPUS, and Google Scholar databases. RESULT Patients with high-risk conditions with independent panels of immune system markers are more susceptible to death caused by SARS-CoV2. IL-4, IL-10, and IL-15 are probably secreted at different levels in patients with coronavirus infections despite the similarity of inflammatory markers during coronavirus infections. SARS-CoV2 and SARS-CoV increase the secretion of IL-4 in the Middle East respiratory syndrome coronavirus (MERS-CoV) infection, while it remains unchanged in MERS-CoV infection. MERS-CoV infection demonstrates increased IL-10 levels. However, IL-10 levels increase during SARS-CoV infection, and different levels are recorded in SARS-CoV2. MERS-CoV increases IL-15 secretion while its levels remain unchanged in SARS-CoV2. CONCLUSION In conclusion, the different structures of SARS-CoV2, such as length of spike or nonstructural proteins (NSPs), and susceptibility of patients based on their risk factors may lead to differences in immune marker secretion and pathogenicity. Therefore, identifying and controlling interleukin levels can play a significant role in controlling the symptoms and the development of individual-specific treatments.
Collapse
Affiliation(s)
- Leila Mousavizadeh
- Department of Virus-Host Interaction, Heinrich-Pette-Institut (HPI), Martinistrasse 52, 20251 Hamburg. Germany
| | - Ramin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Kosar Abedini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
15
|
Baker JR, Donnelly LE. Leukocyte Function in COPD: Clinical Relevance and Potential for Drug Therapy. Int J Chron Obstruct Pulmon Dis 2021; 16:2227-2242. [PMID: 34354348 PMCID: PMC8331105 DOI: 10.2147/copd.s266394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung condition affecting 10% of the global population over 45 years. Currently, there are no disease-modifying treatments, with current therapies treating only the symptoms of the disease. COPD is an inflammatory disease, with a high infiltration of leukocytes being found within the lung of COPD patients. These leukocytes, if not kept in check, damage the lung, leading to the pathophysiology associated with the disease. In this review, we focus on the main leukocytes found within the COPD lung, describing how the release of chemokines from the damaged epithelial lining recruits these cells into the lung. Once present, these cells become active and may be driven towards a more pro-inflammatory phenotype. These cells release their own subtypes of inflammatory mediators, growth factors and proteases which can all lead to airway remodeling, mucus hypersecretion and emphysema. Finally, we describe some of the current therapies and potential new targets that could be utilized to target aberrant leukocyte function in the COPD lung. Here, we focus on old therapies such as statins and corticosteroids, but also look at the emerging field of biologics describing those which have been tested in COPD already and potential new monoclonal antibodies which are under review.
Collapse
Affiliation(s)
- Jonathan R Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
16
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 881] [Impact Index Per Article: 293.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
17
|
Tonetti CR, de Souza-Araújo CN, Yoshida A, da Silva RF, Alves PCM, Mazzola TN, Derchain S, Fernandes LGR, Guimarães F. Ovarian Cancer-Associated Ascites Have High Proportions of Cytokine-Responsive CD56bright NK Cells. Cells 2021; 10:cells10071702. [PMID: 34359872 PMCID: PMC8306021 DOI: 10.3390/cells10071702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with serous histotype as the most prevalent epithelial ovarian cancer (EOC). Peritoneal ascites is a frequent comorbidity in advanced EOC. EOC-associated ascites provide a reliable sampling source for studying lymphocytes directly from tumor environment. Herein, we carried out flow cytometry-based analysis to readdress issues on NK and T lymphocyte subsets in women with advanced EOC, additionally evaluating phenotypic modulation of their intracellular pathways involved in interleukin (IL)-2 and IL-15 signaling. Results depicted ascites as an inflammatory and immunosuppressive environment, presenting significantly (p < 0.0001) higher amounts of IL-6 and IL-10 than in the patients' blood, as well as significantly (p < 0.05) increased expression of checkpoint inhibitory receptors (programmed death protein-1, PD-1) and ectonucleotidase (CD39) on T lymphocytes. However, NK lymphocytes from EOC-associated ascites showed higher (p < 0.05) pS6 phosphorylation compared with NK from blood. Additionally, in vitro treatment of lymphocytes with IL-2 or IL-15 elicited significantly (p < 0.001) phosphorylation of the STAT5 protein in NK, CD3 and CD8 lymphocytes, both from blood and ascites. EOC-associated ascites had a significantly (p < 0.0001) higher proportion of NK CD56bright lymphocytes than blood, which, in addition, were more responsive (p < 0.05) to stimulation by IL-2 than CD56dim NK. EOC-associated ascites allow studies on lymphocyte phenotype modulation in the tumor environment, where inflammatory profile contrasts with the presence of immunosuppressive elements and development of cellular self-regulating mechanisms.
Collapse
Affiliation(s)
- Cláudia Rodrigues Tonetti
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Caroline Natânia de Souza-Araújo
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Adriana Yoshida
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Rodrigo Fernandes da Silva
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Paulo César Martins Alves
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Taís Nitsch Mazzola
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Sophie Derchain
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Luís Gustavo Romani Fernandes
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Fernando Guimarães
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
- Correspondence: ; Tel.: +55-(19)-35219462
| |
Collapse
|
18
|
Schnappauf O, Heale L, Dissanayake D, Tsai WL, Gadina M, Leto TL, Kastner DL, Malech HL, Kuhns DB, Aksentijevich I, Laxer RM. Homozygous variant p. Arg90His in NCF1 is associated with early-onset Interferonopathy: a case report. Pediatr Rheumatol Online J 2021; 19:54. [PMID: 33892719 PMCID: PMC8063424 DOI: 10.1186/s12969-021-00536-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Biallelic loss-of-function variants in NCF1 lead to reactive oxygen species deficiency and chronic granulomatous disease (CGD). Heterozygosity for the p.Arg90His variant in NCF1 has been associated with susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome in adult patients. This study demonstrates the association of the homozygous p.Arg90His variant with interferonopathy with features of autoinflammation and autoimmunity in a pediatric patient. CASE PRESENTATION A 5-year old female of Indian ancestry with early-onset recurrent fever and headache, and persistently elevated antinuclear, anti-Ro, and anti-La antibodies was found to carry the homozygous p.Arg90His variant in NCF1 through exome sequencing. Her unaffected parents and three other siblings were carriers for the mutant allele. Because the presence of two NCF1 pseudogenes, this variant was confirmed by independent genotyping methods. Her intracellular neutrophil oxidative burst and NCF1 expression levels were normal, and no clinical features of CGD were apparent. Gene expression analysis in peripheral blood detected an interferon gene expression signature, which was further supported by cytokine analyses of supernatants of cultured patient's cells. These findings suggested that her inflammatory disease is at least in part mediated by type I interferons. While her fever episodes responded well to systemic steroids, treatment with the JAK inhibitor tofacitinib resulted in decreased serum ferritin levels and reduced frequency of fevers. CONCLUSION Homozygosity for p.Arg90His in NCF1 should be considered contributory in young patients with an atypical systemic inflammatory antecedent phenotype that may evolve into autoimmunity later in life. The complex genomic organization of NCF1 poses a difficulty for high-throughput genotyping techniques and variants in this gene should be carefully evaluated when using the next generation and Sanger sequencing technologies. The p.Arg90His variant is found at a variable allele frequency in different populations, and is higher in people of South East Asian ancestry. In complex genetic diseases such as SLE, other rare and common susceptibility alleles might be necessary for the full disease expressivity.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, USA.
| | - Liane Heale
- grid.17063.330000 0001 2157 2938The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Dilan Dissanayake
- grid.17063.330000 0001 2157 2938The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Wanxia L. Tsai
- grid.94365.3d0000 0001 2297 5165National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Massimo Gadina
- grid.94365.3d0000 0001 2297 5165National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas L. Leto
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Daniel L. Kastner
- grid.94365.3d0000 0001 2297 5165National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Harry L. Malech
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Douglas B. Kuhns
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Ivona Aksentijevich
- grid.94365.3d0000 0001 2297 5165National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Ronald M. Laxer
- grid.17063.330000 0001 2157 2938The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Coulibaly A, Velásquez SY, Kassner N, Schulte J, Barbarossa MV, Lindner HA. STAT3 governs the HIF-1α response in IL-15 primed human NK cells. Sci Rep 2021; 11:7023. [PMID: 33782423 PMCID: PMC8007797 DOI: 10.1038/s41598-021-84916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/01/2021] [Indexed: 02/01/2023] Open
Abstract
Natural killer (NK) cells mediate innate host defense against microbial infection and cancer. Hypoxia and low glucose are characteristic for these tissue lesions but do not affect early interferon (IFN) γ and CC chemokine release by interleukin 15 (IL-15) primed human NK cells in vitro. Hypoxia inducible factor 1α (HIF-1α) mediates cellular adaption to hypoxia. Its production is supported by mechanistic target of rapamycin complex 1 (mTORC1) and signal transducer and activator of transcription 3 (STAT3). We used chemical inhibition to probe the importance of mTORC1 and STAT3 for the hypoxia response and of STAT3 for the cytokine response in isolated and IL-15 primed human NK cells. Cellular responses were assayed by magnetic bead array, RT-PCR, western blotting, flow cytometry, and metabolic flux analysis. STAT3 but not mTORC1 activation was essential for HIF-1α accumulation, glycolysis, and oxygen consumption. In both primed normoxic and hypoxic NK cells, STAT3 inhibition reduced the secretion of CCL3, CCL4 and CCL5, and it interfered with IL-12/IL-18 stimulated IFNγ production, but it did not affect cytotoxic granule degranulation up on target cell contact. We conclude that IL-15 priming promotes the HIF-1α dependent hypoxia response and the early cytokine response in NK cells predominantly through STAT3 signaling.
Collapse
Affiliation(s)
- Anna Coulibaly
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sonia Y. Velásquez
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nina Kassner
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jutta Schulte
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Maria Vittoria Barbarossa
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany ,grid.417999.bFrankfurt Institute of Advanced Studies, 60438 Frankfurt, Germany
| | - Holger A. Lindner
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
20
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
21
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
22
|
Meissl K, Simonović N, Amenitsch L, Witalisz-Siepracka A, Klein K, Lassnig C, Puga A, Vogl C, Poelzl A, Bosmann M, Dohnal A, Sexl V, Müller M, Strobl B. STAT1 Isoforms Differentially Regulate NK Cell Maturation and Anti-tumor Activity. Front Immunol 2020; 11:2189. [PMID: 33042133 PMCID: PMC7519029 DOI: 10.3389/fimmu.2020.02189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1β isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (Stat1α/α) or the STAT1β (Stat1β/β ) isoform. NK cells from Stat1α/α mice matured normally and controlled transplanted tumor cells as efficiently as NK cells from wild-type mice. In contrast, NK cells from Stat1β/β mice showed impaired maturation and effector functions, albeit less severe than NK cells from mice that completely lack STAT1 (Stat1-/- ). Mechanistically, we show that NK cell maturation requires the presence of STAT1α in the niche rather than in NK cells themselves and that NK cell maturation depends on IFNγ signaling under homeostatic conditions. The impaired NK cell maturation in Stat1β/β mice was paralleled by decreased IL-15 receptor alpha (IL-15Rα) surface levels on dendritic cells, macrophages and monocytes. Treatment of Stat1β/β mice with exogenous IL-15/IL-15Rα complexes rescued NK cell maturation but not their effector functions. Collectively, our findings provide evidence that STAT1 isoforms are not functionally redundant in regulating NK cell activity and that the absence of STAT1α severely impairs, but does not abolish, NK cell-dependent tumor surveillance.
Collapse
Affiliation(s)
- Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Natalija Simonović
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Klara Klein
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana Puga
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Dohnal
- Tumor Immunology, St. Anna Kinderkrebsforschung, Children’s Cancer Research Institute, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
23
|
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19:120. [PMID: 32762681 PMCID: PMC7409673 DOI: 10.1186/s12943-020-01238-x] [Citation(s) in RCA: 380] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is highly complex, and immune escape is currently considered an important hallmark of cancer, largely contributing to tumor progression and metastasis. Named for their capability of killing target cells autonomously, natural killer (NK) cells serve as the main effector cells toward cancer in innate immunity and are highly heterogeneous in the microenvironment. Most current treatment options harnessing the tumor microenvironment focus on T cell-immunity, either by promoting activating signals or suppressing inhibitory ones. The limited success achieved by T cell immunotherapy highlights the importance of developing new-generation immunotherapeutics, for example utilizing previously ignored NK cells. Although tumors also evolve to resist NK cell-induced cytotoxicity, cytokine supplement, blockade of suppressive molecules and genetic engineering of NK cells may overcome such resistance with great promise in both solid and hematological malignancies. In this review, we summarized the fundamental characteristics and recent advances of NK cells within tumor immunometabolic microenvironment, and discussed potential application and limitations of emerging NK cell-based therapeutic strategies in the era of presicion medicine.
Collapse
Affiliation(s)
- Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Waldmann TA, Dubois S, Miljkovic MD, Conlon KC. IL-15 in the Combination Immunotherapy of Cancer. Front Immunol 2020; 11:868. [PMID: 32508818 PMCID: PMC7248178 DOI: 10.3389/fimmu.2020.00868] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
We completed clinical trials of rhIL-15 by bolus, subcutaneous, and continuous intravenous infusions (CIV). IL-15 administered by CIV at 2 mcg/kg/day yielded a 38-fold increase in 10- day number of circulating NK cells, a 358-fold increase in CD56bright NK cells and a 5.8-fold increase in CD8 T cells. However, IL-15 preparations administered as monotherapy were ineffective, due to actions of immunological checkpoints and due to the lack of tumor specific targeting by NK cells. To circumvent checkpoints, trials of IL-15 in combination with other anticancer agents were initiated. Tumor-bearing mice receiving IL-15 with antibodies to CTLA-4 and PD-L1 manifested marked prolongation of survival compared to mice receiving IL-15 with either agent alone. In translation, a phase I trial was initiated involving IL-15 (rhIL-15), nivolumab and ipilimumab in patients with malignancy (NCT03388632). In rhesus macaques CIV IL-15 at 20 μg/kg/day for 10 days led to an 80-fold increase in number of circulating effector memory CD8 T cells. However, administration of γc cytokines such as IL-15 led to paralysis/depression of CD4 T-cells that was mediated through transient expression of SOCS3 that inhibited the STAT5 signaling pathway. This lost CD4 helper role could be restored alternatively by CD40 agonists. In the TRAMP-C2 prostate tumor model the combination of IL-15 with agonistic anti-CD40 produced additive effects in terms of numbers of TRAMP-C2 tumor specific Spas/SCNC/9H tetramer positive CD8 T cells expressed and tumor responses. A clinical trial is being initiated for patients with cancer using an intralesional anti-CD40 in combination with CIV rhIL-15. To translate IL-15-mediated increases in NK cells, we investigated combination therapy of IL-15 with anticancer monoclonal antibodies including rituximab in mouse models of EL-4 lymphoma transfected with human CD20 and with alemtuzumab (CAMPATH-1H) in a xenograft model of adult T cell leukemia (ATL). IL-15 enhanced the ADCC and therapeutic efficacy of both antibodies. These results provided the scientific basis for trials of IL-15 combined with alemtuzumab (anti-CD52) for patients with ATL (NCT02689453), with obinutuzumab (anti-CD20) for patients with CLL (NCT03759184), and with avelumab (anti-PD-L1) in patients with T-cell lymphoma (NCT03905135) and renal cancer (NCT04150562). In the first trial, there was elimination of circulating ATL and CLL leukemic cells in select patients.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Kim KS, Park KS. XRP44X Enhances the Cytotoxic Activity of Natural Killer Cells by Activating the c-JUN N-Terminal Kinase Signaling Pathway. Dev Reprod 2020; 24:53-62. [PMID: 32411918 PMCID: PMC7201060 DOI: 10.12717/dr.2020.24.1.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that play an essential role in
preventing cancer development by performing immune surveillance to eradicate
abnormal cells. Since ex vivo expanded NK cells have cytotoxic
activity against various cancers, including breast cancers, their clinical
potential as immune-oncogenic therapeutics has been widely investigated. Here,
we report that the pyrazole chemical XRP44X, an inhibitor of Ras/ERK activation
of ELK3, stimulates NK-92MI cells to enhance cytotoxic activity against breast
cancer cells. Under XRP44X stimulation, NK cells did not show notable apoptosis
or impaired cell cycle progression. We demonstrated that XRP44X enhanced
interferon gamma expression in NK-92MI cells. We also elucidated that
potentiation of the cytotoxic activity of NK-92MI cells by XRP44X is induced by
activation of the c-JUN N-terminal kinase (JNK) signaling pathway. Our data
provide insight into the evaluation of XRP44X as an immune stimulant and that
XRP44X is a potential candidate compound for the therapeutic development of NK
cells.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Dept. of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Kyung-Soon Park
- Dept. of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| |
Collapse
|
27
|
Earl PL, Americo JL, Moss B. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses. PLoS Pathog 2020; 16:e1008505. [PMID: 32320436 PMCID: PMC7197867 DOI: 10.1371/journal.ppat.1008505] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/04/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
The wild-derived inbred CAST/EiJ mouse, one of eight founder strains in the Collaborative Cross panel, is an exceptional model for studying monkeypox virus (MPXV), an emerging human pathogen, and other orthopoxviruses including vaccinia virus (VACV). Previous studies suggested that the extreme susceptibility of the CAST mouse to orthopoxviruses is due to an insufficient innate immune response. Here, we focused on the low number of natural killer (NK) cells in the naïve CAST mouse as a contributing factor to this condition. Administration of IL-15 to CAST mice transiently increased NK and CD8+ T cells that could express IFN-γ, indicating that the progenitor cells were capable of responding to cytokines. However, the number of NK cells rapidly declined indicating a defect in their homeostasis. Furthermore, IL-15-treated mice were protected from an otherwise lethal challenge with VACV or MPXV. IL-15 decreased virus spread and delayed death even when CD4+/CD8+ T cells were depleted with antibody, supporting an early protective role of the expanded NK cells. Purified splenic NK cells from CAST mice proliferated in vitro in response to IL-15 and could be activated with IL-12/IL-18 to secrete interferon-γ. Passive transfer of non-activated or activated CAST NK cells reduced VACV spread but only the latter completely prevented death at the virus dose used. Moreover, antibodies to interferon-γ abrogated the protection by activated NK cells. Thus, the inherent susceptibility of CAST mice to orthopoxviruses can be explained by a low level of NK cells and this vulnerability can be overcome either by expanding their NK cells in vivo with IL-15 or by passive transfer of purified NK cells that were expanded and activated in vitro. With the eradication of smallpox, monkeypox virus (MPXV) remains the only poxvirus causing significant mortality in humans. Although endemic in parts of Africa, human infections have occurred in the United States, the United Kingdom and Israel due to travelers or imported animals. Contrary to its name, MPXV primarily infects rodents and secondarily infects humans and other primates. The wild-derived CAST mouse is an excellent small animal model for studying the pathogenicity of MPXV and related orthopoxviruses including vaccinia virus (VACV) and for evaluating therapeutics. We previously found that the susceptibility of CAST mice is correlated with low numbers of natural killer (NK) cells and a delayed interferon-γ response. Here we showed that in vivo administration of the cytokine IL-15 transiently raised NK cell numbers and protected CAST mice from systemic infections with VACV and MPXV. CAST mouse NK cells that were purified and expanded in vitro with IL-15 also provided protection, further demonstrating the important role of NK cells. The rapid decline in NK cell numbers following cessation of IL-15 administration or NK cell transfer suggests that a low level of NK cell homeostasis contributes to the susceptibility of CAST mice to virus infection.
Collapse
Affiliation(s)
- Patricia L. Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey L. Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Assessing Phosphorylation of STAT Transcription Factors in Mouse Innate Lymphoid Cells. Methods Mol Biol 2020. [PMID: 32147786 DOI: 10.1007/978-1-0716-0338-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Innate lymphoid cells (ILCs) ensure protection against pathogens by quickly reacting to the alterations of the cytokine milieu taking place upon infection. More than 50 cytokines and growth factors activate the Janus kinases (JAKs), leading to phosphorylation of members of the signal transducer and activator of transcription (STAT) family. Activation of STATs induces specific transcriptional programs which are associated with distinct cellular outcomes. Thus, an efficient measurement of rapid STAT phosphorylation enables not only to dissect the spectrum of cytokine sensitivity among ILC subsets but also to pinpoint specific transcriptional programs and cellular functions initiated after activation. Using this method, we have previously dissected the downstream events of Interleukin (IL)-23 and IL-12 signaling in ILCs, shedding light on the differential usage of STATs among ILC subsets. Here, we provide an optimized and detailed protocol describing how to analyze phosphorylation of STAT transcription factors in murine NK and ILC subsets isolated from different tissues.
Collapse
|
29
|
Three-Dimensional Cell Culture Based on Magnetic Fields to Assemble Low-Grade Ovarian Carcinoma Cell Aggregates Containing Lymphocytes. Cells 2020; 9:cells9030635. [PMID: 32155738 PMCID: PMC7140502 DOI: 10.3390/cells9030635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
There is a limited number of established ovarian cancer cell lines matching the low-grade serous histotype available for research purposes. Three-dimensional (3D) culture systems provide in vitro models with better tissue-like characteristics than two-dimensional (2D) systems. The goal in the study was to characterize the growth of a given low-grade serous ovarian carcinoma cell line in a 3D culture system conducted in a magnetic field. Moreover, the culture system was evaluated in respect to the assembly of malignant cell aggregates containing lymphocytes. CAISMOV24 cell line alone or mixed with human peripheral blood mononuclear cells (PBMC) were cultured using a commercially available 3D culture system designed for 24 well plates. Resulting cell aggregates revealed the intrinsic capacity of CAISMOV24 cells to assemble structures morphologically defined as papillary, and reflected molecular characteristics usually found in ovarian carcinomas. The contents of lymphocytes into co-cultured cell aggregates were significantly higher (p < 0.05) when NanoShuttle-conjugated PBMC were employed compared with non-conjugated PBMC. Moreover, lymphocyte subsets NK, T-CD4, T-CD8 and T-regulatory were successfully retrieved from co-cultured cell aggregates at 72h. Thus, the culture system allowed CAISMOV24 cell line to develop papillary-like cell aggregates containing lymphocytes.
Collapse
|
30
|
Delconte RB, Guittard G, Goh W, Hediyeh-Zadeh S, Hennessy RJ, Rautela J, Davis MJ, Souza-Fonseca-Guimaraes F, Nunès JA, Huntington ND. NK Cell Priming From Endogenous Homeostatic Signals Is Modulated by CIS. Front Immunol 2020; 11:75. [PMID: 32082327 PMCID: PMC7005222 DOI: 10.3389/fimmu.2020.00075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cell activation is controlled by a balance of activating and inhibitory signals and cytokines such as IL-15. We previously identified cytokine-inducible SH2-containing protein (CIS) as a negative regulator of IL-15 signaling in NK cells under inflammatory conditions. While the functional effect of Cish-deficiency in NK cells was obvious by their increased anti-tumor immunity and hyper-proliferative response to IL-15, it remained unclear how CIS regulates NK cell biology in steady-state. Here, we investigated the role of CIS in the homeostatic maintenance of NK cells and found CIS-ablation promoted terminal differentiation of NK cells and increased turnover, suggesting that under steady-state conditions, CIS plays a role in maintaining IL-15 driven regulation of NK cells in vivo. However, hyper-responsiveness to IL-15 did not manifest in NK cell accumulation, even when the essential NK cell apoptosis mediator, Bcl2l11 (BIM) was deleted in addition to Cish. Instead, loss of CIS conferred a lower activation threshold, evidenced by augmented functionality on a per cell basis both in vitro and in vivo without prior priming. We conclude that Cish regulates IL-15 signaling in NK cells in vivo, and through the rewiring of several activation pathways leads to a reduction in activation threshold, decreasing the requirement for priming and improving NK cell anti-tumor function. Furthermore, this study highlights the tight regulation of NK cell homeostasis by several pathways which prevent NK cell accumulation when IL-15 signaling and intrinsic apoptosis are dysregulated.
Collapse
Affiliation(s)
- Rebecca B Delconte
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Wilford Goh
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Soroor Hediyeh-Zadeh
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Robert J Hennessy
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Jai Rautela
- oNKo-Innate Pty Ltd., Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Melissa J Davis
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Nicholas D Huntington
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,oNKo-Innate Pty Ltd., Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
31
|
Vian L, Le MT, Gazaniga N, Kieltyka J, Liu C, Pietropaolo G, Dell'Orso S, Brooks SR, Furumoto Y, Thomas CJ, O'Shea JJ, Sciumè G, Gadina M. JAK Inhibition Differentially Affects NK Cell and ILC1 Homeostasis. Front Immunol 2019; 10:2972. [PMID: 31921209 PMCID: PMC6930870 DOI: 10.3389/fimmu.2019.02972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Janus kinase (JAK) inhibitors are widely used in the treatment of multiple autoimmune and inflammatory diseases. Immunologic and transcriptomic profiling have revealed major alterations on natural killer (NK) cell homeostasis associated with JAK inhibitions, while information on other innate lymphoid cells (ILCs) is still lacking. Herein, we observed that, in mice, the homeostatic pool of liver ILC1 was less affected by JAK inhibitors compared to the pool of NK cells present in the liver, spleen and bone marrow. JAK inhibition had overlapping effects on the transcriptome of both subsets, mainly affecting genes regulating cell cycle and apoptosis. However, the differential impact of JAK inhibition was linked to the high levels of the antiapoptotic gene Bcl2 expressed by ILC1. Our findings provide mechanistic explanations for the effects of JAK inhibitors on NK cells and ILC1 which could be of major clinically relevance.
Collapse
Affiliation(s)
- Laura Vian
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mimi T Le
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nathalia Gazaniga
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline Kieltyka
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christine Liu
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Pietropaolo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Dell'Orso
- Genomic Technology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yasuko Furumoto
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States.,Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Sciumè
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Abstract
Natural killer (NK) cell deficiency (NKD) is a subset of primary immunodeficiency disorders (PID) in which an abnormality of NK cells represents a major immunological defect resulting in the patient’s clinical immunodeficiency. This is distinct from a much larger group of PIDs that include an NK cell abnormality as a minor component of the immunodeficiency. Patients with NKD most frequently have atypical consequences of herpesviral infections. There are now 6 genes that have been ascribed to causing NKD, some exclusively and others that also cause other known immunodeficiencies. This list has grown in recent years and as such the mechanistic and molecular clarity around what defines an NKD is an emerging and important field of research. Continued increased clarity will allow for more rational approaches to the patients themselves from a therapeutic standpoint. Having evaluated numerous individuals for NKD, I share my perspective on approaching the diagnosis and managing these patients.
Collapse
Affiliation(s)
- Jordan S Orange
- Department of Pediatrics, NewYork Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians and Surgeons, 622 W 168th St., New York, NY, 10032, USA.
| |
Collapse
|
33
|
Rautela J, Dagley LF, Kratina T, Anthony A, Goh W, Surgenor E, Delconte RB, Webb AI, Elwood N, Groom JR, Souza-Fonseca-Guimaraes F, Corcoran L, Huntington ND. Generation of novel Id2 and E2-2, E2A and HEB antibodies reveals novel Id2 binding partners and species-specific expression of E-proteins in NK cells. Mol Immunol 2019; 115:56-63. [DOI: 10.1016/j.molimm.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022]
|
34
|
Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. Nat Commun 2019; 10:3841. [PMID: 31451696 PMCID: PMC6710242 DOI: 10.1038/s41467-019-11632-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Human lung tissue-resident NK cells (trNK cells) are likely to play an important role in host responses towards viral infections, inflammatory conditions and cancer. However, detailed insights into these cells are still largely lacking. Here we show, using RNA sequencing and flow cytometry-based analyses, that subsets of human lung CD69+CD16− NK cells display hallmarks of tissue-residency, including high expression of CD49a, CD103, and ZNF683, and reduced expression of SELL, S1PR5, and KLF2/3. CD49a+CD16− NK cells are functionally competent, and produce IFN-γ, TNF, MIP-1β, and GM-CSF. After stimulation with IL-15, they upregulate perforin, granzyme B, and Ki67 to a similar degree as CD49a−CD16− NK cells. Comparing datasets from trNK cells in human lung and bone marrow with tissue-resident memory CD8+ T cells identifies core genes co-regulated either by tissue-residency, cell-type or location. Together, our data indicate that human lung trNK cells have distinct features, likely regulating their function in barrier immunity. Detailed characterizations of human lung tissue-resident natural killer (trNK) cells, which potentially regulate local immune responses, is still lacking. Here the authors show that lung CD69+ CD16– NK cells express tissue-residency markers, produce effector cytokines, and are distinct, feature-wise, from lung CD8+ memory T cells or trNK in other tissues.
Collapse
|
35
|
Hubert M, Gobbini E, Bendriss-Vermare N, Caux C, Valladeau-Guilemond J. Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers (Basel) 2019; 11:E1082. [PMID: 31366174 PMCID: PMC6721288 DOI: 10.3390/cancers11081082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
The interaction between tumor cells and the immune system is considered to be a dynamic process. Dendritic cells (DCs) play a pivotal role in anti-tumor immunity owing to their outstanding T cell activation ability. Their functions and activities are broad ranged, triggering different mechanisms and responses to the DC subset. Several studies identified in situ human tumor-infiltrating DCs by immunostaining using a limited number of markers. However, considering the heterogeneity of DC subsets, the identification of each subtype present in the immune infiltrate is essential. To achieve this, studies initially relied on flow cytometry analyses to provide a precise characterization of tumor-associated DC subsets based on a combination of multiple markers. The concomitant development of advanced technologies, such as mass cytometry or complete transcriptome sequencing of a cell population or at a single cell level, has provided further details on previously identified populations, has unveiled previously unknown populations, and has finally led to the standardization of the DCs classification across tissues and species. Here, we review the evolution of tumor-associated DC description, from in situ visualization to their characterization with high-dimensional technologies, and the clinical use of these findings specifically focusing on the prognostic impact of DCs in cancers.
Collapse
Affiliation(s)
- Margaux Hubert
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Elisa Gobbini
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | | | | |
Collapse
|
36
|
Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, Anderson A, Hollande F, Hediyeh-Zadeh S, Behren A, Huntington ND, Davis MJ. A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients. Cancer Immunol Res 2019; 7:1162-1174. [PMID: 31088844 DOI: 10.1158/2326-6066.cir-18-0500] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cell activity is essential for initiating antitumor responses and may be linked to immunotherapy success. NK cells and other innate immune components could be exploitable for cancer treatment, which drives the need for tools and methods that identify therapeutic avenues. Here, we extend our gene-set scoring method singscore to investigate NK cell infiltration by applying RNA-seq analysis to samples from bulk tumors. Computational methods have been developed for the deconvolution of immune cell types within solid tumors. We have taken the NK cell gene signatures from several such tools, then curated the gene list using a comparative analysis of tumors and immune cell types. Using a gene-set scoring method to investigate RNA-seq data from The Cancer Genome Atlas (TCGA), we show that patients with metastatic cutaneous melanoma have an improved survival rate if their tumor shows evidence of NK cell infiltration. Furthermore, these survival effects are enhanced in tumors that show higher expression of genes that encode NK cell stimuli such as the cytokine IL15 Using this signature, we then examine transcriptomic data to identify tumor and stromal components that may influence the penetrance of NK cells into solid tumors. Our results provide evidence that NK cells play a role in the regulation of human tumors and highlight potential survival effects associated with increased NK cell activity. Our computational analysis identifies putative gene targets that may be of therapeutic value for boosting NK cell antitumor immunity.
Collapse
Affiliation(s)
- Joseph Cursons
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Momeneh Foroutan
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Ashley Anderson
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Andreas Behren
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Nicholas D Huntington
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Stabile H, Scarno G, Fionda C, Gismondi A, Santoni A, Gadina M, Sciumè G. JAK/STAT signaling in regulation of innate lymphoid cells: The gods before the guardians. Immunol Rev 2019; 286:148-159. [PMID: 30294965 DOI: 10.1111/imr.12705] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
Immunity to pathogens is ensured through integration of early responses mediated by innate cells and late effector functions taking place after terminal differentiation of adaptive lymphocytes. In this context, innate lymphoid cells (ILCs) and adaptive T cells represent a clear example of how prototypical effector functions, including polarized expression of cytokines and/or cytotoxic activity, can occur with overlapping modalities but different timing. The ability of ILCs to provide early protection relies on their poised epigenetic state, which determines their propensity to quickly respond to cytokines and to activate specific patterns of signal-dependent transcription factors. Cytokines activating the Janus kinases (JAKs) and members of the signal transducer and activator of transcription (STAT) pathway are key regulators of lymphoid development and sustain the processes underlying T-cell activation and differentiation. The role of the JAK/STAT pathway has been recently extended to several aspects of ILC biology. Here, we discuss how JAK/STAT signals affect ILC development and effector functions in the context of immune responses, highlighting the molecular mechanisms involved in regulation of gene expression as well as the potential of targeting the JAK/STAT pathway in inflammatory pathologies.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Massimo Gadina
- Translational Immunology Section, Office of Science Technology (OST), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
38
|
Lara A, Cong Y, Jahrling PB, Mednikov M, Postnikova E, Yu S, Munster V, Holbrook MR. Peripheral immune response in the African green monkey model following Nipah-Malaysia virus exposure by intermediate-size particle aerosol. PLoS Negl Trop Dis 2019; 13:e0007454. [PMID: 31166946 PMCID: PMC6576798 DOI: 10.1371/journal.pntd.0007454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/17/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
The ability to appropriately mimic human disease is critical for using animal models as a tool for understanding virus pathogenesis. In the case of Nipah virus (NiV), infection of humans appears to occur either through inhalation, contact with or consumption of infected material. In two of these circumstances, respiratory or sinusoidal exposure represents a likely route of infection. In this study, intermediate-size aerosol particles (~7 μm) of NiV-Malaysia were used to mimic potential routes of exposure by focusing viral deposition in the upper respiratory tract. Our previous report showed this route of exposure extended the disease course and a single animal survived the infection. Here, analysis of the peripheral immune response found minimal evidence of systemic inflammation and depletion of B cells during acute disease. However, the animal that survived infection developed an early IgM response with rapid development of neutralizing antibodies that likely afforded protection. The increase in NiV-specific antibodies correlated with an expansion of the B cell population in the survivor. Cell-mediated immunity was not clearly apparent in animals that succumbed during the acute phase of disease. However, CD4+ and CD8+ effector memory cells increased in the survivor with correlating increases in cytokines and chemokines associated with cell-mediated immunity. Interestingly, kinetic changes of the CD4+ and CD8bright T cell populations over the course of acute disease were opposite from animals that succumbed to infection. In addition, increases in NK cells and basophils during convalescence of the surviving animal were also evident, with viral antigen found in NK cells. These data suggest that a systemic inflammatory response and "cytokine storm" are not major contributors to NiV-Malaysia pathogenesis in the AGM model using this exposure route. Further, these data demonstrate that regulation of cell-mediated immunity, in addition to rapid production of NiV specific antibodies, may be critical for surviving NiV infection.
Collapse
Affiliation(s)
- Abigail Lara
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| | - Yu Cong
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| | - Peter B. Jahrling
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| | - Mark Mednikov
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| | - Elena Postnikova
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| | - Shuiqing Yu
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| | - Vincent Munster
- Virus Ecology Unit, Laboratory of Virology, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Michael R. Holbrook
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, United States of America
| |
Collapse
|
39
|
Inducing Fat to Feed a Natural Killer of Malignancy. Mol Ther 2019; 27:898-899. [PMID: 30992190 DOI: 10.1016/j.ymthe.2019.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Highly cytotoxic natural killer cells are associated with poor prognosis in patients with cutaneous T-cell lymphoma. Blood Adv 2019; 2:1818-1827. [PMID: 30054309 DOI: 10.1182/bloodadvances.2018020388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Key Points
Paradoxically higher NK-cell activity in CTCL patients is associated with increased expression of phosphorylated STAT5. These highly effective NK cells are associated with poor prognosis in patients with leukemic CTCL.
Collapse
|
41
|
Hudspeth K, Wang S, Wang J, Rahman S, Smith MA, Casey KA, Manna Z, Sanjuan M, Kolbeck R, Hasni S, Ettinger R, Siegel RM. Natural killer cell expression of Ki67 is associated with elevated serum IL-15, disease activity and nephritis in systemic lupus erythematosus. Clin Exp Immunol 2019; 196:226-236. [PMID: 30693467 DOI: 10.1111/cei.13263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder whose pathology involves multiple immune cell types, including B and T lymphocytes as well as myeloid cells. While it is clear that autoantibody-producing B cells, as well as CD4+ T cell help, are key contributors to disease, little is known regarding the role of innate lymphoid cells such as natural killer (NK) cells in the pathogenesis of SLE. We have characterized the phenotype of NK cells by multi-color flow cytometry in a large cohort of SLE patients. While the overall percentage of NK cells was similar or slightly decreased compared to healthy controls, a subset of patients displayed a high frequency of NK cells expressing the proliferation marker, Ki67, which was not found in healthy donors. Although expression of Ki67 on NK cells correlated with Ki67 on other immune cell subsets, the frequency of Ki67 on NK cells was considerably higher. Increased frequencies of Ki67+ NK cells correlated strongly with clinical severity and active nephritis and was also related to low NK cell numbers, but not overall leukopenia. Proteomic and functional data indicate that the cytokine interleukin-15 promotes the induction of Ki67 on NK cells. These results suggest a role for NK cells in regulating the immune-mediated pathology of SLE as well as reveal a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- K Hudspeth
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
| | - S Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - J Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - S Rahman
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - M A Smith
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - K A Casey
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | -
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - Z Manna
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - M Sanjuan
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - R Kolbeck
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - S Hasni
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| | - R Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD, USA
| | - R M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Simonović N, Witalisz-Siepracka A, Meissl K, Lassnig C, Reichart U, Kolbe T, Farlik M, Bock C, Sexl V, Müller M, Strobl B. NK Cells Require Cell-Extrinsic and -Intrinsic TYK2 for Full Functionality in Tumor Surveillance and Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:1724-1734. [PMID: 30718299 DOI: 10.4049/jimmunol.1701649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a widely expressed receptor-associated kinase that is involved in signaling by a variety of cytokines with important immune regulatory activities. Absence of TYK2 in mice results in impaired NK cell maturation and antitumor activity, although underlying mechanisms are largely unknown. Using conditional ablation of TYK2 in NK cells we show that TYK2 is required for IFN-γ production by NK cells in response to IL-12 and for an efficient immune defense against Listeria monocytogenes Deletion of TYK2 in NK cells did not impact NK cell maturation and IFN-γ production upon NK cell activating receptor (actR) stimulation. Similarly, NK cell-mediated tumor surveillance was unimpaired upon deletion of TYK2 in NK cells only. In line with the previously reported maturation-associated Ifng promoter demethylation, the less mature phenotype of Tyk2-/- NK cells correlated with an increased CpG methylation at the Ifng locus. Treatment with the DNA hypomethylating agent 5-aza-2-deoxycytidine restored the ability of Tyk2-/- NK cells to produce IFN-γ upon actR but not upon IL-12 stimulation. NK cell maturation was dependent on the presence of TYK2 in dendritic cells and could be rescued in Tyk2-deficient mice by treatment with exogenous IL-15/IL-15Rα complexes. IL-15 treatment also rescued the in vitro cytotoxicity defect and the impaired actR-induced IFN-γ production of Tyk2-/- NK cells. Collectively, our findings provide the first evidence, to our knowledge, for a key role of TYK2 in the host environment in promoting NK cell maturation and antitumor activity.
Collapse
Affiliation(s)
- Natalija Simonović
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Katrin Meissl
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Caroline Lassnig
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ursula Reichart
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Department of Agrobiotechnology IFA Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; and
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Birgit Strobl
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
43
|
Yamin R, Berhani O, Peleg H, Aamar S, Stein N, Gamliel M, Hindi I, Scheiman-Elazary A, Gur C. High percentages and activity of synovial fluid NK cells present in patients with advanced stage active Rheumatoid Arthritis. Sci Rep 2019; 9:1351. [PMID: 30718650 PMCID: PMC6361912 DOI: 10.1038/s41598-018-37448-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid Arthritis (RA) causes chronic inflammation of joints. The cytokines TNFα and IFNγ are central players in RA, however their source has not been fully elucidated. Natural Killer (NK) cells are best known for their role in elimination of viral-infected and transformed cells, and they secrete pro-inflammatory cytokines. NK cells are present in the synovial fluids (SFs) of RA patients and are considered to be important in bone destruction. However, the phenotype and function of NK cells in the SFs of patients with erosive deformative RA (DRA) versus non-deformative RA (NDRA) is poorly characterized. Here we characterize the NK cell populations present in the blood and SFs of DRA and NDRA patients. We demonstrate that a distinct population of activated synovial fluid NK (sfNK) cells constitutes a large proportion of immune cells found in the SFs of DRA patients. We discovered that although sfNK cells in both DRA and NDRA patients have similar phenotypes, they function differently. The DRA sfNK secrete more TNFα and IFNγ upon exposure to IL-2 and IL-15. Consequently, we suggest that sfNK cells may be a marker for more severely destructive RA disease.
Collapse
Affiliation(s)
- Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Orit Berhani
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Hagit Peleg
- The Internal medicine department and the Rheumatology unit, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Suhail Aamar
- The Internal medicine department and the Rheumatology unit, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Natan Stein
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Moriya Gamliel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Issam Hindi
- The Internal medicine department and the Rheumatology unit, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Anat Scheiman-Elazary
- The Internal medicine department and the Rheumatology unit, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel. .,The Internal medicine department and the Rheumatology unit, Hadassah Medical Center, Jerusalem, 91120, Israel.
| |
Collapse
|
44
|
Cancer Exosomes as Conveyors of Stress-Induced Molecules: New Players in the Modulation of NK Cell Response. Int J Mol Sci 2019; 20:ijms20030611. [PMID: 30708970 PMCID: PMC6387166 DOI: 10.3390/ijms20030611] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that play a pivotal role in tumor surveillance. Exosomes are nanovesicles released into the extracellular environment via the endosomal vesicle pathway and represent an important mode of intercellular communication. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Moreover, the activation of the DNA damage response (DDR) and the induction of senescence represent two crucial modalities aimed at promoting the clearance of drug-treated tumor cells by NK cells. Emerging evidence has shown that stress stimuli provoke an increased release of exosome secretion. Remarkably, tumor-derived exosomes (Tex) produced in response to stress carry distinct type of DAMPs that activate innate immune cell populations. Moreover, stress-induced ligands for the activating receptor NKG2D are transported by this class of nanovesicles. Here, we will discuss how Tex interact with NK cells and provide insight into their potential role in response to chemotherapy-induced stress stimuli. The capability of some "danger signals" carried by exosomes that indirectly affect the NK cell activity in the tumor microenvironment will be also addressed.
Collapse
|
45
|
Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends Immunol 2019; 40:142-158. [PMID: 30639050 DOI: 10.1016/j.it.2018.12.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Immune 'checkpoint' inhibitors can increase the activity of tumor-resident cytotoxic lymphocytes and have revolutionized cancer treatment. Current therapies block inhibitory pathways in tumor-infiltrating CD8+ T cells and recent studies have shown similar programs in other effector populations such as natural killer (NK) cells. NK cells are critical for immunosurveillance, particularly the control of metastatic cells or hematological cancers. However, how NK cells specifically recognize transformed cells and dominant negative feedback pathways, as well as how tumors escape NK cell control, remains undefined. This review summarizes recent advances that have illuminated inhibitory checkpoints in NK cells, some of which are shared with conventional cytotoxic T lymphocytes. It also outlines emerging approaches aimed at unleashing the potential of NK cells in immunotherapy.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Joseph Cursons
- Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
46
|
|
47
|
Effect of Natural Compounds on NK Cell Activation. J Immunol Res 2018; 2018:4868417. [PMID: 30671486 PMCID: PMC6323526 DOI: 10.1155/2018/4868417] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that survey the body for stressed and abnormal cells. The integration of signals that they receive through various inhibitory and activating cell surface receptors controls their activation and ability to kill target cells and produce cytokines. In this manner, phenotypically and functionally distinct subsets of NK cells help protect against microbial infections and cancer and shape the adaptive immune response. NK cells can use two different mechanisms to kill their targets, either by cytotoxic granule exocytosis or by induction of death receptor-mediated apoptosis. Death ligands belong to the tumor necrosis factor (TNF) family of ligands. Upon release in close proximity to a cell slated for killing, perforin forms pores in the cell membrane of the target cell through which granzymes and associated molecules can enter and induce apoptosis. NK cells are also involved in antibody-dependent cellular toxicity via the CD16 receptor. In addition to target recognition, NK cells can be also activated by treatment with multiple compounds with stimulatory properties. Apart from interleukins, which belong to the best characterized group of NK cell-stimulating compounds, vitamins and constituents extracted from plants also display the ability to activate NK cells. The current review characterizes several groups of NK cell-activating compounds: vitamins belonging to classes A, B, C, D, and E, polysaccharides, lectins, and a number of phytochemicals used in cancer research, exhibiting stimulatory properties when applied to NK cells. Although in most cases the exact mechanism of action is not known, constituents described in this review seem to be promising candidates for NK cell-stimulating drugs.
Collapse
|
48
|
Nagasawa M, Spits H, Ros XR. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030304. [PMID: 29229782 DOI: 10.1101/cshperspect.a030304] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particularly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which allow them to survey and maintain the mucosal integrity. Uncontrolled action of ILCs might contribute to tissue damage, chronic inflammation, metabolic diseases, autoimmunity, and cancer. Here we discuss the recent advances in our understanding of the cytokine network that modulate ILC immune responses: stimulating cytokines, signature cytokines secreted by ILC subsets, autocrine cytokines, and cytokines that induce cell plasticity.
Collapse
Affiliation(s)
- Maho Nagasawa
- Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands
| | - Hergen Spits
- Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands
| | - Xavier Romero Ros
- Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands
| |
Collapse
|
49
|
Manohar M, Kandikattu HK, Verma AK, Mishra A. IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G954-G965. [PMID: 30212254 PMCID: PMC6336943 DOI: 10.1152/ajpgi.00139.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is an inflammatory disease characterized by the induction of several proinflammatory cytokines like interleukin (IL)-6, IL-8, IL-1β, and IL-1. Recently, the multifunctional innate cytokine IL-15 has been implicated in the protection of several diseases, including cancer. Tissue fibrosis is one of the major problems in successfully treating chronic pancreatitis pathogenesis. Therefore, we tested the hypothesis that recombinant IL-15 (rIL-15) treatment may induce innate tissue responses and its overexpression will improve the pathogenesis of cerulein-induced chronic pancreatitis, associated remodeling, and fibrosis. We observed atrophy of acinar cells, increased inflammation, and increased deposition of perivascular collagen, the upregulated protein level of transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), and collagen-1 in cerulein-induced chronic pancreatitis in mice. Furthermore, we reported that rIL-15 treatment protects mice from the cerulein-induced chronic pancreatitis pathogenesis, including acinar cell atrophy, and perivascular accumulation of tissue collagen followed by downregulation of profibrotic genes such as TGF-β1, α-SMA, collagen-1, collagen-3, and fibronectin in cerulein-induced chronic pancreatitis in mice. Mechanistically, we show that IL-15-mediated increase of interferon-γ-responsive invariant natural killer T (iNKT) cells in the blood and tissue protects cerulein-induced pancreatic pathogenesis in mice. Of note, a reduction in iNKT cells was also observed in human chronic pancreatitis compared with normal individuals. Taken together, these data suggest that IL-15 treatment may be a novel therapeutic strategy for treating chronic pancreatitis pathogenesis. NEW & NOTEWORTHY Pancreatic fibrosis is a major concern for the successful treatment of chronic pancreatitis and pancreatic cancer. Therefore, restriction in the progression of fibrosis is the promising approach to manage the pancreatitis pathogenesis. Herein, we present in vivo evidences that pharmacological treatment of recombinant interleukin-15 improves remodeling and fibrosis in cerulein-induced chronic pancreatitis in mice. Our observations indicate that interleukin-15 immunotherapy may be a possible and potential strategy for restricting the progression of fibrosis in chronic pancreatitis.
Collapse
Affiliation(s)
- Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alok Kumar Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
50
|
Finch DK, Stolberg VR, Ferguson J, Alikaj H, Kady MR, Richmond BW, Polosukhin VV, Blackwell TS, McCloskey L, Curtis JL, Freeman CM. Lung Dendritic Cells Drive Natural Killer Cytotoxicity in Chronic Obstructive Pulmonary Disease via IL-15Rα. Am J Respir Crit Care Med 2018; 198:1140-1150. [PMID: 29676596 PMCID: PMC6221577 DOI: 10.1164/rccm.201712-2513oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 02/02/2023] Open
Abstract
RATIONALE Lung natural killer cells (NKs) kill a greater percentage of autologous lung parenchymal cells in chronic obstructive pulmonary disease (COPD) than in nonobstructed smokers. To become cytotoxic, NKs require priming, typically by dendritic cells (DCs), but whether priming occurs in the lungs in COPD is unknown. METHODS We used lung tissue and in some cases peripheral blood from patients undergoing clinically indicated resections to determine in vitro killing of CD326+ lung epithelial cells by isolated lung CD56+ NKs. We also measured the cytotoxicity of unprimed blood NKs after preincubation with lung DCs. To investigate mechanisms of DC-mediated priming, we used murine models of COPD induced by cigarette smoke (CS) exposure or by polymeric immunoglobulin receptor (pIgR) deficiency, and blocked IL-15Rα (IL-15 receptor α subunit) trans-presentation by genetic and antibody approaches. RESULTS Human lung NKs killed isolated autologous lung epithelial cells; cytotoxicity was increased (P = 0.0001) in COPD, relative to smokers without obstruction. Similarly, increased lung NK cytotoxicity compared with control subjects was observed in CS-exposed mice and pIgR-/- mice. Blood NKs both from smokers without obstruction and subjects with COPD showed minimal epithelial cell killing, but in COPD, preincubation with lung DCs increased cytotoxicity. NKs were primed by CS-exposed murine DCs in vitro and in vivo. Inhibiting IL-15Rα trans-presentation eliminated NK priming both by murine CS-exposed DCs and by lung DCs from subjects with COPD. CONCLUSIONS Heightened NK cytotoxicity against lung epithelial cells in COPD results primarily from lung DC-mediated priming via IL-15 trans-presentation on IL-15Rα. Future studies are required to test whether increased NK cytotoxicity contributes to COPD pathogenesis.
Collapse
Affiliation(s)
- Donna K. Finch
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Valerie R. Stolberg
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - John Ferguson
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Henrih Alikaj
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Mohamed R. Kady
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Bradley W. Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell and Developmental Biology and
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
- Pulmonary and Critical Care Medicine Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Christine M. Freeman
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|