1
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen MC. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024. [PMID: 39206504 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Jürg Hafner
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Cezmi A Akdis
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, California, USA
| | - Marie-Charlotte Brüggen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| |
Collapse
|
2
|
Patel J, Sohal A, Chaudhry H, Kalra S, Kohli I, Singh I, Dukovic D, Yang J. Predictors and impact of aspiration pneumonia in patients undergoing esophagogastroduodenoscopy: national inpatient sample 2016-2020. Eur J Gastroenterol Hepatol 2024; 36:298-305. [PMID: 38179867 DOI: 10.1097/meg.0000000000002698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Aspiration pneumonia is a rare but feared complication among patients undergoing esophagogastroduodenoscopy (EGD). Our study aims to assess the incidence as well as risk factors for aspiration pneumonia in patients undergoing EGD. METHODS National Inpatient Sample 2016-2020 was used to identify adult patients undergoing EGD. Patients were stratified into two groups based on the presence of aspiration pneumonia. Multivariate logistic regression analysis was performed to identify the risk factors associated with aspiration pneumonia. We adjusted for patient demographics, Elixhauser comorbidities and hospital characteristics. RESULTS Of the 1.8 million patients undergoing EGD, 1.9% of the patients developed aspiration pneumonia. Patients with aspiration pneumonia were mostly males (59.54%), aged >65 years old (66.19%), White (72.2%), had Medicare insurance (70.5%) and were in the lowest income quartile (28.7%). On multivariate analysis, the age >65 group, White race, congestive heart failure (CHF), neurological disorders and chronic obstructive pulmonary disease were associated with higher odds of aspiration pneumonia. This complication was associated with higher in-hospital mortality (9% vs. 0.8%; P < 0.001) and longer length of stay (10.54 days vs. 4.85 days; P < 0.001). CONCLUSION Our study found that rates of post-EGD aspiration pneumonia are increasing. We found a significant association between various comorbidities and aspiration pneumonia. Our data suggests that we need to optimize these patients before EGD, as the development of aspiration is associated with worsened outcomes. Further prospective studies are needed to clarify these associations.
Collapse
Affiliation(s)
- Jay Patel
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington
| | - Hunza Chaudhry
- Department of Internal Medicine, University of California, San Francisco-Fresno, California, USA
| | - Shivam Kalra
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Isha Kohli
- Department of Graduate Public Health, Icahn School of Medicine, Mount Sinai, New York
| | - Ishandeep Singh
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Dino Dukovic
- Department of Internal Medicine, Ross University School of Medicine, Bridgetown, Barbados
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Yang Y, Song Y, Hou D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab Syndr Obes 2023; 16:4147-4156. [PMID: 38145256 PMCID: PMC10749174 DOI: 10.2147/dmso.s441762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity is a principle causative factor of various metabolic dysfunctions, chronic inflammation, and multi-organ impairment. The global epidemic of obesity has constituted the greatest threat to global health. Emerging evidence has associated obesity with an increased risk of severe infection and poor outcomes from coronavirus disease 2019 (COVID-19). During current COVID-19 pandemic, the interaction between COVID-19 and obesity has exaggerated the disease burden of obesity more than ever before. Thus, there is an urgent need for consideration of universal measures to reduce the risk of complications and severe illness from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in obesity population. In this review, we first summarized the clinical evidence on the effect of obesity on susceptibility, severity, and prognosis of COVID-19. Then we discussed and the underlying mechanisms, including respiratory pathophysiology of obesity, dysregulated inflammation, upregulated angiotensin-converting enzyme 2 (ACE2) expression, hyperglycemia, and adipokines. Finally, we proposed recommendations on how to reduce the spread and pandemic of SARS-CoV-2 infection by prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yanping Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Respiratory Research Institute, Shanghai, People’s Republic of China
| | - Dongni Hou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Li Y, Xie Q, Huang H, Gissler M, Zhang X, Lee PMY, Svendsen K, Huang L, Li J, Fu B. Association of Maternal Body Mass Index During Early Pregnancy With Offspring Lower Respiratory Infections: A Nationwide Cohort Study. Pediatr Infect Dis J 2023; 42:1107-1114. [PMID: 37725800 DOI: 10.1097/inf.0000000000004076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
OBJECTIVE To assess whether or to what extent maternal obesity during early pregnancy could increase the risk of offspring lower respiratory infections (LRI). STUDY DESIGN This population-based cohort included 688,457 live singleton births born in Denmark between 2004 and 2016. The exposure was maternal body mass index (BMI) during early pregnancy, and the outcome was LRI in offspring. Cox regression models were used to estimate hazard ratios with their 95% confidence intervals (CI) for the association. We also performed subanalysis stratified by the LRI onset age, number of infection episodes before the age of 3, infection pathogens, infection sites, duration of hospital stay due to LRI and allergic constitution of children. RESULTS A total of 64,725 LRIs in offspring were identified during follow-up. Maternal overweight (BMI 25.0-29.9 kg/m 2 ), moderate or severe obesity (BMI 30.0-39.9 kg/m 2 ) and very severe obesity (BMI ≥40 kg/m 2 ) were associated with a 7% (95% CI: 5%-9%), 16% (95% CI: 14%-19%) and 21% (95% CI: 13%-28%) increased risk of LRI in offspring, respectively. Higher maternal BMI was positively associated with earlier onset age, more episodes before the age of 3, and longer hospital stay of LRI in offspring. In addition, allergic constitution of offspring significantly enhanced the effect of maternal BMI on offspring LRI (44% increased risk, 95% CI: 5%-97% for very severe obesity). CONCLUSIONS Maternal BMI during early pregnancy might be a risk factor for offspring LRI, especially in children with allergic constitution.
Collapse
Affiliation(s)
- Yang Li
- From the School of Data Science, Fudan University, Shanghai, China
| | - Qiuling Xie
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heyu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mika Gissler
- Department of Knowledge Brokers, THL, Finnish Institute for Health and Welfare, Helsinki, Finland
- Region Stockholm, Academic Primary Health Care Centre, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Priscilla Ming Yi Lee
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, SAR
| | - Katrine Svendsen
- Research Unit, Regional Hospital Horsens, Sundvej 32, 8700 Horsens, Denmark
| | - Lisu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Li
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, SAR
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bo Fu
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
5
|
Klaeske K, Messer EK, Klein S, Sieg F, Eifert S, Haunschild J, Jawad K, Saeed D, Dashkevich A, Borger MA, Dieterlen MT. Body mass index-dependent immunological profile changes after left ventricular assist device implantation. Front Immunol 2023; 14:1256725. [PMID: 37885885 PMCID: PMC10597783 DOI: 10.3389/fimmu.2023.1256725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose Infection is a common complication following left ventricular assist device (LVAD) implantation. Patients with obesity are particularly at risk due to their high percentage of adipose tissue and the resulting chronic inflammatory state and resulting immunological changes. This study investigated changes of immunological parameters in relation to body mass index (BMI) during the first year after LVAD implantation. Methods Blood samples were obtained prior to LVAD implantation and at 3 (1st FU), 6 (2nd FU) and 12 mo (3rd FU) after LVAD implantation. Patients were divided into three groups (normal weight: BMI of 18.5-24.9 kg/m2; n=12; pre-obesity: 25.0-29.9 kg/m2; n=15; obesity: ≥ 30.0 kg/m2; n=17) based on their BMI at the time of LVAD implantation. Flow cytometric analyses for CD4+ and CD8+ T cells, regulatory T cells (Tregs), B cells as well as dendritic cells (DCs) were performed. Results After LVAD implantation, obese patients (0.51 ± 0.20%) showed a higher proportion of overall DCs than normal-weight (0.28 ± 0.10%) and pre-obese patients (0.32 ± 0.11%, p<0.01) at 3rd FU. The proportion of BDCA3+ myeloid DCs was lower in obese patients (64.3 ± 26.5%) compared to normal-weight patients (82.7 ± 10.0%, pnormal-weight vs. obesity=0.05) at 2nd FU after LVAD implantation. The analysis of BDCA4+ plasmacytoid DCs revealed a reduced proportion in pre-obese (21.1 ± 9.8%, pnormal-weight vs. pre-obesity=0.01) and obese patients (23.7 ± 10.6%, pnormal-weight vs. obesity=0.05) compared to normal-weight patients (33.1 ± 8.2%) in the 1st FU. T cell analysis showed that CD4+ T cells of obese patients (62.4 ± 9.0%) significantly increased in comparison to pre-obese patients (52.7 ± 10.0%, ppre-obesity vs. obesity=0.05) and CD8+ T cells were lower in obese patients (31.8 ± 8.5%) than in normal-weight patients (42.4 ± 14.2%; pnormal-weight vs. obesity=0.04) at the 3rd FU. Furthermore, we observed significantly reduced proportions of Tregs in pre-obese patients compared to normal-weight and obese patients at 2nd FU (p=0.02) and 3rd FU (p=0.01) after LVAD implantation. Conclusion This study reported changes of the innate and adaptive immune system of pre-obese and obese compared to normal-weight patients one year after LVAD implantation. DCs and their subsets, CD8+ T cells and Tregs were affected immune cell populations that indicate immunological changes which might increase the incidence of postoperative infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maja-Theresa Dieterlen
- University Clinic of Cardiac Surgery, Leipzig Heart Center, HELIOS Clinic, Leipzig, Germany
| |
Collapse
|
6
|
De Barra C, Khalil M, Mat A, O'Donnell C, Shaamile F, Brennan K, O'Shea D, Hogan AE. Glucagon-like peptide-1 therapy in people with obesity restores natural killer cell metabolism and effector function. Obesity (Silver Spring) 2023. [PMID: 37157931 DOI: 10.1002/oby.23772] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE People with obesity (PWO) have functionally defective natural killer (NK) cells, with a decreased capacity to produce cytokines and kill target cells, underpinned by defective cellular metabolism. It is plausible that the changes in peripheral NK cell activity are contributing to the multimorbidity in PWO, which includes an increased risk of cancer. This study investigated whether therapy with long-acting glucagon-like peptide-1 (GLP-1) analogues, which are an effective treatment for obesity, could restore NK cell functionality in PWO. METHODS In a cohort of 20 PWO, this study investigated whether 6 months of once weekly GLP-1 therapy (semaglutide) could restore human NK cell function and metabolism using multicolor flow cytometry, enzyme-linked immunosorbent assays, and cytotoxicity assays. RESULTS These data demonstrate that PWO who received GLP-1 therapy have improved NK cell function, as measured by cytotoxicity and interferon-γ/granzyme B production. In addition, the study demonstrates increases in a CD98-mTOR-glycolysis metabolic axis, which is critical for NK cell cytokine production. Finally, it shows that the reported improvements in NK cell function appear to be independent of weight loss. CONCLUSIONS The restoration, by GLP-1 therapy, of NK cell functionality in PWO may be contributing to the overall benefits being seen with this class of medication.
Collapse
Affiliation(s)
- Conor De Barra
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, County Kildare, Ireland
| | - Mohammed Khalil
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Arimin Mat
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Cliona O'Donnell
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Ferrah Shaamile
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | | | - Donal O'Shea
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, County Kildare, Ireland
| |
Collapse
|
7
|
Patel TP, Levine JA, Elizondo DM, Arner BE, Jain A, Saxena A, Lopez-Ocasio M, Dagur PK, Famuyiwa O, Gupta S, Sarrafan-Chaharsoughi Z, Biancotto A, McCoy JP, Demidowich AP, Yanovski JA. Immunomodulatory effects of colchicine on peripheral blood mononuclear cell subpopulations in human obesity: Data from a randomized controlled trial. Obesity (Silver Spring) 2023; 31:466-478. [PMID: 36628649 PMCID: PMC9877161 DOI: 10.1002/oby.23632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Colchicine is known to reduce inflammation and improve endothelial cell function and atherosclerosis in obesity, but there is little knowledge of the specific circulating leukocyte populations that are modulated by colchicine. METHODS A secondary analysis of a double-blind randomized controlled trial of colchicine 0.6 mg or placebo twice daily for 3 months on circulating leukocyte populations and regulation of the immune secretome in 35 adults with obesity was performed. RESULTS Colchicine altered multiple innate immune cell populations, including dendritic cells and lymphoid progenitor cells, monocytes, and natural killer cells when compared with placebo. Among all subjects and within the colchicine group, changes in natural killer cells were significantly positively associated with reductions in biomarkers of inflammation, including cyclooxygenase 2, pulmonary surfactant-associated protein D, myeloperoxidase, proteinase 3, interleukin-16, and resistin. Changes in dendritic cells were positively correlated with changes in serum heart-type fatty acid-binding protein concentrations. Additionally, colchicine treatment reduced cluster of differentiation (CD) CD4+ T effector cells and CD8+ T cytotoxic cells. Conversely, colchicine increased CD4+ and CD8+ T central memory cells and activated CD38High CD8+ T cells. Changes in CD4+ T effector cells were associated with changes in serum heart-type fatty acid-binding protein. CONCLUSIONS In adults with obesity, colchicine significantly affects circulating leukocyte populations involved in both innate and adaptive immune systems along with the associated inflammatory secretome.
Collapse
Affiliation(s)
- Tushar P. Patel
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jordan A. Levine
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Diana M. Elizondo
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brooke E. Arner
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Arad Jain
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ankit Saxena
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olufisola Famuyiwa
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Suryaa Gupta
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zahra Sarrafan-Chaharsoughi
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Angelique Biancotto
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, M, USA
| | - J. Philip McCoy
- Flow Cytometry Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew P. Demidowich
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Johns Hopkins Community Physicians at Howard County General Hospital, Johns Hopkins Medicine, Columbia, MD, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Division of Intramural Research (DIR), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
8
|
Kelly NEW, De Barra C, Shaamile F, Holland A, Shaw L, Mallon PWG, O’Connell J, Hogan AE, O’Shea D. Antigen specific T cells in people with obesity at five months following ChAdOx1 COVID-19 vaccination. Int J Obes (Lond) 2023; 47:83-86. [PMID: 36347936 PMCID: PMC9643927 DOI: 10.1038/s41366-022-01235-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES People with obesity (PWO) face an increased risk of severe outcomes from COVID-19, including hospitalisation, ICU admission and death. Obesity has been seen to impair immune memory following vaccination against influenza, hepatitis B, tetanus, and rabies. Little is known regarding immune memory in PWO following COVID-19 adenovirus vector vaccination. SUBJECTS/METHODS We investigated SARS-CoV-2 specific T cell responses in 50 subjects, five months following a two-dose primary course of ChAdOx1 nCoV-19 (AZD1222) vaccination. We further divided our cohort into PWO (n = 30) and matched controls (n = 20). T cell (CD4+, CD8+) cytokine responses (IFNγ, TNFα) to SARS-CoV-2 spike peptide pools were determined using multicolour flow cytometry. RESULTS Circulating T cells specific for SARS-CoV-2 were readily detected across our cohort, with robust responses to spike peptide stimulation across both T cell lines. PWO and controls had comparable levels of both CD4+ and CD8+ SARS-CoV-2 spike specific T cells. Polyfunctional T cells - associated with enhanced protection against viral infection - were detected at similar frequencies in both PWO and controls. CONCLUSIONS These data indicate that PWO who have completed a primary course of ChAdOx1 COVID-19 vaccination have robust, durable, and functional antigen specific T cell immunity that is comparable to that seen in people without obesity.
Collapse
Affiliation(s)
- Neil E. Wrigley Kelly
- grid.412751.40000 0001 0315 8143St Vincent’s University Hospital and University College Dublin, Dublin 4, Ireland
| | - Conor De Barra
- grid.95004.380000 0000 9331 9029Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Ferrah Shaamile
- grid.460958.60000 0004 0617 8141St Columcille’s Hospital, Loughlinstown, Co. Dublin, Dublin, Ireland
| | - Aisling Holland
- grid.460958.60000 0004 0617 8141St Columcille’s Hospital, Loughlinstown, Co. Dublin, Dublin, Ireland
| | - Liam Shaw
- grid.412751.40000 0001 0315 8143St Vincent’s University Hospital and University College Dublin, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- grid.7886.10000 0001 0768 2743Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jean O’Connell
- grid.460958.60000 0004 0617 8141St Columcille’s Hospital, Loughlinstown, Co. Dublin, Dublin, Ireland
| | - Andrew E. Hogan
- grid.95004.380000 0000 9331 9029Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland ,grid.452722.4National Children’s Research Centre, Dublin 12, Ireland
| | - Donal O’Shea
- grid.412751.40000 0001 0315 8143St Vincent’s University Hospital and University College Dublin, Dublin 4, Ireland ,grid.460958.60000 0004 0617 8141St Columcille’s Hospital, Loughlinstown, Co. Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Hameed M, Geerling E, Pinto AK, Miraj I, Weger-Lucarelli J. Immune response to arbovirus infection in obesity. Front Immunol 2022; 13:968582. [PMID: 36466818 PMCID: PMC9716109 DOI: 10.3389/fimmu.2022.968582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 12/26/2023] Open
Abstract
Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin and adiponectin that exert wide ranging effects on other cells. In individuals with obesity, macrophages account for up to 40% of adipose tissue (AT) cells, three times more than in adipose tissue (10%) of healthy weight individuals and secrete several cytokines and chemokines such as interleukin (IL)-1β, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor necrosis factor (TNF)-α, leading to the development of inflammation. Overall, obesity-derived cytokines strongly affect immune responses and make patients with obesity more prone to severe symptoms than patients with a healthy weight. Several epidemiological studies reported a strong association between obesity and severe arthropod-borne virus (arbovirus) infections such as dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis virus (SINV). Recently, experimental investigations found that DENV, WNV, CHIKV and Mayaro virus (MAYV) infections cause worsened disease outcomes in infected diet induced obese (DIO) mice groups compared to infected healthy-weight animals. The mechanisms leading to higher susceptibility to severe infections in individuals with obesity remain unknown, though a better understanding of the causes will help scientists and clinicians develop host directed therapies to treat severe disease. In this review article, we summarize the effects of obesity on the host immune response in the context of arboviral infections. We have outlined that obesity makes the host more susceptible to infectious agents, likely by disrupting the functions of innate and adaptive immune cells. We have also discussed the immune response of DIO mouse models against some important arboviruses such as CHIKV, MAYV, DENV, and WNV. We can speculate that obesity-induced disruption of innate and adaptive immune cell function in arboviral infections ultimately affects the course of arboviral disease. Therefore, further studies are needed to explore the cellular and molecular aspects of immunity that are compromised in obesity during arboviral infections or vaccination, which will be helpful in developing specific therapeutic/prophylactic interventions to prevent immunopathology and disease progression in individuals with obesity.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Iqra Miraj
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Schwarz B, Roberts LM, Bohrnsen E, Jessop F, Wehrly TD, Shaia C, Bosio CM. Contribution of Lipid Mediators in Divergent Outcomes following Acute Bacterial and Viral Lung Infections in the Obese Host. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1323-1334. [PMID: 36002235 PMCID: PMC9529825 DOI: 10.4049/jimmunol.2200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
Obesity is considered an important comorbidity for a range of noninfectious and infectious disease states including those that originate in the lung, yet the mechanisms that contribute to this susceptibility are not well defined. In this study, we used the diet-induced obesity (DIO) mouse model and two models of acute pulmonary infection, Francisella tularensis subspecies tularensis strain SchuS4 and SARS-CoV-2, to uncover the contribution of obesity in bacterial and viral disease. Whereas DIO mice were more resistant to infection with SchuS4, DIO animals were more susceptible to SARS-CoV-2 infection compared with regular weight mice. In both models, neither survival nor morbidity correlated with differences in pathogen load, overall cellularity, or influx of inflammatory cells in target organs of DIO and regular weight animals. Increased susceptibility was also not associated with exacerbated production of cytokines and chemokines in either model. Rather, we observed pathogen-specific dysregulation of the host lipidome that was associated with vulnerability to infection. Inhibition of specific pathways required for generation of lipid mediators reversed resistance to both bacterial and viral infection. Taken together, our data demonstrate disparity among obese individuals for control of lethal bacterial and viral infection and suggest that dysregulation of the host lipidome contributes to increased susceptibility to viral infection in the obese host.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| |
Collapse
|
11
|
Shaikh SR, MacIver NJ, Beck MA. Obesity Dysregulates the Immune Response to Influenza Infection and Vaccination Through Metabolic and Inflammatory Mechanisms. Annu Rev Nutr 2022; 42:67-89. [PMID: 35995048 PMCID: PMC10880552 DOI: 10.1146/annurev-nutr-062320-115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The COVID-19 pandemic demonstrates that obesity alone, independent of comorbidities, is a significant risk factor for severe outcomes from infection. This susceptibility mirrors a similar pattern with influenza infection; that is, obesity is a unique risk factor for increased morbidity and mortality. Therefore, it is critical to understand how obesity contributes to a reduced ability to respond to respiratory viral infections. Herein, we discuss human and animal studies with influenza infection and vaccination that show obesity impairs immunity. We cover several key mechanisms for the dysfunction. These mechanisms include systemic and cellular level changes that dysregulate immune cell metabolism and function in addition to how obesity promotes deficiencies in metabolites that control the resolution of inflammation and infection. Finally, we discuss major gaps in knowledge, particularly as they pertain to diet and mechanisms, which will drive future efforts to improve outcomes in response to respiratory viral infections in an increasingly obese population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| |
Collapse
|
12
|
Chen IC, Awasthi D, Hsu CL, Song M, Chae CS, Dannenberg AJ, Cubillos-Ruiz JR. High-Fat Diet-Induced Obesity Alters Dendritic Cell Homeostasis by Enhancing Mitochondrial Fatty Acid Oxidation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:69-76. [PMID: 35697385 PMCID: PMC9247030 DOI: 10.4049/jimmunol.2100567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Obesity is associated with increased cancer risk and weak responses to vaccination and sepsis treatment. Although dendritic cells (DCs) are fundamental for the initiation and maintenance of competent immune responses against pathogens and tumors, how obesity alters the normal physiology of these myeloid cells remains largely unexplored. In this study, we report that obesity caused by prolonged high-fat diet feeding disrupts the metabolic and functional status of mouse splenic DCs (SpDCs). High-fat diet-induced obesity drastically altered the global transcriptional profile of SpDCs, causing severe changes in the expression of gene programs implicated in lipid metabolism and mitochondrial function. SpDCs isolated from obese mice demonstrated enhanced mitochondrial respiration provoked by increased fatty acid oxidation (FAO), which drove the intracellular accumulation of reactive oxygen species that impaired Ag presentation to T cells. Accordingly, treatment with the FAO inhibitor etomoxir, or antioxidants such as vitamin E or N-acetyl-l-cysteine, restored the Ag-presenting capacity of SpDCs isolated from obese mice. Our findings reveal a major detrimental effect of obesity in DC physiology and suggest that controlling mitochondrial FAO or reactive oxygen species overproduction may help improve DC function in obese individuals.
Collapse
Affiliation(s)
- I-Chun Chen
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Minkyung Song
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
- Department of Integrative Biotechnology and Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea; and
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY;
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Weill Cornell Graduate School of Medical Sciences, Cornell University. New York, NY
| |
Collapse
|
13
|
Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022; 107:1799-1811. [PMID: 35262698 PMCID: PMC8992328 DOI: 10.1210/clinem/dgac137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Obesity is associated with an increase in morbidity and mortality from coronavirus disease 2019 (COVID-19). The risk is related to the cytokine storm, a major contributor to multiorgan failure and a pathological character of COVID-19 patients with obesity. While the exact cause of the cytokine storm remains elusive, disorders in energy metabolism has provided insights into the mechanism. Emerging data suggest that adipose tissue in obesity contributes to the disorders in several ways. First, adipose tissue restricts the pulmonary function by generation of mechanical pressures to promote systemic hypoxia. Second, adipose tissue supplies a base for severe acute respiratory syndrome coronavirus 2 entry by overexpression of viral receptors [angiotensin-converting enzyme 2 and dipeptidyl peptidase 4]. Third, impaired antiviral responses of adipocytes and immune cells result in dysfunction of immunologic surveillance as well as the viral clearance systems. Fourth, chronic inflammation in obesity contributes to the cytokine storm by secreting more proinflammatory cytokines. Fifth, abnormal levels of adipokines increase the risk of a hyperimmune response to the virus in the lungs and other organs to enhance the cytokine storm. Mitochondrial dysfunction in adipocytes, immune cells, and other cell types (endothelial cells and platelets, etc) is a common cellular mechanism for the development of cytokine storm, which leads to the progression of mild COVID-19 to severe cases with multiorgan failure and high mortality. Correction of energy surplus through various approaches is recommended in the prevention and treatment of COVID-19 in the obese patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Immunology, Institute of Precision Medicine, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Sarah Ye
- Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hongkai Lian
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
- Corresponding author:
| |
Collapse
|
14
|
Zangeneh M, Valeh T, Sharifi A. Survival analysis based on body mass index in patients with Covid-19 admitted to the intensive care unit of Amir Al-Momenin Hospital in Arak - 2021. OBESITY MEDICINE 2022; 32:100420. [PMID: 35571517 PMCID: PMC9090823 DOI: 10.1016/j.obmed.2022.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The potential risk of obesity on the severity of COVID-19 has been proposed. The main purpose of this study was to investigate the effect of BMI on the survival rate of COVID-19 patients admitted to the ICU. METHODS & MATERIALS Patients with COVID-19 admitted to ICU were included. Gender, height, weight, BMI, age, underlying disease status, prescribed drugs and nutritional supplements, and clinical and laboratory parameters at the beginning of admission were recorded. Death or discharge from the ICU and the days elapsed to these events were also reviewed and recorded. Data analysis was performed using the Cox regression model. RESULTS assessing 193 patients showed that BMI was not related to the survival rate even after adjusting for other potential confounding variables. It was shown that arterial oxygen saturation and taking Famotidine were the significant factors determining the time to event in these patients. CONCLUSION The BMI at the time of ICU admission has no effect on survival rate and time to event in COVID-19 infected patients admitted to ICU.
Collapse
Affiliation(s)
- Morteza Zangeneh
- Clinical Development Research Center, Amir Al-Momenin Hospital, Arak University of Medical Science, Arak, Iran
| | - Touraj Valeh
- Endocrinology & Metabolism Research Center, Amir Al-Momenin Hospital, Arak University of Medical Science, Arak, Iran
| | - Amrollah Sharifi
- Department of Nutrition, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Fragkou PC, Moschopoulos CD, Reiter R, Berger T, Skevaki C. Host immune responses and possible therapeutic targets for viral respiratory tract infections in susceptible populations: a narrative review. Clin Microbiol Infect 2022; 28:1328-1334. [DOI: 10.1016/j.cmi.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
|
16
|
Frasca D, Reidy L, Romero M, Diaz A, Cray C, Kahl K, Blomberg BB. The majority of SARS-CoV-2-specific antibodies in COVID-19 patients with obesity are autoimmune and not neutralizing. Int J Obes (Lond) 2022; 46:427-432. [PMID: 34744161 PMCID: PMC8572364 DOI: 10.1038/s41366-021-01016-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity decreases the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. How obesity impacts the quality of the antibodies secreted, however, is not understood. Therefore, the objective of this study is to evaluate the presence of neutralizing versus autoimmune antibodies in COVID-19 patients with obesity. SUBJECTS/METHODS Thirty serum samples from individuals who tested positive for SARS-CoV-2 infection by RT-PCR were collected from inpatient and outpatient settings. Of these, 15 were lean (BMI < 25) and 15 were obese (BMI ≥ 30). Control serum samples were from 30 uninfected individuals, age-, gender-, and BMI-matched, recruited before the current pandemic. Neutralizing and autoimmune antibodies were measured by ELISA. IgG autoimmune antibodies were specific for malondialdehyde (MDA), a marker of oxidative stress and lipid peroxidation, and for adipocyte-derived protein antigens (AD), markers of virus-induced cell death in the obese adipose tissue. RESULTS SARS-CoV-2 infection induces neutralizing antibodies in all lean but only in few obese COVID-19 patients. SARS-CoV-2 infection also induces anti-MDA and anti-AD autoimmune antibodies more in lean than in obese patients as compared to uninfected controls. Serum levels of these autoimmune antibodies, however, are always higher in obese versus lean COVID-19 patients. Moreover, because the autoimmune antibodies found in serum samples of COVID-19 patients have been correlated with serum levels of C-reactive protein (CRP), a general marker of inflammation, we also evaluated the association of anti-MDA and anti-AD antibodies with serum CRP and found a positive association between CRP and autoimmune antibodies. CONCLUSIONS Our results highlight the importance of evaluating the quality of the antibody response in COVID-19 patients with obesity, particularly the presence of autoimmune antibodies, and identify biomarkers of self-tolerance breakdown. This is crucial to protect this vulnerable population at higher risk of responding poorly to infection with SARS-CoV-2 than lean controls.
Collapse
Affiliation(s)
- Daniela Frasca
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Lisa Reidy
- grid.26790.3a0000 0004 1936 8606Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Maria Romero
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Alain Diaz
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Carolyn Cray
- grid.26790.3a0000 0004 1936 8606Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Kristin Kahl
- grid.26790.3a0000 0004 1936 8606Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Bonnie B. Blomberg
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
17
|
Cho DH, Lee GY, An JH, Han SN. The Effects of 1,25(OH)2D3 treatment on Immune Responses and Intracellular Metabolic Pathways of Bone Marrow-Derived Dendritic Cells from Lean and Obese Mice. IUBMB Life 2021; 74:378-390. [PMID: 34962347 DOI: 10.1002/iub.2592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Vitamin D affects differentiation, maturation, and activation of dendritic cells (DCs). Obesity-related immune dysfunction is associated with metabolic changes in immune cells. Objectives of the study are to investigate the effects of vitamin D and obesity on immune responses and markers related to immunometabolism of bone marrow-derived dendritic cells (BMDCs). Bone marrow cells (BMCs) were isolated from lean and obese mice, and BMDCs were generated by culturing BMCs with rmGM-CSF. BMDCs were treated with 1 or 10 nM of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and maturation was induced by LPS (50 ng/mL) stimulation for 24 h. Cell phenotypes, cytokine productions, and expression of proteins and genes involved in Akt/mTOR signaling pathway and glycolytic pathway were determined. 1,25(OH)2D3 treatment inhibited differentiation of BMDCs (CD11c+ %), expression of phenotypes related with DC function (MHC class II and CD86) and production of IL-12p70 in both lean and obese mice. The expression of PD-L1 and the ratio of IL-10/IL-12p70 were increased by 1,25(OH)2D3. With 1,25(OH)2D3 treatment, Akt/mTOR signaling pathway was suppressed, and expression of genes related to glycolysis (Glut1, Pfkfb4, Hif1A) was increased. The upregulation of glycolysis-related genes observed with 1,25(OH)2D3 treatment seems to be associated with the induction of tolerogenic features of BMDCs from lean and obese mice, and Hif1A seems to have a potential role in conveying the effect of 1,25(OH)2D3 on glycolysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Da Hye Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Jeong Hee An
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Cytokine-induced natural killer cell training is dependent on cellular metabolism and is defective in obesity. Blood Adv 2021; 5:4447-4455. [PMID: 34607345 PMCID: PMC8579258 DOI: 10.1182/bloodadvances.2021005047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
NK cell cytokine training is dependent on glycolysis, oxidative phosphorylation, and the metabolic regulator Srebp. NK cell cytokine training is defective in PWO.
Natural killer (NK) cells are a population of innate immune cells that can rapidly kill cancer cells and produce cytokines such as interferon-γ. A key feature of NK cells is their ability to respond without prior sensitization; however, it is now well established that NK cells can possess memory-like features. After activation with cytokines, NK cells demonstrate enhanced effector functions upon restimulation days or weeks later. This demonstrates that NK cells may be trained to be more effective killers and harnessed as more potent cancer immunotherapy agents. We have previously demonstrated that cellular metabolism is essential for NK cell responses, with NK cells upregulating both glycolysis and oxidative phosphorylation upon cytokine stimulation. Limiting NK cell metabolism results in reduced cytotoxicity and cytokine production. We have also demonstrated that defective NK cell responses in obesity are linked to defective cellular metabolism. In the current study, we investigated if cellular metabolism is required during the initial period of NK cell cytokine training and if NK cells from people with obesity (PWO) can be effectively trained. We show that increased flux through glycolysis and oxidative phosphorylation during the initial cytokine activation period is essential for NK cell training, as is the metabolic signaling factor Srebp. We show that NK cells from PWO, which are metabolically defective, display impaired NK cell training, which may have implications for immunotherapy in this particularly vulnerable group.
Collapse
|
19
|
Pawłowska A, Kwiatkowska A, Suszczyk D, Chudzik A, Tarkowski R, Barczyński B, Kotarski J, Wertel I. Clinical and Prognostic Value of Antigen-Presenting Cells with PD-L1/PD-L2 Expression in Ovarian Cancer Patients. Int J Mol Sci 2021; 22:11563. [PMID: 34768993 PMCID: PMC8583913 DOI: 10.3390/ijms222111563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
The latest literature demonstrates the predominant role of the programmed cell death axis (PD-1/PD-L1/PD-L2) in ovarian cancer (OC) pathogenesis. However, data concerning this issue is ambiguous. Our research aimed to evaluate the clinical importance of PD-L1/PD-L2 expression in OC environments. We evaluated the role of PD-L1/PD-L2 in OC patients (n = 53). The analysis was performed via flow cytometry on myeloid (mDCs) and plasmacytoid dendritic cells (pDCs) and monocytes/macrophages (MO/MA) in peripheral blood, peritoneal fluid (PF), and tumor tissue (TT). The data were correlated with clinicopathological characteristics and prognosis of OC patients. The concentration of soluble PD-L1 (sPD-L1) and PD-1 in the plasma and PF were determined by ELISA. We established an accumulation of PD-L1+/PD-L2+ mDCs, pDCs, and MA in the tumor microenvironment. We showed an elevated level of sPD-L1 in the PF of OC patients in comparison to plasma and healthy subjects. sPD-L1 levels in PF showed a positive relationship with Ca125 concentration. Moreover, we established an association between higher sPD-L1 levels in PF and shorter survival of OC patients. An accumulation of PD-L1+/PD-L2+ mDCs, pDCs, and MA in the TT and high sPD-L1 levels in PF could represent the hallmark of immune regulation in OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Agnieszka Kwiatkowska
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Agata Chudzik
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| | - Rafał Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland; (R.T.); (B.B.); (J.K.)
| | - Bartłomiej Barczyński
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland; (R.T.); (B.B.); (J.K.)
| | - Jan Kotarski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland; (R.T.); (B.B.); (J.K.)
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (D.S.); (A.C.); (I.W.)
| |
Collapse
|
20
|
Valera RJ, Botero-Fonnegra C, Cogollo VJ, Montorfano L, Sarmiento-Cobos M, Rivera CE, Hong L, Lo Menzo E, Szomstein S, Rosenthal RJ. Impact of bariatric surgery on the risk of hospitalization due to influenza virus infection. Surg Obes Relat Dis 2021; 17:1977-1983. [PMID: 34593336 DOI: 10.1016/j.soard.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Obesity independently increases the risk of hospitalization due to viral respiratory infections, including influenza virus and, more recently, severe acute respiratory syndrome coronavirus 2. As an independent risk factor, obesity impairs the immune response to viral infections and decreases the effectiveness of immunizations. OBJECTIVES Using influenza as a proxy, we aimed to determine the impact of bariatric surgery (BaS) on the risk of hospitalization due to viral respiratory infections. SETTING Academic hospital, United States. METHODS National (Nationwide) Inpatient Sample data collected from 2010 to 2015 were examined. Patients were classified as treatment and control groups. Treatment subjects were defined as patients with a history of BaS and control subjects as patients with a body mass index ≥35 kg/m2 and without a history of BaS. Any hospitalization with influenza as a primary diagnosis was identified. Univariate analysis and multivariate regression models were performed to assess the differences between groups. RESULTS A total of 2,300,845 subjects were reviewed, of which 2,004,804 were control subjects and 296,041 were treated patients. Univariate analysis showed that the hospitalization rate in the treatment group was significantly lower than in the control group (.007% versus .019%, P < .0001), which was confirmed after adjusting for covariables (control versus treatment: odds ratio = 2.21, P = .0010). CONCLUSIONS BaS may decrease the risk of hospitalization due to influenza, but further prospective studies are needed to confirm these results. We also suggest that these results should be translated into the development of similar studies to determine the impact of BaS on the incidence and severity of the coronavirus disease 2019.
Collapse
Affiliation(s)
- Roberto J Valera
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Cristina Botero-Fonnegra
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Vicente J Cogollo
- Department of General Surgery, Kendall Regional Medical Center, Miami, Florida
| | - Lisandro Montorfano
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Mauricio Sarmiento-Cobos
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Carlos E Rivera
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Liang Hong
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Emanuele Lo Menzo
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Samuel Szomstein
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida
| | - Raul J Rosenthal
- Department of General Surgery and the Bariatric and Metabolic Institute, Cleveland Clinic Florida, Weston, Florida.
| |
Collapse
|
21
|
Yan T, Xiao R, Wang N, Shang R, Lin G. Obesity and severe coronavirus disease 2019: molecular mechanisms, paths forward, and therapeutic opportunities. Theranostics 2021; 11:8234-8253. [PMID: 34373739 PMCID: PMC8343994 DOI: 10.7150/thno.59293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to have higher pathogenicity among patients with obesity. Obesity, termed as body mass index greater than 30 kg/m2, has now been demonstrated to be important comorbidity for disease severity during coronavirus disease 2019 (COVID-19) pandemic and associated with adverse events. Unraveling mechanisms behind this phenomenon can assist scientists, clinicians, and policymakers in responding appropriately to the COVID-19 pandemic. In this review, we systemically delineated the potential mechanistic links between obesity and worsening COVID-19 from altered physiology, underlying diseases, metabolism, immunity, cytokine storm, and thrombosis. Problematic ventilation caused by obesity and preexisting medical disorders exacerbate organ dysfunction for patients with obesity. Chronic metabolic disorders, including dyslipidemia, hyperglycemia, vitamin D deficiency, and polymorphisms of metabolism-related genes in obesity, probably aid SARS-CoV-2 intrusion and impair antiviral responses. Obesity-induced inadequate antiviral immunity (interferon, natural killer cells, invariant natural killer T cell, dendritic cell, T cells, B cell) at the early stage of SARS-CoV-2 infection leads to delayed viral elimination, increased viral load, and expedited viral mutation. Cytokine storm, with the defective antiviral immunity, probably contributes to tissue damage and pathological progression, resulting in severe symptoms and poor prognosis. The prothrombotic state, driven in large part by endothelial dysfunction, platelet hyperactivation, hypercoagulability, and impaired fibrinolysis in obesity, also increases the risk of severe COVID-19. These mechanisms in the susceptibility to severe condition also open the possibility for host-directed therapies in population with obesity. By bridging work done in these fields, researchers can gain a holistic view of the paths forward and therapeutic opportunities to break the vicious cycle of obesity and its devastating complications in the next emerging pandemic.
Collapse
Affiliation(s)
- Tiantian Yan
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Rong Xiao
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Nannan Wang
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Guoan Lin
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| |
Collapse
|
22
|
Adipose Tissue Immunomodulation and Treg/Th17 Imbalance in the Impaired Glucose Metabolism of Children with Obesity. CHILDREN-BASEL 2021; 8:children8070554. [PMID: 34199040 PMCID: PMC8305706 DOI: 10.3390/children8070554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.
Collapse
|
23
|
Frasca D, Reidy L, Romero M, Diaz A, Cray C, Kahl K, Blomberg BB. SARS-CoV-2 infection induces autoimmune antibody secretion more in lean than in obese COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.05.21256686. [PMID: 34013293 PMCID: PMC8132267 DOI: 10.1101/2021.05.05.21256686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity decreases the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. How obesity impacts the secretion of autoimmune antibodies in COVID-19 patients, however, is not understood. The serum of adult COVID-19 patients contains autoimmune antibodies generated in response to virus-induced tissue damage and cell death leading to the release of intracellular antigens not known to be immunogenic autoantigens. The objective of this study is to evaluate the presence of autoimmune antibodies in COVID-19 patients with obesity. SUBJECTS/METHODS Thirty serum samples from individuals who tested positive for SARS-CoV-2 infection by RT-PCR were collected from inpatient and outpatient settings. Of these, 15 were lean (BMI<25), and 15 were obese (BMI ≥30). Control serum samples were from 30 uninfected individuals, age-gender- and BMI-matched, recruited before the current pandemic. Serum IgG antibodies against two autoimmune specificities, as well as against SARS-CoV-2 Spike protein, were measured by ELISA. IgG autoimmune antibodies were specific for malondialdehyde (MDA), a marker of oxidative stress and lipid peroxidation, and for adipocyte-derived protein antigens (AD), markers of virus-induced cell death in the obese AT. RESULTS Our results show that SARS-CoV-2 infection induces anti-MDA and anti-AD autoimmune antibodies more in lean than in obese patients as compared to uninfected controls. Serum levels of these autoimmune antibodies, however, are always higher in obese versus lean COVID-19 patients. Moreover, because the autoimmune antibodies found in serum samples of COVID-19 patients have been correlated with serum levels of C-reactive protein (CRP), a general marker of inflammation, we also evaluated the association of anti-MDA and anti-AT antibodies with serum CRP and found a significant association between CRP and autoimmune antibodies in our cohort of lean and obese COVID-19 patients. CONCLUSIONS Our results highlight the importance of evaluating the quality of the antibody response in COVID-19 patients with obesity, particularly the presence of autoimmune antibodies, and identify biomarkers of self-tolerance breakdown. This is crucial to protect this vulnerable population that is at higher risk of responding poorly to infection with SARS-CoV-2 compared to lean controls.
Collapse
|
24
|
Kim D, Chung H, Lee JE, Kim J, Hwang J, Chung Y. Immunologic Aspects of Dyslipidemia: a Critical Regulator of Adaptive Immunity and Immune Disorders. J Lipid Atheroscler 2021; 10:184-201. [PMID: 34095011 PMCID: PMC8159760 DOI: 10.12997/jla.2021.10.2.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Dyslipidemia is a major cause of cardiovascular diseases which represent a leading cause of death in humans. Diverse immune cells are known to be involved in the pathogenesis of cardiovascular diseases such as atherosclerosis. Conversely, dyslipidemia is known to be tightly associated with immune disorders in humans, as evidenced by a higher incidence of atherosclerosis in patients with autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. Given that the dyslipidemia-related autoimmune diseases are caused by autoreactive T cells and B cells, dyslipidemia seems to directly or indirectly regulate the adaptive immunity. Indeed, accumulating evidence has unveiled that proatherogenic factors can impact the differentiation and function of CD4+ T cells, CD8+ T cells, and B cells. This review discusses an updated overview on the regulation of adaptive immunity by dyslipidemia and proposes a potential therapeutic strategy for immune disorders by targeting lipid metabolism.
Collapse
Affiliation(s)
- Daehong Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hayeon Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeong-Eun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jiyeon Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Junseok Hwang
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
25
|
Influence of obesity on serum levels of SARS-CoV-2-specific antibodies in COVID-19 patients. PLoS One 2021; 16:e0245424. [PMID: 33760825 PMCID: PMC7990309 DOI: 10.1371/journal.pone.0245424] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2), cause of COVID-19 (Coronavirus Disease of 2019), represents a significant risk to people living with pre-existing conditions associated with exacerbated inflammatory responses and consequent dysfunctional immunity. In this paper, we have evaluated the influence of obesity, a condition associated with chronic systemic inflammation, on the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. Our hypothesis is that obesity is associated with reduced amounts of specific IgG antibodies. Results have confirmed our hypothesis and have shown that SARS-CoV-2 IgG antibodies are negatively associated with Body Mass Index (BMI) in COVID-19 obese patients, as expected based on the known influence of obesity on humoral immunity. Antibodies in COVID-19 obese patients are also negatively associated with serum levels of pro-inflammatory and metabolic markers of inflammaging and pulmonary inflammation, such as SAA (serum amyloid A protein), CRP (C-reactive protein), and ferritin, but positively associated with NEFA (nonesterified fatty acids). These results altogether could help to identify an inflammatory signature with strong predictive value for immune dysfunction. Inflammatory markers identified may subsequently be targeted to improve humoral immunity in individuals with obesity and in individuals with other chronic inflammatory conditions.
Collapse
|
26
|
Guglielmi V, Colangeli L, D’Adamo M, Sbraccia P. Susceptibility and Severity of Viral Infections in Obesity: Lessons from Influenza to COVID-19. Does Leptin Play a Role? Int J Mol Sci 2021; 22:ijms22063183. [PMID: 33804765 PMCID: PMC8003928 DOI: 10.3390/ijms22063183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
The recent pandemic Sars-CoV2 infection and studies on previous influenza epidemic have drawn attention to the association between the obesity and infectious diseases susceptibility and worse outcome. Metabolic complications, nutritional aspects, physical inactivity, and a chronic unbalance in the hormonal and adipocytokine microenvironment are major determinants in the severity of viral infections in obesity. By these pleiotropic mechanisms obesity impairs immune surveillance and the higher leptin concentrations produced by adipose tissue and that characterize obesity substantially contribute to such immune response dysregulation. Indeed, leptin not only controls energy balance and body weight, but also plays a regulatory role in the interplay between energy metabolism and immune system. Since leptin receptor is expressed throughout the immune system, leptin may exert effects on cells of both innate and adaptive immune system. Chronic inflammatory states due to metabolic (i.e., obesity) as well as infectious diseases increase leptin concentrations and consequently lead to leptin resistance further fueling inflammation. Multiple factors, including inflammation and ER stress, contribute to leptin resistance. Thus, if leptin is recognized as one of the adipokines responsible for the low grade inflammation found in obesity, on the other hand, impairments of leptin signaling due to leptin resistance appear to blunt the immunologic effects of leptin and possibly contribute to impaired vaccine-induced immune responses. However, many aspects concerning leptin interactions with inflammation and immune system as well as the therapeutical approaches to overcome leptin resistance and reduced vaccine effectiveness in obesity remain a challenge for future research.
Collapse
|
27
|
De Bandt JP, Monin C. Obesity, Nutrients and the Immune System in the Era of COVID-19. Nutrients 2021; 13:nu13020610. [PMID: 33668493 PMCID: PMC7917599 DOI: 10.3390/nu13020610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
The past year has shown that obesity is a risk factor for severe complications of SARS-CoV-2 infection. Excess fat mass during obesity is known to be a risk factor for chronic diseases but also for severe infections and infectious complications. We have focused here on the elements responsible for this particular susceptibility to infections and more specifically to COVID-19. Excess fat is, in itself, responsible for alterations of the immune system by disrupting the production and function of immune cells. Indeed, hypertrophic adipocytes produce more pro-inflammatory adipokines (including cytokines). The increase in their apoptosis induces a release of pro-inflammatory compounds into the circulation and a recruitment of pro-inflammatory macrophages into the adipose tissue. A chronic systemic inflammatory state is then observed. In addition, diet, apart from its role in the development of adipose tissue, can also affect the immune system, with excess simple sugars and saturated fats exerting pro-inflammatory effects. This inflammation, the adipokines released by the adipocytes, and the infiltration of lipids into the lymphoid organs affects the production of immune cells and, directly, the functions of these cells. The alteration of the immune system increases the risk of infection as well as complications, including secondary bacterial infections and septic states, and increases infection-related mortality. During COVID-19, the chronic inflammatory state promotes the cytokine shock, characteristic of severe forms, caused in particular by excessive activation of the NLRP3 inflammasome. Furthermore, in obese subjects, the already present endothelial dysfunction will render endothelial inflammation (endotheliitis) due to viral infiltration all the more severe. Added to this is a state of hypercoagulability and a decrease in respiratory capacity, leading to a risk of severe COVID-19 with cardiovascular complications, acute respiratory distress syndrome, and disseminated intravascular coagulation, which can lead to multiple organ failure and even death.
Collapse
|
28
|
Stiglbauer V, Gamradt S, Scherzer M, Brasanac J, Otte C, Rose M, Hofmann T, Hinkelmann K, Gold SM. Immunological substrates of depressive symptoms in patients with severe obesity: An exploratory study. Cell Biochem Funct 2021; 39:423-431. [PMID: 33401342 DOI: 10.1002/cbf.3608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 11/06/2022]
Abstract
In this pilot study, we explored the immune phenotype of patients with severe obesity and comorbid depressive symptoms compared to non-depressed patients with obesity and normal-weight controls. Immune cell subsets were analysed by flow cytometry and depressive symptoms assessed using the Patient Health Questionnaire (PHQ-9). Cell frequencies were correlated with depressive symptom scores and waist-to-hip ratio (WHR). Patients with obesity and comorbid depression showed significantly lower numbers of circulating cytotoxic natural killer cells, dendritic cells and CD8+ effector memory T cells, compared to normal-weight controls. Regulatory T cells and CD4+ central memory T cells were increased compared to non-depressed patients with obesity and compared to normal-weight controls, respectively. Frequencies of cytotoxic natural killer cells and CD4+ central memory T cells significantly correlated with PHQ-9 scores, but not with WHR. Reduced numbers of dendritic cells were observed in both patient groups with obesity and correlated with PHQ-9 scores and WHR. These findings provide evidence for an altered immune composition in comorbid obesity and depression, supporting a pathobiological overlap between the two disorders.
Collapse
Affiliation(s)
- Victoria Stiglbauer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Stefanie Gamradt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Marie Scherzer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Berlin, Germany
| | - Jelena Brasanac
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Matthias Rose
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Berlin, Germany
| | - Tobias Hofmann
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Berlin, Germany
| | - Kim Hinkelmann
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan M Gold
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Berlin, Germany.,Institut für Neuroimmunologie und MS (INIMS), Zentrum für Molekulare Neurobiologie, Universitätklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Frasca D, Reidy L, Cray C, Diaz A, Romero M, Kahl K, Blomberg BB. Effects of obesity on serum levels of SARS-CoV-2-specific antibodies in COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.18.20248483. [PMID: 33403370 PMCID: PMC7783955 DOI: 10.1101/2020.12.18.20248483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2), cause of COVID-19 (Coronavirus Disease of 2019), represents a significant risk to people living with pre-existing conditions associated with exacerbated inflammatory responses and consequent dysfunctional immunity. In this paper, we have evaluated the effects of obesity, a condition associated with chronic systemic inflammation, on the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. Results have shown that SARS-CoV-2 IgG antibodies are negatively associated with Body Mass Index (BMI) in COVID-19 obese patients, as expected based on the known effects of obesity on humoral immunity. Antibodies in COVID-19 obese patients are also negatively associated with serum levels of pro-inflammatory and metabolic markers of inflammaging and pulmonary inflammation, such as SAA (serum amyloid A protein), CRP (C-reactive protein) and ferritin, but positively associated with NEFA (nonesterified fatty acids). These results altogether could help to identify an inflammatory signature with strong predictive value for immune dysfunction that could be targeted to improve humoral immunity in individuals with obesity as well as with other chronic inflammatory conditions.
Collapse
|
30
|
Spielmann J, Mattheis L, Jung JS, Rauße H, Glaß M, Bähr I, Quandt D, Oswald J, Kielstein H. Effects of obesity on NK cells in a mouse model of postmenopausal breast cancer. Sci Rep 2020; 10:20606. [PMID: 33244094 PMCID: PMC7692502 DOI: 10.1038/s41598-020-76906-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widely spread disease and a crucial risk factor for malign disorders, including breast cancer of women in the postmenopause. Studies demonstrated that in case of obesity crucial natural killer (NK) cell functions like combating tumor cells are affected. This study aims to analyze NK cells and NK cell receptor expression of obese mice in a model for postmenopausal breast cancer. Therefore, female BALB/c mice were fed either a high fat or a standard diet. Thereafter, ovaries were ectomized and a syngeneic and orthotopical injection of 4T1-luc2 mouse mammary tumor cells into the mammary adipose tissue pad was performed. Obese mice showed increased body weights and visceral fat mass as well as increased levels of leptin and IL-6 in plasma. Moreover, compared to the lean littermates, tumor growth was increased and the NKp46-expression on circulating NK cells was decreased. Furthermore, the activating NK cell receptor NKG2D ligand (MULT1) expression was enhanced in adipose tissue of obese tumor bearing mice. The present study gives novel insights into gene expression of NK cell receptors in obesity and aims to promote possible links of the obesity-impaired NK cell physiology and the elevated breast cancer risk in obese women.
Collapse
Affiliation(s)
- Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany.
| | - Laura Mattheis
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
- Deptartment of Internal Medicine I, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| | - Henrik Rauße
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
- Clinic for Psychosomatics and Psychotherapy, Landschaftsverband Westfalen-Lippe Clinic, Lengerich, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Charles Tanford Protein Center, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Jana Oswald
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle (Saale), Germany
| |
Collapse
|
31
|
Magdy Beshbishy A, Hetta HF, Hussein DE, Saati AA, C. Uba C, Rivero-Perez N, Zaragoza-Bastida A, Shah MA, Behl T, Batiha GES. Factors Associated with Increased Morbidity and Mortality of Obese and Overweight COVID-19 Patients. BIOLOGY 2020; 9:E280. [PMID: 32916925 PMCID: PMC7564335 DOI: 10.3390/biology9090280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Overweight and obesity are defined as an unnecessary accumulation of fat, which poses a risk to health. It is a well-identified risk factor for increased mortality due to heightened rates of heart disease, certain cancers, musculoskeletal disorders, and bacterial, protozoan and viral infections. The increasing prevalence of obesity is of concern, as conventional pathogenesis may indeed be increased in obese hosts rather than healthy hosts, especially during this COVID-19 pandemic. COVID-19 is a new disease and we do not have the luxury of cumulative data. Obesity activates the development of gene induced hypoxia and adipogenesis in obese animals. Several factors can influence obesity, for example, stress can increase the body weight by allowing people to consume high amounts of food with a higher propensity to consume palatable food. Obesity is a risk factor for the development of immune-mediated and some inflammatory-mediated diseases, including atherosclerosis and psoriasis, leading to a dampened immune response to infectious agents, leading to weaker post-infection impacts. Moreover, the obese host creates a special microenvironment for disease pathogenesis, marked by persistent low-grade inflammation. Therefore, it is advisable to sustain healthy eating habits by increasing the consumption of various plant-based and low-fat foods to protect our bodies and decrease the risk of infectious diseases, especially COVID-19.
Collapse
Affiliation(s)
- Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Diaa E. Hussein
- Researcher, Department of Food Hygiene, Agricultural Research Center (ARC), Animal Health Research Institute, Port of Alexandria 26514, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Christian C. Uba
- Department of Microbiology, Paul University, Awka, Anambra State PMB 6074, Nigeria;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
32
|
Jung CY, Park H, Kim DW, Lim H, Chang JH, Choi YJ, Kim SW, Chang TI. Association between Body Mass Index and Risk of COVID-19: A Nationwide Case-Control Study in South Korea. Clin Infect Dis 2020; 73:e1855-e1862. [PMID: 32841322 PMCID: PMC7499566 DOI: 10.1093/cid/ciaa1257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Increased body mass index (BMI) has been associated with higher risk of severe coronavirus disease 2019 (COVID-19) infections. However, whether obesity is a risk factor for contracting COVID-19 has been hardly investigated so far. Methods We examined the association between BMI level and the risk of COVID-19 infection in a nationwide case-control study comprised of 3,788 case patients confirmed with COVID-19 between January 24 and April 9, 2020 and 15,152 controls matched by age and sex, who were aged 20 years or more and underwent National Health Insurance Service (NHIS) health examinations between 2015−2017, using data from the Korean NHIS with linkage to the Korea Centers for Disease Control and Prevention data. Our primary exposure of interest was BMI level categorized into four groups; &18.5 (underweight), 18.5-22.9 (normal weight), 23-24.9 (overweight), and ≥25 kg/m 2 (obese). Results Of the entire 18,940 study population, 11,755 (62.1%) were women, and the mean (SD) age of the study participants was 53.7 (13.8) years. In multivariable logistic regression models adjusted for sociodemographic, comorbidity, laboratory and medication data, there was a graded association between higher BMI levels and higher risk of COVID-19 infection; compared to normal weight individuals, the adjusted ORs in the overweight and obese individuals were 1.13 (95% CI, 1.03-1.25) and 1.26 (95% CI, 1.15-1.39), respectively. This association was robust across age and sex subgroups. Conclusions Higher BMI levels were associated with higher risk of contracting COVID-19.
Collapse
Affiliation(s)
- Chan-Young Jung
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| | - Haeyong Park
- Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| | - Dong Wook Kim
- Department of Big Data, National Health Insurance Service, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyunsun Lim
- Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| | - Jung Hyun Chang
- Department of Otorhinolaryngology, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| | - Yoon Jung Choi
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| | - Seong Woo Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| | - Tae Ik Chang
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyangshi, Gyeonggi-do, Republic of Korea
| |
Collapse
|
33
|
Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence. Semin Immunopathol 2020; 42:573-587. [PMID: 32785750 DOI: 10.1007/s00281-020-00812-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity represents a serious health problem as it is rapidly increasing worldwide. Obesity is associated with reduced healthspan and lifespan, decreased responses to infections and vaccination, and increased frequency of inflammatory conditions typical of old age. Obesity is characterized by increased fat mass and remodeling of the adipose tissue (AT). In this review, we summarize published data on the different types of AT present in mice and humans, and their roles as fat storage as well as endocrine and immune tissues. We review the age-induced changes, including those in the distribution of fat in the body, in abundance and function of adipocytes and their precursors, and in the infiltration of immune cells from the peripheral blood. We also show that cells with a senescent-associated secretory phenotype accumulate in the AT of mice and humans with age, where they secrete several factors involved in the establishment and maintenance of local inflammation, oxidative stress, cell death, tissue remodeling, and infiltration of pro-inflammatory immune cells. Not only adipocytes and pre-adipocytes but also immune cells show a senescent phenotype in the AT. With the increase in human lifespan, it is crucial to identify strategies of intervention and target senescent cells in the AT to reduce local and systemic inflammation and the development of age-associated diseases. Several studies have indeed shown that senescent cells can be effectively targeted in the AT by selectively removing them or by inhibiting the pathways that lead to the secretion of pro-inflammatory factors.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
34
|
Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 2020; 14:295-300. [PMID: 32660813 PMCID: PMC7346803 DOI: 10.1016/j.orcp.2020.07.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
Background Obesity is a global disease with at least 2.8 million people dying each year as a result of being overweight or obese according to the world health organization figures. This paper aims to explore the links between obesity and mortality in COVID-19. Methods Electronic search was made for the papers studying obesity as a risk factor for mortality following COVID-19 infection. Three authors independently selected the papers and agreed for final inclusion. The outcomes were the age, gender, body mass index, severe comorbidities, respiratory support and the critical illness related mortality in COVID-19. 572 publications were identified and 42 studies were selected including one unpublished study data. Only 14 studies were selected for quantitative analysis. Results All the primary points but the gender are significantly associated with COVID-19 mortality. The age >70, [odd ratio (OR): 0.17, CI; 95%, P-value: <0.00001], gender [OR: 0.89; CI: 95%, P-value: 0.32], BMI > 25 kg/m2 [OR: 3.68, CI: 95%, P-value: <0.003], severe comorbidities [OR: 1.84, CI:95%, P-value: <0.00001], advanced respiratory support [OR: 6.98, CI: 95%, P-value: <0.00001], and critical illness [OR: 2.03, CI: 95%, P-value: <0.00001]. Conclusions Patients with obesity are at high risk of mortality from COVID-19 infection.
Collapse
Affiliation(s)
- Abdulzahra Hussain
- Doncaster and Bassetlaw Teaching Hospitals, Doncaster, UK, Honorary Lecturer at Sheffield University, Sheffield, UK.
| | - Kamal Mahawar
- Bariatric Unit, Department of General Surgery, Sunderland Royal Hospital, Sunderland, UK
| | - Zefeng Xia
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, China
| | - Wah Yang
- The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong Province, China
| | - Shamsi El-Hasani
- Bariatric Unit, Princess Royal University Hospital, King's College Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
35
|
Khan AS, Hichami A, Khan NA. Obesity and COVID-19: Oro-Naso-Sensory Perception. J Clin Med 2020; 9:E2158. [PMID: 32650509 PMCID: PMC7408951 DOI: 10.3390/jcm9072158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Through a recent upsurge of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, the clinical assessment of most of the coronavirus disease 19 (COVID-19) patients clearly presents a health condition with the loss of oro-naso-sensory (ONS) perception, responsible for the detection of flavor and savor. These changes include anosmia and dysgeusia. In some cases, these clinical manifestations appear even before the general flu-like symptoms, e.g., sore throat, thoracic oppression and fever. There is no direct report available on the loss of these chemical senses in obese COVID-19 patients. Interestingly, obesity has been shown to be associated with low ONS cues. These alterations in obese subjects are due to obesity-induced altered expression of olfacto-taste receptors. Besides, obesity may further aggravate the SARS-CoV-2 infection, as this pathology is associated with a high degree of inflammation/immunosuppression and reduced protection against viral infections. Hence, obesity represents a great risk factor for SARS-CoV-2 infection, as it may hide the viral-associated altered ONS symptoms, thus leading to a high mortality rate in these subjects.
Collapse
|
36
|
Donohoe F, Wilkinson M, Baxter E, Brennan DJ. Mitogen-Activated Protein Kinase (MAPK) and Obesity-Related Cancer. Int J Mol Sci 2020; 21:ijms21041241. [PMID: 32069845 PMCID: PMC7072904 DOI: 10.3390/ijms21041241] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major public health concern worldwide. The increased risk of certain types of cancer is now an established deleterious consequence of obesity, although the molecular mechanisms of this are not completely understood. In this review, we aim to explore the links between MAPK signalling and obesity-related cancer. We focus mostly on p38 and JNK MAPK, as the role of ERK remains unclear. These links are seen through the implication of MAPK in obesity-related immune paralysis as well as through effects on the endoplasmic reticulum stress response and activation of aromatase. By way of example, we highlight areas of interest and possibilities for future research in endometrioid endometrial cancer and hepatocellular carcinoma associated with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and MAPK.
Collapse
Affiliation(s)
- Fionán Donohoe
- Ireland East Hospital Gynaeoncology Group, UCD School of Medicine, Mater Misericordiae University, D07R2WY Dublin 7, Ireland; (F.D.); (M.W.)
| | - Michael Wilkinson
- Ireland East Hospital Gynaeoncology Group, UCD School of Medicine, Mater Misericordiae University, D07R2WY Dublin 7, Ireland; (F.D.); (M.W.)
| | - Eva Baxter
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, Brisbane QLD 4029, Australia;
| | - Donal J. Brennan
- Ireland East Hospital Gynaeoncology Group, UCD School of Medicine, Mater Misericordiae University, D07R2WY Dublin 7, Ireland; (F.D.); (M.W.)
- Systems Biology Ireland, UCD School of Medicine, Belfield, D04V1W8 Dublin 4, Ireland
- Correspondence: ; Tel.: +353-1-7164567
| |
Collapse
|
37
|
Martins VD, Silva FC, Caixeta F, Carneiro MB, Goes GR, Torres L, Barbosa SC, Vaz L, Paiva NC, Carneiro CM, Vieira LQ, Faria AMC, Maioli TU. Obesity impairs resistance to Leishmania major infection in C57BL/6 mice. PLoS Negl Trop Dis 2020; 14:e0006596. [PMID: 31923234 PMCID: PMC6953764 DOI: 10.1371/journal.pntd.0006596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/28/2019] [Indexed: 01/19/2023] Open
Abstract
An association between increased susceptibility to infectious diseases and obesity has been described as a result of impaired immunity in obese individuals. It is not clear whether a similar linkage can be drawn between obesity and parasitic diseases. To evaluate the effect of obesity in the immune response to cutaneous Leishmania major infection, we studied the ability of C57BL/6 mice fed a hypercaloric diet (HSB) to control leishmaniasis. Mice with diet-induced obesity presented thicker lesions with higher parasite burden and a more intense inflammatory infiltrate in the infected ear after infection with L. major. There was no difference between control and obese mice in IFN-gamma or IL-4 production by auricular draining lymph node cells, but obese mice produced higher levels of IgG1 and IL-17. Peritoneal macrophages from obese mice were less efficient to kill L. major when infected in vitro than macrophages from control mice. In vitro stimulation of macrophages with IL-17 decreased their capacity to kill the parasite. Moreover, macrophages from obese mice presented higher arginase activity. To confirm the role of IL-17 in the context of obesity and infection, we studied lesion development in obese IL-17R-/- mice infected with L. major and found no difference in skin lesions and the leukocyte accumulation in the draining lymph node is redcuced in knockout mice compared between obese and lean animals. Our results indicate that diet-induced obesity impairs resistance to L. major in C57BL/6 mice and that IL-17 is involved in lesion development. Obesity is a serious and increasing public health problem, and also induces a spectrum of metabolic disorders. Some diseases are known to be more severe in the presence of obesity. However, the interactions of obesity with the immune response to infectious agents have not been fully explored. In this study, we investigated the response of obese mice to infection with Leishmania major. C57BL/6 mice were fed a hypercaloric diet (HSB) and infected afterward with L. major. In obese mice, lesions were ticker and more ulcerative, and cells from draining lymph nodes produced more IL-17 when compared with cells from lean mice fed a control diet. Macrophages from obese and lean mice were infected in vitro and stimulated with IL-17 to test the role of this cytokine in effect produced by obesity. Macrophages from obese mice were more infected by L. major than the macrophages from control mice and the number of parasites was increased by treatment with IL-17. IL-17R deficient mice treated with hypercaloric diet showed no difference in lesion size when compared to mice fed control diet. Our findings suggest that diet-induced obesity decrease the resistance to L. major infection of C57BL/6 mice and the IL-17 cytokine may be involved in the lesion formation.
Collapse
Affiliation(s)
- Vinicius Dantas Martins
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Franciele Carolina Silva
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta
- Programa de Pós-Graduação Interunidades de Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Batista Carneiro
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Graziele Ribeiro Goes
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Cândida Barbosa
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Vaz
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nivea Carolina Paiva
- Núcleo de Pesquisa em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Cláudia Martins Carneiro
- Núcleo de Pesquisa em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Leda Quercia Vieira
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
38
|
de Frel DL, Atsma DE, Pijl H, Seidell JC, Leenen PJM, Dik WA, van Rossum EFC. The Impact of Obesity and Lifestyle on the Immune System and Susceptibility to Infections Such as COVID-19. Front Nutr 2020; 7:597600. [PMID: 33330597 PMCID: PMC7711810 DOI: 10.3389/fnut.2020.597600] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: COVID-19 is a global challenge to healthcare. Obesity is common in patients with COVID-19 and seems to aggravate disease prognosis. In this review we explore the link between obesity, chronic disease, lifestyle factors and the immune system, and propose societal interventions to enhance global immunity. Search Strategy and Selection Criteria: We performed three literature searches using the keywords (1) coronavirus AND comorbidities, (2) comorbidities AND immune system, and (3) lifestyle factors AND immune system. Results were screened for relevance by the main author and a total of 215 articles were thoroughly analyzed. Results: The relationship between obesity and unfavorable COVID-19 prognosis is discussed in light of the impact of chronic disease and lifestyle on the immune system. Several modifiable lifestyle factors render us susceptible to viral infections. In this context, we make a case for fostering a healthy lifestyle on a global scale. Conclusions: Obesity, additional chronic disease and an unhealthy lifestyle interactively impair immune function and increase the risk of severe infectious disease. In adverse metabolic and endocrine conditions, the immune system is geared toward inflammation. Collective effort is needed to ameliorate modifiable risk factors for obesity and chronic disease on a global scale and increase resistance to viruses like SARS-CoV-2.
Collapse
Affiliation(s)
- Daan L. de Frel
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E. Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Douwe E. Atsma
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob C. Seidell
- Department of Health Sciences, VU Medical Center, Amsterdam, Netherlands
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisabeth F. C. van Rossum
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
39
|
O'Brien A, Loftus RM, Pisarska MM, Tobin LM, Bergin R, Wood NAW, Foley C, Mat A, Tinley FC, Bannan C, Sommerville G, Veerapen N, Besra GS, Sinclair LV, Moynagh PN, Lynch L, Finlay DK, O'Shea D, Hogan AE. Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:3404-3411. [PMID: 31076528 DOI: 10.4049/jimmunol.1801600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.
Collapse
Affiliation(s)
- Aisling O'Brien
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - Roisin M Loftus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Marta M Pisarska
- National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Laura M Tobin
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,National Children's Research Centre, Dublin 12, Ireland
| | - Ronan Bergin
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Nicole A W Wood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Cathriona Foley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Arimin Mat
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - Frances C Tinley
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Ciaran Bannan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Gary Sommerville
- Dana Farber Cancer Institute, Molecular Biology Core Facilities, Boston, MA 02215
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Linda V Sinclair
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Paul N Moynagh
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland.,School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, United Kingdom
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 4, Ireland; and.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Andrew E Hogan
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland; .,National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| |
Collapse
|
40
|
Honce R, Schultz-Cherry S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol 2019; 10:1071. [PMID: 31134099 PMCID: PMC6523028 DOI: 10.3389/fimmu.2019.01071] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of obesity has come an increasing awareness of its impact on communicable disease. As a consequence of the 2009 H1N1 influenza A virus pandemic, obesity was identified for the first time as a risk factor for increased disease severity and mortality in infected individuals. Over-nutrition that results in obesity causes a chronic state of meta-inflammation with systemic implications for immunity. Obese hosts exhibit delayed and blunted antiviral responses to influenza virus infection, and they experience poor recovery from the disease. Furthermore, the efficacy of antivirals and vaccines is reduced in this population and obesity may also play a role in altering the viral life cycle, thus complementing the already weakened immune response and leading to severe pathogenesis. Case studies and basic research in human cohorts and animal models have highlighted the prolonged viral shed in the obese host, as well as a microenvironment that permits the emergence of virulent minor variants. This review focuses on influenza A virus pathogenesis in the obese host, and on the impact of obesity on the antiviral response, viral shed, and viral evolution. We comprehensively analyze the recent literature on how and why viral pathogenesis is altered in the obese host along with the impact of the altered host and pathogenic state on viral evolutionary dynamics in multiple models. Finally, we summarized the effectiveness of current vaccines and antivirals in this populations and the questions that remain to be answered. If current trends continue, nearly 50% of the worldwide population is projected to be obese by 2050. This population will have a growing impact on both non-communicable and communicable diseases and may affect global evolutionary trends of influenza virus.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
41
|
Honce R, Schultz-Cherry S. Influenza in obese travellers: increased risk and complications, decreased vaccine effectiveness. J Travel Med 2019; 26:taz020. [PMID: 30924873 PMCID: PMC6509472 DOI: 10.1093/jtm/taz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Obesity is a worldwide epidemic and was empirically shown to increase the risk of developing severe influenza virus infection. As international travel becomes more common and obesity is now prevalent even in low- and middle-income countries, travellers may have an increased risk of contracting influenza virus especially during peak influenza season. METHODS An analysis of the literature, centred on publications from 2014-19, was performed, with an emphasis on human epidemiological data, human studies ex vivo and studies in mouse models of obesity. Our search efforts focused on influenza disease severity, pathogenesis, evolutionary dynamics and measures of infection control in the obese and overweight host. RESULTS Obesity is associated with an increased risk of infection, as well as a greater chance for hospitalization and severe complications. Studies in mouse models of obesity have uncovered that obese hosts suffer increased viral spread, delayed viral clearance and heightened damage to the respiratory epithelium. Innate and adaptive immune responses are delayed, thus increasing morbidity and mortality. Further, infection control measures, including vaccination and antivirals, prove less effective in obese hosts. Finally, the obese microenvironment allows for increased duration and amount of viral shedding and potentially increases the chance for emergence of virulent minor variants in the viral population. Together, obese hosts are at high risk of influenza infection, as well as severe sequelae following infection. CONCLUSION Obese travellers should be aware of influenza activity in the regions visited, as well as take protective measures prior to travel. Vaccination is highly recommended for all travellers, but especially highly susceptible obese travellers.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
42
|
Dysregulation of Natural Killer Cells in Obesity. Cancers (Basel) 2019; 11:cancers11040573. [PMID: 31018563 PMCID: PMC6521109 DOI: 10.3390/cancers11040573] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.
Collapse
|
43
|
Frasca D, McElhaney J. Influence of Obesity on Pneumococcus Infection Risk in the Elderly. Front Endocrinol (Lausanne) 2019; 10:71. [PMID: 30814978 PMCID: PMC6381016 DOI: 10.3389/fendo.2019.00071] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity negatively affects immune function and host defense mechanisms. Obesity is associated with chronic activation of the innate immune system and consequent local and systemic inflammation which contribute to pathologic conditions such as type-2 diabetes mellitus, cancer, psoriasis, atherosclerosis, and inflammatory bowel disease. Individuals with obesity have increased susceptibility to contract viral, bacterial, and fungal infections and respond sub-optimally to vaccination. In this review, we summarize research findings on the effects of obesity on immune responses to respiratory tract infections (RTI), focusing on Streptococcus pneumoniae ("pneumococcus") infection, which is a major cause of morbidity and mortality in the US, causing community-acquired infections such as pneumonia, otitis media and meningitis. We show that the risk of infection is higher in elderly individuals and also in individuals of certain ethnic groups, although in a few reports obesity has been associated with better survival of individuals admitted to hospital with pneumococcus infection, a phenomenon known as "obesity paradox." We discuss factors that are associated with increased risk of pneumococcal infection, such as recent infection with RTI, chronic medical conditions, and immunosuppressive medications.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Janet McElhaney
- Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
44
|
Saco TV, Strauss AT, Ledford DK. Hepatitis B vaccine nonresponders: Possible mechanisms and solutions. Ann Allergy Asthma Immunol 2018; 121:320-327. [PMID: 29567355 DOI: 10.1016/j.anai.2018.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hepatitis B (HBV) is a viral illness that chronically infects 240 million people worldwide, leads to liver disease, and increases risk of hepatocellular carcinoma. The HBV vaccine has decreased HBV infection, and it and the human papilloma virus vaccine are the only vaccines that prevent cancer. Despite the effectiveness of the HBV vaccine, some populations do not develop protective responses. The risk groups for poor response include those with immunosuppression or dialysis-dependent, end-stage renal disease. Five percent of normal people do not have a response. These subjects are deemed HBV "nonresponders." Multiple strategies to improve the immunogenicity of the HBV vaccine are currently being pursued, including vaccine adjuvants, recombinant vaccines, and immune enhancement via up-regulation of dendritic cells. DATA SOURCES PubMed was searched for peer-reviewed publications published from January 1980 to September 2017. STUDY SELECTIONS Studies retrieved for inclusion summarized potential mechanisms behind HBV vaccine nonresponsiveness and potential solutions. RESULTS The mechanisms behind HBV vaccine nonresponsiveness vary between each subject population. Many current and future strategies may provide protective immunity against HBV in each of these populations. CONCLUSION This review provides a background on the immunology of HBV infection, the possible immunologic mechanisms to explain HBV vaccine nonresponsiveness, current research aimed at improving vaccine effectiveness, and possible future approaches for providing nonresponders protection from HBV.
Collapse
Affiliation(s)
- Tara Vinyette Saco
- University of South Florida Morsani College of Medicine, and James A. Haley Veterans Hospital, Department of Internal Medicine and Division of Allergy and Immunology, Tampa, Florida.
| | - Alexandra T Strauss
- University of South Florida Morsani College of Medicine, and James A. Haley Veterans Hospital, Department of Internal Medicine and Division of Allergy and Immunology, Tampa, Florida
| | - Dennis K Ledford
- University of South Florida Morsani College of Medicine, and James A. Haley Veterans Hospital, Department of Internal Medicine and Division of Allergy and Immunology, Tampa, Florida
| |
Collapse
|
45
|
|
46
|
Wakao H, Sugimoto C, Kimura S, Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. Front Immunol 2017; 8:1711. [PMID: 29250077 PMCID: PMC5717033 DOI: 10.3389/fimmu.2017.01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for difficult-to-cure infectious diseases and cancer and contributes to improvement of our welfare.
Collapse
Affiliation(s)
- Hiroshi Wakao
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Chie Sugimoto
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Shinzo Kimura
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Rika Wakao
- Office of Regulatory Science, Pharmaceutical and Medical Device Agency (PMDA), Tokyo, Japan
| |
Collapse
|
47
|
Frasca D, Blomberg BB. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging. Front Immunol 2017; 8:1003. [PMID: 28894445 PMCID: PMC5581329 DOI: 10.3389/fimmu.2017.01003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
48
|
A Case of Osteomyelitis of the toe caused by Coccidioidomycosis in a 17 year-old with Diabetes Insipidus. IDCases 2017; 9:14-16. [PMID: 28560172 PMCID: PMC5440283 DOI: 10.1016/j.idcr.2017.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022] Open
Abstract
We report a case of a 17-year-old male who presented with pain in his right first toe. His pain and swelling had worsened and x-rays of his foot revealed erosive changes of the great toe distal phalanx suggesting possible osteomyelitis. His co-morbidities were morbid obesity and diabetes insipidus. He was admitted to the hospital, blood cultures were drawn, and he was started on vancomycin for presumed bacterial osteomyelitis. He underwent incision and drainage of the fluctuant abscess of the toe, where a culture of the wound was taken. Preliminary results grew fungi. Being located in an endemic area, he was started on anti-fungal treatment for presumed disseminated coccidioidomycosis; culture was positive for Coccidiodes immitis. He also had serology positive for coccidioidomycosis titers. He had uneventful hospital stay and was discharged on long-term oral antifungal therapy.
Collapse
|
49
|
Bulos L, Gonzaga N, Souza L, Assao V, Leite R, Rebouças M, Scatamburlo T, Guimarães JGS, Lopes P, Almeida M, Silva Júnior A. Antibody response between pigs of Piau and a commercial breed naturally infected with Porcine circovirus 2. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Brazilian pig population is made up of several naturalized breeds; among them the Piau breed is known for its rusticity and large fat stores. The naturalized breeds, in comparison with commercial ones, may have an increased resistance to diseases circulating in their territory. Thus, this study aimed to verify if there are differences between the serologic profile against Porcine circovirus 2 (PCV2) of Piau pigs and that of a commercial breed from a farm naturally infected by PCV2. The serum viral load was measured by qPCR, and levels of anti-PCV2 antibodies were measured by ELISA. The results showed that the serum viral load was similar across all animals. However, Piau piglets showed higher levels of antibodies compared to commercial piglets (P= 0.05), while sows of the commercial breed showed higher levels than the Piau breed (P< 0.01). There was not a statistical difference between pigs of different production stages in the seroprevalence of PCV2 or the blood viral load. This work demonstrates that, with regard to a natural PCV2 infection, the Piau breed has a different humoral immune response compared to the response developed by the commercial pigs. The results support the importance of conservation of native breeds.
Collapse
|
50
|
Frasca D, Diaz A, Romero M, Blomberg BB. Ageing and obesity similarly impair antibody responses. Clin Exp Immunol 2016; 187:64-70. [PMID: 27314456 DOI: 10.1111/cei.12824] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Ageing is characterized by increased low-grade chronic inflammation, which is a significant risk factor for morbidity and mortality of elderly individuals. Similar to ageing, obesity is considered to be an inflammatory predisposition associated with chronic activation of immune cells and consequent local and systemic inflammation. Both ageing and obesity are characterized by reduced innate and adaptive immune responses. This review focuses on B cells, how they may contribute, at least locally, to low-grade chronic inflammation in ageing and obesity and on the mechanisms involved.
Collapse
Affiliation(s)
- D Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - A Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - M Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - B B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|