1
|
Sebastià C, Gallopin M, Ramayo-Caldas Y, Estellé J, Valdés-Hernández J, Castelló A, Sánchez A, Crespo-Piazuelo D, Folch JM. Gene co-expression network analysis for porcine intramuscular fatty acid composition. Animal 2024; 18:101259. [PMID: 39137614 DOI: 10.1016/j.animal.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
In pigs, meat quality depends markedly on the fatty acid (FA) content and composition of the intramuscular fat, which is partly determined by the gene expression in this tissue. The aim of this work was to identify the link between muscle gene expression and its FA composition. In an (Iberian × Duroc) × Duroc backcrossed pig population, we identified modules of co-expressed genes, and correlation analyses were performed for each of them versus the phenotypes, finding four relevant modules. Two of the modules were positively correlated with saturated FAs (SFAs) and monounsaturated FAs (MUFAs), while negatively correlated with polyunsaturated FAs (PUFAs) and the omega-6/omega-3 ratio. The gene-enrichment analysis showed that these modules had over-representation of pathways related with the biosynthesis of unsaturated FAs, the Peroxisome proliferator-activated receptor signalling pathway and FA elongation. The two other relevant modules were positively correlated with PUFA and the n-6/n-3 ratio, but negatively correlated with SFA and MUFA. In this case, they had an over-representation of pathways related with fatty and amino acid degradation, and with oxidative phosphorylation. Using a graphical Gaussian model, we inferred a network of connections between the genes within each module. The first module had 52 genes with 87 connections, and the most connected genes were ADIPOQ, which is related with FA oxidation, and ELOVL6 and FABP4, both involved in FA metabolism. The second module showed 196 genes connected by 263 edges, being FN1 and MAP3K11 the most connected genes. On the other hand, the third module had 161 genes connected by 251 edges and ATG13 was the top neighbouring gene, while the fourth module had 224 genes and 655 connections, and its most connected genes were related with mitochondrial pathways. Overall, this work successfully identified relevant muscle gene networks and modules linked with FA composition, providing further insights on how the physiology of the pigs influences FA composition.
Collapse
Affiliation(s)
- C Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain.
| | - M Gallopin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1, Avenue de la Terrasse, Bâtiment 21, 91190 Gif-sur-Yvette, France
| | - Y Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - D Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain; R&D Department, Cuarte S.L., Grupo Jorge, Autov. Zaragoza-Logroño, km.9, 50120 Monzalbarba, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
3
|
Ruoss S, Nasamran CA, Ball ST, Chen JL, Halter KN, Bruno KA, Whisenant TC, Parekh JN, Dorn SN, Esparza MC, Bremner SN, Fisch KM, Engler AJ, Ward SR. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. SCIENCE ADVANCES 2024; 10:eadn2831. [PMID: 38996032 PMCID: PMC11244553 DOI: 10.1126/sciadv.adn2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.
Collapse
Affiliation(s)
- Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Jeffrey L. Chen
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kenneth N. Halter
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kelly A. Bruno
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Jesal N. Parekh
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, UC San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
6
|
Zhang J, Zhang Y, Zhou Y, Zhao W, Li J, Yang D, Xiang L, Du T, Ma L. Effect of vitamin D3 on lipid droplet growth in adipocytes of mice with HFD-induced obesity. Food Sci Nutr 2023; 11:6686-6697. [PMID: 37823117 PMCID: PMC10563741 DOI: 10.1002/fsn3.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 10/13/2023] Open
Abstract
Vitamin D-regulating action of PPARγ on obesity has been confirmed on adipocyte differentiation. However, it is not clear whether vitamin D affects the morphological size of mature adipocytes by influencing the expression of PPARγ in vivo. Our hypothesis was that Vitamin D3 (VitD3) inhibits the growth of adipocyte size by suppressing PPARγ expression in white adipocytes of obese mice. Five-week-old male C57BL/6J mice were randomly divided into normal diet and high-fat diet groups. After 10 weeks, the body weight between the two groups differed by 26.91%. The obese mice were randomly divided into a high-fat diet, solvent control, low-dose VitD3 (5000 IU/kg·food), medium-dose VitD3 (7500 IU/kg·food), high-dose VitD3 (10,000 IU/kg·food), and PPAR γ antagonist group, and the intervention lasted for 8 weeks. Diet-induced obesity (DIO) mice fed high-dose VitD3 exacerbated markers of adiposity (body weight, fat mass, fat mass rate, size of white and brown adipocytes, mRNA, and protein levels of ATGL and Fsp27), and the protein level of ATGL and Fsp27 decreased in the low-dose group. In conclusion, high-dose VitD3 possibly via inhibiting the ATGL expression, thereby inhibiting lipolysis, increasing the volume of adipocytes, and decreasing their fat-storing ability resulted in decreased Fsp27 expression. Therefore, long-term high-dose oral VitD3 may not necessarily improve obesity, and we need more clinical trials to explore the intervention dose and duration of VitD3 in the treatment of VitD3 deficiency in obese patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Clinical NutritionAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Yuanfan Zhang
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Wenxin Zhao
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Jialu Li
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Dan Yang
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
7
|
Steigleder KM, Pascoal LB, Siqueira NSN, Simino LADP, Ayrizono MDLS, Ferreira MM, Fagundes JJ, Azevedo ATD, Torsoni AS, Leal RF. Mathematical Models Including microRNA Levels of Mesenteric Adipose Tissue May Predict Postoperative Relapse in Crohn's Disease Patients. GASTRO HEP ADVANCES 2023; 3:17-30. [PMID: 39132178 PMCID: PMC11307883 DOI: 10.1016/j.gastha.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/21/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Recent evidence suggests that the mesenteric adipose tissue (MAT) near the affected intestine may play a role in Crohn's disease (CD) pathophysiology. Modulation of several transcripts has already been identified in the MAT of CD in the literature. Therefore, our aim was to validate the microRNA (miRNA) transcript levels and their target genes in the MAT of active CD patients and correlate them with clinical and epidemiological data. Methods Samples from the MAT of surgical specimens from 25 active CD patients were obtained. The control group comprised fifteen patients who underwent surgery for other diseases, except inflammatory bowel diseases. Transcriptional levels of miRNA and their target genes were assessed by quantitative real-time polymerase chain reaction. The correlation between transcripts and clinical characteristics was obtained using multiple linear regression. The mathematical models (M) underwent a statistical filter to ensure robustness and reliability (P value < .05; adjusted R-squared (Rˆ2)> .99; correct predictions of more than 60%). Results miRNA-650 and miRNA-29c were upregulated in the MAT of CD compared to the control group (P < .0001 and P = .0032, respectively), besides presenting decreased levels of their target genes. Two were target genes of the miRNA-650: glutamine-fructose-6-phosphate transaminase 2 (P = .012) and aldehyde dehydrogenase 4 family (P = .0035); and 4 were targets of the miRNA-29c: cell death-inducing DFFA-like effector c (P = .001), E2F transcription factor-1 (P = .007), hypoxia-inducible factor 3 subunit alpha (P = .0029), and pyruvate dehydrogenase kinase 4 (P = .0054). We found 2 M with statistical strength and robustness. The performance test identified one model with 100% accuracy for predicting the month of recurrence and determining patients with less risk of early relapse after surgery. Conclusion We demonstrate that miRNA-650 and miRNA-29c and some of their target genes, besides clinical and epidemiological variables, may be useful in a model to predict when disease relapse may occur in CD patients who underwent surgery. These findings constitute a potential tool to guide postoperative clinical management.
Collapse
Affiliation(s)
- Karine Mariane Steigleder
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Lívia Bitencourt Pascoal
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Natália Souza Nunes Siqueira
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Marciane Milanski Ferreira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - João José Fagundes
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Aníbal Tavares de Azevedo
- Simulation Laboratory, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Diseases Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Park CY, Kim D, Seo MK, Kim J, Choe H, Kim JH, Hong JP, Lee YJ, Heo Y, Kim HJ, Park HS, Jang YJ. Dysregulation of Lipid Droplet Protein Expression in Adipose Tissues and Association with Metabolic Risk Factors in Adult Females with Obesity and Type 2 Diabetes. J Nutr 2023; 153:691-702. [PMID: 36931749 DOI: 10.1016/j.tjnut.2023.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adipocyte dysregulation of lipid droplet (LD) metabolism caused by altered expression of LD proteins contributes to obesity-related metabolic diseases. OBJECTIVES We aimed to investigate whether expression levels of PLIN1, CIDEA, and CIDEC were altered in adipose tissues of women with obesity and type 2 diabetes and whether their alterations were associated with metabolic risk factors. METHODS Normal-weight (NW; 18.5 kg/m2 < BMI ≤ 25 kg/m2; n = 43), nondiabetic obese (OB; BMI > 30 kg/m2; n = 38), and diabetic obese (OB/DM; BMI > 30 kg/m2, fasting glucose ≥ 126 mg/dL, HbA1c ≥ 6.5%; n = 22) women were recruited. Metabolic parameters were measured, and expressions of PLIN1, CIDEA, CIDEC, and obesity-related genes were quantified in abdominal subcutaneous (SAT) and visceral adipose tissues (VAT). Effects of proinflammatory cytokines, endoplasmic reticulum (ER) stress inducers, and metabolic improvement agents on LD protein gene expressions were investigated in human adipocytes. RESULTS PLIN1, CIDEA, and CIDEC expressions were lower in SAT and higher in VAT in OB subjects relative to NW subjects; however, they were suppressed in both fat depots in OB/DM subjects relative to OB (P < 0.05). Across the entire cohort, whereas VAT PLIN1 (r = 0.349) and CIDEC expressions (r = 0.282) were positively associated with BMI (P < 0.05), SAT PLIN1 (r = -0.390) and CIDEA expressions (r = -0.565) were inversely associated. After adjustment for BMI, some or all of the adipose LD protein gene expressions were negatively associated with fasting glucose (r = -0.259 or higher) and triglyceride levels (r = -0.284 or higher) and positively associated with UCP1 expression (r = 0.353 or higher) (P < 0.05). In adipocytes, LD protein gene expressions were 55-70% downregulated by increased proinflammatory cytokines and ER stress but 2-4-fold upregulated by the metabolic improvement agents exendin-4 and dapagliflozin (P < 0.05). CONCLUSIONS The findings suggest that reduction of adipose LD protein expression is involved in the pathogenesis of metabolic disorders in women with obesity and type 2 diabetes and that increasing LD protein expression in adipocytes could control development of metabolic disorders.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Donguk Kim
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Kyeong Seo
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jimin Kim
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Brexogen Research Center, Brexogen Inc., Seoul, Republic of Korea
| | - Han Choe
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Hyeok Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Pio Hong
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon Ji Lee
- Department of Family Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yoonseok Heo
- Department of General Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Republic of Korea
| | - Hye Soon Park
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yeon Jin Jang
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Balakrishnan B, Gupta A, Basri R, Sharma VM, Slayton M, Gentner K, Becker CC, Karki S, Muturi H, Najjar SM, Loria AS, Gokce N, Puri V. Endothelial-Specific Expression of CIDEC Improves High-Fat Diet-Induced Vascular and Metabolic Dysfunction. Diabetes 2023; 72:19-32. [PMID: 36256836 PMCID: PMC9797323 DOI: 10.2337/db22-0294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC), originally identified to be a lipid droplet-associated protein in adipocytes, positively associates with insulin sensitivity. Recently, we discovered that it is expressed abundantly in human endothelial cells and regulates vascular function. The current study was designed to characterize the physiological effects and molecular actions of endothelial CIDEC in the control of vascular phenotype and whole-body glucose homeostasis. To achieve this, we generated a humanized mouse model expressing endothelial-specific human CIDEC (E-CIDECtg). E-CIDECtg mice exhibited protection against high-fat diet-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, these mice displayed improved insulin signaling and endothelial nitric oxide synthase activation, enhanced endothelium-dependent vascular relaxation, and improved vascularization of adipose tissue, skeletal muscle, and heart. Mechanistically, we identified a novel interplay of CIDEC-vascular endothelial growth factor A (VEGFA)-vascular endothelial growth factor receptor 2 (VEGFR2) that reduced VEGFA and VEGFR2 degradation, thereby increasing VEGFR2 activation. Overall, our results demonstrate a protective role of endothelial CIDEC against obesity-induced metabolic and vascular dysfunction, in part, by modulation of VEGF signaling. These data suggest that CIDEC may be investigated as a potential future therapeutic target for mitigating obesity-related cardiometabolic disease.
Collapse
Affiliation(s)
- Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Rabia Basri
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Vishva M. Sharma
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Kailey Gentner
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Chloe C. Becker
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Harrison Muturi
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Sonia M. Najjar
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| |
Collapse
|
10
|
Gupta A, Balakrishnan B, Karki S, Slayton M, Jash S, Banerjee S, Grahn THM, Jambunathan S, Disney S, Hussein H, Kong D, Lowell BB, Natarajan P, Reddy UK, Gokce N, Sharma VM, Puri V. Human CIDEC transgene improves lipid metabolism and protects against high-fat diet-induced glucose intolerance in mice. J Biol Chem 2022; 298:102347. [PMID: 35963433 PMCID: PMC9472082 DOI: 10.1016/j.jbc.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Cell death–inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential ‘drug’ or a ‘druggable’ target to reverse obesity-induced lipotoxicity and glucose intolerance.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sukanta Jash
- Alpert Medical school of Brown University, Brown University, RI, USA
| | - Sayani Banerjee
- Alpert Medical school of Brown University, Brown University, RI, USA
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden
| | | | - Sarah Disney
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hebaallaha Hussein
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | | - Umesh K Reddy
- Department of Biology, West Virginia State University, Institute, WV, USA
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Vishva M Sharma
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
11
|
Lee S, Usman TO, Yamauchi J, Chhetri G, Wang X, Coudriet GM, Zhu C, Gao J, McConnell R, Krantz K, Rajasundaram D, Singh S, Piganelli J, Ostrowska A, Soto-Gutierrez A, Monga SP, Singhi AD, Muzumdar RH, Tsung A, Dong HH. Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest 2022; 132:154333. [PMID: 35700043 PMCID: PMC9282937 DOI: 10.1172/jci154333] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis and fibrosis in mice and patients with NASH. Myeloid cell-conditional FoxO1 knockout skewed macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes, accompanied by the reduction of macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1 knockout mice on HFD. When fed a NASH-inducing diet, myeloid cell FoxO1 knockout mice were protected from developing NASH, culminating in the reduction of hepatic inflammation, steatosis and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward M1 signatures to perpetuate hepatic inflammation in NASH. FoxO1 appears as a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.
Collapse
Affiliation(s)
- Sojin Lee
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Taofeek O Usman
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jun Yamauchi
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Goma Chhetri
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Xingchun Wang
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Gina M Coudriet
- Department of Surgery, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Cuiling Zhu
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jingyang Gao
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Riley McConnell
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Kyler Krantz
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jon Piganelli
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Radhika H Muzumdar
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Allan Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - H Henry Dong
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| |
Collapse
|
12
|
Kulbay M, Johnson B, Ricaud G, Séguin-Grignon MN, Bernier J. Energetic metabolic reprogramming in Jurkat DFF40-deficient cancer cells. Mol Cell Biochem 2022; 477:2213-2233. [PMID: 35460011 DOI: 10.1007/s11010-022-04433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montréal, QC, Canada
| | - Bruno Johnson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Ricaud
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
13
|
Slayton M, Balakrishnan B, Gupta A, Jobe S, Puri I, Neely S, Tamori Y, Russ DW, Yildirim G, Yakar S, Sharma VM, Puri V. Fsp27 plays a crucial role in muscle performance. Am J Physiol Endocrinol Metab 2022; 322:E331-E343. [PMID: 35157807 PMCID: PMC8957325 DOI: 10.1152/ajpendo.00255.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/31/2022]
Abstract
Fsp27 was previously identified as a lipid droplet-associated protein in adipocytes. Various studies have shown that it plays a role in the regulation of lipid homeostasis in adipose tissue and liver. However, its function in muscle, which also accumulate and metabolize fat, remains completely unknown. Our present study identifies a novel role of Fsp27 in muscle performance. Here, we demonstrate that Fsp27-/- and Fsp27+/- mice, both males and females, had severely impaired muscle endurance and exercise capacity compared with wild-type controls. Liver and muscle glycogen stores were similar among all groups fed or fasted, and before or after exercise. Reduced muscle performance in Fsp27-/- and Fsp27+/- mice was associated with severely decreased fat content in the muscle. Furthermore, results in heterozygous Fsp27+/- mice indicate that Fsp27 haploinsufficiency undermines muscle performance in both males and females. In summary, our physiological findings reveal that Fsp27 plays a critical role in muscular fat storage, muscle endurance, and muscle strength.NEW & NOTEWORTHY This is the first study identifying Fsp27 as a novel protein associated with muscle metabolism. The Fsp27-knockout model shows that Fsp27 plays a role in muscular-fat storage, muscle endurance, and muscle strength, which ultimately impacts limb movement. In addition, our study suggests a potential metabolic paradox in which FSP27-knockout mice presumed to be metabolically healthy based on glucose utilization and oxidative metabolism are unhealthy in terms of exercise capacity and muscular performance.
Collapse
Affiliation(s)
- Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Scott Jobe
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Ishika Puri
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Savannah Neely
- College of Arts and Sciences, Ohio University, Athens, Ohio
| | - Yoshikazu Tamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - David W Russ
- School of Physical Therapy and Rehabilitation Sciences, USF Health Morsani College of Medicine, University of Southern Florida, Tampa, Florida
| | - Gozde Yildirim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York City, New York
| | - Shoshana Yakar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York City, New York
| | - Vishva M Sharma
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
14
|
Song FQ, Zhou HM, Ma WX, Li YL, Hu BA, Shang YY, Wang ZH, Zhong M, Zhang W, Ti Y. CIDEC: A Potential Factor in Diabetic Vascular Inflammation. J Vasc Res 2022; 59:114-123. [DOI: 10.1159/000520685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Cell death-inducing DFF45-like effector C (CIDEC) is involved in diet-induced adipose inflammation. Whether CIDEC plays a role in diabetic vascular inflammation remains unclear. A type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated its characteristics by metabolic tests, Western blot analysis of CIDEC and C1q/tumor necrosis factor-related protein-3 (CTRP3) expression, and histopathological analysis of aortic tissues. The diabetic group exhibited elevated CIDEC expression, aortic inflammation, and remodeling. To further investigate the role of CIDEC in the pathogenesis of aortic inflammation, gene silencing was used. With CIDEC gene silencing, CTRP3 expression was restored, accompanied with amelioration of insulin resistance, aortic inflammation, and remodeling in diabetic rats. Thus, the silencing of CIDEC is potent in mediating the reversal of aortic inflammation and remodeling, indicating that CIDEC may be a potential therapeutic target for vascular complications in diabetes.
Collapse
|
15
|
Comas F, Latorre J, Ortega F, Arnoriaga Rodríguez M, Kern M, Lluch A, Ricart W, Blüher M, Gotor C, Romero LC, Fernández-Real JM, Moreno-Navarrete JM. Activation of Endogenous H 2S Biosynthesis or Supplementation with Exogenous H 2S Enhances Adipose Tissue Adipogenesis and Preserves Adipocyte Physiology in Humans. Antioxid Redox Signal 2021; 35:319-340. [PMID: 33554726 DOI: 10.1089/ars.2020.8206] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: To investigate the impact of exogenous hydrogen sulfide (H2S) and its endogenous biosynthesis on human adipocytes and adipose tissue in the context of obesity and insulin resistance. Results: Experiments in human adipose tissue explants and in isolated preadipocytes demonstrated that exogenous H2S or the activation of endogenous H2S biosynthesis resulted in increased adipogenesis, insulin action, sirtuin deacetylase, and PPARγ transcriptional activity, whereas chemical inhibition and gene knockdown of each enzyme generating H2S (CTH, CBS, MPST) led to altered adipocyte differentiation, cellular senescence, and increased inflammation. In agreement with these experimental data, visceral and subcutaneous adipose tissue expression of H2S-synthesising enzymes was significantly reduced in morbidly obese subjects in association with attenuated adipogenesis and increased markers of adipose tissue inflammation and senescence. Interestingly, weight-loss interventions (including bariatric surgery or diet/exercise) improved the expression of H2S biosynthesis-related genes. In human preadipocytes, the expression of CTH, CBS, and MPST genes and H2S production were dramatically increased during adipocyte differentiation. More importantly, the adipocyte proteome exhibiting persulfidation was characterized, disclosing that different proteins involved in fatty acid and lipid metabolism, the citrate cycle, insulin signaling, several adipokines, and PPAR, experienced the most dramatic persulfidation (85-98%). Innovation: No previous studies investigated the impact of H2S on human adipose tissue. This study suggests that the potentiation of adipose tissue H2S biosynthesis is a possible therapeutic approach to improve adipose tissue dysfunction in patients with obesity and insulin resistance. Conclusion: Altogether, these data supported the relevance of H2S biosynthesis in the modulation of human adipocyte physiology. Antioxid. Redox Signal. 35, 319-340.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - María Arnoriaga Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.,Department of Medical Sciences, Universitat de Girona, Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.,Department of Medical Sciences, Universitat de Girona, Girona, Spain
| |
Collapse
|
16
|
Srivastava RAK, Hurley TR, Oniciu D, Adeli K, Newton RS. Discovery of analogues of non-β oxidizable long-chain dicarboxylic fatty acids as dual inhibitors of fatty acids and cholesterol synthesis: Efficacy of lead compound in hyperlipidemic hamsters reveals novel mechanism. Nutr Metab Cardiovasc Dis 2021; 31:2490-2506. [PMID: 34172319 DOI: 10.1016/j.numecd.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Cholesterol and triglycerides are risk factors for developing cardiovascular disease. Therefore, appropriate cells and assays are required to discover and develop dual cholesterol and fatty acid inhibitors. A predictive hyperlipidemic animal model is needed to evaluate mechanism of action of lead molecule for therapeutic indications. METHODS AND RESULTS Primary hepatocytes from rat, hamster, rabbit, and humans were compared for suitability to screen compounds by de novo lipogenesis (DNL) using14C-acetate. Hyperlipidemic hamsters were used to evaluate efficacy and mode of action. In rat hepatocytes DNL assay, both the central moiety and carbon chain length influenced the potency of lipogenesis inhibition. In hyperlipidemic hamsters, ETC-1002 decreased plasma cholesterol and triglycerides by 41% and 49% at the 30 mg/kg dose. Concomitant decreases in non-esterified fatty acids (-34%) and increases in ketone bodies (20%) were associated with induction of hepatic CPT1-α. Reductions in proatherogenic VLDL-C and LDL-C (-71% and -64%) occurred partly through down-regulation of DGAT2 and up-regulation of LPL and PDK4. Activation of PLIN1 and PDK4 dampened adipogenesis and showed inverse correlation with adipose mass. Hepatic concentrations of cholesteryl ester and TG decreased by 67% and 64%, respectively. Body weight decreased with concomitant decreases in epididymal fat. Plasma and liver concentrations of ETC-1002 agreed with the observed dose-response efficacy. CONCLUSIONS Taken together, ETC-1002 reduced proatherogenic lipoproteins, hepatic lipids and adipose tissues in hyperlipidemic hamsters via induction of LPL, CPT1-α, PDK4, and PLIN1, and downregulation of DGAT2. These characteristics may be useful in the treatment of fatty livers that causes non-alcoholic steatohepatitis.
Collapse
|
17
|
Zhou HM, Ti Y, Wang H, Shang YY, Liu YP, Ni XN, Wang D, Wang ZH, Zhang W, Zhong M. Cell death-inducing DFFA-like effector C/CIDEC gene silencing alleviates diabetic cardiomyopathy via upregulating AMPKa phosphorylation. FASEB J 2021; 35:e21504. [PMID: 33913563 DOI: 10.1096/fj.202002562r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Cell death-inducing DFFA-like effector C (CIDEC) is responsible for metabolic disturbance and insulin resistance, which are considered to be important triggers in the development of diabetic cardiomyopathy (DCM). To investigate whether CIDEC plays a critical role in DCM, DCM rat model was induced by a high-fat diet and a single injection of low-dose streptozotocin (27.5 mg/kg). DCM rats showed severe metabolic disturbance, insulin resistance, myocardial hypertrophy, interstitial fibrosis, ectopic lipid deposition, inflammation and cardiac dysfunction, accompanied by CIDEC elevation. With CIDEC gene silencing, the above pathophysiological characteristics were significantly ameliorated accompanied by significant improvements in cardiac function in DCM rats. Enhanced AMP-activated protein kinase (AMPK) α activation was involved in the underlying pathophysiological molecular mechanisms. To further explore the underlying mechanisms that CIDEC facilitated collagen syntheses in vitro, insulin-resistant cardiac fibroblast (CF) model was induced by high glucose (15.5 mmol/L) and high insulin (104 μU/mL). We observed that insulin-resistant stimulation dramatically raised CIDEC expression and promoted CIDEC nuclear translocation in CFs. Meanwhile, AMPKα2 was observed to distribute almost completely inside CF nucleus. The results further proved that CIDEC biochemically interacted and co-localized with AMPKα2 rather than AMPKα1 in CF nucleus, which provided a novel mechanism of CIDEC in promoting collagen syntheses. This study suggested that CIDEC gene silencing alleviates DCM via AMPKα signaling both in vivo and in vitro, implicating CIDEC may be a promising target for treatment of human DCM.
Collapse
Affiliation(s)
- Hui-Min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicines, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Peng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong key Laboratory of Cardiovascular Proteomics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 2020; 11:1231-1245. [PMID: 32167023 PMCID: PMC7524283 DOI: 10.1080/19490976.2020.1737307] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence points to Akkermansia muciniphila as a novel candidate to prevent or treat obesity-related metabolic disorders. We recently observed, in mice and in humans, that pasteurization of A. muciniphila increases its beneficial effects on metabolism. However, it is currently unknown if the observed beneficial effects on body weight and fat mass gain are due to specific changes in energy expenditure. Therefore, we investigated the effects of pasteurized A. muciniphila on whole-body energy metabolism during high-fat diet feeding by using metabolic chambers. We confirmed that daily oral administration of pasteurized A. muciniphila alleviated diet-induced obesity and decreased food energy efficiency. We found that this effect was associated with an increase in energy expenditure and spontaneous physical activity. Strikingly, we discovered that energy expenditure was enhanced independently from changes in markers of thermogenesis or beiging of the white adipose tissue. However, we found in brown and white adipose tissues that perilipin2, a factor associated with lipid droplet and known to be altered in obesity, was decreased in expression by pasteurized A. muciniphila. Finally, we observed that treatment with pasteurized A. muciniphila increased energy excretion in the feces. Interestingly, we demonstrated that this effect was not due to the modulation of intestinal lipid absorption or chylomicron synthesis but likely involved a reduction of carbohydrates absorption and enhanced intestinal epithelial turnover. In conclusion, this study further dissects the mechanisms by which pasteurized A. muciniphila reduces body weight and fat mass gain. These data also further support the impact of targeting the gut microbiota by using specific bacteria to control whole-body energy metabolism.
Collapse
Affiliation(s)
- Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Willem M. De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium,CONTACT Patrice D. Cani UCLouvain, Université Catholique De Louvain, LDRI, Metabolism and Nutrition Research Group, Av. E. Mounier, 73 Box B1.73.11, B-1200Brussels, Belgium
| |
Collapse
|
19
|
Tarabra E, Nouws J, Vash-Margita A, Nadzam GS, Goldberg R, Van Name M, Pierpont B, Knight JR, Shulman GI, Caprio S. The omentum of obese girls harbors small adipocytes and browning transcripts. JCI Insight 2020; 5:135448. [PMID: 32125283 PMCID: PMC7213797 DOI: 10.1172/jci.insight.135448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Severe obesity (SO) affects about 6% of youth in the United States, augmenting the risks for cardiovascular disease and type 2 diabetes. Herein, we obtained paired omental adipose tissue (omVAT) and abdominal subcutaneous adipose tissue (SAT) biopsies from girls with SO undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differently. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared with SAT, increased lipolysis through adipose triglyceride lipase phosphorylation, reduced inflammation, and increased expression of browning/beiging markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes' size became smaller, showing increased lipolysis through perilipin 1 phosphorylation, decreased inflammation, and increased expression in browning/beiging markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into more favorable ones. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale University West Campus, Orange, Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine
- Department of Cellular and Molecular Physiology, and
- Yale Diabetes Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
20
|
Karczewska-Kupczewska M, Nikołajuk A, Majewski R, Filarski R, Stefanowicz M, Matulewicz N, Strączkowski M. Changes in adipose tissue lipolysis gene expression and insulin sensitivity after weight loss. Endocr Connect 2020; 9:90-100. [PMID: 31905163 PMCID: PMC6993275 DOI: 10.1530/ec-19-0507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Insulin resistance is a major pathophysiological link between obesity and its metabolic complications. Weight loss (WL) is an effective tool to prevent obesity-related diseases; however, the mechanisms of an improvement in insulin sensitivity (IS) after weight-reducing interventions are not completely understood. The aim of the present study was to analyze the relationships between IS and adipose tissue (AT) expression of the genes involved in the regulation of lipolysis in obese subjects after WL. METHODS Fifty-two obese subjects underwent weight-reducing dietary intervention program. The control group comprised 20 normal-weight subjects, examined at baseline only. Hyperinsulinemic-euglycemic clamp and s.c. AT biopsy with subsequent gene expression analysis were performed before and after the program. RESULTS AT expression of genes encoding lipases (PNPLA2, LIPE and MGLL) and lipid-droplet proteins enhancing (ABHD5) and inhibiting lipolysis (PLIN1 and CIDEA) were decreased in obese individuals in comparison with normal-weight individuals. The group of 38 obese participants completed dietary intervention program and clamp studies, which resulted in a significant WL and an improvement in mean IS. However, in nine subjects from this group IS did not improve in response to WL. AT expression of PNPLA2, LIPE and PLIN1 increased only in the group without IS improvement. CONCLUSIONS Excessive lipolysis may prevent an improvement in IS during WL. The change in AT PNPLA2 and LIPE expression was a negative predictor of the change in IS after WL.
Collapse
Affiliation(s)
- Monika Karczewska-Kupczewska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Białystok, Poland
- Correspondence should be addressed to M Karczewska-Kupczewska:
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Radosław Majewski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Remigiusz Filarski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
21
|
Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and lncRNA) and mRNAs in Normal Tissues. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:9029351. [PMID: 31565069 PMCID: PMC6745163 DOI: 10.1155/2019/9029351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 02/01/2023]
Abstract
Genes that encode proteins playing a role in more than one biological process are frequently dependent on their tissue context, and human diseases result from the altered interplay of tissue- and cell-specific processes. In this work, we performed a computational approach that identifies tissue-specific co-expression networks by integrating miRNAs, long-non-coding RNAs, and mRNAs in more than eight thousands of human samples from thirty normal tissue types. Our analysis (1) shows that long-non coding RNAs and miRNAs have a high specificity, (2) confirms several known tissue-specific RNAs, and (3) identifies new tissue-specific co-expressed RNAs that are currently still not described in the literature. Some of these RNAs interact with known tissue-specific RNAs or are crucial in key cancer functions, suggesting that they are implicated in tissue specification or cell differentiation.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Obesity is a pandemic, yet preventable healthcare problem. Insulin resistance, diabetes mellitus, dyslipidemia, and cardiovascular complications are core manifestation of obesity. While adipose tissue is a primary site of energy storage, it is also an endocrine organ, secreting a large number of adipokines and cytokines. Nonetheless in obesity, the secretion of cytokines and free fatty acids increases significantly and is associated with the degree of adiposity and insulin resistance. Fat-specific protein 27 (FSP27) has emerged as one of the major proteins that promote physiological storage of fat in adipose tissue. RECENT FINDINGS Review of number of recent findings suggests that FSP27 plays a crucial role in physiological storage of fat within the adipose tissue especially in humans. However, in disease conditions such as obesity, FSP27 may contribute to ectopic fat accumulation in non-adipose tissue. More studies are required to highlight the tissue-specific role of FSP27, especially in humans.
Collapse
Affiliation(s)
- Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, 88 East Newton St, Boston, MA, 02118, USA.
| |
Collapse
|
23
|
Karki S, Farb MG, Sharma VM, Jash S, Zizza EJ, Hess DT, Carmine B, Carter CO, Pernar LI, Apovian CM, Puri V, Gokce N. Fat-Specific Protein 27 Regulation of Vascular Function in Human Obesity. J Am Heart Assoc 2019; 8:e011431. [PMID: 31433737 PMCID: PMC6585348 DOI: 10.1161/jaha.118.011431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Background Pathophysiological mechanisms that connect obesity to cardiovascular disease are incompletely understood. FSP27 (Fat-specific protein 27) is a lipid droplet-associated protein that regulates lipolysis and insulin sensitivity in adipocytes. We unexpectedly discovered extensive FSP27 expression in human endothelial cells that is downregulated in association with visceral obesity. We sought to examine the functional role of FSP27 in the control of vascular phenotype. Methods and Results We biopsied paired subcutaneous and visceral fat depots from 61 obese individuals (body mass index 44±8 kg/m2, age 48±4 years) during planned bariatric surgery. We characterized depot-specific FSP27 expression in relation to adipose tissue microvascular insulin resistance, endothelial function and angiogenesis, and examined differential effects of FSP27 modification on vascular function. We observed markedly reduced vasodilator and angiogenic capacity of microvessels isolated from the visceral compared with subcutaneous adipose depots. Recombinant FSP27 and/or adenoviral FSP27 overexpression in human tissue increased endothelial nitric oxide synthase phosphorylation and nitric oxide production, and rescued vasomotor and angiogenic dysfunction (P<0.05), while siRNA-mediated FSP27 knockdown had opposite effects. Mechanistically, we observed that FSP27 interacts with vascular endothelial growth factor-A and exerts robust regulatory control over its expression. Lastly, in a subset of subjects followed longitudinally for 12±3 months after their bariatric surgery, 30% weight loss improved metabolic parameters and increased angiogenic capacity that correlated positively with increased FSP27 expression (r=0.79, P<0.05). Conclusions Our data strongly support a key role and functional significance of FSP27 as a critical endogenous modulator of human microvascular function that has not been previously described. FSP27 may serve as a previously unrecognized regulator of arteriolar vasomotor capacity and angiogenesis which are pivotal in the pathogenesis of cardiometabolic diseases linked to obesity.
Collapse
Affiliation(s)
- Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Melissa G. Farb
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Vishva M. Sharma
- Department of Biomedical Sciences and Diabetes InstituteOhio UniversityAthensOH
| | - Sukanta Jash
- Department of Biomedical Sciences and Diabetes InstituteOhio UniversityAthensOH
| | - Elaina J. Zizza
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Donald T. Hess
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Brian Carmine
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Cullen O. Carter
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Luise I. Pernar
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Caroline M. Apovian
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes InstituteOhio UniversityAthensOH
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| |
Collapse
|
24
|
Bariatric Surgery in Rats Upregulates FSP27 Expression in Fat Tissue to Affect Fat Hydrolysis and Metabolism. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6415732. [PMID: 31205943 PMCID: PMC6530210 DOI: 10.1155/2019/6415732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
Abstract
Purpose To explore the changes in FSP27 expression and fat metabolism in adipose tissue and their relationship after bariatric surgery in rats. Method Food intake, body weight, triglyceride content, fat distribution, and fat cell morphology were evaluated in rats grouped into control, sham, sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) groups. Immunohistochemistry and western blotting were used to detect protein expression and real-time PCR was used to detect mRNA expression. Mouse 3T3-L1 preadipocytes were used to assess the effects of different energy levels and nutrient factors on FSP27 in adipocytes. Result Food intake, body weight, and triglyceride levels were reduced in RYGB and SG rats within 28 days after surgery, with a more pronounced effect in the RYGB group. Weight loss was mainly due to loss of fat mass rather than loss of lean mass, with the most pronounced decrease in trunk fat. FSP27 expression increased in lean rat adipocytes accompanied by increased lipid droplets (LDs). In SG and RYGB rats, the FSP27 protein concentration gradually increased in white adipose tissue (WAT) after operation. Hormone-sensitive lipase (HSL), p-HSL/HSL, Adipose Triglyceride Lipase (ATGL), and Comparative Gene Identification-58 (CGI-58) gradually decreased in SG and RYGB rats, but they were always higher than in control and sham animals. FSP27 was also decreased in 3T3-L1 adipocytes of animals with a high-energy diet. Conclusion FSP27 is associated with rat lipid metabolism and its expression varies with energy and nutrient supply. It can inhibit excessive hydrolysis and fat accumulation by regulating HSL and ATGL expression and by mediating LDs formation.
Collapse
|
25
|
Slayton M, Gupta A, Balakrishnan B, Puri V. CIDE Proteins in Human Health and Disease. Cells 2019; 8:cells8030238. [PMID: 30871156 PMCID: PMC6468517 DOI: 10.3390/cells8030238] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
Cell death-Inducing DNA Fragmentation Factor Alpha (DFFA)-like Effector (CIDE) proteins have emerged as lipid droplet-associated proteins that regulate fat metabolism. There are three members in the CIDE protein family—CIDEA, CIDEB, and CIDEC (also known as fat-specific protein 27 (FSP27)). CIDEA and FSP27 are primarily expressed in adipose tissue, while CIDEB is expressed in the liver. Originally, based upon their homology with DNA fragmentation factors, these proteins were identified as apoptotic proteins. However, recent studies have changed the perception of these proteins, redefining them as regulators of lipid droplet dynamics and fat metabolism, which contribute to a healthy metabolic phenotype in humans. Despite various studies in humans and gene-targeting studies in mice, the physiological roles of CIDE proteins remains elusive. This review will summarize the known physiological role and metabolic pathways regulated by the CIDE proteins in human health and disease.
Collapse
Affiliation(s)
- Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| |
Collapse
|
26
|
Su X, Kong Y, Peng DQ. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis 2018; 17:174. [PMID: 30053818 PMCID: PMC6064078 DOI: 10.1186/s12944-018-0833-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein A5 (apoA5) has been identified to play an important role in lipid metabolism, specifically in triglyceride (TG) and TG-rich lipoproteins (TRLs) metabolism. Numerous evidence has demonstrated for an association between apoA5 and the increased risk of obesity and metabolic syndrome, but the mechanism remains to be fully elucidated. Recently, several studies verified that apoA5 could significantly reduce plasma TG level by stimulating lipoprotein lipase (LPL) activity, and the intracellular role of apoA5 has also been proved since apoA5 is associated with cytoplasmic lipid droplets (LDs) and affects intrahepatic TG accumulation. Furthermore, since adipocytes provide the largest storage depot for TG and play a crucial role in the development of obesity, we could infer that apoA5 also acts as a novel regulator to modulate TG storage in adipocytes. In this review, we focus on the association of gene and protein of apoA5 with obesity and metabolic syndrome, and provide new insights into the physiological role of apoA5 in humans, giving a potential therapeutic target for obesity and associated disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yi Kong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Dao-Quan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
27
|
Sui D, Zhou H, Wang F, Zhong M, Zhang W, Ti Y. Cell death-inducing DFF45-like effector C gene silencing alleviates pulmonary vascular remodeling in a type 2 diabetic rat model. J Diabetes Investig 2018; 9:741-752. [PMID: 29078040 PMCID: PMC6031506 DOI: 10.1111/jdi.12768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Cell death-inducing DFF45-like effector C (CIDEC) was proven to be closely associated with the development of insulin resistance and metabolic syndrome. We aimed to investigate whether CIDEC gene silencing could alleviate pulmonary vascular remodeling in a type 2 diabetes rat model. MATERIALS AND METHODS We built a type 2 diabetes rat model. An adenovirus harboring CIDEC small interfering ribonucleic acid was then injected into the jugular vein to silence the CIDEC gene. After hematoxylin-eosin and Sirius red staining, we detected indexes of the pulmonary arterioles remodeling. Immunohistochemical staining of proliferating cell nuclear antigen was used to evaluate the pulmonary arterial smooth muscle cell proliferation. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling reaction and western blotting. The levels of signaling pathway proteins expression were measured by western blotting analyses. RESULTS Histological analysis of the pulmonary artery showed that the thickness of the adventitia and medial layer increased notably in type 2 diabetes rats. Immunohistochemistry showed that more proliferating cell nuclear antigen-positive pulmonary arterial smooth muscle cells could be seen in type 2 diabetes rats; and after CIDEC gene silencing, proliferating cell nuclear antigen positive cells decreased accordingly. Cleaved caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase measured by western blotting showed increased apoptosis with overexpressed CIDEC in diabetes. Terminal deoxynucleotidyl transferase dUTP nick end labeling reaction showed that the apoptosis mainly occurred in endothelial cells. Western blotting analysis showed CIDEC overexpression in rats with diabetes, and phosphorylated adenosine 5' monophosphate-activated protein kinase-α expression was significantly decreased. After CIDEC gene silencing, the expression of phosphorylated adenosine 5' monophosphate-activated protein kinase-α was upregulated. CONCLUSIONS The CIDEC/5' monophosphate-activated protein kinase signaling pathway could be a potential therapeutic candidate against pulmonary vascular diseases in type 2 diabetes patients.
Collapse
Affiliation(s)
- Dong‐xin Sui
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of Respirationthe Second Hospital of Shandong UniversityJinanShandongChina
| | - Hui‐min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Feng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
28
|
Wang H, Ti Y, Zhang JB, Peng J, Zhou HM, Zhong M, Xing YQ, Zhang Y, Zhang W, Wang ZH. Single nucleotide polymorphisms in CIDEC gene are associated with metabolic syndrome components risks and antihypertensive drug efficacy. Oncotarget 2018; 8:27481-27488. [PMID: 28415694 PMCID: PMC5432350 DOI: 10.18632/oncotarget.16078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
The association of single nucleotide polymorphisms rs1053239 and rs2479 of cell death-inducing DFFA-like effector c with the risk of metabolic syndrome and its components, and with the efficacy and cost-effectiveness of antihypertensive drugs was investigated. Totally 1064 subjects with metabolic syndrome and 1099 controls of Chinese Han nationality were recruited. Clinical assessment was conducted with medication records collected at baseline and during 5-year follow-up. Carriers of rs2479 A allele were at higher risk to develop elevated fasting glucose than non-carriers (P = 0.004). A allele at rs2479 were associated with a 5-year aggravation of blood triglyceride (P < 0.001) and diastolic blood pressure (P = 0.003), and C allele at rs1053239 with the exacerbation of systolic (P < 0.001) and diastolic blood pressure (P = 0.001). Moreover, efficacy and cost-effectiveness of angiotensin II-targeted drugs were higher in subjects with rs2479 A allele or rs1053239 C allele. These findings suggest that carriers of rs2479 A allele are predisposed to the development of increased fasting glucose, and the progressive elevation of blood triglyceride. Individuals with A allele at rs2479 or C allele at rs1053239 are more susceptible to a rapid progression of blood pressure, and benefit more from angiotensin II-targeted therapy.
Collapse
Affiliation(s)
- Hui Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Jin-Bo Zhang
- Weihai Center for Diseases Control and Prevention, Weihai, Shandong, 264200, P.R. China
| | - Jie Peng
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Hui-Min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yan-Qiu Xing
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Zhi-Hao Wang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
29
|
Moreno-Navarrete JM, Rodríguez A, Ortega F, Becerril S, Girones J, Sabater-Masdeu M, Latorre J, Ricart W, Frühbeck G, Fernández-Real JM. Heme Biosynthetic Pathway is Functionally Linked to Adipogenesis via Mitochondrial Respiratory Activity. Obesity (Silver Spring) 2017; 25:1723-1733. [PMID: 28857503 DOI: 10.1002/oby.21956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate key enzymes of heme biosynthesis in human adipocytes and adipose tissue (AT). METHODS Heme biosynthesis-related gene expression (ALAS1, ALAD, HMBS) was investigated in whole AT from humans (n = 178 and n = 75) and rats according to obesity status and during adipogenesis of human preadipocytes. The effects of aminotriazole (an ALAD inhibitor) and of ALAD knockdown were also studied. RESULTS Consistent heme biosynthesis-related gene expression was detected in both subcutaneous AT (SAT) and visceral AT (VAT) and was significantly increased in SAT. ALAS1, ALAD, and HMBS mRNAs were positively associated with adipogenic gene expression in human AT and significantly decreased in subjects with obesity. These results were replicated in an independent cohort. Both SAT and VAT heme levels were positively correlated with ALAS1, ALAD, and HMBS mRNAs. ALAD and HMBS were mainly expressed in adipocytes and increased during differentiation of human adipocytes in parallel to adipogenic genes. In rats, high-fat diet-induced weight gain resulted in decreased Alad and Hmbs mRNAs in a similar way to what was observed with Adipoq. Aminotriazole administration or ALAD knockdown attenuated adipogenesis in parallel with decreased glucose uptake and impaired mitochondrial respiratory function during human adipocyte differentiation. CONCLUSIONS Current data suggest a possible role of heme biosynthesis in human adipogenesis.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jordi Girones
- Department of Surgery, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Mònica Sabater-Masdeu
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Jéssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| |
Collapse
|
30
|
Labrecque J, Laforest S, Michaud A, Biertho L, Tchernof A. Impact of Bariatric Surgery on White Adipose Tissue Inflammation. Can J Diabetes 2017; 41:407-417. [DOI: 10.1016/j.jcjd.2016.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/23/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022]
|
31
|
Shin AC, Filatova N, Lindtner C, Chi T, Degann S, Oberlin D, Buettner C. Insulin Receptor Signaling in POMC, but Not AgRP, Neurons Controls Adipose Tissue Insulin Action. Diabetes 2017; 66:1560-1571. [PMID: 28385803 PMCID: PMC5440019 DOI: 10.2337/db16-1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
Insulin is a key regulator of adipose tissue lipolysis, and impaired adipose tissue insulin action results in unrestrained lipolysis and lipotoxicity, which are hallmarks of the metabolic syndrome and diabetes. Insulin regulates adipose tissue metabolism through direct effects on adipocytes and through signaling in the central nervous system by dampening sympathetic outflow to the adipose tissue. Here we examined the role of insulin signaling in agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons in regulating hepatic and adipose tissue insulin action. Mice lacking the insulin receptor in AgRP neurons (AgRP IR KO) exhibited impaired hepatic insulin action because the ability of insulin to suppress hepatic glucose production (hGP) was reduced, but the ability of insulin to suppress lipolysis was unaltered. To the contrary, in POMC IR KO mice, insulin lowered hGP but failed to suppress adipose tissue lipolysis. High-fat diet equally worsened glucose tolerance in AgRP and POMC IR KO mice and their respective controls but increased hepatic triglyceride levels only in POMC IR KO mice, consistent with impaired lipolytic regulation resulting in fatty liver. These data suggest that although insulin signaling in AgRP neurons is important in regulating glucose metabolism, insulin signaling in POMC neurons controls adipose tissue lipolysis and prevents high-fat diet-induced hepatic steatosis.
Collapse
Affiliation(s)
- Andrew C Shin
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nika Filatova
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Claudia Lindtner
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tiffany Chi
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Seta Degann
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Douglas Oberlin
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christoph Buettner
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
32
|
Harvie MN, Howell T. Could Intermittent Energy Restriction and Intermittent Fasting Reduce Rates of Cancer in Obese, Overweight, and Normal-Weight Subjects? A Summary of Evidence. Adv Nutr 2016; 7:690-705. [PMID: 27422504 PMCID: PMC4942870 DOI: 10.3945/an.115.011767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Animal studies and human observational data link energy restriction (ER) to reduced rates of carcinogenesis. Most of these studies have involved continuous energy restriction (CER), but there is increasing public and scientific interest in the potential health and anticancer effects of intermittent energy restriction (IER) or intermittent fasting (IF), which comprise periods of marked ER or total fasting interspersed with periods of normal eating. This review summarizes animal studies that assessed tumor rates with IER and IF compared with CER or ad libitum feed consumption. The relevance of these animal data to human cancer is also considered by summarizing available human studies of the effects of IER or IF compared with CER on cancer biomarkers in obese, overweight, and normal-weight subjects. IER regimens that include periods of ER alternating with ad libitum feed consumption for 1, 2, or 3 wk have been reported to be superior to CER in reducing tumor rates in most spontaneous mice tumor models. Limited human data from short-term studies (≤6 mo) in overweight and obese subjects have shown that IER can lead to greater improvements in insulin sensitivity (homeostasis model assessment) than can CER, with comparable reductions in adipokines and inflammatory markers and minor changes in the insulin-like growth factor axis. There are currently no data comparing IER or IF with CER in normal-weight subjects. The benefits of IER in these short-term trials are of interest, but not sufficient evidence to recommend the use of IER above CER. Longer-term human studies of adherence to and efficacy and safety of IER are required in obese and overweight subjects, as well as normal-weight subjects.
Collapse
Affiliation(s)
- Michelle N Harvie
- Genesis Prevention Centre, University Hospital South Manchester National Health Service Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
33
|
Tan X, Cao Z, Li M, Xu E, Wang J, Xiao Y. TNF-α downregulates CIDEC via MEK/ERK pathway in human adipocytes. Obesity (Silver Spring) 2016; 24:1070-80. [PMID: 27062372 DOI: 10.1002/oby.21436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Cell death-inducing DFF45-like effector C (CIDEC) is a lipid droplet-coating protein that promotes triglyceride accumulation and inhibits lipolysis. TNF-α downregulates CIDEC levels to enhance basal lipolysis, whereas CIDEC overexpression could block this effect. This study aimed to investigate the signaling pathway of TNF-α-mediated CIDEC downregulation in human adipocytes. METHODS First CIDEC expression was detected in adipose tissue of lean and human subjects with obesity. Next, the temporal- and dose-dependent effects of TNF-α on CIDEC expression in human SW872 adipocytes were investigated. Selective inhibitors or RNAi or constitutively active MEK1 mutant was used to suppress or stimulate MEK/ERK cascade. Immunofluorescence and subcellular fractionation technique were used to study PPARγ redistribution after TNF-α treatment. Reporter assay was performed to confirm the direct effects of TNF-α on CIDEC transcription. RESULTS CIDEC expression decreased in adipose tissue of subjects with obesity and negatively correlated with adipose TNF-α levels and systemic lipolysis. TNF-α reduced CIDEC expression in vitro, but suppression of MEK/ERK cascade prevented TNF-α-mediated CIDEC downregulation. PPARγ, the transcription factor of CIDEC, was phosphorylated and redistributed by TNF-α in a MEK/ERK-dependent manner. Reporter assay confirmed that TNF-α reduced CIDEC transcription. CONCLUSIONS TNF-α downregulates CIDEC expression through phosphorylation and nuclear export of PPARγ by MEK/ERK cascade.
Collapse
Affiliation(s)
- Xinrui Tan
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Zhenzhen Cao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Min Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Erdi Xu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Jingjing Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| |
Collapse
|
34
|
Chirumbolo S. Commentary: Heart Fat Infiltration in Subjects With and Without Coronary Artery Disease. Front Cardiovasc Med 2016; 3:2. [PMID: 26870737 PMCID: PMC4740777 DOI: 10.3389/fcvm.2016.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
|
35
|
Bays HE, Jones PH, Jacobson TA, Cohen DE, Orringer CE, Kothari S, Azagury DE, Morton J, Nguyen NT, Westman EC, Horn DB, Scinta W, Primack C. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT. J Clin Lipidol 2016; 10:33-57. [DOI: 10.1016/j.jacl.2015.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
|
36
|
Bays HE, Jones PH, Jacobson TA, Cohen DE, Orringer CE, Kothari S, Azagury DE, Morton J, Nguyen NT, Westman EC, Horn DB, Scinta W, Primack C. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY. J Clin Lipidol 2016; 10:15-32. [DOI: 10.1016/j.jacl.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
|
37
|
Moreno-Castellanos N, Guzmán-Ruiz R, Cano DA, Madrazo-Atutxa A, Peinado JR, Pereira-Cunill JL, García-Luna PP, Morales-Conde S, Socas-Macias M, Vázquez-Martínez R, Leal-Cerro A, Malagón MM. The Effects of Bariatric Surgery-Induced Weight Loss on Adipose Tissue in Morbidly Obese Women Depends on the Initial Metabolic Status. Obes Surg 2015; 26:1757-67. [DOI: 10.1007/s11695-015-1995-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Kogelman LJA, Zhernakova DV, Westra HJ, Cirera S, Fredholm M, Franke L, Kadarmideen HN. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genome Med 2015; 7:105. [PMID: 26482556 PMCID: PMC4617184 DOI: 10.1186/s13073-015-0229-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023] Open
Abstract
Background Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Methods Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Results Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. Conclusions To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0229-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisette J A Kogelman
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark.
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Harm-Jan Westra
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Partners Center for Personalized Genetic Medicine, Boston, MA, USA. .,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Susanna Cirera
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark.
| | - Merete Fredholm
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark.
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Haja N Kadarmideen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
39
|
Moreno-Navarrete JM, Ortega F, Moreno M, Xifra G, Ricart W, Fernández-Real JM. PRDM16 sustains white fat gene expression profile in human adipocytes in direct relation with insulin action. Mol Cell Endocrinol 2015; 405:84-93. [PMID: 25662275 DOI: 10.1016/j.mce.2015.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 01/08/2023]
Abstract
In the present study, we aimed to evaluate the possible role of PRDM16 in human adipocytes and in whole adipose tissue according to obesity and insulin sensitivity. PRDM16 knockdown (KD) had a dual behavior. While KD in preadipocytes led to enhanced gene expression markers of adipocyte differentiation, PRDM16 KD in fully differentiated adipocytes resulted in decreased adipogenic gene expression and insulin action. In line with KD in adipocytes, PRDM16 was positively associated with the expression of several genes involved in adipogenesis, insulin signaling, mitochondrial function and brown adipocyte-related markers in whole adipose tissue from two independent cohorts. PRDM16 was decreased in obese subjects in relation with the decrease of insulin sensitivity [HOM(AIR) (cohort 1) and M clamp value (cohort 2)]. Rosiglitazone (5 µmol/l) and metformin (5 mmol/l) led to increased PRDM16 mRNA and protein levels in isolated human adipocytes and in whole adipose tissue. In conclusion, PRDM16 might contribute to maintain adipose tissue "white fat" gene expression profile and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain.
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - María Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - Gemma Xifra
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain.
| |
Collapse
|
40
|
Serrano M, Moreno M, Ortega FJ, Xifra G, Ricart W, Moreno-Navarrete JM, Fernández-Real JM. Adipose tissue μ-crystallin is a thyroid hormone-binding protein associated with systemic insulin sensitivity. J Clin Endocrinol Metab 2014; 99:E2259-68. [PMID: 25057873 DOI: 10.1210/jc.2014-1327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circulating thyroid hormones have been described to be intrinsically associated with insulin sensitivity in healthy subjects. μ-Crystallin is a nicotinamide adenine dinucleotide phosphate-dependent thyroid hormone-binding protein that has been shown to bind T3 in the cytoplasm. We aimed to study μ-Crystallin expression in adipose tissue and in muscle in association with insulin action and thyroid function. METHODS μ-Crystallin gene expression was studied in 81 visceral and 75 sc adipose tissue samples and in 26 muscle samples from a cohort of subjects with a wide spectrum of adiposity (cohort 1). μ-Crystallin was also evaluated in 30 morbidly obese subjects in whom insulin action was evaluated using euglycemic clamp (cohort 2) and in 22 sc adipose tissue samples obtained before and after bariatric surgery-induced weight loss (cohort 3). μ-Crystallin was also evaluated during differentiation of human adipocytes. μ-Crystallin was overexpressed in human sc adipocytes using lentiviruses. RESULTS μ-Crystallin gene expression was 2.6- to 3-fold higher in sc vs visceral adipose tissue in direct association with the expression of thyroid hormone receptor α 1 in cohort 1 and cohort 2. Visceral, but not sc, adipose tissue μ-Crystallin was positively associated with the serum T3/T4 ratio in cohort 1 and with insulin sensitivity in cohort 2. In fact, μ-Crystallin gene expression was significantly decreased in visceral adipose tissue (-43%) and in muscle (-26%) in subjects with impaired fasting glucose and type 2 diabetes. Weight loss did not result in significant sc adipose tissue μ-Crystallin changes. μ-Crystallin overexpression led to increased insulin-induced (Ser473)Akt phosphorylation in sc adipocytes. During differentiation of adipocytes, μ-Crystallin gene expression decreased in both visceral (P = .006) and sc (P = .003) adipocytes from obese subjects. CONCLUSION Visceral, but not sc, adipose tissue μ-Crystallin is an adipose tissue factor linked to parameters of thyroid hormone action (T3/T4 ratio) and might mediate the interaction of thyroid function and insulin sensitivity.
Collapse
Affiliation(s)
- Marta Serrano
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CB06/03/010), and Instituto de Salud Carlos III, 17007 Girona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice. PLoS One 2014; 9:e106992. [PMID: 25210844 PMCID: PMC4161383 DOI: 10.1371/journal.pone.0106992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/08/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Obesity is a metabolic disorder that can lead to high blood pressure, increased blood cholesterol and triglycerides, insulin resistance, and diabetes mellitus. The aim was to study the effects of pioglitazone mediated sensitization of peroxisome proliferator-activated receptor gamma (PPAR-γ) on the relationship of Cell death-inducing DFFA-like effector C (CIDEC) with obesity related changes in mice. METHODS Sixty C57B/L6 mice weighing 10-12g at 3 weeks of age were randomly divided into 3 groups. Mice in Group 1 were fed on normal diet (ND) while Group 2 mice were given high fat diet (HFD), and Group 3 mice were given high fat diet and treated with Pioglitazone (HFD+P). Body weight, length and level of blood sugar were measured weekly. Quantitative real-time PCR, fluorescence microscopy, and ELISA were performed to analyze the expression of CIDEC and PPAR-γ in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). RESULTS Body weight and length of mice increased gradually with time in all groups. Blood sugar in HFD mice started to increase significantly from the mid of late phase of obesity while pioglitazone attenuated blood sugar level in HFD+P mice. The mRNA expressions and protein levels of PPAR-γ and CIDEC genes started to increase in HFD mice as compared to ND mice and decreased gradually during the late phase of obesity in VAT. Pioglitazone enhanced the expression of PPAR-γ and CIDEC genes in HFD+P mice even during the late phase of obesity. CONCLUSION It is insinuated that VAT is associated with late phase obesity CIDEC decrease and insulin resistance, while pioglitazone enhances CIDEC through activation of PPAR-γ, increases its expression, and decreases lipolysis, hence preventing an increase of blood sugar in mice exposed to HFD.
Collapse
|