1
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Abdou HM, Saad AM, Abd Elkader HTAE, Essawy AE. Role of vitamin D 3 in mitigating sodium arsenite-induced neurotoxicity in male rats. Toxicol Res (Camb) 2024; 13:tfae203. [PMID: 39611054 PMCID: PMC11602150 DOI: 10.1093/toxres/tfae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Arsenic is associated with various neurological disorders, notably affecting memory and cognitive functions. The current study examined the protective effects of vitamin D3 (Vit. D3) in countering oxidative stress, neuroinflammation and apoptosis induced by sodium arsenite (SA) in the cerebral cortex of rats. Male Wistar rats were subjected to a daily oral administration of sodium arsenite (NaAsO2, SA) at a dosage of 5 mg/kg, along with 500 IU/kg of Vit. D3, and a combination of both substances for four weeks. The results indicated that Vit. D3 effectively mitigated the SA-induced increase in oxidative stress markers, thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO), the decrease in antioxidants (reduced glutathione; GSH, superoxide dismutase; SOD, catalase; CAT, and glutathione peroxidase; GPx), as well as the increase in pro-inflammatory markers including, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and amyloid-beta (Aβ)1-42. Furthermore, Vit. D3 reversed the alterations in the neurochemicals acetylcholinesterase (AchE), monoamine oxidase (MAO), dopamine (DA), and acetylcholine (Ach) and ameliorated the histopathological changes in the cerebral cortex. Moreover, immunohistochemical analyses revealed that Vit. D3 reduced the SA-induced overexpression of cerebral cysteine aspartate-specific protease-3 (caspase-3) and glial fibrillary acidic protein (GFAP) in the cerebral cortex of male rats. Consequently, the co-administration of Vit. D3 can protect the cerebral cortex against SA-induced neurotoxicity, primarily through its antioxidant, anti-inflammatory, anti-apoptotic, and anti-astrogliosis effects.
Collapse
Affiliation(s)
- Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| | - Alaa Mohamed Saad
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| | - Heba-Tallah Abd Elrahim Abd Elkader
- Zoology, Biological and Geological Sciences Department, Faculty of Education, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| |
Collapse
|
3
|
Dmytriv TR, Duve KV, Storey KB, Lushchak VI. Vicious cycle of oxidative stress and neuroinflammation in pathophysiology of chronic vascular encephalopathy. Front Physiol 2024; 15:1443604. [PMID: 39161701 PMCID: PMC11330875 DOI: 10.3389/fphys.2024.1443604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Chronic vascular encephalopathy (CVE) is a frequent cause of vascular mild cognitive impairment and dementia, which significantly worsens the quality of life, especially in the elderly population. CVE is a result of chronic cerebral hypoperfusion, characterized by prolonged limited blood flow to the brain. This causes insufficient oxygenation of the brain leading to hypoxia. The latter can trigger a series of events associated with the development of oxidative/reductive stresses and neuroinflammation. Addressing the gap in knowledge regarding oxidative and reductive stresses in the development of vascular disorders and neuroinflammation can give a start to new directions of research in the context of CVE. In this review, we consider the hypoxia-induced molecular challenges involved in the pathophysiology of CVE, focusing on oxidative stress and neuroinflammation, which are combined in a vicious cycle of neurodegeneration. We also briefly describe therapeutic approaches to the treatment of CVE and outline the prospects for the use of sulforaphane, an isothiocyanate common in cruciferous plants, and vitamin D to break the vicious cycle and alleviate the cognitive impairments characteristic of patients with CVE.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Khrystyna V. Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
4
|
Gheorghe DC, Stefan-van Staden RI, van Staden JKF. Mini-Review: Electrochemical Sensors Used for the Determination of Water- and Fat-Soluble Vitamins: B, D, K. Crit Rev Anal Chem 2024; 54:1-10. [PMID: 35225092 DOI: 10.1080/10408347.2022.2045557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vitamins are one of the most essential organic compounds that are necessary for the human body, in order to develop and grow in a healthy way. The aim of this mini-review is to bring together a series of electrochemical sensors (voltametric and amperometric) developed for the determination of vitamins from the families of B, D and K in biological, pharmaceutical or food-related samples. For this mini-review, 16 articles published between 2016 and 2021 were taken into consideration.
Collapse
Affiliation(s)
- Damaris-Cristina Gheorghe
- National Institute of Research for Electrochemistry and Condensed Matter, Timisoara - Laboratory of Electrochemistry and PATLAB, Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Raluca-Ioana Stefan-van Staden
- National Institute of Research for Electrochemistry and Condensed Matter, Timisoara - Laboratory of Electrochemistry and PATLAB, Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Jacobus Koos Frederick van Staden
- National Institute of Research for Electrochemistry and Condensed Matter, Timisoara - Laboratory of Electrochemistry and PATLAB, Bucharest, Romania
| |
Collapse
|
5
|
Sun X, Yang X, Zhu X, Ma Y, Li X, Zhang Y, Liu Q, Fan C, Zhang M, Xu B, Xu Y, Gao X, Dong J, Xia M, Bian H. Association of vitamin D deficiency and subclinical diabetic peripheral neuropathy in type 2 diabetes patients. Front Endocrinol (Lausanne) 2024; 15:1354511. [PMID: 38590822 PMCID: PMC10999604 DOI: 10.3389/fendo.2024.1354511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) contributes to disability and imposes heavy burdens, while subclinical DPN is lack of attention so far. We aimed to investigate the relationship between vitamin D and distinct subtypes of subclinical DPN in type 2 diabetes (T2DM) patients. Methods This cross-sectional study included 3629 T2DM inpatients who undertook nerve conduction study to detect subclinical DPN in Zhongshan Hospital between March 2012 and December 2019. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D (25(OH)D) level < 50 nmol/L. Results 1620 (44.6%) patients had subclinical DPN and they were further divided into subgroups: distal symmetric polyneuropathy (DSPN) (n=685), mononeuropathy (n=679) and radiculopathy (n=256). Compared with non-DPN, DPN group had significantly lower level of 25(OH)D (P < 0.05). In DPN subtypes, only DSPN patients had significantly lower levels of 25(OH)D (36.18 ± 19.47 vs. 41.03 ± 18.47 nmol/L, P < 0.001) and higher proportion of vitamin D deficiency (78.54% vs. 72.18%, P < 0.001) than non-DPN. Vitamin D deficiency was associated with the increased prevalence of subclinical DPN [odds ratio (OR) 1.276, 95% confidence interval (CI) 1.086-1.501, P = 0.003] and DSPN [OR 1. 646, 95% CI 1.31-2.078, P < 0.001], independent of sex, age, weight, blood pressure, glycosylated hemoglobin, T2DM duration, calcium, phosphorus, parathyroid hormone, lipids and renal function. The association between vitamin D deficiency and mononeuropathy or radiculopathy was not statistically significant. A negative linear association was observed between 25(OH)D and subclinical DSPN. Vitamin D deficiency maintained its significant association with subclinical DSPN in all age groups. Conclusions Vitamin D deficiency was independently associated with subclinical DSPN, rather than other DPN subtypes.
Collapse
Affiliation(s)
- Xiaoyang Sun
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Xinyu Yang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Yu Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Institute of Metabolism &Integrative Biology (IMIB), Fudan University, Shanghai, China
| | - Yuying Zhang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Qiling Liu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Chenmin Fan
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Miao Zhang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Binger Xu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Yanlan Xu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
- Department of Geriatrics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolic Disease, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Shea MK, Xuan AY, Booth SL. Vitamin D, Alzheimer's disease and related dementia. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:185-219. [PMID: 38777413 DOI: 10.1016/bs.afnr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vitamin D has been proposed as a potential strategy to mitigate age-related cognitive decline and dementia, including Alzheimer's dementia, the predominant type of dementia. Rodent studies have provided insight into the potential mechanisms underlying the role of vitamin D in Alzheimer's disease and dementia. However, inconsistencies with respect to age, sex, and genetic background of the rodent models used poses some limitations regarding scientific rigor and translation. Several human observational studies have evaluated the association of vitamin D status with cognitive decline and dementia, and the results are conflicting. Randomized clinical trials of vitamin D supplementation have included cognitive outcomes. However, most of the available trials have not been designed specifically to test the effect of vitamin D on age-related cognitive decline and dementia, so it remains questionable how much additional vitamin D will improve cognitive performance. Here we evaluate the strengths and limitations of the available evidence regarding the role of vitamin D in AD, cognitive decline, dementia.
Collapse
Affiliation(s)
- M Kyla Shea
- Tufts University USDA Human Nutrition Research Center on Aging.
| | - Andrew Y Xuan
- Tufts University USDA Human Nutrition Research Center on Aging
| | - Sarah L Booth
- Tufts University USDA Human Nutrition Research Center on Aging
| |
Collapse
|
7
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
8
|
Zagkos L, Drenos F, Emmett P, Blakemore AI, Nordström T, Hurtig T, Jarvelin MR, Dovey TM. Associations of adolescents' diet and meal patterns with school performance in the Northern Finland Birth Cohort 1986: A Mendelian randomisation study. Appetite 2023; 190:107036. [PMID: 37734238 DOI: 10.1016/j.appet.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Several observational studies indicate that dietary habits in children and adolescents are associated with school performance. These associations are heavily confounded by socio-economic characteristics, such as household income and parents' educational attainment, amongst other factors. The objective of this study was to explore the association between diet and school performance in adolescents from the Northern Finland Birth Cohort 1986 (NFBC1986). METHODS Dietary and school performance data were collected using self-reported questionnaires from adolescents in the NFBC1986 cross-sectional, 16-year follow-up study. In this work we derived exploratory factors for the dietary variables, frequency of skipping main meals and school performance variables, performed genome-wide association studies (GWAS) against these factors to obtain genetic association data and conducted one-sample and two-sample Mendelian randomisation (MR) analyses using individual level data for up to 9220 adolescents in NFBC1986 and GWAS results from external cohorts. We report observational and MR effects of diet on school performance and cognition-related phenotypes. RESULTS The observational study and the one-sample Mendelian randomisation analysis showed that high fat, salt and sugar (HFSS) consumption was associated with poor school performance in general/science subjects (-0.080, -0.128 to -0.033) and staple food consumption with better school performance in general/science subjects (0.071, 0.024 to 0.119) and physical education (0.065, 0.021 to 0.110). Findings from our two-sample MR analysis identified dietary principal components described best as whole brain bread, wheat, cheese, oat cereal and red wine to be associated with higher educational attainment and other cognition-related phenotypes. CONCLUSION Using genetics, we highlighted the potential role of HFSS food consumption and consumption of the components of a staple food diet for school performance. However, further research is required to find conclusive evidence that could support a causal role of diet on school performance.
Collapse
Affiliation(s)
- Loukas Zagkos
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, UK; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Fotios Drenos
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Pauline Emmett
- Bristol Medical School: Population Health Sciences, University of Bristol, 69 St Michael's Hill, Bristol, BS2 8DZ, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, UK; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Tanja Nordström
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Pentti Kaiteran Katu 1, 90570, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, PO Box 8000, FI-90014, Oulun Yliopisto, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Pentti Kaiteran Katu 1, 90570, Oulu, Finland
| | - Tuula Hurtig
- Research Unit of Clinical Neuroscience and PEDEGO Research Unit, University of Oulu, Finland; Clinic of Child Psychiatry, Oulu University Hospital, 90230, Peltolantie 13-15, 90210, Oulu, Finland
| | - Marjo-Riitta Jarvelin
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, UK; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, PO Box 8000, FI-90014, Oulun Yliopisto, Finland; Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK; Unit of Primary Health Care, Oulu University Hospital, OYS, Kajaanintie 50, 90220, Oulu, Finland
| | - Terence M Dovey
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| |
Collapse
|
9
|
Pang C, Yu H, Cai Y, Song M, Feng F, Gao L, Li K, Chen Y, Xie J, Cheng Y, Lin E, Pan X, Zhang W, Deng B. Vitamin D and diabetic peripheral neuropathy: A multi-centre nerve conduction study among Chinese patients with type 2 diabetes. Diabetes Metab Res Rev 2023; 39:e3679. [PMID: 37337761 DOI: 10.1002/dmrr.3679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
AIMS Increasing numbers of reports link vitamin D deficiency to diabetic peripheral neuropathy (DPN), yet evidence regarding neurological deficits and electromyogram is scarce. The present multi-centre study sought to investigate these associations based on objective quantifications. MATERIALS AND METHODS Information on DPN-related symptoms, signs, all diabetic microvascular complications, and nerve conduction abilities (quantified by nerve conduction amplitude and velocity, F-wave minimum latency (FML) of peripheral nerves) were collected from a derivation cohort of 1192 patients with type 2 diabetes (T2D). Correlation, regression analysis, and restricted cubic splines (RCS) were used to explore linear and non-linear relationships between vitamin D and DPN, which were validated in an external cohort of 223 patients. RESULTS Patients with DPN showed lower levels of vitamin D than those without DPN; patients with vitamin D deficiency (<30 nmol/L) tended to suffer more DPN-related neurological deficits (paraesthesia, prickling, abnormal temperature, ankle hyporeflexia, and distal pall hypoesthesia correlating with MNSI-exam score (Y = -0.005306X + 2.105, P = 0.048). Worse nerve conduction abilities (decreased motor nerve amplitude, sensory nerve amplitude, motor nerve velocity, and increased FML) were also observed in these patients. Vitamin D had a significant threshold association with DPN (adjusted OR = 4.136, P = 0.003; RCS P for non-linearity = 0.003) and correlates with other microvascular complications (diabetic retinopathy and diabetic nephropathy). CONCLUSIONS Vitamin D is associated with the conduction ability of peripheral nerves and may have a nerve- and threshold-selective relationship with the prevalence and severity of DPN among patients with T2D.
Collapse
Affiliation(s)
- Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunlei Cai
- Department of Neurology, Anyang District Hospital, Henan Province, China
| | - Mengwan Song
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- First Clinical College of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Ruian People's Hospital, Wenzhou, China
| | - Fei Feng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- First Clinical College of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Lingfei Gao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yifan Cheng
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Er Lin
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Xinnan Pan
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Wanli Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Vitamin D alleviates cognitive dysfunction and brain damage induced by copper sulfate intake in experimental rats: focus on its combination with donepezil. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1931-1942. [PMID: 36864348 PMCID: PMC10409850 DOI: 10.1007/s00210-023-02449-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
This study aimed to demonstrate the potential benefits of donepezil (DPZ) and vitamin D (Vit D) in combination to counteract the neurodegenerative disorders induced by CuSO4 intake in experimental rats. Neurodegeneration (Alzheimer-like) was induced in twenty-four male Wistar albino rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. AD rats were divided into four groups: untreated AD group (Cu-AD) and three treated AD groups; orally treated for 4 weeks with either DPZ (10 mg/kg/day), Vit D (500 IU/kg/day), or DPZ + Vit D starting from the 10th week of CuSO4 intake. Another six rats were used as normal control (NC) group. The hippocampal tissue content of β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 and the cortical content of acetylcholine (Ach), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. Cognitive function tests (Y-maze) and histopathology studies (hematoxylin and eosin and Congo red stains) and immunohistochemistry for neurofilament. Vit D supplementation alleviated CuSO4-induced memory deficits including significant reduction hippocampal BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α and cortical AChE and MDA. Vit D remarkably increased cortical Ach, TAC, and hippocampal Bcl-2. It also improved neurobehavioral and histological abnormalities. The effects attained by Vit D treatment were better than those attained by DPZ. Furthermore, Vit D boosted the therapeutic potential of DPZ in almost all AD associated behavioral and pathological changes. Vit D is suggested as a potential therapy to retard neurodegeneration.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
Rudge JD. The Lipid Invasion Model: Growing Evidence for This New Explanation of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221175. [PMID: 37302030 PMCID: PMC10357195 DOI: 10.3233/jad-221175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer's disease (AD) which argues that AD is a result of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but argues that the greatest cause of late-onset AD is not amyloid-β (Aβ) but bad cholesterol and free fatty acids, let into the brain by a damaged BBB. It suggests that the focus on Aβ is the reason why we have made so little progress in treating the disease in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis/motor neuron disease.
Collapse
|
12
|
Li S, Xu X, Qiu Y, Teng Z, Liu J, Yuan H, Chen J, Tan Y, Yang M, Jin K, Xu B, Tang H, Zhao Z, Wang B, Xiang H, Wu H. Alternations of vitamin D and cognitive function in first-diagnosed and drug-naïve BD patients: Physical activity as a moderator. J Affect Disord 2023; 323:153-161. [PMID: 36436763 DOI: 10.1016/j.jad.2022.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pathophysiological mechanism of cognitive impairments of bipolar disorder (BD) has not yet been completely revealed. It is well known that Vitamin D and physical activity (PA) are associated with BD. However, specific links between Vitamin D and cognitive deficits in BD are still unclear. METHOD The serum levels of vitamin D were measured. The cognitive performances of 102 first-diagnosed and drug-naïve BD patients were evaluated for analysis. The repeatable battery for the assessment of neuropsychological status (RBANS) and the Stroop Color-Word test was used in this study. PA was collected by international physical activity questionnaire. RESULT Patients with BD had high levels of serum vitamin D. Furthermore, immediate and delayed memory was negatively associated with vitamin D levels in patients' group. The serum levels of vitamin D in patients with low PA were positively associated with memory. However, increased PA attenuated the protective effect of vitamin D on executive cognition. CONCLUSION It is concluded that the increased levels of vitamin D were observed in the serum of patients with BD. Thus, it is found that more PA is less beneficial to cognition of patients with BD than longer resting.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuelei Xu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Tan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kun Jin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Baoyan Xu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hebei Provincial Mental Health Center, No.572 Dongfeng East RD., Baoding City 071000, Hebei Province, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziru Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
13
|
Quialheiro A, d´Orsi E, Moreira JD, Xavier AJ, Peres MA. The association between vitamin D and BDNF on cognition in older adults in Southern Brazil. Rev Saude Publica 2022; 56:109. [PMID: 36629701 PMCID: PMC9749663 DOI: 10.11606/s1518-8787.2022056004134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To estimate the association between vitamin D and the cognitive decline of older adults and evaluate whether this association is mediated by brain-derived neurotrophic factor (BDNF) serum concentration. METHODS Cross-sectional study nested in a population-based cohort. Of the 604 participants in the complementary examination of the EpiFloripa Study, 576 older adults (60 years or older) were eligible for the study. The outcome is cognitive decline evaluated by the Mini-Mental State Examination, the exposure is vitamin D, and BDNF is the mediator. The control variables are age, sex, per capita family income, and educational level. The direct effect of vitamin D and BDNF on cognitive decline and the indirect effect mediated by BDNF was evaluated using path analysis, with the estimation of standardized coefficients. RESULTS Among the participants, we observed a direct and positive effect of vitamin D on cognitive function (Coef: 0.06; 95%CI: 0.02 to 0.11; p < 0.001) and serum BDNF concentration (Coef: 21.55; 95%CI: 9.92 to 33.17; p = 0.002), i.e., the higher the vitamin D, the higher the cognitive function and serum level of BDNF. CONCLUSION There was an association between vitamin D on serum BDNF and on cognitive decline in older adults. Moreover, BDNF did not have an effect on cognitive decline, so BDNF was not a mediator of the vitamin D effect on cognitive decline.
Collapse
Affiliation(s)
- Anna Quialheiro
- Universidade Federal de Santa CatarinaPrograma de Pós-Graduação em Saúde ColetivaFlorianópolisSCBrasil Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Saúde Coletiva. Florianópolis, SC, Brasil,Universidade do Minho. Escola de MedicinaInstituto de Investigação em Ciências da Vida e da SaúdeBragaPortugal Universidade do Minho. Escola de Medicina. Instituto de Investigação em Ciências da Vida e da Saúde. Braga, Portugal
| | - Eleonora d´Orsi
- Universidade Federal de Santa CatarinaPrograma de Pós-Graduação em Saúde ColetivaFlorianópolisSCBrasil Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Saúde Coletiva. Florianópolis, SC, Brasil
| | - Júlia Dubois Moreira
- Universidade Federal de Santa CatarinaPrograma de Pós-Graduação em NutriçãoFlorianópolisSCBrasil Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Nutrição. Florianópolis, SC, Brasil
| | - André Junqueira Xavier
- Universidade Federal de Santa CatarinaPrograma de Pós-Graduação em Saúde ColetivaFlorianópolisSCBrasil Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Saúde Coletiva. Florianópolis, SC, Brasil,Universidade do Sul de Santa CatarinaPalhoçaSCBrasil Universidade do Sul de Santa Catarina. Curso de Medicina. Palhoça, SC, Brasil
| | - Marco Aurélio Peres
- National Dental Research Institute SingaporeNational Dental Centre SingaporeSingapore National Dental Research Institute Singapore. National Dental Centre Singapore. Singapore,Duke-NUS Medical SchoolOral Health ACPHealthServices and Systems Research ProgrammeSingapore Duke-NUS Medical School. Oral Health ACP. HealthServices and Systems Research Programme. Singapore
| |
Collapse
|
14
|
Doncheva N, Mihaylova A, Zlatanova H, Ivanovska M, Delev D, Murdjeva M, Kostadinov I. Vitamin D 3 exerts immunomodulatory and memory improving properties in rats with lipopolysaccharide-induced inflammation. Folia Med (Plovdiv) 2022; 64:770-781. [PMID: 36876547 DOI: 10.3897/folmed.64.e67739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/02/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Vitamin D is a fat-soluble secosteroid, its primary function being regulation of calcium-phosphate homeostasis and maintenance of bone integrity and mineralization. Recently, pleotropic effects of this vitamin have been recognized, including an immunomodulatory role and involvement in normal brain development and functioning.
Collapse
Affiliation(s)
| | | | | | | | - Delian Delev
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | | |
Collapse
|
15
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|
16
|
Harahap IA, Landrier JF, Suliburska J. Interrelationship between Vitamin D and Calcium in Obesity and Its Comorbid Conditions. Nutrients 2022; 14:3187. [PMID: 35956362 PMCID: PMC9370653 DOI: 10.3390/nu14153187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity has been linked to vitamin D (VD) deficiency and low calcium (CAL) status. In the last decade, dietary supplementation of vitamin D and calcium (VD-CAL) have been extensively studied in animal experiments and human studies. However, the physiological mechanisms remain unknown as to whether the VD-CAL axis improves homeostasis and reduces biomarkers in regulating obesity and other metabolic diseases directly or indirectly. This review sought to investigate their connections. This topic was examined in scientific databases such as Web of Science, Scopus, and PubMed from 2011 to 2021, and 87 articles were generated for interpretation. Mechanistically, VD-CAL regulates from the organs to the blood, influencing insulin, lipids, hormone, cell, and inflammatory functions in obesity and its comorbidities, such as non-alcoholic fatty liver disease, cardiovascular disease, and type-2 diabetes mellitus. Nevertheless, previous research has not consistently shown that simultaneous VD-CAL supplementation affects weight loss or reduces fat content. This discrepancy may be influenced by population age and diversity, ethnicity, and geographical location, and also by degree of obesity and applied doses. Therefore, a larger prospective cohort and randomised trials are needed to determine the exact role of VD-CAL and their interrelationship.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| | | | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| |
Collapse
|
17
|
Ren Q, Sun J, Xu D, Xie H, Ye M, Zhao Y. A Dietary Supplement Containing Micronutrients, Phosphatidylserine, and Docosahexaenoic Acid Counteracts Cognitive Impairment in D-Galactose-Induced Aged Rats. Front Nutr 2022; 9:931734. [PMID: 35866081 PMCID: PMC9294405 DOI: 10.3389/fnut.2022.931734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
At present, it is a trend to use dietary supplements to prevent age-related cognitive impairment. This study aimed to investigate the effects of a dietary supplement enriched with micronutrients, phosphatidylserine, and docosahexaenoic acid on cognitive performance using a D-galactose (D-gal) induced aging rat model. Seven-month-old male Sprague-Dawley rats were randomly divided into five groups, including the control group, D-gal model group, and low-dose (2 g/kg body weight), medium-dose (6 g/kg body weight), and high-dose (10 g/kg body weight) dietary supplement intervention groups, which were investigated for 13 weeks. The dietary supplement intervention was found to improve cognitive performance in Morris water maze test, increase superoxidase dismutase activity, reduce malondialdehyde activity, decrease tumor necrosis factor-α and interleukin-6 concentrations, inhibit the activation of astrocytes, and elevate brain-derived neurotrophic factor protein and mRNA expression in the brains of D-gal-induced aged rats. This dietary supplement customized for the aged can be applied to the restoration of cognitive performance by enhancing antioxidant and anti-neuroinflammatory abilities, up-regulating neurotrophic factors, and inhibiting the activation of astrocytes. These results will be useful for future studies focused on implementation in humans.
Collapse
Affiliation(s)
- Qian Ren
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianqin Sun
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Jianqin Sun,
| | - Danfeng Xu
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hua Xie
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Mengyao Ye
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou, China
| | - Yanfang Zhao
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
18
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
19
|
Kazemi F, Babri S, Keyhanmehr P, Farid-Habibi M, Rad SN, Farajdokht F. Maternal vitamin D supplementation and treadmill exercise attenuated vitamin D deficiency-induced anxiety-and depressive-like behaviors in adult male offspring rats. Nutr Neurosci 2022; 26:470-482. [PMID: 35470763 DOI: 10.1080/1028415x.2022.2059203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vitamin D is a vital neuroactive steroid for brain development and function. Vitamin D deficiency is a worldwide health problem, particularly in children and women. Gestational or developmental vitamin D deficiency is associated with an increased risk of neurodevelopmental and neuropsychiatric disorders. This study examined the effect of maternal vitamin D dietary manipulations and treadmill exercise on anxiety-and depressive-related behaviors, pro-inflammatory cytokines, and prefrontal cortex (PFC) protein levels of brain-derived neurotrophic factor (BDNF) and vitamin D receptor (VDR) in adult male offspring born to vitamin D-deficient diet (VDD)-fed dams. METHODS AND RESULTS Female rats were provided standard diet (SD) or VDD for six weeks and then were treated with SD (started a week before mating throughout gestation and lactation) and treadmill exercise (a week before mating until gestational day 20). Male offspring were separated on postnatal day (PND) 21 and fed SD chow until PND90. Our results demonstrated that maternal vitamin D deficiency increased anxiety and depression-related behaviors, increased levels of TNF-α and IL-1β in serum, and decreased prefrontal protein expressions of BDNF and VDR in adult male offspring. However, maternal vitamin D supplementation and treadmill exercise reversed these changes alone or in combination. CONCLUSION It seems that developmental vitamin D deficiency disrupts brain development and has a long-lasting effect on VDR and BDNF signaling in the rat brain resulting in neuropsychiatric disorders in offspring. Therefore, vitamin D supplementation and physical exercise are reasonable strategies to prevent these neurobehavioral impairments.
Collapse
Affiliation(s)
- Faezeh Kazemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Keyhanmehr
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Farid-Habibi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Nayebi Rad
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Alrefaie Z, Awad H, Alsolami K, Hamed EA. Uncoupling proteins: are they involved in vitamin D3 protective effect against high-fat diet-induced cardiac apoptosis in rats? Arch Physiol Biochem 2022; 128:438-446. [PMID: 31794287 DOI: 10.1080/13813455.2019.1690526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to assess the impact of high-fat diet (HFD) and vitamin D3 supplementation on cardiac apoptosis, inflammation, oxidative stress, and cardiac uncoupling proteins (UCPs) 2&3 expression. Forty rats were fed either (45%) or (10%) fat diet with or without vitamin D3 (500 U/kg/day) for 6 months, then cardiac tissue expression of Bax, Bcl2, Fas, Fas-L (markers for apoptotic pathways), TNF-α, MDA7, GPX1 (inflammatory and oxidative markers) and UCP 2&3 were assessed. Results revealed the enhancement of intrinsic and extrinsic cardiomyocyte apoptosis cascades and increased inflammatory and oxidative burdens on the heart in HFD rats. Downregulation of UCP2 and upregulation of UCP3 gene expression at 6 months. After vitamin D3 supplementation with HFD, cardiac apoptotic, inflammatory and oxidative markers were mitigated and expression of UCP3 was downregulated and UCP2 was upregulated. This work highlights the novel cardioprotective effect of vitamin D3 in the experimental model of HFD feeding through the downregulation of UCP3.
Collapse
Affiliation(s)
- Zienab Alrefaie
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam Awad
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadeejah Alsolami
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas A Hamed
- Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
21
|
Brookes A, Ji L, Bradshaw TD, Stocks M, Gray D, Butler J, Gershkovich P. Is Oral Lipid-Based Delivery for Drug Targeting to the Brain Feasible? Eur J Pharm Biopharm 2022; 172:112-122. [PMID: 35149190 DOI: 10.1016/j.ejpb.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
This review outlines the feasibility of oral lipid-based targeted delivery of drugs to the brain, including permeation of the central nervous system's (CNS) protective blood-brain barrier (BBB). The structure of the BBB and disruption caused by varying disease states highlights the need for disease-specific approaches to alter permeation. Disruption during disease state, and the effects of certain molecules on the barrier, demonstrate the possibility of exploiting such BBB disruption for drug delivery. Many administration methods can be used to target the brain, but oral administration is considered ideal for chronic, long-term illnesses. Several lipids that have been shown to facilitate drug delivery into the brain after systemic administration, but could also be delivered orally are discussed, including oleic acid, triolein, alkylglycerol, and conjugates of linoleic and myristic acids. Current data reveal the potential for the use of such lipids as part of oral formulations for delivery to the brain by reaching sufficient plasma levels after administration to increase the permeability of the BBB. However, gaps in the literature remain regarding the concentrations and form of most lipids required to produce the desired effects. The use of lipids via oral delivery for brain targeting has not been investigated thoroughly enough to determine with certainty if similar permeability-enhancing effects would be observed as for parenteral administration. In conclusion, further research to fill research gaps is needed, but the limited evidence suggests that oral lipid-based drug delivery for brain targeting is potentially feasible.
Collapse
Affiliation(s)
- Alice Brookes
- School of Pharmacy, University of Nottingham, Nottingham, Nottinghamshire, UK, NG7 2RD
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham, Nottinghamshire, UK, NG7 2RD
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, Nottingham, Nottinghamshire, UK, NG7 2RD
| | - Michael Stocks
- School of Pharmacy, University of Nottingham, Nottingham, Nottinghamshire, UK, NG7 2RD
| | - David Gray
- Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK, LE12 5RD
| | - James Butler
- GlaxoSmithKline Research and Development, Park Road, Ware, Hertfordshire, UK, SG12 0DP
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham, Nottinghamshire, UK, NG7 2RD.
| |
Collapse
|
22
|
Vitamin D3 Supplementation Attenuates Surgery-Induced Neuroinflammation and Cognitive Impairment by Regulating NLRP3 Inflammasome in Mice. Mediators Inflamm 2022; 2022:4696415. [PMID: 36880085 PMCID: PMC9985505 DOI: 10.1155/2022/4696415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). Vitamin D has been known to have important regulatory functions in inflammation and immune response. The NOD-like receptor protein 3 (NLRP3) is an essential inflammasome in the inflammatory response and could be activated by anesthesia and surgery. In this study, male C57BL/6 mice aged 14-16 months were given VD3 for 14 days straight before having an open tibial fracture surgery. The animals were either sacrificed to obtain the hippocampus or tested in a Morris water maze test. Western blot was employed to estimate the levels of NLRP3, ASC, and caspase-1, immunohistochemistry was used to identify microglial activation, and an enzyme-linked immunosorbent assay was used to measure the expression of IL-18 and IL-1β, while using the corresponding assay kits to assess ROS and MDA levels to reflect the oxidative stress status. We showed that VD3 pretreatment significantly improved surgery-induced memory and cognitive dysfunctions in aged mice, which was linked to the inactivation of the NLRP3 inflammasome and the inhibition of neuroinflammation. This finding provided a novel preventative strategy for clinically reducing postoperative cognitive impairment in elderly surgical patients. This study has some limitations. Gender differences in the effects of VD3 were not considered, and only male mice were used. Additionally, VD3 was given as a preventative measure; however, it is unknown whether it has any therapeutic benefits for POCD mice. This trial is registered with ChiCTR-ROC-17010610.
Collapse
|
23
|
Ribeiro MC, MacDonald JL. Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model. Neurobiol Dis 2022; 165:105636. [PMID: 35091041 PMCID: PMC8864637 DOI: 10.1016/j.nbd.2022.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the transcriptional regulator MECP2. Mecp2 loss-of-function leads to the disruption of many cellular pathways, including aberrant activation of the NF-κB pathway. Genetically attenuating the NF-κB pathway in Mecp2-null mice ameliorates hallmark phenotypes of RTT, including reduced dendritic complexity, raising the question of whether NF-κB pathway inhibitors could provide a therapeutic avenue for RTT. Vitamin D is a known inhibitor of NF-κB signaling; further, vitamin D deficiency is prevalent in RTT patients and male Mecp2-null mice. We previously demonstrated that vitamin D rescues the aberrant NF-κB activity and reduced neurite outgrowth of Mecp2-knockdown cortical neurons in vitro, and that dietary vitamin D supplementation rescues decreased dendritic complexity and soma size of neocortical projection neurons in both male hemizygous Mecp2-null and female heterozygous mice in vivo. Here, we have identified over 200 genes whose dysregulated expression in the Mecp2+/- cortex is modulated by dietary vitamin D. Genes normalized with vitamin D supplementation are involved in dendritic complexity, synapses, and neuronal projections, suggesting that the rescue of their expression could underpin the rescue of neuronal morphology. Further, there is a disruption in the homeostasis of the vitamin D synthesis pathway in Mecp2+/- mice, and motor and anxiety-like behavioral phenotypes in Mecp2+/- mice correlate with circulating vitamin D levels. Thus, our data indicate that vitamin D modulates RTT pathology and its supplementation could provide a simple and cost-effective partial therapeutic for RTT.
Collapse
Affiliation(s)
- Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, United States of America
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, United States of America.
| |
Collapse
|
24
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
25
|
Kociszewska D, Chan J, Thorne PR, Vlajkovic SM. The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. Int J Mol Sci 2021; 22:13177. [PMID: 34947974 PMCID: PMC8708400 DOI: 10.3390/ijms222413177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
This review aims to provide a conceptual and theoretical overview of the association between gut dysbiosis and hearing loss. Hearing loss is a global health issue; the World Health Organisation (WHO) estimates that 2.5 billion people will be living with some degree of hearing loss by 2050. The aetiology of sensorineural hearing loss (SNHL) is complex and multifactorial, arising from congenital and acquired causes. Recent evidence suggests that impaired gut health may also be a risk factor for SNHL. Inflammatory bowel disease (IBD), type 2 diabetes, diet-induced obesity (DIO), and high-fat diet (HFD) all show links to hearing loss. Previous studies have shown that a HFD can result in microangiopathy, impaired insulin signalling, and oxidative stress in the inner ear. A HFD can also induce pathological shifts in gut microbiota and affect intestinal barrier (IB) integrity, leading to a leaky gut. A leaky gut can result in chronic systemic inflammation, which may affect extraintestinal organs. Here, we postulate that changes in gut microbiota resulting from a chronic HFD and DIO may cause a systemic inflammatory response that can compromise the permeability of the blood-labyrinth barrier (BLB) in the inner ear, thus inducing cochlear inflammation and hearing deficits.
Collapse
Affiliation(s)
| | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand; (D.K.); (J.C.); (P.R.T.)
| |
Collapse
|
26
|
Kulkarni UD, Kumari Kamalkishore M, Vittalrao AM, Kumar Siraganahalli Eshwaraiah P. Cognition enhancing abilities of vitamin D, epalrestat and their combination in diabetic rats with and without scopolamine induced amnesia. Cogn Neurodyn 2021; 16:483-495. [PMID: 35401868 PMCID: PMC8934839 DOI: 10.1007/s11571-021-09718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
Persistent hyperglycaemia and scopolamine were used to inflict amnesia in rats. Chronic hyperglycaemia causes metabolic impairment, neuronal dysfunction and oxidative stress causing cognitive impairment. This study aimed to determine anti amnesic activities of vitamin D, epalrestat and their combination against diabetes and scopolamine induced cognitive dysfunction. A total of eighty-eight Wistar albino rats, eleven groups, and 8 rats/Gr., were used. Type 2 diabetes mellitus was induced in all groups, except Gr.1 which was treated with 2 ml normal saline. Gr. 2 to 11 by feeding high fat diet for 28 days followed by single dose streptozotocin 35 mg/kg i.p. Hyperglycemic rats were screened with blood sugar level > 200 mg/dL. Gr. 2 rats were treated with only streptozotocin and Gr. 3 to 6 were treated with streptozotocin and test drugs donepezil 1 mg/kg, vitamin D, 27 mcg/kg, epalrestat 57 mg/kg, vitamin D + epalrestat, per oral, respectively. Gr. 7 rats were treated with only streptozotocin + scopolamine and all others from Gr. 8 to 11 were treated with streptozotocin + scopolamine and donepezil, vitamin D, epalrestat, vitamin D + epalrestat respectively. The gold standard behavioural tests were conducted by using Morris water maze and passive avoidance paradigms after 30–60 min of inj. scopolamine, 0.5 mg/kg, intra-peritoneal. Hippocampal tissue was taken for histopathological and biochemical evaluation. Rats treated with donepezil, vitamin D, epalrestat and vitamin D + epalrestat showed significant improvement in behavioural, biochemical and histopathological parameters as compared to streptozotocin and (streptozotocin + scopolamine) treated rats. This study underscores cognition enhancing abilities of vitamin D and epalrestat, and their combination in diabetic rats with and without scopolamine.
Collapse
Affiliation(s)
- Utkarsha D. Kulkarni
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Meena Kumari Kamalkishore
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Amberkar Mohanbabu Vittalrao
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | | |
Collapse
|
27
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
28
|
Bayat M, Kohlmeier KA, Haghani M, Haghighi AB, Khalili A, Bayat G, Hooshmandi E, Shabani M. Co-treatment of vitamin D supplementation with enriched environment improves synaptic plasticity and spatial learning and memory in aged rats. Psychopharmacology (Berl) 2021; 238:2297-2312. [PMID: 33991198 DOI: 10.1007/s00213-021-05853-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVE Environmental enrichment (EE) has been shown in old rats to improve learning and memory. Vitamin D (VitD) has also been shown to modulate age-related, cognitive dysfunction. As both EE and VitD could work to improve cognition via enhancement of neurotrophic factors, their effects might occlude one another. Therefore, a clinically relevant question is whether noted cognition-promoting effects of EE and VitD can co-occur. METHODS Aged rats were housed for 6 weeks in one of three housing conditions: environmentally enriched (EE), socially enriched (SE), or standard condition (SC). Further, a 4th group was co-treated with VitD supplementation (400 IU kg-1 daily, 6 weeks) under EE conditions (EE + VitD). RESULTS Treatment with VitD and EE housing were associated with higher score on measures of learning and memory and exhibited lower anxiety scores compared to EE alone, SE or SC as assayed in the elevated plus maze, Morris water maze, passive avoidance, and open field tasks. Additionally, in the EE + VitD group, mRNA expression levels of NGF, TrkA, BDNF, Nrf2, and IGF-1 were significantly higher compared to expression seen in the EE group. Furthermore, field potential recordings showed that EE + VitD resulted in a greater enhancement of hippocampal LTP and neuronal excitability when compared to EE alone. CONCLUSIONS These findings demonstrate that in aged rats exposure to EE and VitD results in effects on hippocampal cognitive dysfunction and molecular mechanisms which are greater than effects of EE alone, suggesting potential for synergistic therapeutic effects for management of age-related cognitive decline.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Azadeh Khalili
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
29
|
Khairy EY, Attia MM. Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF). Nutr Neurosci 2021; 24:650-659. [PMID: 31524100 DOI: 10.1080/1028415x.2019.1665854] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background/aim: Vitamin D has been hypothesized to be main regulator of the aging rate, alongside evidences support its role in neuroprotection. However, data about the protective role of vitamin D against neurophysiologic alterations associated with brain aging is limited. This study investigated the possible protective effects that vitamin D has on brain-derived neurotrophic factor (BDNF), cholinergic function, oxidative stress and apoptosis in aging rat brain.Methods: Male Wister albino rats aged 5 months (young), 12 months (middle aged) and 24 months (old) (n = 20 each) were used. Each age group subdivided to either vitamin D3 supplementation (500 IU/kg/day orally for 5 weeks) or no supplementation (control) group (n = 10 each). Serum 25-hydroxyvitamin D [25(OH)D], brain BDNF and malondialdehyde levels and activities of acetylcholinesterase (AChE), antioxidant enzymes (glutathione reductase, glutathione peroxidase and superoxide dismutase) and caspase-3 were quantified.Results: Vitamin D supplementation significantly mitigated the observed aging-related reduction in brain BDNF level and activities of AChE and antioxidant enzymes and elevation in malondialdehyde level and caspase-3 activity compared to control groups. Brain BDNF level correlated positively with serum 25(OH) D level and brain AChE activity and negatively with brain malondialdehyde level and caspase-3 activity in supplemented groups.Conclusion: Restoring vitamin D levels may, therefore, represent a useful strategy for healthy brain aging. Augmenting brain BDNF seems to be a key mechanism through which vitamin D counteracts age-related brain dysfunction.
Collapse
Affiliation(s)
- Eman Y Khairy
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maha M Attia
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Rebai R, Jasmin L, Boudah A. Agomelatine effects on fat-enriched diet induced neuroinflammation and depression-like behavior in rats. Biomed Pharmacother 2021; 135:111246. [PMID: 33453676 DOI: 10.1016/j.biopha.2021.111246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/24/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that a high fat diet (HFD) induces oxidative stress on the central nervous system (CNS), which predisposes to mood disorders and neuroinflammation. In this study we postulated that in addition to improving mood, antidepressant therapy would reverse inflammatory changes in the brain of rats exposed to a HFD. To test our hypothesis, we measured the effect of the antidepressant agomelatine (AGO) on anxiety- and depressive-like behaviors, as well as on CNS markers of inflammation in rats rendered obese. Agomelatine is an agonist of the melatonin receptors MT1 and MT2 and an antagonist of the serotonin receptors 5HT2B and 5HT2C. A subset of rats was also treated with lipopolysaccharides (LPS) to determine how additional neuroinflammation alters behavior and affects the response to the antidepressant. Specifically, rats were subjected to a 14-week HFD, during which time behavior was evaluated twice, first at the 10th week prior to LPS and/or agomelatine, and then at the 14th week after a bi-weekly exposure to LPS (250 μg/kg) and daily treatment with agomelatine (40 mg/kg). Immediately after the second behavioral testing we measured the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), markers of oxidative stress thiobarbituric acid reactive substances (TABRS), catalase (CAT) and glutathione peroxidase (GPx), the growth factor BDNF, as well as the apoptosis marker caspase-3. Our results show that a HFD induced an anxiety-like behavior in the open field test (OFT) at the 10th week, followed by a depressive-like behavior in the forced swim test (FST) at the 14th week. In the prefrontal and hippocampal cortices of rats exposed to a HFD we noted an overproduction of TNF-α, IL-6, IL-1β, and TABRS, together with an increase in caspase-3 activity. We also observed a decrease in BDNF, as well as reduced CAT and GPx activity in the same brain areas. Treatment with agomelatine reversed the signs of anxiety and depression, and decreased the cytokines (TNF-α, IL-6 and IL-1β), TABRS, as well as caspase-3 activity. Agomelatine also restored BDNF levels and the activity of antioxidant enzymes CAT and GPx. Our findings suggest that the anxiolytic/antidepressant effect of agomelatine in obese rats could result from a reversal of the inflammatory and oxidative stress brought about by their diet.
Collapse
Affiliation(s)
- Redouane Rebai
- Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University Mohamed Khider of Biskra, BP 145 RP, 07000, Biskra, Algeria; Laboratory of Biotechnology, National Higher School of Biotechnology, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, 707 Parnassus Ave Suite D-1201, San Francisco, CA, 94143, USA.
| | - Abdennacer Boudah
- Laboratory of Biotechnology, National Higher School of Biotechnology, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
31
|
Dharavath RN, Arora S, Kondepudi KK, Bishnoi M, Chopra K. Saroglitazar, a novel dual PPAR-α/γ agonist, reverses high fat-low protein diet-induced metabolic and cognitive aberrations in C57BL/6J male mice. Life Sci 2021; 271:119191. [PMID: 33571514 DOI: 10.1016/j.lfs.2021.119191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
AIMS Insulin resistance (IR) has become one of the major causative factors for the pathogenesis of various metabolic and neurometabolic diseases. The sedentary lifestyle in association with the consumption of protein-deficient and high-calorie diet results in IR development. This study was aimed to evaluate the neuroprotective effects of Saroglitazar (SGZ), a dual peroxisome-proliferator activated receptor (PPAR-α/γ) in a high fat-low protein diet (HFLPD) fed mouse model of MetS and associated cognitive deficits. METHODS Adult male C57BL/6J mice were fed with HFLPD plus 15% oral fructose solution for 16 weeks. Starting at the 13th week, SGZ (5 & 10 mg/kg; p.o.) was administered along with HFLPD for four weeks, i.e., the 12th to 16th week of the study groups. Various physiological, serum metabolic, neurobehavioral, neuroinflammatory, and oxidative stress parameters were assessed. The brain histopathology and mRNA expression of diverse genes in specific brain regions were also estimated. RESULTS The treatment with SGZ at both doses have significantly reversed various HFLPD-induced metabolic and cognitive alterations by improving the glucose and lipid profile in the periphery in addition to the enhanced cerebral glucose homeostasis, BBB integrity, reduced oxidative stress, and neuroinflammation. Furthermore, the SGZ improved locomotion and memory retention while reducing the HFLPD-induced anxiety-like behaviors in the mice. CONCLUSIONS SGZ treatment showed significant metabo-neuroprotective effects in mice fed with HFLPD, possibly through peripherally mediated activation of PPAR-α/γ and insulin downstream signaling in the cortex and hippocampus.
Collapse
Affiliation(s)
- Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, Punjab 140603, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, Punjab 140603, India.
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
32
|
Seyedi M, Gholami F, Samadi M, Djalali M, Effatpanah M, Yekaninejad MS, Hashemi R, Abdolahi M, Chamari M, Honarvar NM. The Effect of Vitamin D3 Supplementation on Serum BDNF, Dopamine, and Serotonin in Children with Attention-Deficit/Hyperactivity Disorder. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:496-501. [PMID: 31269890 DOI: 10.2174/1871527318666190703103709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & OBJECTIVE Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common psychiatric disorders in childhood. The exact etiology of this disease is unknown, but it is believed to be related to the disorder of catecholaminergic and serotonergic systems. Also, serum vitamin D levels in patients with ADHD is lower. Several studies have also shown the effect of vitamin D on the synthesis pathways of dopamine, serotonin, and a number of neurotrophic factors. Therefore, this study aimed to investigate the effect of vitamin D3 supplementation on serum levels of Brain-Derived Neurotrophic Factor (BDNF), dopamine, and serotonin in school-aged children with ADHD. METHODS Eighty-six children with ADHD were divided into two groups, based on randomized permuted blocks. Patients received 2000 IU vitamin D/day or a placebo for 12 weeks. Serum levels of BDNF, dopamine, serotonin, and 25-hydroxyvitamin D [25(OH)D] were measured at baseline and at the end of the study. RESULTS Serum levels of 25(OH)D and dopamine significantly increased in the vitamin D group, compared to the placebo group (p < 0.05). However, serum BDNF and serotonin levels did not change significantly. CONCLUSION Vitamin D3 supplementation in children with ADHD can increase serum dopamine levels, but further studies are needed to determine the effects of vitamin D on neurotrophic factors and serotonin.
Collapse
Affiliation(s)
- Marzieh Seyedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Samadi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Effatpanah
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Hashemi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- AmirAlam Hospital Complexes, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Chamari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Serum 25-Hydroxyvitamin D Concentrations Are Associated with Mental Health and Psychosocial Stress in Young Adults. Nutrients 2020; 12:nu12071938. [PMID: 32629761 PMCID: PMC7400417 DOI: 10.3390/nu12071938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
We aimed to test the hypothesis that serum 25-hydroxyvitamin D3 (25(OH)D) concentration is associated with mental health and life stress measures in young adults and investigate gender and racial disparities in these associations. This study comprised 327 black and white participants. Depression, trait anxiety, perceived stress, and hostility were measured by the following validated instruments: Beck Depression Inventory (BDI), State-Trait Anxiety Inventory (STAI), Perceived Stress Scale (PSS), and Cook–Medley Hostility Scale (CMHS). Linear regression was used to estimate correlations between serum 25(OH)D concentration and mental health measurements in the total population and in subgroups stratified by gender and race. In this sample (28.2 ± 3.1 years, 52% female, 53% black), serum 25(OH)D concentration was negatively related to BDI, STAI, PSS, total CMHS score, and the majority of CMHS subscale scores (p-values < 0.05). Stratified by gender, most of these associations remained significant only in women (p-values < 0.05). Stratified by race, higher 25(OH)D concentrations in white participants were significantly related to lower BDI, STAI, PSS, and CMHS-cynicism subscales (p-values < 0.05); 25(OH)D concentrations in the black participants were only inversely associated with CMHS and most CMHS subscales (p-values < 0.05) but not with BDI, STAI, and PSS. We present novel findings of consistent inverse relationships between serum 25(OH)D concentration and various measures of mental health and life stress. Long-term interventional studies are warranted in order to investigate the roles of vitamin D supplementation in the prevention and mitigation of depression, anxiety, and psychological stress in young adults.
Collapse
|
34
|
Vitamin D 3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sci 2020; 253:117703. [PMID: 32334010 DOI: 10.1016/j.lfs.2020.117703] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 11/20/2022]
Abstract
AIMS Vitamin D is a well-known endocrine regulator of calcium/phosphate homeostasis and has been reported as having a wide range of activities that are potentially beneficial for human health. This study aimed to investigate the effects of pretreatment of vitamin D3 (100, 1000, and 10,000 IU/kg) against lipopolysaccharide (LPS)-induced cognitive impairment in rats. MAIN METHODS Male Wistar rats were divided into five groups. The passive avoidance test and Morris water maze (MWM) test were conducted to evaluate the learning and memory function. Oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), total thiol content as well as interleukin (IL)-6 were evaluated in the hippocampus tissue. KEY FINDINGS The intraperitoneal (i.p.) injection of LPS (1 mg/kg) correlates with deficits in passive avoidance and spatial learning in the systemic inflammation model. However, pretreatment with vitamin D3 improved LPS-induced cognitive impairment. In addition, vitamin D3 decreased IL-6 and MDA levels, whereas the activities of CAT, SOD, and total thiol content in the hippocampus tissue were significantly increased. SIGNIFICANCE In conclusion, our results suggest that vitamin D3 plays a protective role against memory dysfunction caused by LPS-induced inflammation through inhibition of oxidative stress and inflammation in the hippocampus. Vitamin D may be a promising potential therapeutic supplement for the treatment or prevention of learning and memory disorders.
Collapse
|
35
|
Morshedi M, Saghafi-Asl M, Hosseinifard ES. The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. J Transl Med 2020; 18:18. [PMID: 31924200 PMCID: PMC6953298 DOI: 10.1186/s12967-019-02169-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The manipulation of gut microbiota as a target has been suggested to reduce the risks for a number of diseases such as type 2 diabetes mellitus (T2DM). Conversely, T2DM is associated with complications such as gut and brain disorders. Furthermore, the impact of probiotics and prebiotics to improve T2DM complications are reported. Thus, the present study seeks to investigate the therapeutic and neuropsychological effects of L. plantarum and inulin in diabetic rats. METHODS Throughout the investigation, L. plantarum, inulin or their combination (synbiotic) was administered to diabetic rats. in the end, fecal samples were collected to evaluate the gut microbial composition. Then behavioral tests were conducted. Subsequently, the obtainment of the prefrontal cortex (PFC) and hippocampal samples. RESULTS Our data demonstrated that administration of L. plantarum and inulin could improve gut dysbiosis and oxidative stress status. In addition, it could ameliorate serotonin and BDNF/TrkB signaling pathway. Notably, a strong correlation between the gut microbiota changes and cognition responses was observed. Interestingly, synbiotics intake exploited a rather powerful effect on oxidative stress markers. CONCLUSION The findings confirm that there is a beneficial therapeutic potential of supplements, especially symbiotic. Moreover, neuropsychological improvement associated with balanced gut microbiome.
Collapse
Affiliation(s)
- Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Elaheh-Sadat Hosseinifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Yu M, Huang H, Dong S, Sha H, Wei W, Liu C. High mobility group box-1 mediates hippocampal inflammation and contributes to cognitive deficits in high-fat high-fructose diet-induced obese rats. Brain Behav Immun 2019; 82:167-177. [PMID: 31430517 DOI: 10.1016/j.bbi.2019.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 01/31/2023] Open
Abstract
High-fat high-sugar diet-induced obesity can lead to hippocampal inflammation and cognitive deficits, but the detailed underlying mechanism is still not clear. We aim to investigate the role of HMGB1 in hippocampal inflammatory responses and cognitive impairment in high-fat high-fructose diet (HFHFD)-induced obesity. Rats were fed with a normal control diet or an HFHFD diet for 14 weeks. In the last 6 weeks on the diets, the rats were treated with control, or an HMGB1 inhibitor glycyrrhizin, or an anti-HMGB1 neutralizing monoclonal antibody (mAb). Obesity was induced in the HFHFD-fed rats, which had higher body weight, epididymal white adipose tissue (EWAT) weight and caloric efficiency, and lower brain/body weight ratio, glucose tolerance and insulin sensitivity than the ones on normal diets. In the HFHFD-induced obese rats, the HMGB1 levels in plasma and hippocampus were increased, and the nucleus-to-cytoplasm translocation of HMGB1 was promoted. The hippocampal inflammatory responses were enhanced in the HFHFD-induced obesity, including the activation of TLR4 and NF-κB, the production of IL-1β, TNF-α and IL-6, as well as the activation of microglia and astrocytes. In addition, the hippocampal cell apoptosis and cognitive impairment were observed in the HFHFD-fed rats. The treatment with glycyrrhizin or HMGB1 mAb successfully decreased the HMGB1 levels in plasma and hippocampus, and prevented the HMGB1 translocation from the nucleus to cytoplasm. Inhibiting HMGB1 by glycyrrhizin or HMGB1 mAb suppressed the hippocampal inflammatory, alleviated the apoptosis and ameliorated the cognitive impairment in HFHFD-fed rats. These findings indicate that HMGB1 mediates the hippocampal inflammation and contributes to the cognitive deficits in HFHFD-induced obesity. Therefore, inhibition of HMGB1 may have beneficial effect in protecting against hippocampal inflammation and cognitive deficits in dietary obesity.
Collapse
Affiliation(s)
- Min Yu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - He Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shiyang Dong
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Huanhuan Sha
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Wei Wei
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China.
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
37
|
Contu L, Nizari S, Heath CJ, Hawkes CA. Pre- and Post-natal High Fat Feeding Differentially Affects the Structure and Integrity of the Neurovascular Unit of 16-Month Old Male and Female Mice. Front Neurosci 2019; 13:1045. [PMID: 31632236 PMCID: PMC6783577 DOI: 10.3389/fnins.2019.01045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Compelling experimental and clinical evidence supports a role for maternal obesity in offspring health. Adult children of obese mothers are at greater risk of obesity, diabetes, coronary heart disease and stroke. These offspring may also be at greater risk of age-related neurodegenerative diseases for which mid-life obesity is a risk factor. Rodent diet-induced obesity models have shown that high fat (HF) diet consumption damages the integrity of the blood–brain barrier (BBB) in the adult brain. However, there is currently little information about the effect of chronic HF feeding on the BBB of aged animals. Moreover, the long-term consequences of maternal obesity on the cerebrovasculature of aged offspring are not known. This study determined the impact of pre- and post-natal HF diet on the structure and integrity of cerebral blood vessels in aged male and female mice. Female C57Bl/6 mice were fed either a 10% fat control (C) or 45% HF diet before mating and during gestation and lactation. At weaning, male and female offspring were fed the C or HF diet until sacrifice at 16-months of age. Both dams and offspring fed the HF diet weighed significantly more than mice fed the C diet. Post-natal HF diet exposure increased hippocampal BBB leakiness in female offspring, in association with loss of astrocyte endfoot coverage of arteries. Markers of tight junctions, pericytes or smooth muscle cells were not altered by pre- or post-natal HF diet. Male offspring born to HF-fed mothers showed decreased parenchymal GFAP expression compared to offspring of mothers fed C diet, while microglial and macrophage markers were higher in the same female diet group. In addition, female offspring exposed to the HF diet for their entire lifespan showed more significant changes in vessel structure, BBB permeability and inflammation compared to male animals. These results suggest that the long-term impact of prenatal HF diet on the integrity of cerebral blood vessels differs between male and female offspring depending on the post-natal diet. This may have implications for the prevention and management of age- and obesity-related cerebrovascular diseases that differentially affect men and women.
Collapse
Affiliation(s)
- Laura Contu
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Shereen Nizari
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Cheryl A Hawkes
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
38
|
Farhangi M, Mesgari-Abbasi M, Shahabi P. CARDIO-RENAL METABOLIC SYNDROME AND PRO-INFLAMMATORY FACTORS: THE DIFFERENTIAL EFFECTS OF DIETARY CARBOHYDRATE AND FAT. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; 15:436-441. [PMID: 32377239 PMCID: PMC7200118 DOI: 10.4183/aeb.2019.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND We aimed to evaluate whether a high carbohydrate or a high fat diet differs in alteration of the inflammatory and metabolic risk factors in cardio-renal metabolic syndrome in rats. METHODS Twelve male Wister rats were randomly divided into two groups: one received diet 1 standard pellet rat diet (D1) containing 10% fat, 50% carbohydrate, 25% protein and another group received diet 2 (D2) containing 59% fat, 30% carbohydrate and 11% protein for 16 weeks. Weight was recorded weekly. FSG and insulin levels were measured using an enzymatic spectrophotometric and a standard ELISA kit respectively. Inflammatory parameters including TGF-β, MCP-1, TNF-α, IL-1β, IL-6 in the renal and cardiac tissues of rats were evaluated by ELISA technique. RESULT Food intake in D1 and D2 groups increased in the study period, however food intake in D2 group was significantly higher compared with D1 group. FSG, HOMA and TG concentrations in D2 group were significantly higher compared to D1 group. Moreover, TGF-β and MCP-1 concentrations in the renal tissues of D2 group and TNF-α in the cardiac tissues of D1 group were significantly higher compared with D1 group (P<0.05). Positive associations between IL-1β and TG and between HOMA, FSG with TGF-β and MCP-1 in the renal tissue of animals were also identified.
Collapse
Affiliation(s)
- M.A. Farhangi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran
| | - M. Mesgari-Abbasi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran
| | - P. Shahabi
- Tabriz University of Medical Sciences, Neuroscience Research Center, Tabriz, Iran
| |
Collapse
|
39
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Xu G, Li Y, Ma C, Wang C, Sun Z, Shen Y, Liu L, Li S, Zhang X, Cong B. Restraint Stress Induced Hyperpermeability and Damage of the Blood-Brain Barrier in the Amygdala of Adult Rats. Front Mol Neurosci 2019; 12:32. [PMID: 30814927 PMCID: PMC6381322 DOI: 10.3389/fnmol.2019.00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2023] Open
Abstract
Intense or prolonged exposure to stress can damage various brain structures, including the amygdala and hippocampus, which are associated with emotional-cognitive functions. Furthermore, this deterioration has been linked to a myriad of neurodegenerative and psychiatric disorders, in particular through disruption of the blood-brain barrier (BBB). However, insights remain scarce concerning the effects and mechanisms associated with stress on the BBB in the amygdala. This study explored the effects of restraint stress on the permeability and integrity of the BBB in the amygdala of male adult SD rats. Serum levels of corticosterone (CORT) and S100B were determined through ELISA. The permeability of the BBB was assessed by measuring Evans Blue (EB) leakage in tissue samples from the rats’ amygdala. These samples were immunostained for markers of tight junctions (Claudin-5, Occludin, ZO-1) and adherens junctions (VE-cadherin), as well as GLUT-1 and AQP-4. Staining was evaluated through confocal microscopy, and the level of expression of these proteins was quantified using the Western Blot (WB) technique. The ultrastructure of brain microvascular endothelial cells was assessed with transmission electron microscopy. Moreover, interleukin-1 beta (IL-1β) content in serum and amygdalar tissues were determined by employing ELISA. Exposure to restraint stress was associated with higher serum levels of S100B and EB leakage in amygdala tissues, especially in days 14 and 21 of the experiment, indicating increased permeability of the BBB. After restraint stress, significant decreases in protein expression were detected for tight junctions, adherens junctions and GLUT-1, while a significant increase was observed for AQP-4. The variation trends of fluorescence intensity generally paralleled these results. Following restraint stress, transmission electron microscopy ascertained enlarged gaps in tight junctions and thickened basal membranes in amygdalar capillaries. In addition, increased IL-1β contents in serum and amygdalar tissues were observed in the restraint-stressed groups. These findings suggest that restraint stress mediates time-dependent alterations in the permeability of the BBB, with modifications in the expression of proteins from tight junctions and adherens junctions, as well as ultrastructural changes in brain microvascular endothelial cells. And it was associated with the inflammation. These alterations may be associated with behavioral and cognitive dysfunctions and neurodegenerative disorders.
Collapse
Affiliation(s)
- Guangming Xu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhaoling Sun
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Forensic Science, Beijing Public Security Bureau, Beijing, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
41
|
Dong Y, Wang J, Du KX, Jia TM, Zhu CL, Zhang Y, Xu FL. MicroRNA-135a participates in the development of astrocytes derived from bacterial meningitis by downregulating HIF-1α. Am J Physiol Cell Physiol 2019; 316:C711-C721. [PMID: 30726113 DOI: 10.1152/ajpcell.00440.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence has highlighted the potential of microRNAs (miRs) as biomarkers in various human diseases. However, the roles of miRs in bacterial meningitis (BM), a severe infectious condition, still remain unclear. Thus, the present study aimed to investigate the effects of miR-135a on proliferation and apoptosis of astrocytes in BM. Neonatal rats were injected with Streptococcus pneumoniae to establish the BM model. The expression of miR-135a and hypoxia-inducible factor 1α (HIF-1α) in the BM rat models were characterized, followed by determination of their interaction. Using gain- and loss-of-function approaches, the effects of miR-135a on proliferation, apoptosis, and expression of glial fibrillary acidic protein (GFAP), in addition to apoptosis-related factors in astrocytes were examined accordingly. The regulatory effect of HIF-1α was also determined along with the overexpression or knockdown of HIF-1α. The results obtained indicated that miR-135a was poorly expressed, whereas HIF-1α was highly expressed in the BM rat models. In addition, restored expression levels of miR-135a were determined to promote proliferation while inhibiting the apoptosis of astrocytes, along with downregulated Bax and Bad, as well as upregulated Bcl-2, Bcl-XL, and GFAP. As a target gene of miR-135a, HIF-1α expression was determined to be diminished by miR-135a. The upregulation of HIF-1α reversed the miR-135a-induced proliferation of astrocytes. Taken together, the key findings of the current study present evidence suggesting that miR-135a can downregulate HIF-1α and play a contributory role in the development of astrocytes derived from BM, providing a novel theoretical perspective for BM treatment approaches.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,Henan Provincial Key Laboratory of Child Brain Injury , Zhengzhou , China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Kai-Xian Du
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Tian-Ming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Chang-Lian Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,Henan Provincial Key Laboratory of Child Brain Injury , Zhengzhou , China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yan Zhang
- Clinical Laboratory, Henan Red Cross Blood Center , Zhengzhou , China
| | - Fa-Lin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
42
|
Jorde R, Kubiak J, Svartberg J, Fuskevåg OM, Figenschau Y, Martinaityte I, Grimnes G. Vitamin D supplementation has no effect on cognitive performance after four months in mid-aged and older subjects. J Neurol Sci 2019; 396:165-171. [DOI: 10.1016/j.jns.2018.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
|
43
|
Farhangi MA, Mesgari-Abbasi M, Hajiluian G, Nameni G, Shahabi P. Adipose Tissue Inflammation and Oxidative Stress: the Ameliorative Effects of Vitamin D. Inflammation 2018; 40:1688-1697. [PMID: 28674792 DOI: 10.1007/s10753-017-0610-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is a low-grade inflammatory disease and is associated with numerous comorbidities. The current study was aimed to evaluate the effects of vitamin D administrations on markers of inflammation and oxidative stress in adipose tissue of high-fat diet-induced obese rats. In the beginning of the study, 40 rats were divided into two groups: normal diet and high-fat diet (HFD) for 16 weeks; then, each group was subdivided into two groups including ND, ND + vitamin D, HFD, and HFD + vitamin D. Vitamin D supplementation was done for 5 weeks at 500 IU/kg dosage. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β and IL-6 concentrations and markers of oxidative stress including glutathione peroxidase (GPx), superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) concentrations in adipose tissue of rats were determined using ELISA kits and spectrophotometry methods, respectively. Vitamin D treatment led to a significant reduction in adipose tissue TNF-α concentrations in both ND + vitamin D and HFD + vitamin D groups (P < 0.05). Adipose tissue MCP-1 concentration also reduced in HFD + vitamin D group compared with HFD group. Among markers of oxidative stress in adipose tissue, SOD and GPx concentrations significantly increased in adipose tissue of HFD + vitamin D treated group compared with other groups (P < 0.05). Reduced food intake and weight gain was also occurred after vitamin D treatment. Vitamin D improved adipose tissue oxidative stress and inflammatory parameters in obese rats. Vitamin D treatment was also associated with decreased food intake and decreased weight gain in animals under a high-fat diet. Further studies are needed to better clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Mahdieh Abbasalizad Farhangi
- Drug Applied Research Center, Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehran Mesgari-Abbasi
- Drug Applied Research Center, Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazaleh Hajiluian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazaleh Nameni
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Ibrahim AN, Attallah MI, Elnaggar RA. Combination of Cholecalciferol and Rivastigmine Improves Cognitive Dysfunction and Reduces Inflammation in STZ Induced Alzheimer's Model Experimentally in Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2018. [DOI: 10.11131/2018/101369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amany N. Ibrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Qalubiya, Egypt
| | - Magdy I. Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Kasr Alainy, Cairo, Egypt
| | - Reham Abdelrahman Elnaggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
45
|
Goltz A, Janowitz D, Hannemann A, Nauck M, Hoffmann J, Seyfart T, Völzke H, Terock J, Grabe HJ. Association of Brain-Derived Neurotrophic Factor and Vitamin D with Depression and Obesity: A Population-Based Study. Neuropsychobiology 2018; 76:171-181. [PMID: 29920493 DOI: 10.1159/000489864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Depression and obesity are widespread and closely linked. Brain-derived neurotrophic factor (BDNF) and vitamin D are both assumed to be associated with depression and obesity. Little is known about the interplay between vitamin D and BDNF. We explored the putative associations and interactions between serum BDNF and vitamin D levels with depressive symptoms and abdominal obesity in a large population-based cohort. METHODS Data were obtained from the population-based Study of Health in Pomerania (SHIP)-Trend (n = 3,926). The associations of serum BDNF and vitamin D levels with depressive symptoms (measured using the Patient Health Questionnaire) were assessed with binary and multinomial logistic regression models. The associations of serum BDNF and vitamin D levels with obesity (measured by the waist-to-hip ratio [WHR]) were assessed with binary logistic and linear regression models with restricted cubic splines. RESULTS Logistic regression models revealed inverse associations of vitamin D with depression (OR = 0.966; 95% CI 0.951-0.981) and obesity (OR = 0.976; 95% CI 0.967-0.985). No linear association of serum BDNF with depression or obesity was found. However, linear regression models revealed a U-shaped association of BDNF with WHR (p < 0.001). CONCLUSION Vitamin D was inversely associated with depression and obesity. BDNF was associated with abdominal obesity, but not with depression. At the population level, our results support the relevant roles of vitamin D and BDNF in mental and physical health-related outcomes.
Collapse
Affiliation(s)
- Annemarie Goltz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Johanna Hoffmann
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Tom Seyfart
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,DZD (German Centre for Diabetes Research), Site Greifswald, Greifswald, Germany
| | - Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS Hospital Stralsund, Stralsund, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Rostock/Greifswald, Germany
| |
Collapse
|
46
|
Davidson TL, Hargrave SL, Kearns DN, Clasen MM, Jones S, Wakeford AGP, Sample CH, Riley AL. Cocaine impairs serial-feature negative learning and blood-brain barrier integrity. Pharmacol Biochem Behav 2018; 170:56-63. [PMID: 29753886 DOI: 10.1016/j.pbb.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Previous research has shown that diets high in fat and sugar [a.k.a., Western diets (WD)] can impair performance of rats on hippocampal-dependent learning and memory problems, an effect that is accompanied by selective increases in hippocampal blood brain barrier (BBB) permeability. Based on these types of findings, it has been proposed that overeating of a WD (and its resulting obesity) may be, in part, a consequence of impairments in these anatomical substrates and cognitive processes. Given that drug use (and addiction) represents another behavioral excess, the present experiments assessed if similar outcomes might occur with drug exposure by evaluating the effects of cocaine administration on hippocampal-dependent memory and on the integrity of the BBB. Experiment 1 of the present series of studies found that systemic cocaine administration in rats also appears to have disruptive effects on the same hippocampal-dependent learning and memory mechanism that has been proposed to underlie the inhibition of food intake. Experiment 2 demonstrated that the same regimen of cocaine exposure that produced disruptions in learning and memory in Experiment 1 also produced increased BBB permeability in the hippocampus, but not in the striatum. Although the predominant focus of previous research investigating the etiologies of substance use and abuse has been on the brain circuits that underlie the motivational properties of drugs, the current investigation implicates the possible involvement of hippocampal memory systems in such behaviors. It is important to note that these positions are not mutually exclusive and that neuroadaptations in these two circuits might occur in parallel that generate dysregulated drug use in a manner similar to that of excessive eating.
Collapse
Affiliation(s)
- Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States.
| | - Sara L Hargrave
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - David N Kearns
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Matthew M Clasen
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Alison G P Wakeford
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Anthony L Riley
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States.
| |
Collapse
|
47
|
Morshedi M, Valenlia KB, Hosseinifard ES, Shahabi P, Abbasi MM, Ghorbani M, Barzegari A, Sadigh-Eteghad S, Saghafi-Asl M. Beneficial psychological effects of novel psychobiotics in diabetic rats: the interaction among the gut, blood and amygdala. J Nutr Biochem 2018; 57:145-152. [PMID: 29730508 DOI: 10.1016/j.jnutbio.2018.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) can lead to major complications such as psychiatric disorders which include depressive and anxiety-like behaviors. The association of the gut-brain axis in the development of such disorders, especially in T2DM, has been elucidated; however, gut dysbiosis is also reported in patients with T2DM. Hence, the regulation of the gut-brain axis, in particular, the gut-amygdala, as a vital region for the regulation of behavior is essential. Thirty-five male Wistar rats were divided into six groups. To induce T2DM, treatment groups received high-fat diet and 35 mg/kg streptozotocin. Then, supplements of Lactobacillus plantarum, inulin or their combination were administered to each group for 8 weeks. Finally, the rats were sacrificed for measurement of blood and tissue parameters after behavioral testing. The findings demonstrated the favorable effects of the psychobiotics (L. plantarum, inulin or their combination) on oxidative markers of the blood and amygdala (superoxide dismutase, glutathione peroxidase, malondialdehyde and total antioxidant capacity), as well as on concentrations of amygdala serotonin and brain-derived neurotrophic factor, in the diabetic rats. In addition, beneficial effects were observed on the elevated plus maze and forced swimming tests with no change in locomotor activity of the rats. There was a strong correlation between the blood and amygdala oxidative markers, insulin and fasting blood sugar with depressive and anxiety-like behaviors. Our results identified L. plantarum ATCC 8014 and inulin or their combination as novel psychobiotics that could improve the systemic and nervous antioxidant status and improve amygdala performance and beneficial psychotropic effects.
Collapse
Affiliation(s)
- Mohammad Morshedi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Bavafa Valenlia
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Sadat Hosseinifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran
| | | | - Meysam Ghorbani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran; Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Farhangi MA, Mesgari-Abbasi M, Nameni G, Hajiluian G, Shahabi P. The effects of vitamin D administration on brain inflammatory markers in high fat diet induced obese rats. BMC Neurosci 2017; 18:81. [PMID: 29281967 PMCID: PMC5745807 DOI: 10.1186/s12868-017-0400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Obesity induced brain inflammation is associated with cognitive disorders. We aimed to investigate the influence of vitamin D on hypothalamus and hippocampus inflammatory response in high-fat diet induced obese rats. Methods In the beginning of the study, 40 rats were divided into two groups: control diet and high fat diet (HFD) for 16 weeks; then each group subdivided into two groups including: N, ND + vitamin D, HFD and HFD + vitamin D. Vitamin D supplementation was done for 5 weeks at 500 IU/kg dosage. IL-6, IL-1β, NF-Kβ and acetylcholine (ACH) and brain derived neurotropic factor (BDNF) concentrations in hippocampus and hypothalamus homogenate samples were measured by commercial ELISA kits. Results Vitamin D administration, reduced food intake and weight gain in studied groups (P < 0.001). Vitamin D reduced hippocampus acetylcholine concentrations in ND + vitamin D group (P < 0.001). High fat diet increased hippocampus IL-6 concentrations significantly (P < 0.05) compared with normal diet receiving groups. Vitamin D could not have significant effects on IL-6 concentrations. Vitamin D administrations reduced IL-1β, NF-Kβ and acetylcholine concentration and BDNF concentrations in ND + vitamin D compared with ND group. These reductions were not significant in HFD + vitamin D versus HFD group. Conclusion According to our results, vitamin D reduced food intake and weight gain and modulated the HFD induced inflammatory response in hippocampus and hypothalamus of high fat diet induced obesity. Therefore, this neurosteroid, can be suggested as a supplemental therapeutic tool in prevention of obesity related cognitive and neurodegenerative problems.
Collapse
Affiliation(s)
- Mahdieh Abbasalizad Farhangi
- Drug Applied Research Center, Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri Street, Tabriz, Iran.
| | - Mehran Mesgari-Abbasi
- Drug Applied Research Center, Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri Street, Tabriz, Iran
| | - Ghazaleh Nameni
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazaleh Hajiluian
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Vitamin D and Neurological Diseases: An Endocrine View. Int J Mol Sci 2017; 18:ijms18112482. [PMID: 29160835 PMCID: PMC5713448 DOI: 10.3390/ijms18112482] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin D system comprises hormone precursors, active metabolites, carriers, enzymes, and receptors involved in genomic and non-genomic effects. In addition to classical bone-related effects, this system has also been shown to activate multiple molecular mediators and elicit many physiological functions. In vitro and in vivo studies have, in fact, increasingly focused on the "non-calcemic" actions of vitamin D, which are associated with the maintenance of glucose homeostasis, cardiovascular morbidity, autoimmunity, inflammation, and cancer. In parallel, growing evidence has recognized that a multimodal association links vitamin D system to brain development, functions and diseases. With vitamin D deficiency reaching epidemic proportions worldwide, there is now concern that optimal levels of vitamin D in the bloodstream are also necessary to preserve the neurological development and protect the adult brain. The aim of this review is to highlight the relationship between vitamin D and neurological diseases.
Collapse
|
50
|
Babaei P, Shirkouhi SG, Hosseini R, Soltani Tehrani B. Vitamin D is associated with metabotropic but not neurotrophic effects of exercise in ovariectomized rats. Diabetol Metab Syndr 2017; 9:91. [PMID: 29177013 PMCID: PMC5688735 DOI: 10.1186/s13098-017-0288-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/01/2017] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Here, we studied the beneficial effects of aerobic exercise on metabolic syndrome components, cognitive performance, brain derived neurotrophic factor (BDNF) and irisin in ovariectomized rats with different serum vitamin D (Vit D) status. METHODS Eighty female wistar rats were divided into 2 groups of sham operated (sham, n = 8), and ovariectomized (OVX, n = 72). Then OVX were divided into 9 groups of receiving combination of exercise protocol with low dose of Vit D (OVX + EXE + LD), high dose of Vit D (OVX + EXE + HD), Vit D deficiency (OVX + EXE - D), and (OVX + EXE + Veh). Also non exercised groups of OVX receiving high dose of Vit D (OVX + HD), low dose of Vit D (OVX + LD), Vit D deficiency (OVX - D), and Veh (OVX + Veh) were included. After 2 months of related interventions, spatial memory was assessed using Morris water maze (MWM), and then metabolic syndrome components were measured. RESULTS High dose of Vit D supplementation showed significant reduction in weight (p = 0.001), lipid profiles (p = 0.001), visceral fat (p = 0.001) and waist circumference (p = 0.001) regardless of exercising or not, with no change in cognitiive function. Serum BDNF level was significantly higher in Vit D deficient group (p = 0.001), and was decreased in the OVX + HD. In contrary, irisin did not show any significant relationship with serum concentration of Vit D, while it was significantly elevated in the exercised groups compared with non-exercised counterparts. CONCLUSION Vit D insufficiency deteriorates metabolic syndrome components, and elevates serum BDNF as a compensatory metabotropic factor, and further supplementation significantly attenuates these components parallel with reduction in BDNF. In addition, aerobic exercise successfully induces various metabolic benefits, provided optimum serum level of Vit D.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, 2263 Iran
- Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Samaneh Ghorbani Shirkouhi
- Cellular & Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, 2263 Iran
- Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hosseini
- Department of Physical Education and Sport Sciences, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Bahram Soltani Tehrani
- Cellular & Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, 2263 Iran
- Department of Pharmacology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|