1
|
Costas-Selas C, Martínez-García S, Pinhassi J, Fernández E, Teira E. Unveiling interactions mediated by B vitamins between diatoms and their associated bacteria from cocultures. JOURNAL OF PHYCOLOGY 2024. [PMID: 39413213 DOI: 10.1111/jpy.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024]
Abstract
Unveiling the interactions among phytoplankton and bacteria at the level of species requires axenic isolates to experimentally demonstrate their mutual effects. In this study, we describe the interactions among the diatoms Pseudo-nitzschia granii and Chaetoceros tenuissimus and their associated bacterial species, isolated from surface water of a coastal upwelling system using coculture experiments. Microalgae growth was assessed in axenic monocultures or in coculture with each of their co-isolated bacteria in the presence or absence of B vitamins. Pseudo-nitzschia granii growth was limited by B-vitamin supply, except when cultured with the bacteria Jannaschia cystaugens, which seemed to provide adequate levels of B vitamins to the diatom. Chaetoceros tenuissimus growth was reduced in the absence of B vitamins. Moreover, the growth of C. tenuissimus was stimulated by Alteromonas sp. and Celeribacter baekdonensis during the exponential growth. These results show a diversity of specific interactions between the diatoms and co-isolated bacteria, ranging from allelopathy to commensalism. Understanding how interactions between phytoplankton and bacteria modulate the structure and function of marine microbial plankton communities will contribute to a greater knowledge of plankton ecology and improve our ability to predict nutrient fluxes in marine ecosystems or the formation of blooms in a context of global change.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sandra Martínez-García
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emilio Fernández
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Eva Teira
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
2
|
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton-bacterial interactions. Mol Microbiol 2024; 122:331-346. [PMID: 38970428 DOI: 10.1111/mmi.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.
Collapse
Affiliation(s)
- Clara Martínez-Pérez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sophie T Zweifel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Stiffler AK, Hesketh-Best PJ, Varona NS, Zagame A, Wallace BA, Lapointe BE, Silveira CB. Genomic and induction evidence for bacteriophage contributions to sargassum-bacteria symbioses. MICROBIOME 2024; 12:143. [PMID: 39090708 PMCID: PMC11295528 DOI: 10.1186/s40168-024-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.
Collapse
Affiliation(s)
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Ashley Zagame
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, 34946, USA
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
4
|
Lin T, Feng Y, Miao W, Wang S, Bao Z, Shao Z, Zhang D, Wang X, Jiang H, Zhang H. Elevated temperature alters bacterial community from mutualism to antagonism with Skeletonema costatum: insights into the role of a novel species, Tamlana sp. MS1. mSphere 2024; 9:e0019824. [PMID: 38940599 PMCID: PMC11288006 DOI: 10.1128/msphere.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.
Collapse
Affiliation(s)
- Tenghui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yumeng Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenfei Miao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shuqi Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zeyuan Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
González-Sánchez JM, Panagiotopoulos C, Antich C, Papillon L, Garcia N, Van Wambeke F, Misson B. What happens to biomass burning-emitted particles in the ocean? A laboratory experimental approach based on their tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167770. [PMID: 37858832 DOI: 10.1016/j.scitotenv.2023.167770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Wildfires, controlled burns, and biofuel combustion (biomass burning or BB) are major contributors to particulate matter in the atmosphere and thus have an impact on climate, human health, and ecosystems. Once emitted, the particulate matter derived from BB can be taken up by the oceans. However, the fate and impact of BB in the marine biological carbon pump, and carbon cycle are largely unknown. This work presents the first attempt to investigate the bioavailability of two BB tracers, levoglucosan and galactosan, in seawater inoculated with marine prokaryotes. Levoglucosan and galactosan were incubated with a marine bacterial inoculum and monitored for six weeks under controlled laboratory conditions. Along with the anhydrosugar concentrations, multiple chemical and biological parameters were monitored over time. The results indicate that levoglucosan and galactosan can be assimilated by marine prokaryotes as their concentrations decreased by 97 ± 4 % and 36 ± 21 % (n = 3) of their initial values. However, this decrease occurred only after a 9 and 15 days from the beginning of the experiment, respectively. The decrease in the levoglucosan and galactosan concentrations was accompanied by an increase in both heterotrophic prokaryotic production, and abundance. These results demonstrate that these anhydrosugars have the potential to be assimilated by heterotrophic prokaryotes and thus contribute to the microbial food web functioning. Under our experimental conditions, levoglucosan exhibited a bacterial growth efficiency of 17 ± 5 % (n = 3), suggesting that most of the levoglucosan is mineralized into CO2. Prokaryotic diversity analyses revealed the predominance of a few bacterial genera from the Roseobacter clade that were selected after the addition of the anhydrosugars. The presence of this widespread marine bacterial clade reflects its ability to process semilabile compounds (here levoglucosan and galactosan) originating from BB and contribute to the dissolved organic matter pool in surface seawaters.
Collapse
Affiliation(s)
| | - Christos Panagiotopoulos
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Candice Antich
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Laure Papillon
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nicole Garcia
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - France Van Wambeke
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
6
|
Wang X, Fan C, Sun J. Utilization and transformation of Chrysotila dentata-derived dissolved organic matter by phycosphere bacteria Marinobacter hydrocarbonoclasticus and Bacillus firmus. PeerJ 2024; 12:e16552. [PMID: 38188179 PMCID: PMC10771764 DOI: 10.7717/peerj.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
The dissolved organic matter (DOM) released from the cocoolithophores (Chrysotila dentata) was studied in laboratory experiments after co-culturing C. dentata with bacteria. Marinobacter hydrocarbonoclasticus (CA6)-γ-Proteobacteria and Bacillus firmus (CF2) were used to investigate the utilization and processing of the DOM derived from C. dentata, utilizing fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEM-PARAFAC), while measuring algal abundance and photosynthetic parameters. The experimental groups consisted of axenic C. dentata groups, filter cultured with bacteria (CA6 or CF2) groups, C. dentata co-cultured with bacteria (CA6 or CF2) groups and axenic bacteria (CA6 or CF2) groups. We then evaluated the processing of DOM by determining four fluorescence indices. The number of C. dentata cells and the photosynthetic capacity of microalgae were enhanced by CA6 and CF2. The main known fluorophores, including humic-like components and protein-like components, were present in all sample. The protein-like component of algal-bacterial co-cultures was effectively utilized by CA6 and CF2. The humic-like components increased at the end of the culture time for all cultures. Meanwhile, the average fluorescence intensity of protein-like in CA6 co-culture with algae was lower than that in CF2 co-culture with algae over time. On the other hand, the average fluorescence intensity of humic-like in CA6 was higher than CF2. However, the total change in fluorescence in humic-like and protein-like of axenic CF2 cultures was lower than that of CA6. Hence, the ability of CA6 to transform microalgal-derived DOM was superior to that of CF2, and CF2's ability to consume bacterial-derived DOM was superior to that of CA6.
Collapse
Affiliation(s)
- Xueru Wang
- China University of Geosciences, Institute for Advance Marine Research, Guangzhou, China
- China University of Geosciences, State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China
- Tianjin University of Science and Technology, Research Centre for Indian Ocean Ecosystem, Tianjin, China
| | - Chenjuan Fan
- Tianjin University of Science and Technology, Research Centre for Indian Ocean Ecosystem, Tianjin, China
| | - Jun Sun
- China University of Geosciences, Institute for Advance Marine Research, Guangzhou, China
- China University of Geosciences, State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China
- Tianjin University of Science and Technology, Research Centre for Indian Ocean Ecosystem, Tianjin, China
| |
Collapse
|
7
|
Xu W, Hu X, Li H, Tian X, Ouyang Z, Du Y, Chen J. Effects of Lactobacillus plantarum Ep-M17 on growth, immunity and intestinal microbiota of Penaeus vannamei under Microcystin-LR stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106763. [PMID: 37980848 DOI: 10.1016/j.aquatox.2023.106763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Microcystins (MCs) are biologically active cyclic heptapeptide compounds released by cyanobacteria in water bodies, and MC-LR is one of the most widespread and toxic isoforms. It frequently poses a serious threat to Penaeus vannamei aquaculture. Our previous study revealed that the supplementation of Lactobacillus plantarum Ep-M17 has a probiotic effect on P. vannamei health and whether Ep-M17 can alleviate the stressful effects of MC-LR on shrimp remains unclear. Therefore, in the present work, shrimp were fed MC-LR alone or combined with Ep-M17 for six weeks, and then evaluated the effects on histology, enzyme activity, gene expression, and intestinal flora. The results showed that MC-LR stress lead to slow growth and reduced survival rates in shrimp. However, feeding Ep-M17 significantly increased both the growth rate and survival rate. Meanwhile, MC-LR stress caused severe tissue damage in the hepatopancreas and intestines of shrimp, but Ep-M17 significantly reduced the toxic effects and protected the integrity of these tissues. Additionally, Ep-M17 significantly enhanced the activities of antioxidant enzymes and digestive enzymes, and induced higher expression of immune-related genes, thereby promoting the digestive and immune responses in shrimp. Furthermore, MC-LR stress disrupted the intestinal flora in shrimp intestines, while the use of Ep-M17 significantly increased the abundance of immune- and metabolism-related bacteria and inhibited the growth of pathogenic bacteria to maintain intestinal flora balance and intestinal health. In conclusion, our results indicate that Ep-M17 can reduce the toxic effect of MC-LR on shrimp and has a positive function in the prevention and control of shrimp diseases caused by MC-LR.
Collapse
Affiliation(s)
- Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiangrong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Zhihang Ouyang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
8
|
Sun KM, Wang J, Ju Q, Zhao Y, Kong X, Yuan C, Tian Y. The mitigating effects of diatom-bacteria biofilm on coastal harmful algal blooms: A lab-based study concerning species-specific competition and biofilm formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117544. [PMID: 36842356 DOI: 10.1016/j.jenvman.2023.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Harmful algal blooms (HABs) in coastal areas severely affected the health of ecosystem and human beings. The HABs control by biological methods, especially for biofilms, has been research hotspots in freshwater ecosystem. However, the biofilm-relating control of HABs in marine environment was very limited. In the present study, we found the population growth of two harmful algal species, Prorocentrum obtusidens Schiller (formerly P. donghaiense Lu) and Heterosigma akashiwo, were inhibited by a diatom-bacteria biofilm. The highest inhibitory rate was 79.6 ± 2.1% for P. obtusidens when co-cultured with biofilm suspension, and was 88.6 ± 5.8% for H. akashiwo when co-cultured with the biofilm filtrate without nutrient replenishment. When nitrate and phosphate were added, the inhibition rate for P. obtusidens was 72.3 ± 2.0%, but the population inhibition was not found in H. akashiwo. It suggested that P. obtusidens was mainly inhibited via interference competition, while the inhibition of H. akashiwo was resulted from exploitation competition. We further investigated the role of fatty acids for the interference competition in P. obtusidens, and found that fatty acids at their environmental-relevance concentrations can inhibit the photosynthetic capacity of P. obtusidens, but cannot inhibit the population growth. The community of biofilm shifted, and was finally dominated by the photoheterotrophic bacterium Dinoroseobacter shibae, and the diatom Fistulifera sp. with relative abundance of higher than 90%. Our study indicated that the diatom-bacteria biofilm was likely the candidate for the HABs control in marine environment. D. shibae and Fistulifera sp. were probably the effective species in the biofilm.
Collapse
Affiliation(s)
- Kai-Ming Sun
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266100, Shandong, China; SOA Key Laboratory of Science and Engineering for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, Shandong, China
| | - Jingru Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266100, Shandong, China
| | - Qing Ju
- Shandong Provincial Qingdao Eco-environment Monitoring Center, Qingdao, 266061, Shandong, China
| | - Yan Zhao
- College of Marine Life, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266100, Shandong, China
| | - Chao Yuan
- SOA Key Laboratory of Science and Engineering for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, Shandong, China.
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
9
|
Den TQ, Neu TR, Sultana S, Giebel HA, Simon M, Billerbeck S. Distinct glycoconjugate cell surface structures make the pelagic diatom Thalassiosira rotula an attractive habitat for bacteria. JOURNAL OF PHYCOLOGY 2023; 59:309-322. [PMID: 36471567 DOI: 10.1111/jpy.13308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/14/2022] [Indexed: 05/28/2023]
Abstract
Interactions between marine diatoms and bacteria have been studied for decades. However, the visualization of physical interactions between these diatoms and their colonizers is still limited. To enhance our understanding of these specific interactions, a new Thalassiosira rotula isolate from the North Sea (strain 8673) was characterized by scanning electron microscopy and confocal laser scanning microscopy (CLSM) after staining with fluorescently labeled lectins targeting specific glycoconjugates. To investigate defined interactions of this strain with bacteria the new strain was made axenic and co-cultivated with a natural bacterial community and in two- or three-partner consortia with different bacteria of the Roseobacter group, Gammaproteobacteria and Bacteroidetes. The CLSM analysis of the consortia identified six out of 78 different lectins as very suitable to characterize glycoconjugates of T. rotula. The resulting images show that fucose-containing threads were the dominant glycoconjugates secreted by the T. rotula cells but chitin and to a lesser extent other glycoconjugates were also identified. Bacteria attached predominantly to the fucose glycoconjugates. The colonizing bacteria showed various attachment patterns such as adhering to the diatom threads in aggregates only or attaching to both the surfaces and the threads of the diatom. Interestingly the colonization patterns of single bacteria differed strikingly from those of bacterial co-cultures, indicating that interactions between two bacterial species impacted the colonization of the diatom. Our observations help to better understand physical interactions and specific colonization patterns of distinct bacterial mono- and co-cultures with an abundant diatom of costal seas.
Collapse
Affiliation(s)
- Tran Quoc Den
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thomas R Neu
- Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Helge-A Giebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Sara Billerbeck
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Tanabe Y, Yamaguchi H, Yoshida M, Kai A, Okazaki Y. Characterization of a bloom-associated alphaproteobacterial lineage, 'Candidatus Phycosocius': insights into freshwater algal-bacterial interactions. ISME COMMUNICATIONS 2023; 3:20. [PMID: 36906708 PMCID: PMC10008586 DOI: 10.1038/s43705-023-00228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Marine bacterial lineages associated with algal blooms, such as the Roseobacter clade, have been well characterized in ecological and genomic contexts, yet such lineages have rarely been explored in freshwater blooms. This study performed phenotypic and genomic analyses of an alphaproteobacterial lineage 'Candidatus Phycosocius' (denoted the CaP clade), one of the few lineages ubiquitously associated with freshwater algal blooms, and described a novel species: 'Ca. Phycosocius spiralis.' Phylogenomic analyses indicated that the CaP clade is a deeply branching lineage in the Caulobacterales. Pangenome analyses revealed characteristic features of the CaP clade: aerobic anoxygenic photosynthesis and essential vitamin B auxotrophy. Genome size varies widely among members of the CaP clade (2.5-3.7 Mb), likely a result of independent genome reductions at each lineage. This includes a loss of tight adherence pilus genes (tad) in 'Ca. P. spiralis' that may reflect its adoption of a unique spiral cell shape and corkscrew-like burrowing activity at the algal surface. Notably, quorum sensing (QS) proteins showed incongruent phylogenies, suggesting that horizontal transfers of QS genes and QS-involved interactions with specific algal partners might drive CaP clade diversification. This study elucidates the ecophysiology and evolution of proteobacteria associated with freshwater algal blooms.
Collapse
Affiliation(s)
- Yuuhiko Tanabe
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan.
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan.
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| | - Masaki Yoshida
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Atsushi Kai
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| |
Collapse
|
11
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Koteska D, Marter P, Huang S, Pradella S, Petersen J, Schulz S. Volatiles of the Apicomplexan Alga Chromera velia and Associated Bacteria. Chembiochem 2023; 24:e202200530. [PMID: 36416092 PMCID: PMC10107727 DOI: 10.1002/cbic.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Volatiles released by the apicomplexan alga Chromera velia CCAP1602/1 and their associated bacteria have been investigated. A metagenome analysis allowed the identification of the most abundant heterotrophic bacteria of the phycosphere, but the isolation of additional strains showed that metagenomics underestimated the complexity of the algal microbiome, However, a culture-independent approach revealed the presence of a planctomycete that likely represents a novel bacterial family. We analysed algal and bacterial volatiles by open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, followed by thermodesorption, cryofocusing and GC-MS-analysis. The analyses of the alga and the abundant bacterial strains Sphingopyxis litoris A01A-101, Algihabitans albus A01A-324, "Coraliitalea coralii" A01A-333 and Litoreibacter sp. A01A-347 revealed sulfur- and nitrogen-containing compounds, ketones, alcohols, aldehydes, aromatic compounds, amides and one lactone, as well as the typical algal products, apocarotenoids. The compounds were identified by gas chromatographic retention indices, comparison of mass spectra and syntheses of reference compounds. A major algal metabolite was 3,4,4-trimethylcyclopent-2-en-1-one, an apocarotenoid indicating the presence of carotenoids related to capsanthin, not reported from algae so far. A low overlap in volatiles bouquets between C. velia and the bacteria was found, and the xenic algal culture almost exclusively released algal components.
Collapse
Affiliation(s)
- Diana Koteska
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Pia Marter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Sixing Huang
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Silke Pradella
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Stefan Schulz
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
13
|
Barak-Gavish N, Dassa B, Kuhlisch C, Nussbaum I, Brandis A, Rosenberg G, Avraham R, Vardi A. Bacterial lifestyle switch in response to algal metabolites. eLife 2023; 12:e84400. [PMID: 36691727 PMCID: PMC9873259 DOI: 10.7554/elife.84400] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in the biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly recognized that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during its interaction with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. To unravel the bacterial lifestyle switch, we analyzed bacterial transcriptomes in response to exudates derived from algae in exponential growth and stationary phase, which supported the Sulfitobacter D7 coexistence and pathogenicity lifestyles, respectively. In pathogenic mode, Sulfitobacter D7 upregulated flagellar motility and diverse transport systems, presumably to maximize assimilation of E. huxleyi-derived metabolites released by algal cells upon cell death. Algal dimethylsulfoniopropionate (DMSP) was a pivotal signaling molecule that mediated the transition between the lifestyles, supporting our previous findings. However, the coexisting and pathogenic lifestyles were evident only in the presence of additional algal metabolites. Specifically, we discovered that algae-produced benzoate promoted the growth of Sulfitobacter D7 and hindered the DMSP-induced lifestyle switch to pathogenicity, demonstrating that benzoate is important for maintaining the coexistence of algae and bacteria. We propose that bacteria can sense the physiological state of the algal host through changes in the metabolic composition, which will determine the bacterial lifestyle during interaction.
Collapse
Affiliation(s)
- Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Inbal Nussbaum
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of ScienceRehovotIsrael
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of ScienceRehovotIsrael
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
14
|
Bartolek Z, Creveld SGV, Coesel S, Cain KR, Schatz M, Morales R, Virginia Armbrust E. Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana. THE ISME JOURNAL 2022; 16:2741-2751. [PMID: 36104452 PMCID: PMC9666458 DOI: 10.1038/s41396-022-01313-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Phytoplankton and bacteria form the base of marine ecosystems and their interactions drive global biogeochemical cycles. The effects of bacteria and bacteria-produced compounds on diatoms range from synergistic to pathogenic and can affect the physiology and transcriptional patterns of the interacting diatom. Here, we investigate physiological and transcriptional changes in the marine diatom Thalassiosira pseudonana induced by extracellular metabolites of a known antagonistic bacterium Croceibacter atlanticus. Mono-cultures of C. atlanticus released compounds that inhibited diatom cell division and elicited a distinctive morphology of enlarged cells with increased chloroplast content and enlarged nuclei, similar to what was previously observed when the diatom was co-cultured with live bacteria. The extracellular C. atlanticus metabolites induced transcriptional changes in diatom pathways that include recognition and signaling pathways, cell cycle regulation, carbohydrate and amino acid production, as well as cell wall stability. Phenotypic analysis showed a disruption in the diatom cell cycle progression and an increase in both intra- and extracellular carbohydrates in diatom cultures after bacterial exudate treatment. The transcriptional changes and corresponding phenotypes suggest that extracellular bacterial metabolites, produced independently of direct bacterial-diatom interaction, may modulate diatom metabolism in ways that support bacterial growth.
Collapse
Affiliation(s)
- Zinka Bartolek
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Sacha Coesel
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Kelsy R Cain
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Megan Schatz
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rhonda Morales
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
15
|
Clagnan E, D'Imporzano G, Dell'Orto M, Bani A, Dumbrell AJ, Parati K, Acién-Fernández FG, Portillo-Hahnefeld A, Martel-Quintana A, Gómez-Pinchetti JL, Adani F. Centrate as a sustainable growth medium: Impact on microalgal inocula and bacterial communities in tubular photobioreactor cultivation systems. BIORESOURCE TECHNOLOGY 2022; 363:127979. [PMID: 36126844 DOI: 10.1016/j.biortech.2022.127979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Centrate is a low-cost alternative to synthetic fertilizers for microalgal cultivation, reducing environmental burdens and remediation costs. Adapted microalgae need to be selected and characterised to maximise biomass production and depuration efficiency. Here, the performance and composition of six microalgal communities cultivated both on synthetic media and centrate within semi-open tubular photobioreactors were investigated through Illumina sequencing. Biomass grown on centrate, exposed to a high concentration of ammonium, showed a higher quantity of nitrogen (5.6% dry weight) than the biomass grown on the synthetic media nitrate (3.9% dry weight). Eukaryotic inocula were replaced by other microalgae while cyanobacterial inocula were maintained. Communities were generally similar for the same inoculum between media, however, inoculation with cyanobacteria led to variability within the eukaryotic community. Where communities differed, centrate resulted in a higher richness and diversity. The higher nitrogen of centrate possibly led to higher abundance of genes coding for N metabolism enzymes.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy.
| | - Marta Dell'Orto
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Alessia Bani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy; School of Life Science, University of Essex, Wivenhoe Park, Colchester, Essex CO3 4SQ, UK; Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia, 2602 Rivolta d'Adda, CR, Italy
| | - Alex J Dumbrell
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, Essex CO3 4SQ, UK
| | - Katia Parati
- Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia, 2602 Rivolta d'Adda, CR, Italy
| | - Francisco Gabriel Acién-Fernández
- Department of Chemical Engineering, CIESOL Solar Energy Research Centre, University of Almeria, Cañada San Urbano, s/n, 04120 Almeria, Spain
| | - Agustín Portillo-Hahnefeld
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Antera Martel-Quintana
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Juan Luis Gómez-Pinchetti
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| |
Collapse
|
16
|
Costas-Selas C, Martínez-García S, Logares R, Hernández-Ruiz M, Teira E. Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02125-2. [PMID: 36305941 DOI: 10.1007/s00248-022-02125-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn-winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Ramiro Logares
- Departament de Biologia Marina I Oceanografia, Institut de Ciéncies del Mar (ICM), CSIC, Catalonia, Barcelona, Spain
| | - Marta Hernández-Ruiz
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| |
Collapse
|
17
|
Sanchez-Garcia S, Wang H, Wagner-Döbler I. The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Front Microbiol 2022; 13:952238. [PMID: 36246277 PMCID: PMC9555710 DOI: 10.3389/fmicb.2022.952238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the ocean, phytoplankton are dependent on communities of bacteria living in the phycosphere, a hot spot of metabolic and genetic exchange. Many types of interactions between phytoplankton and phycosphere bacteria have been shown, but it is unclear if the microbial communities associated with microalgae strains in culture collections are beneficial or harmful to the host strain. Here, we studied the microbial communities associated with four strains of the dinoflagellate Prorocentrum cordatum that had been isolated from distant geographical locations and maintained in culture collection for hundreds of generations. Community composition was determined by 16S rRNA gene amplicon sequencing. The dinoflagellate host strain was the strongest parameter separating communities, while growth phase, lifestyle (particle-attached versus free-living) and temperature had only a modulating effect. Although the strains had been isolated from distant locations in the Atlantic and Pacific Ocean, 14 ASVs were shared among all strains, the most abundant ones being Gilvibacter, Marivita, uncultivated Rhodobacteraceae, Marinobacter, Hyphomonadaceae, Cupriavidus, Variovorax, and Paucibacter. Adaptation to higher temperatures resulted in specific changes in each phycosphere microbiome, including increased abundance of rare community members. We then compared the growth of the four xenic cultures to that of the axenic P. cordatum CCMP1329. At 20°C, growth of the xenic cultures was similar or slower than that of CCMP1329. At 26°C, all four xenic cultures experienced a death phase, while the axenic culture stably remained in the stationary phase. At 30°C, only two of the xenic cultures were able to grow. A shift of dinoflagellate metabolism from autotrophy to mixotrophy and competition between dinoflagellate and bacteria for limiting nutrients, including essential vitamins, may contribute to these differences in growth patterns.
Collapse
Affiliation(s)
| | | | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
18
|
Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon LA, Wilkes H, Simon M. The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy. THE ISME JOURNAL 2022; 16:2599-2609. [PMID: 35963899 PMCID: PMC9561691 DOI: 10.1038/s41396-022-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.
Collapse
|
19
|
The Sixth Element: a 102-kb RepABC Plasmid of Xenologous Origin Modulates Chromosomal Gene Expression in Dinoroseobacter shibae. mSystems 2022; 7:e0026422. [PMID: 35920548 PMCID: PMC9426580 DOI: 10.1128/msystems.00264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell’s regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the “plasmid paradox.”
Collapse
|
20
|
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes. mBio 2022; 13:e0057122. [PMID: 35880883 PMCID: PMC9426536 DOI: 10.1128/mbio.00571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Globally dominant marine bacterioplankton lineages are often limited in metabolic versatility, owing to their extensive genome reductions, and thus cannot take advantage of transient nutrient patches. It is therefore perplexing how the nutrient-poor bulk seawater sustains the pelagic streamlined lineages, each containing numerous populations. Here, we sequenced the genomes of 33 isolates of the recently discovered CHUG lineage (~2.6 Mbp), which have some of the smallest genomes in the globally abundant Roseobacter group (commonly over 4 Mbp). These genome-reduced bacteria were isolated from a transient habitat: seawater surrounding the brown alga, Sargassum hemiphyllum. Population genomic analyses showed that: (i) these isolates, despite sharing identical 16S rRNA genes, were differentiated into several genetically isolated populations through successive speciation events; (ii) only the first speciation event led to the genetic separation of both core and accessory genomes; and (iii) populations resulting from this event are differentiated at many loci involved in carbon utilization and oxygen respiration, corroborated by BiOLOG phenotype microarray assays and oxygen uptake kinetics experiments, respectively. These differentiated traits match well with the dynamic nature of the macroalgal seawater, in which the quantity and quality of carbon sources and the concentration of oxygen likely vary spatially and temporally, though other habitats, like fresh organic aggregates, cannot be ruled out. Our study implies that transient habitats in the overall nutrient-poor ocean can shape the microdiversity and population structure of genome-reduced bacterioplankton lineages.
Collapse
|
21
|
Xiao L, Chen Z, Yang Y, Liu Z. Growth promotion of Chlorella by symbiotic bacteria under adverse environments. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA. Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems 2022; 7:e0142221. [PMID: 35642511 PMCID: PMC9238374 DOI: 10.1128/msystems.01422-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order Laminariales, play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles. Despite the annual life history of bull kelp, nearly half of the bacterial MAGs were detected across multiple years. Diverse members of the kelp microbiome, spanning 6 bacterial phyla, contained genes for transporting and assimilating dissolved organic matter (DOM), which is secreted by kelp in large quantities and likely fuels the metabolism of these heterotrophic bacteria. Bacterial genomes also contained alginate lyase and biosynthesis genes, involved in polysaccharide degradation and biofilm formation, respectively. Kelp-associated bacterial genomes contained genes for dissimilatory nitrate reduction and urea hydrolysis, likely providing a reduced source of nitrogen to the host kelp. The genome of the most abundant member of the kelp microbiome and common macroalgal symbiont, Granulosicoccus, contained a full suite of genes for synthesizing cobalamin (vitamin B12), suggesting that kelp-associated bacteria have the potential to provide their host kelp with vitamins. Finally, kelp-associated Granulosicoccus contained genes that typify the aerobic anoxygenic phototrophic bacteria, including genes for bacteriochlorophyll synthesis and photosystem II reaction center proteins, making them the first known photoheterotrophic representatives of this genus. IMPORTANCE Kelp (brown algae in the order Laminariales) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems. We reconstructed bacterial genomes from metagenomic samples collected from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine the functional gene content of specific members of the kelp microbiome. These bacterial genomes spanned 6 phyla and 19 families and included common alga-associated microbial symbionts such as Granulosicoccus. Key functions encoded in kelp-associated bacterial genomes included dissolved organic matter assimilation, alginate metabolism, vitamin B12 biosynthesis, and nitrogen reduction from nitrate and urea to ammonium, potentially providing the host kelp with vitamins and reduced nitrogen.
Collapse
Affiliation(s)
- Brooke L. Weigel
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA
| | | | - Emily C. Fogarty
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrea R. Watson
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Catherine A. Pfister
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Srinivas S, Berger M, Brinkhoff T, Niggemann J. Impact of Quorum Sensing and Tropodithietic Acid Production on the Exometabolome of Phaeobacter inhibens. Front Microbiol 2022; 13:917969. [PMID: 35801100 PMCID: PMC9253639 DOI: 10.3389/fmicb.2022.917969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial interactions shape ecosystem diversity and chemistry through production and exchange of organic compounds, but the impact of regulatory mechanisms on production and release of these exometabolites is largely unknown. We studied the extent and nature of impact of two signaling molecules, tropodithietic acid (TDA) and the quorum sensing molecule acyl homoserine lactone (AHL) on the exometabolome of the model bacterium Phaeobacter inhibens DSM 17395, a member of the ubiquitous marine Roseobacter group. Exometabolomes of the wild type, a TDA and a QS (AHL-regulator) negative mutant were analyzed via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Based on a total of 996 reproducibly detected molecular masses, exometabolomes of the TDA and QS negative mutant were ∼70% dissimilar to each other, and ∼90 and ∼60% dissimilar, respectively, to that of the wild type. Moreover, at any sampled growth phase, 40–60% of masses detected in any individual exometabolome were unique to that strain, while only 10–12% constituted a shared “core exometabolome.” Putative annotation revealed exometabolites of ecological relevance such as vitamins, amino acids, auxins, siderophore components and signaling compounds with different occurrence patterns in the exometabolomes of the three strains. Thus, this study demonstrates that signaling molecules, such as AHL and TDA, extensively impact the composition of bacterial exometabolomes with potential consequences for species interactions in microbial communities.
Collapse
Affiliation(s)
- Sujatha Srinivas
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
24
|
Zhang Y, Gallant É, Park JD, Seyedsayamdost MR. The Small-Molecule Language of Dynamic Microbial Interactions. Annu Rev Microbiol 2022; 76:641-660. [PMID: 35679616 PMCID: PMC10171915 DOI: 10.1146/annurev-micro-042722-091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; ,
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , .,Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| |
Collapse
|
25
|
Availability of vitamin B 12 and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. THE ISME JOURNAL 2022; 16:2002-2014. [PMID: 35585186 PMCID: PMC9296465 DOI: 10.1038/s41396-022-01250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/22/2023]
Abstract
Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
Collapse
|
26
|
Zhao Z, Jiang J, Zheng J, Pan Y, Dong Y, Chen Z, Gao S, Xiao Y, Jiang P, Wang X, Zhang G, Wang B, Yu D, Fu Z, Guan X, Sun H, Zhou Z. Exploiting the gut microbiota to predict the origins and quality traits of cultured sea cucumbers. Environ Microbiol 2022; 24:3882-3897. [PMID: 35297145 DOI: 10.1111/1462-2920.15972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 01/09/2023]
Abstract
Nowadays, the true economic and nutritional value of food is underpinned by both origin and quality traits, more often expressed as increased quality benefits derived from the origin source. Gut microbiota contribute to food metabolism and host health, therefore, it may be suitable as a qualifying indicator of origin and quality of economic species. Here, we investigated relationships between the gut microbiota of the sea cucumber (Apostichopus japonicus), a valuable aquaculture species in Asia, with their origins and quality metrics. Based on data from 287 intestinal samples, we generated the first biogeographical patterns for A. japonicus gut microbiota from origins across China. Importantly, A. japonicus origins were predicted using the random forest model that was constructed using 20 key gut bacterial genera, with 97.6% accuracy. Furthermore, quality traits such as saponin, fat and taurine were also successfully predicted by random forest models based on gut microbiota, with approximately 80% consistency between predicted and true values. We showed that substantial variations existed in the gut microbiota and quality variables in A. japonicus across different origins, and we also demonstrated the great potential of gut microbiota to track A. japonicus origins and predict their quality traits.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jingwei Jiang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jie Zheng
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yongjia Pan
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Ying Dong
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhong Chen
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Shan Gao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yao Xiao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Pingzhe Jiang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xuda Wang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Gaohua Zhang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Bai Wang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Di Yu
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhiyu Fu
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xiaoyan Guan
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Hongjuan Sun
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zunchun Zhou
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| |
Collapse
|
27
|
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, Vollmers J, Jarek M, Wagner-Döbler I, Petersen J. Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microb Genom 2022; 8:000787. [PMID: 35254236 PMCID: PMC9176285 DOI: 10.1099/mgen.0.000787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science – Centre Algatech, Třeboň, Czech Republic
- *Correspondence: Jürgen Tomasch,
| | - Victoria Ringel
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Heike M. Freese
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pascal Bartling
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Present address: Schülke & Mayr GmbH, Norderstedt, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5: Biotechnology and Microbial Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- *Correspondence: Jörn Petersen,
| |
Collapse
|
28
|
Mansky J, Wang H, Ebert M, Härtig E, Jahn D, Tomasch J, Wagner-Döbler I. The Influence of Genes on the "Killer Plasmid" of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum. Front Microbiol 2022; 12:804767. [PMID: 35154034 PMCID: PMC8831719 DOI: 10.3389/fmicb.2021.804767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023] Open
Abstract
The marine bacterium Dinoroseobacter shibae shows a Jekyll-and-Hyde behavior in co-culture with the dinoflagellate Prorocentrum minimum: In the initial symbiotic phase it provides the essential vitamins B12 (cobalamin) and B1 (thiamine) to the algae. In the later pathogenic phase it kills the dinoflagellate. The killing phenotype is determined by the 191 kb plasmid and can be conjugated into other Roseobacters. From a transposon-library of D. shibae we retrieved 28 mutants whose insertion sites were located on the 191 kb plasmid. We co-cultivated each of them with P. minimum in L1 medium lacking vitamin B12. With 20 mutant strains no algal growth beyond the axenic control lacking B12 occurred. Several of these genes were predicted to encode proteins from the type IV secretion system (T4SS). They are apparently essential for establishing the symbiosis. With five transposon mutant strains, the initial symbiotic phase was intact but the later pathogenic phase was lost in co-culture. In three of them the insertion sites were located in an operon predicted to encode genes for biotin (B7) uptake. Both P. minimum and D. shibae are auxotrophic for biotin. We hypothesize that the bacterium depletes the medium from biotin resulting in apoptosis of the dinoflagellate.
Collapse
Affiliation(s)
- Johannes Mansky
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hui Wang
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Matthias Ebert
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences – Centre Algatech, Třeboň, Czechia
| | - Irene Wagner-Döbler
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
29
|
Park J, Li Y, Moon K, Han EJ, Lee SR, Seyedsayamdost MR. Structural Elucidation of Cryptic Algaecides in Marine Algal‐Bacterial Symbioses by NMR Spectroscopy and MicroED. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jong‐Duk Park
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Yuchen Li
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Kyuho Moon
- Department of Chemistry Princeton University Princeton NJ 08544 USA
- College of Pharmacy Chonnam National University Gwangju 61186 South Korea
| | - Esther J. Han
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Seoung Rak Lee
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry Princeton University Princeton NJ 08544 USA
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
30
|
Zhang Y, Zheng L, Wang S, Zhao Y, Xu X, Han B, Hu T. Quorum Sensing Bacteria in the Phycosphere of HAB Microalgae and Their Ecological Functions Related to Cross-Kingdom Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010163. [PMID: 35010421 PMCID: PMC8750903 DOI: 10.3390/ijerph19010163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022]
Abstract
It has been proven that the relationship between microalgae and bacteria affects the dynamic process of harmful algal blooms (HABs). Microalgae-associated microorganisms widely exist in the phycosphere and play an essential role in algae-bacteria cross-kingdom interactions. Among these processes, quorum sensing (QS), as a communication system of bacteria, is thought to participate in algae-bacteria interactions. However, the species of QS bacteria in the phycosphere and their ecological function are still unknown. In this study, microalgae-associated microorganisms with a QS system were screened by the biosensor method and identified based on 16S rRNA gene analysis. The types and number of acyl-L-homoserine lactone (AHL) signalling molecules produced by QS bacteria were analysed by thin layer chromatography (TLC) bioautography and gas chromatography-mass spectrometer (GC-MS). The film formation, β-dimethylmercaptopropionic (DMSP) degradation and algae growth effects of QS bacteria were investigated. The results showed that 113 QS bacteria were isolated from 842 microalgae-associated bacteria. Detection of AHL molecules in 10 different species of QS bacteria showed that most of them were N-(3-Oxodecanoyl)-L-homoserine lactone (OC10-HSL), N-Octanoyl-L-homoserine lactone (C8-HSL) and N-(3-Oxooctanoyl)-L-homoserine lactone (OC8-HSL). All 10 QS bacteria had film-forming ability, and they could degrade DMSP (except strain E26). The crude metabolic extracts of the 10 QS bacteria can inhibit or promote microalgae growth to different degrees. Our study is helpful to understand the role of microalgae-associated microorganisms with the QS system in algae-bacteria interactions and community succession of HAB microalgae.
Collapse
Affiliation(s)
- Yanchao Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Y.Z.)
| | - Li Zheng
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
- Qingdao National Laboratory of Marine Science and Technology Pilot, Functional Laboratory of Marine Ecology and Environmental Science, Qingdao 266071, China;
- Correspondence:
| | - Shuai Wang
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Y.Z.)
| | - Xiyuan Xu
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
| | - Bin Han
- Qingdao National Laboratory of Marine Science and Technology Pilot, Functional Laboratory of Marine Ecology and Environmental Science, Qingdao 266071, China;
| | - Tianyi Hu
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
| |
Collapse
|
31
|
Park JD, Li Y, Moon K, Han EJ, Lee SR, Seyedsayamdost MR. Structural Elucidation of Cryptic Algaecides in Marine Algal-Bacterial Symbioses by NMR Spectroscopy and MicroED. Angew Chem Int Ed Engl 2021; 61:e202114022. [PMID: 34852184 DOI: 10.1002/anie.202114022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/06/2022]
Abstract
Microbial secondary metabolite discovery is often conducted in pure monocultures. In a natural setting, however, where metabolites are constantly exchanged, biosynthetic precursors are likely provided by symbionts or hosts. In the current work, we report eight novel and architecturally unusual secondary metabolites synthesized by the bacterial symbiont Phaeobacter inhibens from precursors that, in a native context, would be provided by their algal hosts. Three of these were produced at low titres and their structures were determined de novo using the emerging microcrystal electron diffraction method. Some of the new metabolites exhibited potent algaecidal activity suggesting that the bacterial symbiont can convert algal precursors, tryptophan and sinapic acid, into complex cytotoxins. Our results have important implications for the parasitic phase of algal-bacterial symbiotic interactions.
Collapse
Affiliation(s)
- Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Yuchen Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Kyuho Moon
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Esther J Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol 2021; 88:e0188621. [PMID: 34788073 PMCID: PMC8788706 DOI: 10.1128/aem.01886-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutualistic nutrient cycling in the coral-algae symbiosis depends on limited nitrogen (N) availability for algal symbionts. Denitrifying prokaryotes capable of reducing nitrate or nitrite to dinitrogen could thus support coral holobiont functioning by limiting N availability. Octocorals show some of the highest denitrification rates among reef organisms; however, little is known about the community structures of associated denitrifiers and their response to environmental fluctuations. Combining 16S rRNA gene amplicon sequencing with nirS in-silico PCR and quantitative PCR, we found differences in bacterial community dynamics between two octocorals exposed to excess dissolved organic carbon (DOC) and concomitant warming. Although bacterial communities of the gorgonian Pinnigorgia flava remained largely unaffected by DOC and warming, the soft coral Xenia umbellata exhibited a pronounced shift toward Alphaproteobacteria dominance under excess DOC. Likewise, the relative abundance of denitrifiers was not altered in P. flava but decreased by 1 order of magnitude in X. umbellata under excess DOC, likely due to decreased proportions of Ruegeria spp. Given that holobiont C:N ratios remained stable in P. flava but showed a pronounced increase with excess DOC in X. umbellata, our results suggest that microbial community dynamics may reflect the nutritional status of the holobiont. Hence, denitrifier abundance may be directly linked to N availability. This suggests a passive regulation of N cycling microbes based on N availability, which could help stabilize nutrient limitation in the coral-algal symbiosis and thereby support holobiont functioning in a changing environment. IMPORTANCE Octocorals are important members of reef-associated benthic communities that can rapidly replace scleractinian corals as the dominant ecosystem engineers on degraded reefs. Considering the substantial change in the (a)biotic environment that is commonly driving reef degradation, maintaining a dynamic and metabolically diverse microbial community might contribute to octocoral acclimatization. Nitrogen (N) cycling microbes, in particular denitrifying prokaryotes, may support holobiont functioning by limiting internal N availability, but little is known about the identity and (a)biotic drivers of octocoral-associated denitrifiers. Here, we show contrasting dynamics of bacterial communities associated with two common octocoral species, the soft coral Xenia umbellata and the gorgonian Pinnigorgia flava after a 6-week exposure to excess dissolved organic carbon under concomitant warming conditions. The specific responses of denitrifier communities of the two octocoral species aligned with the nutritional status of holobiont members. This suggests a passive regulation based on N availability in the coral holobiont.
Collapse
|
33
|
Contribution of vitamin B12 to biogas upgrading and nutrient removal by different microalgae-based technology. World J Microbiol Biotechnol 2021; 37:216. [PMID: 34762196 DOI: 10.1007/s11274-021-03184-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
The algae-based technology has a positive effect on the treatment of biogas slurry and the purification of biogas, while vitamin B12 (VB12) is one of the important regulatory substances in the algae-based cultivation system. In this study, different concentrations of VB12 were used in three microalgal treatment technologies to assess their effect on simultaneous removal of nutrients from biogas slurry and removal of CO2 from raw biogas. Results showed that Chlorella vulgaris exhibited higher growth rate, mean daily productivity, chlorophyll a content, carbonic anhydrase activity and better photosynthetic properties when co-cultivated with Ganoderma lucidum, rather than when co-cultivated with activated sludge or under mono-cultivation. Maximum mean chemical oxygen demand, total nitrogen, total phosphorus and CO2 removal efficiencies were found to be 84.29 ± 8.28%, 83.27 ± 8.14%, 85.27 ± 8.46% and 65.71 ± 6.35%, respectively when microalgae were co-cultivated with Ganoderma lucidum under 100 ng L-1 of VB12. This study shows the potential of microalgae and fungi co-cultivation supplemented with VB12 for the simultaneous upgradation of biogas production as well as for the purification of biogas slurry.
Collapse
|
34
|
Wang R, Gallant É, Wilson MZ, Wu Y, Li A, Gitai Z, Seyedsayamdost MR. Algal p-coumaric acid induces oxidative stress and siderophore biosynthesis in the bacterial symbiont Phaeobacter inhibens. Cell Chem Biol 2021; 29:670-679.e5. [PMID: 34437838 DOI: 10.1016/j.chembiol.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
The marine alpha-proteobacterium Phaeobacter inhibens engages in intermittent symbioses with microalgae. The symbiosis is biphasic and concludes in a parasitic phase, during which the bacteria release algaecidal metabolites in response to algal p-coumaric acid (pCA). The cell-wide effects of pCA on P. inhibens remain unknown. Herein, we report a microarray-based transcriptomic study and find that genes related to the oxidative stress response and secondary metabolism are upregulated most, while those associated with energy production and motility are downregulated in the presence of pCA. Among genes upregulated is a previously unannotated biosynthetic gene cluster and, using a combination of gene deletions and metabolic profiling, we show that it gives rise to an unreported siderophore, roseobactin. The simultaneous production of algaecides and roseobactin in the parasitic phase allows the bacteria to take up any iron that is released from dying algal cells, thereby securing a limited micronutrient.
Collapse
Affiliation(s)
- Rurun Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Maxwell Z Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Pinto J, Lami R, Krasovec M, Grimaud R, Urios L, Lupette J, Escande ML, Sanchez F, Intertaglia L, Grimsley N, Piganeau G, Sanchez-Brosseau S. Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere. Microorganisms 2021; 9:microorganisms9081777. [PMID: 34442856 PMCID: PMC8399681 DOI: 10.3390/microorganisms9081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the ‘opportunistic’ behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.
Collapse
Affiliation(s)
- Jordan Pinto
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Raphaël Lami
- Sorbonne Université, CNRS, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Régis Grimaud
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France; (R.G.); (L.U.)
| | - Laurent Urios
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France; (R.G.); (L.U.)
| | - Josselin Lupette
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Université de Bordeaux, CNRS, UMR 5200 Laboratoire de Biogenèse Membranaire, 33140 Villenave d’Ornon, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, FR 3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (M.-L.E.); (L.I.)
| | - Frédéric Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, FR 3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (M.-L.E.); (L.I.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Correspondence:
| |
Collapse
|
36
|
Harke MJ, Frischkorn KR, Hennon GMM, Haley ST, Barone B, Karl DM, Dyhrman ST. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ Microbiol 2021; 23:4807-4822. [PMID: 34309154 DOI: 10.1111/1462-2920.15677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Gloucester Marine Genomics Institute, Gloucester, MA, USA
| | - Kyle R Frischkorn
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Benedetto Barone
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Xu B, Liu J, Zhao C, Sun S, Xu J, Zhao Y. Induction of vitamin B12 to purify biogas slurry and upgrade biogas using co-culture of microalgae and fungi. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1254-1262. [PMID: 33372311 DOI: 10.1002/wer.1504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Different gradient concentrations of vitamin B12 (0, 10, 100, 1,000 ng L-1 ) were used in the symbiosis system (Chlorella vulgaris-Ganoderma lucidum or Chlorella vulgaris-Pleurotus ostreatus) to assess their effect on simultaneous purification of biogas and removal of nutrients in biogas slurry using co-culture of microalgae and fungi. When B12 was added to the symbiosis system, biomass growth, intracellular carbonic anhydrase activity (CA), chlorophyll a content (CHL-a), photosynthetic characteristics of the two cultivation system, and removal efficiency of nutrients in biogas slurry and CO2 in biogas were significantly higher than those in the control group. The optimal concentration of B12 was determined to be 100 ng L-1 considering the removal efficiency of nutrients and CO2 . Maximum mean chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and CO2 removal efficiencies were 75.98 ± 6.26%, 78.46 ± 6.21%, 80.21 ± 6.83% and 61.08 ± 5.21% in Chlorella vulgaris-Ganoderma lucidum, respectively. This study showed the potential of microalgae and fungi symbiosis system with B12 addition for nutrient removal and biogas upgrading. PRACTITIONER POINTS: Vitamin B12 had positive effects on algal-fungal pellets growth. The optimal vitamin B12 concentration was 100 ng L-1 . The highest CO2 remove rate was 61.08% by G. lucidum/C. vulgaris pellets. Vitamin B12 significantly improved photosynthetic performance of pellets.
Collapse
Affiliation(s)
- Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Co-innovation Center of Green Building, Jinan, China
| | - Jia Liu
- Jinan water Group Co. Ltd, Jinan, China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jie Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
38
|
Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, Barnes S, Zhao Y, Thrash JC, Luo H. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME JOURNAL 2021; 15:3576-3586. [PMID: 34145391 DOI: 10.1038/s41396-021-01036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Members of the marine Roseobacter group are key players in the global carbon and sulfur cycles. While over 300 species have been described, only 2% possess reduced genomes (mostly 3-3.5 Mbp) compared to an average roseobacter (>4 Mbp). These taxonomic minorities are phylogenetically diverse but form a Pelagic Roseobacter Cluster (PRC) at the genome content level. Here, we cultivated eight isolates constituting a novel Roseobacter lineage which we named 'CHUG'. Metagenomic and metatranscriptomic read recruitment analyses showed that CHUG members are globally distributed and active in marine pelagic environments. CHUG members possess some of the smallest genomes (~2.6 Mb) among all known roseobacters, but they do not exhibit canonical features of typical bacterioplankton lineages theorized to have undergone genome streamlining processes, like higher coding density, fewer paralogues and rarer pseudogenes. While CHUG members form a genome content cluster with traditional PRC members, they show important differences. Unlike other PRC members, neither the relative abundances of CHUG members nor their relative gene expression levels are correlated with chlorophyll a concentration across the global samples. CHUG members cannot utilize most phytoplankton-derived metabolites or synthesize vitamin B12, a key metabolite mediating the roseobacter-phytoplankton interactions. This combination of features is evidence for the hypothesis that CHUG members may have evolved a free-living lifestyle decoupled from phytoplankton. This ecological transition was accompanied by the loss of signature genes involved in roseobacter-phytoplankton symbiosis, suggesting that relaxation of purifying selection owing to lifestyle shift is likely an important driver of genome reduction in CHUG.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Yang Qian
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Michael W Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shelby Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
39
|
Zhu C, Zhang J, Wang X, Yang Y, Chen N, Lu Z, Ge Q, Jiang R, Zhang X, Yang Y, Chen T. Responses of cyanobacterial aggregate microbial communities to algal blooms. WATER RESEARCH 2021; 196:117014. [PMID: 33751971 DOI: 10.1016/j.watres.2021.117014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/11/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Freshwater lakes are threatened by harmful cyanobacterial blooms, whose basic unit is Cyanobacterial Aggregate (CA). CA-attached bacteria play a significant role through different blooming stages with substantial variation of their taxonomic structure. However, little is known about their functional variations and functional links with cyanobacteria due to the lack of reference genomes. In this longitudinal study, we collected 16 CA samples from Lake Taihu, one of China's largest freshwater lakes, from April 2015 to February 2016, and sequenced their V4 region of 16S rRNA genes, full metagenomes (MG), and metatranscriptomes (MT). The analysis of these data revealed the dynamics of microbial taxonomic and functional structure in CAs, influenced by both external environmental factors and internal metabolism. 55 OTUs, 456 genes, and 37 transcripts showed significantly differential abundance across the early, middle, and late blooming stages (ANOVA test, P < 0.05). Total nitrogen and total phosphorus were proved to be the most important environmental drivers of microbial taxonomic and functional variations in CAs (Mantel's r > 0.25, P < 0.05). We constructed 161 high-quality metagenome-assembled genomes (MAGs), out of which 22 were cyanobacterial strains with diverse energy pathways, transporters and prokaryotic defense systems. Based on these MAGs, we constructed a cyanobacteria-bacteria co-nitrogen-pathway and a cyanobacteria-bacteria co-phosphorus-pathway, by which we demonstrated how nitrogen and phosphorus influence the dynamics of the microbial structure to a certain extent by affecting these co-pathways. Overall, these results characterized the taxonomic, functional, and transcriptional variations of microbes in CAs through different blooming stages. Genome assembly and metabolic analysis of cyanobacteria and their attached bacteria suggested that the material exchange and signal transduction do, indeed, exist among them. Our understanding of the underlying molecular pathways for cyanobacterial blooms could lead to the control of blooms by interventional strategies to disrupt critical microbes' expression.
Collapse
Affiliation(s)
- Congmin Zhu
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Junyi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Wuxi Environmental Monitoring Centre, Wuxi, China
| | - Xin Wang
- Department of Ultrasound, Peking Union Medical College Hospital, Beijing 100005, China
| | | | - Ning Chen
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Zuhong Lu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qinyu Ge
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rui Jiang
- Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ting Chen
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute for Data Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
40
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
41
|
Ji X, Luo X, Zhang J, Huang D. Effects of exogenous vitamin B 12 on nutrient removal and protein expression of algal-bacterial consortium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15954-15965. [PMID: 33244700 DOI: 10.1007/s11356-020-11720-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Chlorella vulgaris and Bacillus licheniformis consortium was added to synthetic wastewater with exogenous vitamin B12. In the presence of 100 ng/L vitamin B12, removal efficiencies of TN, NH3-N, PO43-P, and COD were 80.1%, 76.8%, 87.9%, and 76.7%, respectively. The functional groups on the cell surface of the consortium, including -NH, -CH3, C=O, C=C, and P-O-C, increased with 100 ng/L vitamin B12. These functional groups improved the biological adsorption of the consortium; however, higher concentrations of vitamin B12 resulted in an occlusion of the functional groups. Furthermore, there were 5 significantly enriched protein pathways, namely carbon fixation in photosynthetic organisms; amino acid metabolic pathways; the pathway of one carbon pool by folate; nitrogen metabolism; and photosynthesis. Most proteins in these pathways were upregulated, which enhanced carbon fixation and photosynthesis in the algal cells. Simultaneously, B12 promoted significant upregulation of proteins associated with the quorum-sensing pathway, which promoted the interaction between algae and bacteria.
Collapse
Affiliation(s)
- Xiyan Ji
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Xin Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
42
|
Dinoroseobacter shibae Outer Membrane Vesicles Are Enriched for the Chromosome Dimer Resolution Site dif. mSystems 2021; 6:6/1/e00693-20. [PMID: 33436507 PMCID: PMC7901474 DOI: 10.1128/msystems.00693-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. Outer membrane vesicles (OMVs) are universally produced by prokaryotes and play important roles in symbiotic and pathogenic interactions. They often contain DNA, but a mechanism for its incorporation is lacking. Here, we show that Dinoroseobacter shibae, a dinoflagellate symbiont, constitutively secretes OMVs containing DNA. Time-lapse microscopy captured instances of multiple OMV production at the septum during cell division. DNA from the vesicle lumen was up to 22-fold enriched for the region around the terminus of replication (ter). The peak of coverage was located at dif, a conserved 28-bp palindromic sequence required for binding of the site-specific tyrosine recombinases XerC/XerD. These enzymes are activated at the last stage of cell division immediately prior to septum formation when they are bound by the divisome protein FtsK. We suggest that overreplicated regions around the terminus have been repaired by the FtsK-dif-XerC/XerD molecular machinery. The vesicle proteome was clearly dominated by outer membrane and periplasmic proteins. Some of the most abundant vesicle membrane proteins were predicted to be required for direct interaction with peptidoglycan during cell division (LysM, Tol-Pal, Spol, lytic murein transglycosylase). OMVs were 15-fold enriched for the saturated fatty acid 16:00. We hypothesize that constitutive OMV secretion in D. shibae is coupled to cell division. The footprint of the FtsK-dif-XerC/XerD molecular machinery suggests a novel potentially highly conserved route for incorporation of DNA into OMVs. Clearing the division site from small DNA fragments might be an important function of vesicles produced during exponential growth under optimal conditions. IMPORTANCE Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. We studied OMV cargo in Dinoroseobacter shibae, a symbiont of dinoflagellates, using microscopy and a multi-omics approach. We found that vesicles formed during undisturbed exponential growth contain DNA which is enriched for genes around the replication terminus, specifically, the binding site for an enzyme complex that is activated at the last stage of cell division. We suggest that the enriched genes are the result of overreplication which is repaired by their excision and excretion via membrane vesicles to clear the divisome from waste DNA.
Collapse
|
43
|
Joglar V, Álvarez-Salgado XA, Gago-Martinez A, Leao JM, Pérez-Martínez C, Pontiller B, Lundin D, Pinhassi J, Fernández E, Teira E. Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean. Environ Microbiol 2021; 23:1559-1583. [PMID: 33346385 DOI: 10.1111/1462-2920.15367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Cobalamin (B12) is an essential cofactor that is exclusively synthesized by some prokaryotes while many prokaryotes and eukaryotes require an external supply of B12. The spatial and temporal availability of B12 is poorly understood in marine ecosystems. Field measurements of B12 along with a large set of ancillary biotic and abiotic factors were obtained during three oceanographic cruises in the NW Iberian Peninsula, covering different spatial and temporal scales. B12 concentrations were remarkably low (<1.5 pM) in all samples, being significantly higher at the subsurface Eastern North Atlantic Central Water than at shallower depths, suggesting that B12 supply in this water mass is greater than demand. Multiple regression models excluded B12 concentration as predictive variable for phytoplankton biomass or production, regardless of the presence of B12-requiring algae. Prokaryote production was the best predictor for primary production, and eukaryote community composition was better correlated with prokaryote community composition than with nutritional resources, suggesting that biotic interactions play a significant role in regulating microbial communities. Interestingly, co-occurrence network analyses based on 16S and 18S rRNA sequences allowed the identification of significant associations between potential B12 producers and consumers (e.g. Thaumarchaeota and Dynophyceae, or Amylibacter and Ostreococcus respectively), which can now be investigated using model systems in the laboratory.
Collapse
Affiliation(s)
- Vanessa Joglar
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | | | - Ana Gago-Martinez
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Jose M Leao
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Clara Pérez-Martínez
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Emilio Fernández
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - Eva Teira
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| |
Collapse
|
44
|
Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol 2020; 11:1343. [PMID: 32655530 PMCID: PMC7324554 DOI: 10.3389/fmicb.2020.01343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Mariana Noelia Soria
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Genis Andrés Castillo Villamizar
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany.,Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Colombia
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
45
|
Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci Rep 2020; 10:9449. [PMID: 32523048 PMCID: PMC7287063 DOI: 10.1038/s41598-020-65941-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Diatoms are an ecologically fundamental and highly diverse group of algae, dominating marine primary production in both open-water and coastal communities. The diatoms include both centric species, which may have radial or polar symmetry, and the pennates, which include raphid and araphid species and arose within the centric lineage. Here, we use combined microscopic and molecular information to reclassify a diatom strain CCMP470, previously annotated as a radial centric species related to Leptocylindrus danicus, as an araphid pennate species in the staurosiroid lineage, within the genus Plagiostriata. CCMP470 shares key ultrastructural features with Plagiostriata taxa, such as the presence of a sternum with parallel striae, and the presence of a highly reduced labiate process on its valve; and this evolutionary position is robustly supported by multigene phylogenetic analysis. We additionally present a draft genome of CCMP470, which is the first genome available for a staurosiroid lineage. 270 Pfams (19%) found in the CCMP470 genome are not known in other diatom genomes, which otherwise does not hold big novelties compared to genomes of non-staurosiroid diatoms. Notably, our DNA library contains the genome of a bacterium within the Rhodobacterales, an alpha-proteobacterial lineage known frequently to associate with algae. We demonstrate the presence of commensal alpha-proteobacterial sequences in other published algal genome and transcriptome datasets, which may indicate widespread and persistent co-occurrence.
Collapse
|
46
|
Interactions among Redox Regulators and the CtrA Phosphorelay in Dinoroseobacter shibae and Rhodobacter capsulatus. Microorganisms 2020; 8:microorganisms8040562. [PMID: 32295208 PMCID: PMC7232146 DOI: 10.3390/microorganisms8040562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria employ regulatory networks to detect environmental signals and respond appropriately, often by adjusting gene expression. Some regulatory networks influence many genes, and many genes are affected by multiple regulatory networks. Here, we investigate the extent to which regulatory systems controlling aerobic–anaerobic energetics overlap with the CtrA phosphorelay, an important system that controls a variety of behavioral processes, in two metabolically versatile alphaproteobacteria, Dinoroseobacter shibae and Rhodobacter capsulatus. We analyzed ten available transcriptomic datasets from relevant regulator deletion strains and environmental changes. We found that in D. shibae, the CtrA phosphorelay represses three of the four aerobic–anaerobic Crp/Fnr superfamily regulator-encoding genes (fnrL, dnrD, and especially dnrF). At the same time, all four Crp/Fnr regulators repress all three phosphorelay genes. Loss of dnrD or dnrF resulted in activation of the entire examined CtrA regulon, regardless of oxygen tension. In R. capsulatus FnrL, in silico and ChIP-seq data also suggested regulation of the CtrA regulon, but it was only with loss of the redox regulator RegA where an actual transcriptional effect on the CtrA regulon was observed. For the first time, we show that there are complex interactions between redox regulators and the CtrA phosphorelays in these bacteria and we present several models for how these interactions might occur.
Collapse
|
47
|
Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V, Solé R. Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome. Life (Basel) 2020; 10:E14. [PMID: 32050455 PMCID: PMC7175242 DOI: 10.3390/life10020014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
What is the potential for synthetic biology as a way of engineering, on a large scale, complex ecosystems? Can it be used to change endangered ecological communities and rescue them to prevent their collapse? What are the best strategies for such ecological engineering paths to succeed? Is it possible to create stable, diverse synthetic ecosystems capable of persisting in closed environments? Can synthetic communities be created to thrive on planets different from ours? These and other questions pervade major future developments within synthetic biology. The goal of engineering ecosystems is plagued with all kinds of technological, scientific and ethic problems. In this paper, we consider the requirements for terraformation, i.e., for changing a given environment to make it hospitable to some given class of life forms. Although the standard use of this term involved strategies for planetary terraformation, it has been recently suggested that this approach could be applied to a very different context: ecological communities within our own planet. As discussed here, this includes multiple scales, from the gut microbiome to the entire biosphere.
Collapse
Affiliation(s)
- Nuria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain;
- Barcelona Graduate School of Mathematics (BGSMath), Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Berdugo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Victor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
48
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
49
|
Genomic repertoire of Mameliella alba Ep20 associated with Symbiodinium from the endemic coral Mussismilia braziliensis. Symbiosis 2019. [DOI: 10.1007/s13199-019-00655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
A newly isolated roseophage represents a distinct member of Siphoviridae family. Virol J 2019; 16:128. [PMID: 31694663 PMCID: PMC6836515 DOI: 10.1186/s12985-019-1241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Roseobacter lineage are a major group of marine heterotrophic bacteria because of their wide distribution, versatile lifestyles and important biogeochemical roles. Bacteriophages, the most abundant biological entities in the ocean, play important roles in shaping their hosts' population structures and mediating genetic exchange between hosts. However, our knowledge of roseophages (bacteriophages that infect Roseobacter) is far behind that of their host counterparts, partly reflecting the need to isolate and analyze the phages associated with this ecologically important bacterial clade. METHODS vB_DshS-R4C (R4C), a novel virulent roseophage that infects Dinoroseobacter shibae DFL12T, was isolated with the double-layer agar method. The phage morphology was visualized with transmission electron microscopy. We characterized R4C in-depth with a genomic analysis and investigated the distribution of the R4C genome in different environments with a metagenomic recruitment analysis. RESULTS The double-stranded DNA genome of R4C consists of 36,291 bp with a high GC content of 66.75%. It has 49 genes with low DNA and protein homologies to those of other known phages. Morphological and phylogenetic analyses suggested that R4C is a novel member of the family Siphoviridae and is most closely related to phages in the genus Cronusvirus. However, unlike the Cronusvirus phages, R4C encodes an integrase, implying its ability to establish a lysogenic life cycle. A terminal analysis shows that, like that of λ phage, the R4C genome utilize the 'cohesive ends' DNA-packaging mechanism. Significantly, homologues of the R4C genes are more prevalent in coastal areas than in the open ocean. CONCLUSIONS Information about this newly discovered phage extends our understanding of bacteriophage diversity, evolution, and their roles in different environments.
Collapse
|