1
|
Rosenstein R, Torres Salazar BO, Sauer C, Heilbronner S, Krismer B, Peschel A. The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy. MICROBIOME 2024; 12:213. [PMID: 39438987 PMCID: PMC11495082 DOI: 10.1186/s40168-024-01913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity. RESULTS We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.
Collapse
Affiliation(s)
- Ralf Rosenstein
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Benjamin O Torres Salazar
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Claudia Sauer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, Munich, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
- Present Address: Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Bernhard Krismer
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany.
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| | - Andreas Peschel
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Tran TH, Escapa IF, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.543719. [PMID: 37333201 PMCID: PMC10274666 DOI: 10.1101/2023.06.05.543719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the USA. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the USA clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
Collapse
Affiliation(s)
- Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F. Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Abiola C. Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi H. Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Leonidou N, Ostyn L, Coenye T, Crabbé A, Dräger A. Genome-scale model of Rothia mucilaginosa predicts gene essentialities and reveals metabolic capabilities. Microbiol Spectr 2024; 12:e0400623. [PMID: 38652457 PMCID: PMC11237427 DOI: 10.1128/spectrum.04006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Cystic fibrosis (CF), an inherited genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, results in sticky and thick mucosal fluids. This environment facilitates the colonization of various microorganisms, some of which can cause acute and chronic lung infections, while others may positively impact the disease. Rothia mucilaginosa, an oral commensal, is relatively abundant in the lungs of CF patients. Recent studies have unveiled its anti-inflammatory properties using in vitro three-dimensional lung epithelial cell cultures and in vivo mouse models relevant to chronic lung diseases. Apart from this, R. mucilaginosa has been associated with severe infections. However, its metabolic capabilities and genotype-phenotype relationships remain largely unknown. To gain insights into its cellular metabolism and genetic content, we developed the first manually curated genome-scale metabolic model, iRM23NL. Through growth kinetics and high-throughput phenotypic microarray testings, we defined its complete catabolic phenome. Subsequently, we assessed the model's effectiveness in accurately predicting growth behaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that could expedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their effect on metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without laborious large-scale screening of knockouts and mutant transposon libraries. Overall, iRM23NL demonstrates a solid capability to predict cellular phenotypes and holds immense potential as a valuable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor R. mucilaginosa's metabolism for desired performance.IMPORTANCECystic fibrosis (CF) is a genetic disorder characterized by thick mucosal secretions, leading to chronic lung infections. Rothia mucilaginosa is a common bacterium found in various parts of the human body, acting as a normal part of the flora. In people with weakened immune systems, it can become an opportunistic pathogen, while it is prevalent and active in CF airways. Recent studies have highlighted its anti-inflammatory properties in the lower pulmonary system, indicating the intricate relationship between microbes and human health. Herein, we have developed the first manually curated metabolic model of R. mucilaginosa. Our study examined the previously unknown relationships between the bacterium's genotype and phenotype and identified essential genes that impact the metabolism under various conditions. With this, we opt for paving the way for developing new strategies in antimicrobial therapy and metabolic engineering, leading to enhanced therapeutic outcomes in cystic fibrosis and related conditions.
Collapse
Affiliation(s)
- Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Zhao Y, Bitzer A, Power JJ, Belikova D, Torres Salazar BO, Adolf LA, Gerlach D, Krismer B, Heilbronner S. Nasal commensals reduce Staphylococcus aureus proliferation by restricting siderophore availability. THE ISME JOURNAL 2024; 18:wrae123. [PMID: 38987933 PMCID: PMC11296517 DOI: 10.1093/ismejo/wrae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The human microbiome is critically associated with human health and disease. One aspect of this is that antibiotic-resistant opportunistic bacterial pathogens, such as methicillin-resistant Staphylococcus aureus, can reside within the nasal microbiota, which increases the risk of infection. Epidemiological studies of the nasal microbiome have revealed positive and negative correlations between non-pathogenic species and S. aureus, but the underlying molecular mechanisms remain poorly understood. The nasal cavity is iron-limited, and bacteria are known to produce iron-scavenging siderophores to proliferate in such environments. Siderophores are public goods that can be consumed by all members of a bacterial community. Accordingly, siderophores are known to mediate bacterial competition and collaboration, but their role in the nasal microbiome is unknown. Here, we show that siderophore acquisition is crucial for S. aureus nasal colonization in vivo. We screened 94 nasal bacterial strains from seven genera for their capacity to produce siderophores as well as to consume the siderophores produced by S. aureus. We found that 80% of the strains engaged in siderophore-mediated interactions with S. aureus. Non-pathogenic corynebacterial species were found to be prominent consumers of S. aureus siderophores. In co-culture experiments, consumption of siderophores by competitors reduced S. aureus growth in an iron-dependent fashion. Our data show a wide network of siderophore-mediated interactions between the species of the human nasal microbiome and provide mechanistic evidence for inter-species competition and collaboration impacting pathogen proliferation. This opens avenues for designing nasal probiotics to displace S. aureus from the nasal cavity of humans.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, 210011 Nanjing, P. R. China
| | - Alina Bitzer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Jeffrey John Power
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Darya Belikova
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - Benjamin Orlando Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Lea Antje Adolf
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - David Gerlach
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
- German Center for Infection Research “DZIF” partnersite Tübingen, Germany
| |
Collapse
|
5
|
Bartosik TJ, Campion NJ, Freisl K, Liu DT, Gangl K, Stanek V, Tu A, Pjevac P, Hausmann B, Eckl-Dorna J, Schneider S. The nasal microbiome in patients suffering from non-steroidal anti-inflammatory drugs-exacerbated respiratory disease in absence of corticosteroids. Front Immunol 2023; 14:1112345. [PMID: 37122714 PMCID: PMC10140405 DOI: 10.3389/fimmu.2023.1112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease phenotypically classified by the absence (CRSsNP) or presence of nasal polyps (CRSwNP). The latter may also be associated with asthma and hypersensitivity towards non-steroidal anti-inflammatory drugs (NSAID) as a triad termed NSAID-exacerbated respiratory disease (N-ERD). The role of the microbiome in these different disease entities with regard to the underlying inflammatory process and disease burden is yet not fully understood. To address this question, we measured clinical parameters and collected nasal samples (nasal mucosal fluids, microbiome swabs from middle meatus and anterior naris) of patients suffering from CRSsNP (n=20), CRSwNP (n=20) or N-ERD (n=20) as well as from patients without CRS (=disease controls, n=20). Importantly, all subjects refrained from taking local or systemic corticosteroids or immunosuppressants for at least two weeks prior to sampling. The nasal microbiome was analyzed using 16S rRNA gene amplicon sequencing, and levels of 33 inflammatory cytokines were determined in nasal mucosal fluids using the MSD platform. Patients suffering from N-ERD and CRSwNP showed significantly worse smell perception and significantly higher levels of type 2 associated cytokines IL-5, IL-9, Eotaxin and CCL17. Across all 4 patient groups, Corynebacteria and Staphylococci showed the highest relative abundances. Although no significant difference in alpha and beta diversity was observed between the control and the CRS groups, pairwise testing revealed a higher relative abundance of Staphylococci in the middle meatus in N-ERD patients as compared to CRSwNP (p<0.001), CRSsNP (p<0.01) and disease controls (p<0.05) and of Lawsonella in patients suffering from CRSwNP in middle meatus and anterior naris in comparison to CRSsNP (p<0.0001 for both locations) and disease controls (p<0.01 and p<0.0001). Furthermore, we observed a positive correlation of Staphylococci with IL-5 (Pearson r=0.548) and a negative correlation for Corynebacteria and Eotaxin-3 (r=-0.540). Thus, in patients refraining from oral and nasal corticosteroid therapy for at least two weeks known to alter microbiome composition, we did not observe differences in microbiome alpha or beta diversity between various CRS entities and disease controls. However, our data suggest a close association between increased bacterial colonization with Staphylococci and decreased colonization by Corynebacteria as well as increased type 2 inflammation.
Collapse
Affiliation(s)
- Tina J. Bartosik
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Nicholas J. Campion
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Kilian Freisl
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - David T. Liu
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Katharina Gangl
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Victoria Stanek
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Aldine Tu
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
- *Correspondence: Julia Eckl-Dorna,
| | - Sven Schneider
- Department of Otorhinolaryngology, General Hospital and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Fei Y, Ali A, Mohammad M, Jin T. Commensal Bacteria Augment Staphylococcus aureus septic Arthritis in a Dose-Dependent Manner. Front Cell Infect Microbiol 2022; 12:942457. [PMID: 35942056 PMCID: PMC9356218 DOI: 10.3389/fcimb.2022.942457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Septic arthritis is considered one of the most dangerous joints diseases and is mainly caused by the Gram-positive bacterium Staphylococcus aureus (S. aureus). Human skin commensals are known to augment S. aureus infections. The aim of this study was to investigate if human commensals could augment S. aureus-induced septic arthritis. Method NMRI mice were inoculated with S. aureus alone or with a mixture of S. aureus together with either of the human commensal Staphylococcus epidermidis (S. epidermidis) or Streptococcus mitis (S. mitis). The clinical, radiological and histopathological changes due to septic arthritis were observed. Furthermore, the serum levels of chemokines and cytokines were assessed. Results Mice inoculated with a mixture of S. aureus and S. epidermidis or S. mitis developed more severe and frequent clinical arthritis compared to mice inoculated with S. aureus alone. This finding was verified pathologically and radiologically. Furthermore, the ability of mice to clear invading bacteria in the joints but not in kidneys was hampered by the bacterial mixture compared to S. aureus alone. Serum levels of monocyte chemoattractant protein 1 were elevated at the early phase of disease in the mice infected with bacterial mixture compared with ones infected with S. aureus alone. Finally, the augmentation effect in septic arthritis development by S. epidermidis was bacterial dose-dependent. Conclusion The commensal bacteria dose-dependently augment S. aureus-induced septic arthritis in a mouse model of septic arthritis.
Collapse
Affiliation(s)
- Ying Fei
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, The Affiliated Hospital of GuiZhou Medical University, Guiyang, China
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Tao Jin,
| |
Collapse
|
7
|
Junca H, Pieper DH, Medina E. The emerging potential of microbiome transplantation on human health interventions. Comput Struct Biotechnol J 2022; 20:615-627. [PMID: 35140882 PMCID: PMC8801967 DOI: 10.1016/j.csbj.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/08/2023] Open
Abstract
The human microbiome has been the subject of intense research over the past few decades, in particular as a promising area for new clinical interventions. The microbiota colonizing the different body surfaces are of benefit for multiple physiological and metabolic processes of the human host and increasing evidence suggests an association between disturbances in the composition and functionality of the microbiota and several pathological conditions. This has provided a rationale for beneficial modulation of the microbiome. One approach being explored for modulating the microbiota in diseased individuals is transferring microbiota or microbiota constituents from healthy donors via microbiome transplantation. The great success of fecal microbiome transplantation for the treatment of Clostridioides difficile infections has encouraged the application of this procedure for the treatment of other diseases such as vaginal disorders via transplantation of vaginal microbiota, or of skin pathologies via the transplantation of skin microbiota. Microbiome modulation could even become a novel strategy for improving the efficacy of cancer therapies. This review discusses the principle, advantages and limitations of microbiome transplantation as well as different clinical contexts where microbiome transplantation has been applied.
Collapse
Affiliation(s)
- Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| |
Collapse
|
8
|
Lin S, Sun B, Shi X, Xu Y, Gu Y, Gu X, Ma X, Wan T, Xu J, Su J, Lou Y, Zheng M. Comparative Genomic and Pan-Genomic Characterization of Staphylococcus epidermidis From Different Sources Unveils the Molecular Basis and Potential Biomarkers of Pathogenic Strains. Front Microbiol 2021; 12:770191. [PMID: 34867904 PMCID: PMC8634615 DOI: 10.3389/fmicb.2021.770191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) is the most common pathogen causing traumatic endophthalmitis. Among which, Staphylococcus epidermidis is the most common species that colonizes human skin, eye surfaces, and nasal cavity. It is also the main cause of nosocomial infection, specially foreign body-related bloodstream infections (FBR-BSIs). Although some studies have reported the genome characteristics of S. epidermidis, the genome of ocular trauma-sourced S. epidermidis strain and a comprehensive understanding of its pathogenicity are still lacking. Our study sequenced, analyzed, and reported the whole genomes of 11 ocular trauma-sourced samples of S. epidermidis that caused traumatic endophthalmitis. By integrating publicly available genomes, we obtained a total of 187 S. epidermidis samples from healthy and diseased eyes, skin, respiratory tract, and blood. Combined with pan-genome, phylogenetic, and comparative genomic analyses, our study showed that S. epidermidis, regardless of niche source, exhibits two founder lineages with different pathogenicity. Moreover, we identified several potential biomarkers associated with the virulence of S. epidermidis, including essD, uhpt, sdrF, sdrG, fbe, and icaABCDR. EssD and uhpt have high homology with esaD and hpt in Staphylococcus aureus, showing that the genomes of S. epidermidis and S. aureus may have communicated during evolution. SdrF, sdrG, fbe, and icaABCDR are related to biofilm formation. Compared to S. epidermidis from blood sources, ocular-sourced strains causing intraocular infection had no direct relationship with biofilm formation. In conclusion, this study provided additional data resources for studies on S. epidermidis and improved our understanding of the evolution and pathogenicity among strains of different sources.
Collapse
Affiliation(s)
- Shudan Lin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bianjin Sun
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xinrui Shi
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yi Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yunfeng Gu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueli Ma
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tian Wan
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jie Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Su
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Morrow JD, Castaldi PJ, Chase RP, Yun JH, Lee S, Liu YY, Hersh CP. Peripheral blood microbial signatures in current and former smokers. Sci Rep 2021; 11:19875. [PMID: 34615932 PMCID: PMC8494912 DOI: 10.1038/s41598-021-99238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiome has a role in the development of multiple diseases. Individual microbiome profiles are highly personalized, though many species are shared. Understanding the relationship between the human microbiome and disease may inform future individualized treatments. We hypothesize the blood microbiome signature may be a surrogate for some lung microbial characteristics. We sought associations between the blood microbiome signature and lung-relevant host factors. Based on reads not mapped to the human genome, we detected microbial nucleic acids through secondary use of peripheral blood RNA-sequencing from 2,590 current and former smokers with and without chronic obstructive pulmonary disease (COPD) from the COPDGene study. We used the Genome Analysis Toolkit (GATK) microbial pipeline PathSeq to infer microbial profiles. We tested associations between the inferred profiles and lung disease relevant phenotypes and examined links to host gene expression pathways. We replicated our analyses using a second independent set of blood RNA-seq data from 1,065 COPDGene study subjects and performed a meta-analysis across the two studies. The four phyla with highest abundance across all subjects were Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. In our meta-analysis, we observed associations (q-value < 0.05) between Acinetobacter, Serratia, Streptococcus and Bacillus inferred abundances and Modified Medical Research Council (mMRC) dyspnea score. Current smoking status was associated (q < 0.05) with Acinetobacter, Serratia and Cutibacterium abundance. All 12 taxa investigated were associated with at least one white blood cell distribution variable. Abundance for nine of the 12 taxa was associated with sex, and seven of the 12 taxa were associated with race. Host-microbiome interaction analysis revealed clustering of genera associated with mMRC dyspnea score and smoking status, through shared links to several host pathways. This study is the first to identify a bacterial microbiome signature in the peripheral blood of current and former smokers. Understanding the relationships between systemic microbial signatures and lung-related phenotypes may inform novel interventions and aid understanding of the systemic effects of smoking.
Collapse
Affiliation(s)
- Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Sool Lee
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Zhao N, Khamash DF, Koh H, Voskertchian A, Egbert E, Mongodin EF, White JR, Hittle L, Colantuoni E, Milstone AM. Low Diversity in Nasal Microbiome Associated With Staphylococcus aureus Colonization and Bloodstream Infections in Hospitalized Neonates. Open Forum Infect Dis 2021; 8:ofab475. [PMID: 34651052 PMCID: PMC8507450 DOI: 10.1093/ofid/ofab475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of infectious morbidity and mortality in neonates. Few data exist on the association of the nasal microbiome and susceptibility to neonatal S. aureus colonization and infection. METHODS We performed 2 matched case-control studies (colonization cohort-neonates who did and did not acquire S. aureus colonization; bacteremia cohort-neonates who did [colonized neonates] and did not [controls] acquire S. aureus colonization and neonates with S. aureus bacteremia [bacteremic neonantes]). Neonates in 2 intensive care units were enrolled and matched on week of life at time of colonization or infection. Nasal samples were collected weekly until discharge and cultured for S. aureus, and the nasal microbiome was characterized using 16S rRNA gene sequencing. RESULTS In the colonization cohort, 43 S. aureus-colonized neonates were matched to 82 controls. At 1 week of life, neonates who acquired S. aureus colonization had lower alpha diversity (Wilcoxon rank-sum test P < .05) and differed in beta diversity (omnibus MiRKAT P = .002) even after adjusting for birth weight (P = .01). The bacteremia cohort included 10 neonates, of whom 80% developed bacteremia within 4 weeks of birth and 70% had positive S. aureus cultures within a few days of bacteremia. Neonates with bacteremia had an increased relative abundance of S. aureus sequences and lower alpha diversity measures compared with colonized neonates and controls. CONCLUSIONS The association of increased S. aureus abundance and decrease of microbiome diversity suggest the need for interventions targeting the nasal microbiome to prevent S. aureus disease in vulnerable neonates.
Collapse
Affiliation(s)
- Ni Zhao
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dina F Khamash
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyunwook Koh
- Deptartment of Applied Mathematics & Statistics, The State University of New York, Korea (SUNY Korea), Incheon, South Korea
| | - Annie Voskertchian
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Egbert
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Elizabeth Colantuoni
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron M Milstone
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Rhoades NS, Pinski AN, Monsibais AN, Jankeel A, Doratt BM, Cinco IR, Ibraim I, Messaoudi I. Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose. Cell Rep 2021; 36:109637. [PMID: 34433082 PMCID: PMC8361213 DOI: 10.1016/j.celrep.2021.109637] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Research conducted on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and coronavirus disease 2019 (COVID-19) generally focuses on the systemic host response, especially that generated by severely ill patients, with few studies investigating the impact of acute SARS-CoV-2 at the site of infection. We show that the nasal microbiome of SARS-CoV-2-positive patients (CoV+, n = 68) at the time of diagnosis is unique when compared to CoV− healthcare workers (n = 45) and CoV− outpatients (n = 21). This shift is marked by an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa, which is also positively associated with viral RNA load. Additionally, we observe a robust host transcriptional response in the nasal epithelia of CoV+ patients, indicative of an antiviral innate immune response and neuronal damage. These data suggest that the inflammatory response caused by SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens in the nasal cavity that could contribute to increased incidence of secondary bacterial infections.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Alisha N Monsibais
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Brianna M Doratt
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Isaac R Cinco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Izabela Ibraim
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Elgamal Z, Singh P, Geraghty P. The Upper Airway Microbiota, Environmental Exposures, Inflammation, and Disease. ACTA ACUST UNITED AC 2021; 57:medicina57080823. [PMID: 34441029 PMCID: PMC8402057 DOI: 10.3390/medicina57080823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Along with playing vital roles in pathogen exclusion and immune system priming, the upper airways (UAs) and their microbiota are essential for myriad physiological functions such as conditioning and transferring inhaled air. Dysbiosis, a microbial imbalance, is linked with various diseases and significantly impedes the quality of one’s life. Daily inhaled exposures and/or underlying conditions contribute to adverse changes to the UA microbiota. Such variations in the microbial community exacerbate UA and pulmonary disorders via modulating inflammatory and immune pathways. Hence, exploring the UA microbiota’s role in maintaining homeostasis is imperative. The microbial composition and subsequent relationship with airborne exposures, inflammation, and disease are crucial for strategizing innovating UA diagnostics and therapeutics. The development of a healthy UA microbiota early in life contributes to normal respiratory development and function in the succeeding years. Although different UA cavities present a unique microbial profile, geriatrics have similar microbes across their UAs. This lost community segregation may contribute to inflammation and disease, as it stimulates disadvantageous microbial–microbial and microbial–host interactions. Varying inflammatory profiles are associated with specific microbial compositions, while the same is true for many disease conditions and environmental exposures. A shift in the microbial composition is also detected upon the administration of numerous therapeutics, highlighting other beneficial and adverse side effects. This review examines the role of the UA microbiota in achieving homeostasis, and the impact on the UAs of environmental airborne pollutants, inflammation, and disease.
Collapse
Affiliation(s)
- Ziyad Elgamal
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA
| | - Pratyush Singh
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada;
| | - Patrick Geraghty
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA
- Correspondence: ; Tel.: +1-718-270-3141
| |
Collapse
|
13
|
Marotz C, Belda-Ferre P, Ali F, Das P, Huang S, Cantrell K, Jiang L, Martino C, Diner RE, Rahman G, McDonald D, Armstrong G, Kodera S, Donato S, Ecklu-Mensah G, Gottel N, Salas Garcia MC, Chiang LY, Salido RA, Shaffer JP, Bryant MK, Sanders K, Humphrey G, Ackermann G, Haiminen N, Beck KL, Kim HC, Carrieri AP, Parida L, Vázquez-Baeza Y, Torriani FJ, Knight R, Gilbert J, Sweeney DA, Allard SM. SARS-CoV-2 detection status associates with bacterial community composition in patients and the hospital environment. MICROBIOME 2021; 9:132. [PMID: 34103074 PMCID: PMC8186369 DOI: 10.1186/s40168-021-01083-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. METHODS We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. CONCLUSIONS These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment. Video Abstract.
Collapse
Affiliation(s)
- Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Farhana Ali
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Kalen Cantrell
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Lingjing Jiang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rachel E Diner
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - George Armstrong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sho Kodera
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Sonya Donato
- Microbiome Core, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gertrude Ecklu-Mensah
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Neil Gottel
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Leslie Y Chiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rodolfo A Salido
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mac Kenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Niina Haiminen
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Kristen L Beck
- AI and Cognitive Software, IBM Research-Almaden, San Jose, CA, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, CA, USA
| | | | - Laxmi Parida
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Francesca J Torriani
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jack Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Sarah M Allard
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
The Microbiome of the Nasolacrimal System and Its Role in Nasolacrimal Duct Obstruction. Ophthalmic Plast Reconstr Surg 2021; 36:80-85. [PMID: 31809480 DOI: 10.1097/iop.0000000000001473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Acquired nasolacrimal duct obstruction (NLDO) is a common problem leading to epiphora, the pathophysiology of which remains unclear. Culture-based studies have found Staphylococcal species to be the most prevalent organisms, reported in 47% to 73% of patients with NLDO. Recently, culture-independent molecular methods of have allowed more comprehensive detailing of local microbiota. This study aims to evaluate the sinonasal and lacrimal microbiome of patients undergoing dacryocystorhinostomy for NLDO using 16S-amplicon sequencing. METHODS Guarded intraoperative swabs were taken from the middle meatus (MM), inferior meatus, and the opened lacrimal sac of 14 NLDO patients undergoing dacryocystorhinostomy and from the inferior meatus and MM on the contralateral unaffected side. MM swabs from 12 control patients were compared with NLDO patients. RESULTS Comparing microbiota at lacrimal sac to MM and inferior meatus sites reveals that the lacrimal sac microbiome is dominated by Staphylococci (36.3%) and Corynebacterium (35.8%). No significant genus differential abundance between the 3 sites, and between the ipsilateral and contralateral sinonasal swabs, and no convincing evidence of reduced alpha diversity in all comparisons. There was a statistically significant lower relative abundance of Corynebacterium (37.6% vs. 65.1%; p = 0.035) in the MM of NLDO patients compared with controls. CONCLUSIONS The lacrimal sac microbiome in acquired NLDO is similar to the sinonasal microbiome. The relative abundance of Corynebacterium was reduced compared with controls. These findings suggest that an altered sinonasal microbiome may be associated with NLDO, either as a consequence or a risk factor, and merits future research.The authors have demonstrated a decreased relative abundance of Corynebacterium at the middle meatus of patients with ipsilateral nasolacrimal duct obstruction (NLDO), compared with controls, and that the lacrimal sac microbiome is similar to the sinonasal microbiome. An altered microbial state may, therefore, be associated with NLDO, either as a consequence or a risk factor, and merits future research.
Collapse
|
15
|
Cyprian F, Sohail MU, Abdelhafez I, Salman S, Attique Z, Kamareddine L, Al-Asmakh M. SARS-CoV-2 and immune-microbiome interactions: Lessons from respiratory viral infections. Int J Infect Dis 2021; 105:540-550. [PMID: 33610778 PMCID: PMC7891052 DOI: 10.1016/j.ijid.2021.02.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
By the beginning of 2020, infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had rapidly evolved into an emergent worldwide pandemic, an outbreak whose unprecedented consequences highlighted many existing flaws within public healthcare systems across the world. While coronavirus disease 2019 (COVID-19) is bestowed with a broad spectrum of clinical manifestations, involving the vital organs, the respiratory system transpires as the main route of entry for SARS-CoV-2, with the lungs being its primary target. Of those infected, up to 20% require hospitalization on account of severity, while the majority of patients are either asymptomatic or exhibit mild symptoms. Exacerbation in the disease severity and complications of COVID-19 infection have been associated with multiple comorbidities, including hypertension, diabetes mellitus, cardiovascular disorders, cancer, and chronic lung disease. Interestingly, a recent body of evidence indicated the pulmonary and gut microbiomes as potential modulators for altering the course of COVID-19, potentially via the microbiome-immune system axis. While the relative concordance between microbes and immunity has yet to be fully elucidated with regards to COVID-19, we present an overview of our current understanding of COVID-19-microbiome-immune cross talk and discuss the potential contributions of microbiome-related immunity to SARS-CoV-2 pathogenesis and COVID-19 disease progression.
Collapse
Affiliation(s)
- Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Umar Sohail
- Proteomics Core, Weill Cornell Medicine, Qatar Foundation-Education City, PO Box 24144, Doha, Qatar
| | | | - Salma Salman
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Zakria Attique
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Centre, Qatar University, Doha, Qatar.
| |
Collapse
|
16
|
Menberu MA, Liu S, Cooksley C, Hayes AJ, Psaltis AJ, Wormald PJ, Vreugde S. Corynebacterium accolens Has Antimicrobial Activity against Staphylococcus aureus and Methicillin-Resistant S. aureus Pathogens Isolated from the Sinonasal Niche of Chronic Rhinosinusitis Patients. Pathogens 2021; 10:pathogens10020207. [PMID: 33672855 PMCID: PMC7918835 DOI: 10.3390/pathogens10020207] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Corynebacterium accolens is the predominant species of the healthy human nasal microbiota, and its relative abundance is decreased in the context of chronic rhinosinusitis (CRS). This study aimed to evaluate the antimicrobial potential of C. accolens isolated from a healthy human nasal cavity against planktonic and biofilm growth of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) clinical isolates (CIs) from CRS patients. Nasal swabs from twenty non-CRS control subjects were screened for the presence of C. accolens using microbiological and molecular techniques. C. accolens CIs and their culture supernatants were tested for their antimicrobial activity against eight S. aureus and eight MRSA 4CIs and S. aureus ATCC25923. The anti-biofilm potential of C. accolens cell-free culture supernatants (CFCSs) on S. aureus biofilms was also assessed. Of the 20 nasal swabs, 10 C. accolens CIs were identified and confirmed with rpoB gene sequencing. All isolates showed variable antimicrobial activity against eight out of 8 S. aureus and seven out of eight MRSA CIs. Culture supernatants from all C. accolens CIs exhibited a significant dose-dependent antibacterial activity (p < 0.05) against five out of five representative S. aureus and MRSA CIs. This inhibition was abolished after proteinase K treatment. C. accolens supernatants induced a significant reduction in metabolic activity and biofilm biomass of S. aureus and MRSA CIs compared to untreated growth control (p < 0.05). C. accolens exhibited antimicrobial activity against S. aureus and MRSA CIs in both planktonic and biofilm forms and holds promise for the development of innovative probiotic therapies to promote sinus health.
Collapse
Affiliation(s)
- Martha Alemayehu Menberu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar 196, Ethiopia
| | - Sha Liu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Clare Cooksley
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Andrew James Hayes
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and The Royal Melbourne Hospital, Melbourne 3000, Australia;
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
- Correspondence: ; Tel.: +61-(0)8-8222-6928
| |
Collapse
|
17
|
Abstract
Like other microbes that live on or in the human body, the bacteria that inhabit the upper respiratory tract, in particular the nasal cavity, have evolved to survive in an environment that presents a number of physical and chemical challenges; these microbes are constantly bombarded with nutritional fluctuations, changes in humidity, the presence of inhaled particulate matter (odorants and allergens), and competition with other microbes. Indeed, only a specialized set of species is able to colonize this niche and successfully contend with the host's immune system and the constant threat from competitors. To this end, bacteria that live in the nasal cavity have evolved a variety of approaches to outcompete contenders for the limited nutrients and space; broadly speaking, these strategies may be considered a type of "bacterial warfare." A greater molecular understanding of bacterial warfare has the potential to reveal new approaches or molecules that can be developed as novel therapeutics. As such, there are many studies within the last decade that have sought to understand the complex polymicrobial interactions that occur in various environments. Here, we review what is currently known about the age-dependent structure and interbacterial relationships within the nasal microbiota and summarize the molecular mechanisms that are predicted to dictate bacterial warfare in this niche. Although the currently described interactions are complex, in reality, we have likely only scratched the surface in terms of a true understanding of the types of interbacterial competition and cooperation that are thought to take place in and on the human body.
Collapse
|
18
|
Identification of Nasal Gammaproteobacteria with Potent Activity against Staphylococcus aureus: Novel Insights into the "Noncarrier" State. mSphere 2021; 6:6/1/e01015-20. [PMID: 33408227 PMCID: PMC7802429 DOI: 10.1128/msphere.01015-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasal carriage of Staphylococcus aureus is a risk factor for infection, but it is not yet understood why some individuals carry nasal S. aureus persistently, intermittently, or seemingly not at all when tested via culture methods. This study compared the nasal microbiomes of established S. aureus carriers and noncarriers, identified species associated with noncarriage, and tested them for anti-S. aureus activity using assays developed to model the nutrient-limited nasal mucosa. Staphylococcus aureus nasal carriage provides the bacterial reservoir for opportunistic infection. In comparing the nasal microbiomes of culture-defined persistent S. aureus carriers versus noncarriers, we detected S. aureus DNA in all noses, including those with an established history of S. aureus negativity based on culture. Colonization with Gammaproteobacteria, including Klebsiella aerogenes, Citrobacter koseri, Moraxella lincolnii, and select Acinetobacter spp., was associated with S. aureus noncarriage. We next developed physiological competition assays for testing anti-S. aureus activity of isolated nasal species, utilizing medium modeling the nutrient-limited fluid of the nasal mucosa, polarized primary nasal epithelia, and nasal secretions. K. aerogenes from the nose of an S. aureus noncarrier demonstrated >99% inhibition of S. aureus recovery in all assays, even when S. aureus was coincubated in 9-fold excess. Secreted S. aureus inhibitory proteins from K. aerogenes and M. lincolnii were heat-stable and <30 kDa, fitting the profile of antimicrobial peptides. C. koseri, Acinetobacter haemolyticus, Acinetobacter junii, and Acinetobacter schindleri inhibited S. aureus recovery on nasal epithelia in a contact-dependent manner, while several other species either had no effect or promoted S. aureus growth. Collectively, this project is one of the first to identify resident nasal microbial species that impede S. aureus survival, and it implies that detectable nasal S. aureus results from shifts in microbial community composition. IMPORTANCE Nasal carriage of Staphylococcus aureus is a risk factor for infection, but it is not yet understood why some individuals carry nasal S. aureus persistently, intermittently, or seemingly not at all when tested via culture methods. This study compared the nasal microbiomes of established S. aureus carriers and noncarriers, identified species associated with noncarriage, and tested them for anti-S. aureus activity using assays developed to model the nutrient-limited nasal mucosa. We determined that all nostril swabs contain S. aureus DNA, even swabs from hosts considered to be long-term noncarriers. Select members of the Gammaproteobacteria class were more prevalent in noncarrier than carrier nostrils and demonstrated potent activity against multiple strains of S. aureus. The results described here provide a better understanding of how the nasal microbiome controls S. aureus growth and viability and may be useful in the design of improved S. aureus decolonization strategies.
Collapse
|
19
|
Marotz C, Belda-Ferre P, Ali F, Das P, Huang S, Cantrell K, Jiang L, Martino C, Diner RE, Rahman G, McDonald D, Armstrong G, Kodera S, Donato S, Ecklu-Mensah G, Gottel N, Garcia MCS, Chiang LY, Salido RA, Shaffer JP, Bryant M, Sanders K, Humphrey G, Ackermann G, Haiminen N, Beck KL, Kim HC, Carrieri AP, Parida L, Vázquez-Baeza Y, Torriani FJ, Knight R, Gilbert JA, Sweeney DA, Allard SM. Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.19.20234229. [PMID: 33236030 PMCID: PMC7685343 DOI: 10.1101/2020.11.19.20234229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized ICU patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset in a meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome throughout their stay, SARS-CoV-2 was less frequently detected there (11%). Despite surface contamination in almost all patient rooms, no health care workers providing COVID-19 patient care contracted the disease. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types, and had higher prevalence in positive surface and human samples, even when comparing to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities contribute to viral prevalence both in the host and hospital environment.
Collapse
Affiliation(s)
- Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Farhana Ali
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Kalen Cantrell
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Lingjing Jiang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Division of Biostatistics, University of California, San Diego, La Jolla, California, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Rachel E Diner
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - George Armstrong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Sho Kodera
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sonya Donato
- Microbiome Core, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gertrude Ecklu-Mensah
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Neil Gottel
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Leslie Y Chiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Niina Haiminen
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Kristen L Beck
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | | | - Laxmi Parida
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Francesca J Torriani
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, California, USA
| | - Sarah M Allard
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Zhao F, Jiang G, Ji C, Zhang Z, Gao W, Feng P, Li H, Li M, Liu H, Liu G, Magalhaes HB, Li J. Effects of long-distance transportation on blood constituents and composition of the nasal microbiota in healthy donkeys. BMC Vet Res 2020; 16:338. [PMID: 32933535 PMCID: PMC7493398 DOI: 10.1186/s12917-020-02563-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This study aims to determine the effects of transportation on the nasal microbiota of healthy donkeys using 16S rRNA sequencing. RESULTS Deep nasal swabs and blood were sampled from 14 donkeys before and after 21 hours' long-distance transportation. The values of the plasma hormone (cortisol (Cor), adrenocorticotrophic hormone (ACTH)), biochemical indicators (total protein (TP), albumin (ALB), creatinine (CREA), lactic dehydrogenase (LDH), aspartate transaminase (AST), creatine kinase (CK), blood urea (UREA), plasma glucose (GLU)) and blood routine indices (white blood cell (WBC), lymphocyte (LYM), neutrophil (NEU), red blood cell (RBC), hemoglobin (HGB)) were measured. 16S rRNA sequencing was used to assess the nasal microbiota, including alpha diversity, beta diversity, and phylogenetic structures. Results showed that levels of Cor, ACTH, and heat-shock protein 90 (HSP90) were significantly increased (p < 0.05) after long-distance transportation. Several biochemical indicators (AST, CK) and blood routine indices (Neu, RBC, and HGB) increased markedly (p < 0.05), but the LYM decreased significantly (p < 0.05). Nine families and eight genera had a mean relative abundance over 1%. The predominant phyla in nasal microbiota after and before transportation were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Transportation stress induced significant changes in terms of nasal microbiota structure compared with those before transportation based on principal coordinate analysis (PCoA) coupled with analysis of similarities (ANOSIM) (p < 0.05). Among these changes, a notably gain in Proteobacteria and loss in Firmicutes at the phylum level was observed. CONCLUSIONS These results suggest transportation can cause stress to donkeys and change the richness and diversity of nasal microbiota. Further studies are required to understand the potential effect of these microbiota changes on the development of donkey respiratory diseases.
Collapse
Affiliation(s)
- Fuwei Zhao
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, P.R. China. .,National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China.
| | - Guimiao Jiang
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China.,Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Zhiping Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450002, Zhengzhou, China
| | - Weiping Gao
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Peixiang Feng
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Min Li
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Haibing Liu
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, China
| | - Humberto B Magalhaes
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Sp, 18618-681, Botucatu, Brazil
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, P.R. China.
| |
Collapse
|
21
|
Ménard G, Bonnaure-Mallet M, Donnio PY. Adhesion of Staphylococcus aureus to epithelial cells: an in vitro approach to study interactions within the nasal microbiota. J Med Microbiol 2020; 69:1253-1261. [PMID: 32909934 DOI: 10.1099/jmm.0.001248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Staphylococcus aureus is a skin and mucous commensal bacterium of warm-blooded animals. In humans, the nose is the main ecological niche of S. aureus, and nasal carriage is a risk factor for developing an endogenous infection. S. aureus nasal colonization is a multifactorial process, involving inter-species interactions among the nasal microbiota.Aims. The objectives of this study were to characterize the microbiota of carriers and non-carriers of S. aureus and to demonstrate the importance of inter-species relationships in the adhesion of S. aureus, a key step in nasal colonization.Methodology. First, we characterized the nasal microbiota from 30 S. aureus carriers and non-carriers by a culturomic approach. We then evaluated the adhesion of S. aureus, first alone and then along with other bacteria of the nasal microbiota. To do that, we used an in vitro model to measure the interactions among bacteria in the presence of epithelial cells.Results. Analysis of the nasal microbiota of the carriers and non-carriers of S. aureus made it possible to observe that each microbiota has specific features in terms of composition. However, this composition differs significantly between carriers and non-carriers mainly through two bacterial groups: coagulase-negative staphylococci and corynebacteria. In a second part, adhesion of S. aureus to epithelial cells showed competition between S. aureus and these bacteria, suggesting a limitation of nasal colonization by S. aureus.Conclusion. These findings demonstrate the existence of a negative correlation between S. aureus and other species which inhibits adhesion and could limit nasal colonization.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, Inserm BRM UMR 1230, F-35000 Rennes, France
| | | | | |
Collapse
|
22
|
Abstract
Staphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae. Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae. Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae. Multiple epidemiological studies identify Dolosigranulum pigrum as a candidate beneficial bacterium based on its positive association with health, including negative associations with nasal/nasopharyngeal colonization by the pathogenic species Staphylococcus aureus and Streptococcus pneumoniae. Using a multipronged approach to gain new insights into D. pigrum function, we observed phenotypic interactions and predictions of genomic capacity that support the idea of a role for microbe-microbe interactions involving D. pigrum in shaping the composition of human nasal microbiota. We identified in vivo community-level and in vitro phenotypic cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. aureus growth in vitro, whereas robust inhibition of S. pneumoniae required both D. pigrum and a nasal Corynebacterium together. D. pigruml-lactic acid production was insufficient to account for these inhibitions. Genomic analysis of 11 strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple predicted auxotrophies consistent with D. pigrum relying on its human host and on cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum harbored a diverse repertoire of biosynthetic gene clusters, some of which may have a role in microbe-microbe interactions. These new insights into D. pigrum’s functions advance the field from compositional analysis to genomic and phenotypic experimentation on a potentially beneficial bacterial resident of the human upper respiratory tract and lay the foundation for future animal and clinical experiments. IMPORTANCEStaphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae. Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae. Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae.
Collapse
|
23
|
Sherret J, Gajjar B, Ibrahim L, Mohamed Ahmed A, Panta UR. Dolosigranulum pigrum: Predicting Severity of Infection. Cureus 2020; 12:e9770. [PMID: 32953288 PMCID: PMC7491695 DOI: 10.7759/cureus.9770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this report, we describe a case of a 61-year-old male patient who had the bacterium Dolosigranulum pigrum growing in a blood culture. It was susceptible to ampicillin, ceftriaxone, levofloxacin, and vancomycin but was intermediately resistant to erythromycin. The patient did not have a negative outcome as a consequence of this bacterium, which retrospectively could have been predicted based on the epidemiological data within the patient's profile.
Collapse
Affiliation(s)
- John Sherret
- Internal Medicine, East Tennessee State University Quillen College of Medicine, Johnson City, USA
| | - Bhavesh Gajjar
- Internal Medicine, East Tennessee State University Quillen College of Medicine, Johnson City, USA
| | - Lamis Ibrahim
- Infectious Disease, East Tennessee State University Quillen College of Medicine, Johnson City, USA
| | - Ahmed Mohamed Ahmed
- Infectious Disease, East Tennessee State University Quillen College of Medicine, Johnson City, USA
| | - Utsab R Panta
- Internal Medicine, East Tennessee State University Quillen College of Medicine, Johnson City, USA
| |
Collapse
|
24
|
Bassiouni A, Paramasivan S, Shiffer A, Dillon MR, Cope EK, Cooksley C, Ramezanpour M, Moraitis S, Ali MJ, Bleier BS, Callejas C, Cornet ME, Douglas RG, Dutra D, Georgalas C, Harvey RJ, Hwang PH, Luong AU, Schlosser RJ, Tantilipikorn P, Tewfik MA, Vreugde S, Wormald PJ, Caporaso JG, Psaltis AJ. Microbiotyping the Sinonasal Microbiome. Front Cell Infect Microbiol 2020; 10:137. [PMID: 32322561 PMCID: PMC7156599 DOI: 10.3389/fcimb.2020.00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/17/2020] [Indexed: 02/01/2023] Open
Abstract
This study offers a novel description of the sinonasal microbiome, through an unsupervised machine learning approach combining dimensionality reduction and clustering. We apply our method to the International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three main sinonasal "microbiotypes" or "states": the first is Corynebacterium-dominated, the second is Staphylococcus-dominated, and the third dominated by the other core genera of the sinonasal microbiome (Streptococcus, Haemophilus, Moraxella, and Pseudomonas). The prevalence of the three microbiotypes studied did not differ between healthy and diseased sinuses, but differences in their distribution were evident based on geography. We also describe a potential reciprocal relationship between Corynebacterium species and Staphylococcus aureus, suggesting that a certain microbial equilibrium between various players is reached in the sinuses. We validate our approach by applying it to a separate 16S rRNA gene sequence dataset of 97 sinus swabs from a different patient cohort. Sinonasal microbiotyping may prove useful in reducing the complexity of describing sinonasal microbiota. It may drive future studies aimed at modeling microbial interactions in the sinuses and in doing so may facilitate the development of a tailored patient-specific approach to the treatment of sinus disease in the future.
Collapse
Affiliation(s)
- Ahmed Bassiouni
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Sathish Paramasivan
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Arron Shiffer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew R. Dillon
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily K. Cope
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Clare Cooksley
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Mahnaz Ramezanpour
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Sophia Moraitis
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | | | - Benjamin S. Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Claudio Callejas
- Department of Otolaryngology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Richard G. Douglas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Daniel Dutra
- Department of Otorhinolaryngology, University of São Paulo, São Paulo, Brazil
| | - Christos Georgalas
- Department of Otorhinolaryngology, Amsterdam UMC, Amsterdam, Netherlands
| | - Richard J. Harvey
- Department of Otolaryngology, Rhinology and Skull Base, University of New South Wales, Sydney, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter H. Hwang
- Department of Otolaryngology -Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Amber U. Luong
- Department of Otolaryngology -Head and Neck Surgery, The University of Texas Health Science Center at Houston, Austin, TX, United States
| | - Rodney J. Schlosser
- Department of Otolaryngology, Medical University of South Carolina, Charleston, SC, United States
| | - Pongsakorn Tantilipikorn
- Department of Otorhinolaryngology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Marc A. Tewfik
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Sarah Vreugde
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Peter-John Wormald
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - J. Gregory Caporaso
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Alkis J. Psaltis
- Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
Schlattmann A, von Lützau K, Kaspar U, Becker K. The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Germany-A Culturomic Approach. Microorganisms 2020; 8:microorganisms8040514. [PMID: 32260366 PMCID: PMC7232296 DOI: 10.3390/microorganisms8040514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) remains a serious public health threat. Porcine nasal cavities are predominant habitats of LA-MRSA. Hence, components of their microbiota might be of interest as putative antagonistically acting competitors. Here, an extensive culturomics approach has been applied including 27 healthy pigs from seven different farms; five were treated with antibiotics prior to sampling. Overall, 314 different species with standing in nomenclature and 51 isolates representing novel bacterial taxa were detected. Staphylococcus aureus was isolated from pigs on all seven farms sampled, comprising ten different spa types with t899 (n = 15, 29.4%) and t337 (n = 10, 19.6%) being most frequently isolated. Twenty-six MRSA (mostly t899) were detected on five out of the seven farms. Positive correlations between MRSA colonization and age and colonization with Streptococcus hyovaginalis, and a negative correlation between colonization with MRSA and Citrobacter spp. were found (p < 0.05). Of 209 non-S. aureus members of the Staphylococcaceae family, 25 isolates (12.0%) from three out of the seven farms exhibited methicillin resistance, including two Macrococcus goetzii isolates carrying the mecB gene. Among 125 Enterobacterales, none tested positive for extended-spectrum beta-lactamase (ESBL) and carbapenemase production. The high frequency of methicillin-resistant staphylococci supports the need for enhanced efforts within the “One Health” concept to manage the antibiotic resistance crisis in the human and veterinary medicine sector.
Collapse
Affiliation(s)
- Andreas Schlattmann
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (A.S.); (K.v.L.); (U.K.)
| | - Knut von Lützau
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (A.S.); (K.v.L.); (U.K.)
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (A.S.); (K.v.L.); (U.K.)
- Landeszentrum Gesundheit Nordrhein-Westfalen, Fachgruppe Infektiologie und Hygiene, 44801 Bochum, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (A.S.); (K.v.L.); (U.K.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-5560
| |
Collapse
|
26
|
Longitudinal study of the bacterial and fungal microbiota in the human sinuses reveals seasonal and annual changes in diversity. Sci Rep 2019; 9:17416. [PMID: 31758066 PMCID: PMC6874676 DOI: 10.1038/s41598-019-53975-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need for longitudinal studies which examine the stability of the sinonasal microbiota. In this study, we investigated bacterial and fungal community composition of the sinuses of four healthy individuals every month for one year, then once every three months for an additional year to capture seasonal variation. Sequencing of bacterial 16S rRNA genes and fungal ITS2 revealed communities that were mainly dominated by members of Actinobacteria and Basidiomycota, respectively. We observed overall shifts in both bacterial and fungal community diversity that were attributable to a combination of individual, seasonal and annual changes. The results suggest that each of the subjects possessed a strong bacterial sinonasal signature, but that fungal communities were less subject specific. Differences in fungal and bacterial diversity between subjects, and which OTUs may be correlated with seasonal differences, were investigated. A small core community that persisted throughout the two year sampling period was identified: Corynebacterium, Propionibacterium and Staphylococcus, and one type of fungus, Malassezia restricta. It is likely that bacterial and fungal airway microbiomes are dynamic and experience natural shifts in diversity with time. The underlying reasons for these shifts appear to be a combination of changes in environmental climate and host factors.
Collapse
|
27
|
Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol 2019; 17:87. [PMID: 31699101 PMCID: PMC6836414 DOI: 10.1186/s12915-019-0703-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The human upper respiratory tract (URT) offers a variety of niches for microbial colonization. Local microbial communities are shaped by the different characteristics of the specific location within the URT, but also by the interaction with both external and intrinsic factors, such as ageing, diseases, immune responses, olfactory function, and lifestyle habits such as smoking. We summarize here the current knowledge about the URT microbiome in health and disease, discuss methodological issues, and consider the potential of the nasal microbiome to be used for medical diagnostics and as a target for therapy.
Collapse
Affiliation(s)
- Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kaisa Koskinen
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Present address: Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
28
|
Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol Spectr 2019; 7. [PMID: 31004422 DOI: 10.1128/microbiolspec.gpp3-0029-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is usually regarded as a bacterial pathogen due to its ability to cause multiple types of invasive infections. Nevertheless, S. aureus colonizes about 30% of the human population asymptomatically in the nares, either transiently or persistently, and can therefore be regarded a human commensal as well, although carriage increases the risk of infection. Whereas many facets of the infection processes have been studied intensively, little is known about the commensal lifestyle of S. aureus. Recent studies highlight the major role of the composition of the highly variable nasal microbiota in promoting or inhibiting S. aureus colonization. Competition for limited nutrients, trace elements, and epithelial attachment sites, different susceptibilities to host defense molecules and the production of antimicrobial molecules by bacterial competitors may determine whether nasal bacteria outcompete each other. This chapter summarizes our knowledge about mechanisms that are used by S. aureus for efficient nasal colonization and strategies used by other nasal bacteria to interfere with its colonization. An improved understanding of naturally evolved mechanisms might enable us to develop new strategies for pathogen eradication.
Collapse
|
29
|
Charles DD, Fisher JR, Hoskinson SM, Medina-Colorado AA, Shen YC, Chaaban MR, Widen SG, Eaves-Pyles TD, Maxwell CA, Miller AL, Popov VL, Pyles RB. Development of a Novel ex vivo Nasal Epithelial Cell Model Supporting Colonization With Human Nasal Microbiota. Front Cell Infect Microbiol 2019; 9:165. [PMID: 31165051 PMCID: PMC6536665 DOI: 10.3389/fcimb.2019.00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
The nasal mucosa provides first line defense against inhaled pathogens while creating a unique microenvironment for bacterial communities. Studying the impact of microbiota in the nasal cavity has been difficult due to limitations with current models including explant cultures, primary cells, or neoplastic cell lines. Most notably, none have been shown to support reproducible colonization by bacterial communities from human donors. Therefore, to conduct controlled studies of the human nasal ecosystem, we have developed a novel ex vivo mucosal model that supports bacterial colonization of a cultured host mucosa created by immortalized human nasal epithelial cells (NEC). For this model, immortalized NEC established from 5 male and 5 female donors were cultured with an air-interfaced, apical surface on a porous transwell membrane. NEC were grown from nasal turbinate tissues harvested from willed bodies or from discarded tissue collected during sinonasal procedures. Immortalized cells were evaluated through molecular verification of cell type, histological confirmation of tissue differentiation including formation of tight junctions, NEC multilayer viability, metabolism, physiology and imaging of the luminal surface by scanning electron microscopy. Results showed proper differentiation and multilayer formation at seven to 10 days after air interface that was maintained for up to 3 weeks. The optimized mucosal cultures created an environment necessary to sustain colonization by nasal microbiomes (NMBs) that were collected from healthy volunteers, cryogenically preserved and characterized with customized quantitative polymerase chain reaction (qPCR) arrays. Polymicrobial communities of nasal bacteria associated with healthy and inflamed states were consistently reproduced in matured NEC co-cultures by transplant of NMBs from multiple community types. The cultured NMBs were stable after an initial period of bacterial replication and equilibration. This novel ex vivo culture system is the first model that supports controlled cultivation of NMBs, allowing for lab-based causation studies and further experimentation to explore the complexities of host-microbe and microbe-microbe interactions.
Collapse
Affiliation(s)
- Derald D Charles
- School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - James R Fisher
- School of Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sarah M Hoskinson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | | | - Yi C Shen
- School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Mohamad R Chaaban
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tonyia D Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Carrie A Maxwell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Richard B Pyles
- School of Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
30
|
Mariani J, Favero C, Spinazzè A, Cavallo DM, Carugno M, Motta V, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects. ENVIRONMENTAL RESEARCH 2018; 162:119-126. [PMID: 29291434 DOI: 10.1016/j.envres.2017.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 12/17/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to air pollutants, such as particulate matter (PM), represents a growing health problem. The aim of our study was to investigate whether PM could induce a dysbiosis in the nasal microbiota in terms of α-diversity and taxonomic composition. METHODS We investigated structure and characteristics of the microbiota of 40 healthy subjects through metabarcoding analysis of the V3-V4 regions of the 16s rRNA gene. Exposure to PM10 and PM2.5 was assessed with a personal sampler worn for 24h before sample collection (Day -1) and with measurements from monitoring stations (from Day -2 to Day -7). RESULTS We found an inverse association between PM10 and PM2.5 levels of the 3rd day preceding sampling (Day -3) and α-diversity indices (Chao1, Shannon and PD_whole_tree). Day -3 PM was inversely associated also with the majority of analyzed taxa, except for Moraxella, which showed a positive association. In addition, subjects showed different structural profiles identifying two groups: one characterized by an even community and another widely dominated by the Moraxella genus. CONCLUSIONS Our findings support the role of PM exposure in influencing microbiota and altering the normal homeostasis within the bacterial community. Whether these alterations could have a role in disease development and/or exacerbation needs further research.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Valeria Motta
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
31
|
Khamash DF, Voskertchian A, Milstone AM. Manipulating the microbiome: evolution of a strategy to prevent S. aureus disease in children. J Perinatol 2018; 38:105-109. [PMID: 29120455 PMCID: PMC5790614 DOI: 10.1038/jp.2017.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Hospitalized infants have the highest rates of invasive Staphylococcus aureus disease of any population and infection control strategies such as decolonization have been insufficient. For decades, researchers began studying the microbiome in search of new prevention strategies. The resident microbiota was found to be closely associated with susceptibility and at times, resistance to S. aureus colonization. The evolution of nucleic acid based techniques has enhanced our understanding of the complex relationship between the nasal microbiota and S. aureus colonization. We review what is known about bacterial communities in the nasal cavity of infants and discuss how future microbiome studies may help identify novel interventions to protect high-risk infants from S. aureus disease.
Collapse
Affiliation(s)
- Dina F. Khamash
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Annie Voskertchian
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aaron M. Milstone
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
32
|
Luna PN, Hasegawa K, Ajami NJ, Espinola JA, Henke DM, Petrosino JF, Piedra PA, Sullivan AF, Camargo CA, Shaw CA, Mansbach JM. The association between anterior nares and nasopharyngeal microbiota in infants hospitalized for bronchiolitis. MICROBIOME 2018; 6:2. [PMID: 29298732 PMCID: PMC5751828 DOI: 10.1186/s40168-017-0385-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/14/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND The airway microbiome is a subject of great interest for the study of respiratory disease. Anterior nare samples are more accessible than samples from deeper within the nasopharynx. However, the correlation between the microbiota found in the anterior nares and the microbiota found within the nasopharynx is unknown. We assessed the anterior nares and nasopharyngeal microbiota to determine (1) the relation of the microbiota from these two upper airway sites and (2) if associations were maintained between the microbiota from these two sites and two bronchiolitis severity outcomes. RESULTS Among 815 infants hospitalized at 17 US centers for bronchiolitis with optimal 16S rRNA gene sequence reads from both nasal swab and nasopharyngeal aspirate samples, there were strong intra-individual correlations in the microbial communities between the two sample types, especially relating to Haemophilus and Moraxella genera. By contrast, we found a high abundance of Staphylococcus genus in the nasal swabs-a pattern not found in the nasopharyngeal samples and not informative when predicting the dominant nasopharyngeal genera. While these disparities may have been due to sample processing differences (i.e., nasal swabs were mailed at ambient temperature to emulate processing of future parent collected swabs while nasopharyngeal aspirates were mailed on dry ice), a previously reported association between Haemophilus-dominant nasopharyngeal microbiota and the increased severity of bronchiolitis was replicated utilizing the nasal swab microbiota and the same outcome measures: intensive care use (adjusted OR 6.43; 95% CI 2.25-20.51; P < 0.001) and hospital length-of-stay (adjusted OR 4.31; 95% CI, 1.73-11.11; P = 0.002). Additionally, Moraxella-dominant nasopharyngeal microbiota was previously identified as protective against intensive care use, a result that was replicated when analyzing the nasal swab microbiota (adjusted OR 0.30; 95% CI, 0.11-0.64; P = 0.01). CONCLUSIONS While the microbiota of the anterior nares and the nasopharynx are distinct, there is considerable overlap between the bacterial community compositions from these two anatomic sites. Despite processing differences between the samples, these results indicate that microbiota severity associations from the nasopharynx are recapitulated in the anterior nares, suggesting that nasal swab samples not only are effective sample types, but also can be used to detect microbial risk markers.
Collapse
Affiliation(s)
- Pamela N Luna
- Department of Statistics, Rice University, Houston, TX, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Henke
- Department of Molecular and Human Genetics MS 225, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ashley F Sullivan
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chad A Shaw
- Department of Statistics, Rice University, Houston, TX, USA.
- Department of Molecular and Human Genetics MS 225, Baylor College of Medicine, Houston, TX, 77030, USA.
| | | |
Collapse
|
33
|
Madsen AM, Moslehi-Jenabian S, Islam MZ, Frankel M, Spilak M, Frederiksen MW. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. ENVIRONMENTAL RESEARCH 2018; 160:282-291. [PMID: 29035784 DOI: 10.1016/j.envres.2017.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/03/2017] [Indexed: 05/04/2023]
Abstract
The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations between ACR and the fraction Staphylococcus constituted out of total bacteria, and between area per occupant and Staphylococcus richness indicate that it might be possible to affect the presence of airborne Staphylococcus in homes.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Saloomeh Moslehi-Jenabian
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Md Zohorul Islam
- Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Mika Frankel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Michal Spilak
- Danish Building Research Institute, Aalborg University, Department of Construction and Health, Copenhagen, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
34
|
Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 2017; 15:675-687. [PMID: 29021598 DOI: 10.1038/nrmicro.2017.104] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although human colonization by facultative bacterial pathogens, such as Staphylococcus aureus, represents a major risk factor for invasive infections, the commensal lifestyle of such pathogens has remained a neglected area of research. S. aureus colonizes the nares of approximately 30% of the human population and recent studies suggest that the composition of highly variable nasal microbiota has a major role in promoting or inhibiting S. aureus colonization. Competition for epithelial attachment sites or limited nutrients, different susceptibilities to host defence molecules and the production of antimicrobial molecules may determine whether nasal bacteria outcompete each other. In this Review, we discuss recent insights into mechanisms that are used by S. aureus to prevail in the human nose and the counter-strategies that are used by other nasal bacteria to interfere with its colonization. Understanding such mechanisms will be crucial for the development of new strategies for the eradication of endogenous facultative pathogens.
Collapse
Affiliation(s)
- Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Christopher Weidenmaier
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Zipperer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease. Clin Microbiol Rev 2017; 30:321-348. [PMID: 27903594 DOI: 10.1128/cmr.00060-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinosinusitis (CRS) encompasses a heterogeneous group of debilitating chronic inflammatory sinonasal diseases. Despite considerable research, the etiology of CRS remains poorly understood, and debate on potential roles of microbial communities is unresolved. Modern culture-independent (molecular) techniques have vastly improved our understanding of the microbiology of the human body. Recent studies that better capture the full complexity of the microbial communities associated with CRS reintroduce the possible importance of the microbiota either as a direct driver of disease or as being potentially involved in its exacerbation. This review presents a comprehensive discussion of the current understanding of bacterial, fungal, and viral associations with CRS, with a specific focus on the transition to the new perspective offered in recent years by modern technology in microbiological research. Clinical implications of this new perspective, including the role of antimicrobials, are discussed in depth. While principally framed within the context of CRS, this discussion also provides an analogue for reframing our understanding of many similarly complex and poorly understood chronic inflammatory diseases for which roles of microbes have been suggested but specific mechanisms of disease remain unclear. Finally, further technological advancements on the horizon, and current pressing questions for CRS microbiological research, are considered.
Collapse
|
36
|
Shukla SK, Ye Z, Sandberg S, Reyes I, Fritsche TR, Keifer M. The nasal microbiota of dairy farmers is more complex than oral microbiota, reflects occupational exposure, and provides competition for staphylococci. PLoS One 2017; 12:e0183898. [PMID: 28850578 PMCID: PMC5574581 DOI: 10.1371/journal.pone.0183898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Allergic and autoimmune diseases had been attributed to lack of exposure to biodiversity, an important factor in regulating immune homeostasis in a healthy host. We posit that the microbiome of healthy dairy farmers (DF) will be richer than non-farmers (NF) living in urban settings due to exposure to a greater biodiversity in the dairy environment. However, no studies have investigated the relationships between microbiota of dairy farmers (DF) compared with urban non-farmers (NF). We compared the nasal and oral microbiota of dairy farmers (N_DF, O_DF, respectively) with nasal and oral microbiota of NF in the same geographical area. The N_DF showed high microbial diversity with hundreds of unique genera that reflected environmental/occupational exposures. The nasal and oral microbiomes clustered separately from each other using Principal Coordinate Analysis, and with DF harboring two-fold and 1.5-fold greater exclusive genera in their nose and mouth respectively, than did non-farmers. Additionally, the N_DF group had a lower burden of Staphylococcus spp. suggesting a correlation between higher microbial diversity and competition for colonization by staphylococci. The N_DF samples were negative for the mecA gene, a marker of methicillin-resistance in staphylococci. The lower burden of staphylococci was found to be independent of the abundance of Corynebacterium spp. Exposure to greater biodiversity could enhance microbial competition, thereby reducing colonization with opportunistic pathogens. Future studies will analyze whether exposure to livestock microbiomes offers protection from acute and chronic diseases.
Collapse
Affiliation(s)
- Sanjay K. Shukla
- Molecular Microbiology Laboratory, Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
- * E-mail:
| | - Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Scott Sandberg
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Iris Reyes
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Thomas R. Fritsche
- Division of Laboratory Medicine, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Matthew Keifer
- VA Puget Sound, Seattle, Washington, United States of America
| |
Collapse
|
37
|
Wos-Oxley ML, Chaves-Moreno D, Jáuregui R, Oxley APA, Kaspar U, Plumeier I, Kahl S, Rudack C, Becker K, Pieper DH. Exploring the bacterial assemblages along the human nasal passage. Environ Microbiol 2017; 18:2259-71. [PMID: 27207744 DOI: 10.1111/1462-2920.13378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human nasal passage, from the anterior nares through the nasal vestibule to the nasal cavities, is an important habitat for opportunistic pathogens and commensals alike. This work sampled four different anatomical regions within the human nasal passage across a large cohort of individuals (n = 79) comprising individuals suffering from chronic nasal inflammation clinically known as chronic rhinosinusitis (CRS) and individuals not suffering from inflammation (CRS-free). While individuals had their own unique bacterial fingerprint that was consistent across the anatomical regions, these bacterial fingerprints formed into distinct delineated groups comprising core bacterial members, which were consistent across all four swabbed anatomical regions irrespective of health status. The most significant observed pattern was the difference between the global bacterial profiles of swabbed and tissue biopsy samples from the same individuals, being also consistent across different anatomical regions. Importantly, no statistically significant differences could be observed concerning the global bacterial communities, any of the bacterial species or the range of diversity indices used to compare between CRS and CRS-free individuals, and between two CRS phenotypes (without nasal polyps and with nasal polyps). Thus, the role of bacteria in the pathogenesis of sinusitis remains uncertain.
Collapse
Affiliation(s)
- Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Andrew P A Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | | | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Münster, Münster, Germany
| | | | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| |
Collapse
|
38
|
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15:259-270. [PMID: 28316330 PMCID: PMC7097736 DOI: 10.1038/nrmicro.2017.14] [Citation(s) in RCA: 744] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.
Collapse
Affiliation(s)
- Wing Ho Man
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- Spaarne Gasthuis Academy, Spaarnepoort 1, Hoofddorp, 2134 TM The Netherlands
| | - Wouter A.A. de Steenhuijsen Piters
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
39
|
McMurray CL, Hardy KJ, Calus ST, Loman NJ, Hawkey PM. Staphylococcal species heterogeneity in the nasal microbiome following antibiotic prophylaxis revealed by tuf gene deep sequencing. MICROBIOME 2016; 4:63. [PMID: 27912796 PMCID: PMC5134057 DOI: 10.1186/s40168-016-0210-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Staphylococci are a major constituent of the nasal microbiome and a frequent cause of hospital-acquired infection. Antibiotic surgical prophylaxis is administered prior to surgery to reduce a patient's risk of postoperative infection. The impact of surgical prophylaxis on the nasal staphylococcal microbiome is largely unknown. Here, we report the species present in the nasal staphylococcal microbiome and the impact of surgical prophylaxis revealed by a novel culture independent technique. Daily nasal samples from 18 hospitalised patients, six of whom received no antibiotics and 12 of whom received antibiotic surgical prophylaxis (flucloxacillin and gentamicin or teicoplanin +/- gentamicin), were analysed by tuf gene fragment amplicon sequencing. RESULTS On admission to hospital, the species diversity of the nasal staphylococcal microbiome varied from patient to patient ranging from 4 to 10 species. Administration of surgical prophylaxis did not substantially alter the diversity of the staphylococcal species present in the nose; however, surgical prophylaxis did impact on the relative abundance of the staphylococcal species present. The dominant staphylococcal species present in all patients on admission was Staphylococcus epidermidis, and antibiotic administration resulted in an increase in species relative abundance. Following surgical prophylaxis, a reduction in the abundance of Staphylococcus aureus was observed in carriers, but not a complete eradication. CONCLUSIONS Utilising the tuf gene fragment has enabled a detailed study of the staphylococcal microbiome in the nose and highlights that although there is no change in the heterogeneity of species present, there are changes in abundance. The sensitivity of the methodology has revealed that the abundance of S. aureus is reduced to a low level by surgical prophylaxis and therefore reduces the potential risk of infection following surgery but also highlights that S. aureus does persist.
Collapse
Affiliation(s)
- Claire L McMurray
- Heart of England NHS Foundation Trust, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK.
- Institute of Microbiology and Infection, School of Immunity and Infection, The College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK.
| | - Katherine J Hardy
- Public Health England Birmingham Laboratory, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK
- Institute of Microbiology and Infection, School of Immunity and Infection, The College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Szymon T Calus
- Institute of Microbiology and Infection, School of Immunity and Infection, The College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
- Present address: Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Immunity and Infection, The College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Peter M Hawkey
- Public Health England Birmingham Laboratory, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK
- Institute of Microbiology and Infection, School of Immunity and Infection, The College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
40
|
Chaves-Moreno D, Wos-Oxley ML, Jáuregui R, Medina E, Oxley AP, Pieper DH. Exploring the transcriptome of Staphylococcus aureus in its natural niche. Sci Rep 2016; 6:33174. [PMID: 27641137 PMCID: PMC5027550 DOI: 10.1038/srep33174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented S. aureus carriers and the metatranscriptome analyzed by RNAseq. In addition, the in vivo transcriptomes were compared to previously published transcriptomes of two in vitro grown S. aureus strains. None of the in vitro conditions, even growth in medium resembling the anterior nares environment, mimicked in vivo conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems. S. aureus populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different S. aureus strains also showed different in vivo behavior. The assessment of general in vivo expression patterns and commonalities between different S. aureus strains will in the future result in new knowledge based strategies for controlling colonization.
Collapse
Affiliation(s)
- Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Eva Medina
- Infection and Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrew Pa Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| |
Collapse
|
41
|
Moran JC, Crank EL, Ghabban HA, Horsburgh MJ. Deferred Growth Inhibition Assay to Quantify the Effect of Bacteria-derived Antimicrobials on Competition. J Vis Exp 2016. [PMID: 27684443 PMCID: PMC5091981 DOI: 10.3791/54437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Competitive exclusion can occur in microbial communities when, for example, an inhibitor-producing strain outcompetes its competitor for an essential nutrient or produces antimicrobial compounds that its competitor is not resistant to. Here we describe a deferred growth inhibition assay, a method for assessing the ability of one bacterium to inhibit the growth of another through the production of antimicrobial compounds or through competition for nutrients. This technique has been used to investigate the correlation of nasal isolates with the exclusion of particular species from a community. This technique can also be used to screen for lantibiotic producers or potentially novel antimicrobials. The assay is performed by first culturing the test inhibitor-producing strain overnight on an agar plate, then spraying over the test competitor strain and incubating again. After incubation, the extent of inhibition can be measured quantitatively, through the size of the zone of clearing around the inhibitor-producing strain, and qualitatively, by assessing the clarity of the inhibition zone. Here we present the protocol for the deferred inhibition assay, describe ways to minimize variation between experiments, and define a clarity scale that can be used to qualitatively assess the degree of inhibition.
Collapse
Affiliation(s)
| | - Emma L Crank
- Institute of Integrative Biology, University of Liverpool
| | | | | |
Collapse
|
42
|
Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species. Front Microbiol 2016; 7:1230. [PMID: 27582729 PMCID: PMC4988121 DOI: 10.3389/fmicb.2016.01230] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus-human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species.
Collapse
Affiliation(s)
- Matthew M. Ramsey
- Department of Microbiology, The Forsyth Institute, Cambridge, MAUSA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MAUSA
| | - Marcelo O. Freire
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MAUSA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MAUSA
| | - Rebecca A. Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TXUSA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TXUSA
| | - Katherine P. Lemon
- Department of Microbiology, The Forsyth Institute, Cambridge, MAUSA
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MAUSA
| |
Collapse
|
43
|
Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors. PLoS Pathog 2016; 12:e1005812. [PMID: 27490492 PMCID: PMC4973975 DOI: 10.1371/journal.ppat.1005812] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. The complex and dynamic microbial communities of human body surfaces are of utmost importance for human body functions in health and diseases. Human microbiomes contribute to metabolic processes, instruct the immune system, and often include antibiotic-resistant pathogens, responsible for the majority of severe bacterial infections. It is generally accepted that microbiota composition is strongly affected by mechanisms of microbial interference, but how specific bacteria may achieve fitness benefits and outcompete other microbes has remained largely unknown. We demonstrate that production of antimicrobial bacteriocins is not an occasional trait but a dominant and highly variable strategy among human nasal bacteria for limiting the growth of competing microbes. We found that more than 80% of nasal Staphylococcus isolates produce bacteriocins with highly diverse activity spectra, in particular under habitat-specific stress conditions such as iron limitation and exposure to hydrogen peroxide. Inactivation of a representative bacteriocin diminished the producer’s competitive capability indicating that bacteriocins may be a major driving force for the dynamics of microbiomes in nutrient-poor habitats such as the human nose. The identification of bacteriocin genes on mobile genetic elements with composite structure suggests that they are subject to highly dynamic co-evolutionary processes.
Collapse
Affiliation(s)
- Daniela Janek
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| | - Alexander Zipperer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| | - Andreas Kulik
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
- * E-mail:
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Affiliation(s)
- Silvio D. Brugger
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Lindsey Bomar
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Katherine P. Lemon
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Maza-Márquez P, Vílchez-Vargas R, Boon N, González-López J, Martínez-Toledo MV, Rodelas B. The ratio of metabolically active versus total Mycolata populations triggers foaming in a membrane bioreactor. WATER RESEARCH 2016; 92:208-217. [PMID: 26859516 DOI: 10.1016/j.watres.2015.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The abundance of total and metabolically active populations of Mycolata was evaluated in a full-scale membrane bioreactor (MBR) experiencing seasonal foaming, using quantitative PCR (qPCR) and retrotranscribed qPCR (RT-qPCR) targeting the 16S rRNA gene sequence. While the abundance of total Mycolata remained stable (10(10) copies of 16S rRNA genes/L activated sludge) throughout four different experimental phases, significant variations (up to one order of magnitude) were observed when the 16S rRNA was targeted. The highest ratios of metabolically active versus total Mycolata populations were observed in samples of two experimental phases when foaming was experienced in the MBR. Non-metric multidimensional scaling and BIO-ENV analyses demonstrated that this ratio was positively correlated to the concentrations of substrates in the influent water, F/M ratio, and pH, and negatively correlated to temperature and solids retention time. It the first time that the ratio of metabolically active versus total Mycolata is found to be a key parameter triggering foaming in the MBR; thus, we propose it as a candidate predictive tool.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - R Vílchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - N Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - M V Martínez-Toledo
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
46
|
Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016; 7:e01725-15. [PMID: 26733066 PMCID: PMC4725001 DOI: 10.1128/mbio.01725-15] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.
Collapse
|
47
|
Chaves-Moreno D, Wos-Oxley ML, Jáuregui R, Medina E, Oxley APA, Pieper DH. Application of a Novel "Pan-Genome"-Based Strategy for Assigning RNAseq Transcript Reads to Staphylococcus aureus Strains. PLoS One 2015; 10:e0145861. [PMID: 26717500 PMCID: PMC4696825 DOI: 10.1371/journal.pone.0145861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the behaviour of opportunistic pathogens such as Staphylococcus aureus in their natural human niche holds great medical interest. With the development of sensitive molecular methods and deep-sequencing technology, it is now possible to robustly assess the global transcriptome of bacterial species in their human habitat. However, as the genomes of the colonizing strains are often not available compiling the pan-genome for the species of interest may provide an effective method to reliably and rapidly compile the transcriptome of a bacterial species. The pan-genome of S. aureus and its associated core and accessory components were compiled based on 25 genomes and comprises a total of 65,557 proteins clustering into 4,198 Orthologous Groups (OGs). The generated gene catalogue was used to assign RNAseq-derived sequence reads to S. aureus in a variety of in vitro and in vivo samples. In all cases, the number of reads that could be assigned to S. aureus was greater using the OG database than using a reference genome. Growth of two S. aureus strains in synthetic nasal medium confirmed that both strains experienced strong iron starvation. Traits such as purine metabolism appeared to be more affected in a typical nasal colonizer than in a strain representative of the S. aureus USA300 lineage. Mapping sequencing reads from a metatranscriptome generated from the human anterior nares allowed the identification of genes highly expressed by S. aureus in vivo. The OG database generated in this study represents a useful tool to obtain a snapshot of the functional attributes of S. aureus under different in vitro and in vivo conditions. The approach proved to be advantageous to assign sequencing reads to bacterial strains when RNAseq data is derived from samples where strain information and/or the corresponding genome/s are unavailable.
Collapse
Affiliation(s)
- Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Melissa L. Wos-Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva Medina
- Infection and Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrew P. A. Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection and Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
48
|
Tarabichi Y, Li K, Hu S, Nguyen C, Wang X, Elashoff D, Saira K, Frank B, Bihan M, Ghedin E, Methé BA, Deng JC. The administration of intranasal live attenuated influenza vaccine induces changes in the nasal microbiota and nasal epithelium gene expression profiles. MICROBIOME 2015; 3:74. [PMID: 26667497 PMCID: PMC4678663 DOI: 10.1186/s40168-015-0133-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/12/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Viral infections such as influenza have been shown to predispose hosts to increased colonization of the respiratory tract by pathogenic bacteria and secondary bacterial pneumonia. To examine how viral infections and host antiviral immune responses alter the upper respiratory microbiota, we analyzed nasal bacterial composition by 16S ribosomal RNA (rRNA) gene sequencing in healthy adults at baseline and at 1 to 2 weeks and 4 to 6 weeks following instillation of live attenuated influenza vaccine or intranasal sterile saline. A subset of these samples was submitted for microarray host gene expression profiling. RESULTS We found that live attenuated influenza vaccination led to significant changes in microbial community structure, diversity, and core taxonomic membership as well as increases in the relative abundances of Staphylococcus and Bacteroides genera (both p < 0.05). Hypergeometric testing for the enrichment of gene ontology terms in the vaccinated group reflected a robust up-regulation of type I and type II interferon-stimulated genes in the vaccinated group relative to controls. Translational murine studies showed that poly I:C administration did in fact permit greater nasal Staphylococcus aureus persistence, a response absent in interferon alpha/beta receptor deficient mice. CONCLUSIONS Collectively, our findings demonstrate that although the human nasal bacterial community is heterogeneous and typically individually robust, activation of a type I interferon (IFN)-mediated antiviral response may foster the disproportionate emergence of potentially pathogenic species such as S. aureus. TRIAL REGISTRATION This study was registered with Clinicaltrials.gov on 11/3/15, NCT02597647 .
Collapse
Affiliation(s)
- Y Tarabichi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen SOM at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| | - K Li
- Department of Human Genome Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
| | - S Hu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen SOM at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| | - C Nguyen
- Department of Medicine, UCLA, Los Angeles, CA, USA.
| | - X Wang
- Department of Medicine Statistics Core, UCLA, Los Angeles, CA, USA.
| | - D Elashoff
- Department of Medicine Statistics Core, UCLA, Los Angeles, CA, USA.
| | - K Saira
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Present address: Infectious Disease Research, Southern Research Institute, Birmingham, AL, USA.
| | - Bryan Frank
- Department of Human Genome Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Monika Bihan
- Department of Human Genome Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
| | - E Ghedin
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Biology, Center for Genomics and Systems Biology, Global Institute of Public Health, New York University, New York, NY, USA.
| | - Barbara A Methé
- Department of Human Genome Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Jane C Deng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen SOM at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| |
Collapse
|
49
|
Chaves-Moreno D, Plumeier I, Kahl S, Krismer B, Peschel A, Oxley APA, Jauregui R, Pieper DH. The microbial community structure of the cotton rat nose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:929-935. [PMID: 26306992 DOI: 10.1111/1758-2229.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
The cotton rat nose is commonly used as a model for Staphylococcus aureus colonization, as it is both physiologically and anatomically comparable to the human nares and can be easily colonized by this organism. However, while the colonization of the human anterior nares has been extensively studied, the microbial community structure of cotton rat noses has not been reported so far. We describe here the microbial community structure of the cotton rat (Sigmodon hispidus) nose through next-generation sequencing of 16S rRNA gene amplicons covering the V1-V2 region and the analysis of nearly full length 16S rRNA genes of the major phylotypes. Roughly half of the microbial community was composed of two undescribed species of the genus Campylobacter, with phylotypes belonging to the genera Catonella, Acholeplasma, Streptobacillus and Capnocytophaga constituting the predominant community members. Thus, the nasal community of the cotton rat is uniquely composed of several novel bacterial species and may not reflect the complex interactions that occur in human anterior nares. Mammalian airway microbiota may, however, be a rich source of hitherto unknown microbes.
Collapse
Affiliation(s)
- Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, Eberhard-Karls-University, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, Eberhard-Karls-University, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andrew P A Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| |
Collapse
|
50
|
Köck R, Werner P, Friedrich AW, Fegeler C, Becker K. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population. New Microbes New Infect 2015; 9:24-34. [PMID: 26862431 PMCID: PMC4706603 DOI: 10.1016/j.nmni.2015.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022] Open
Abstract
The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878 nonhospitalized volunteers recruited from the general population in Germany. Participants provided nasal swabs at three time points (each separated by 4–6 months). Staphylococcus aureus, Enterobacteriaceae and important nonfermenters were cultured and subjected to susceptibility testing. Factors potentially influencing bacterial colonization patterns were assessed. The overall prevalence of S. aureus, Enterobacteriaceae and nonfermenters was 41.0, 33.4 and 3.7%, respectively. Thirteen participants (0.7%) were colonized with methicillin-resistant S. aureus. Enterobacteriaceae were mostly (>99%) susceptible against ciprofloxacin and carbapenems (100%). Extended-spectrum β-lactamase–producing isolates were not detected among Klebsiella oxytoca, Klebsiella pneumoniae and Escherichia coli. Several lifestyle- and health-related factors (e.g. household size, travel, livestock density of the residential area or occupational livestock contact, atopic dermatitis, antidepressant or anti-infective drugs) were associated with colonization by different microorganisms. This study unexpectedly demonstrated high nasal colonization rates with Enterobacteriaceae in the German general population, but rates of antibiotic resistance were low. Methicillin-resistant S. aureus carriage was rare but highly associated with occupational livestock contact.
Collapse
Affiliation(s)
- R Köck
- University Hospital Münster, Institute of Medical Microbiology, Münster, Germany
| | - P Werner
- University Heilbronn, GECKO Institute of Medicine, Informatics and Economy, Heilbronn, Germany
| | - A W Friedrich
- University Hospital Groningen, Department for Medical Microbiology and Infection Control, Groningen, The Netherlands
| | - C Fegeler
- University Heilbronn, GECKO Institute of Medicine, Informatics and Economy, Heilbronn, Germany
| | - K Becker
- University Hospital Münster, Institute of Medical Microbiology, Münster, Germany
| | | | | |
Collapse
|