1
|
Rassner SME, Cook JM, Mitchell AC, Stevens IT, Irvine-Fynn TDL, Hodson AJ, Edwards A. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ Microbiol 2024; 26:e16617. [PMID: 38558266 DOI: 10.1111/1462-2920.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.
Collapse
Affiliation(s)
| | - Joseph M Cook
- Department of Life Sciences, Aberystwyth University, Wales, UK
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Andrew C Mitchell
- Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK
| | - Ian T Stevens
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK
| | | | - Andrew J Hodson
- Department of Arctic Geology, University Centre in Svalbard (UNIS), Longyearbyen, Norway
| | - Arwyn Edwards
- Department of Life Sciences, Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
2
|
Zada S, Khan M, Su Z, Sajjad W, Rafiq M. Cryosphere: a frozen home of microbes and a potential source for drug discovery. Arch Microbiol 2024; 206:196. [PMID: 38546887 DOI: 10.1007/s00203-024-03899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
The world is concerned about the emergence of pathogens and the occurrence and spread of antibiotic resistance among pathogens. Drug development requires time to combat these issues. Consequently, drug development from natural sources is unavoidable. Cryosphere represents a gigantic source of microbes that could be the bioprospecting source of natural products with unique scaffolds as molecules or drug templates. This review focuses on the novel source of drug discovery and cryospheric environments as a potential source for microbial metabolites having potential medicinal applications. Furthermore, the problems encountered in discovering metabolites from cold-adapted microbes and their resolutions are discussed. By adopting modern practical approaches, the discovery of bioactive compounds might fulfill the demand for new drug development.
Collapse
Affiliation(s)
- Sahib Zada
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Mohsin Khan
- Department of Biological Sciences, Ohio University Athens, Athens, OH, USA
| | - Zheng Su
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, 87650, Pakistan.
| |
Collapse
|
3
|
Kachiprath B, Solomon S, Gopi J, Jayachandran PR, Thajudeen J, Sarasan M, Mohan AS, Puthumana J, Chaithanya ER, Philip R. Exploring bacterial diversity in Arctic fjord sediments: a 16S rRNA-based metabarcoding portrait. Braz J Microbiol 2024; 55:499-513. [PMID: 38175355 PMCID: PMC10920534 DOI: 10.1007/s42770-023-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
The frosty polar environment houses diverse habitats mostly driven by psychrophilic and psychrotolerant microbes. Along with traditional cultivation methods, next-generation sequencing technologies have become common for exploring microbial communities from various extreme environments. Investigations on glaciers, ice sheets, ponds, lakes, etc. have revealed the existence of numerous microorganisms while details of microbial communities in the Arctic fjords remain incomplete. The current study focuses on understanding the bacterial diversity in two Arctic fjord sediments employing the 16S rRNA gene metabarcoding and its comparison with previous studies from various Arctic habitats. The study revealed that Proteobacteria was the dominant phylum from both the fjord samples followed by Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Chloroflexi and Chlamydiae. A significant proportion of unclassified reads derived from bacteria was also detected. Psychrobacter, Pseudomonas, Acinetobacter, Aeromonas, Photobacterium, Flavobacterium, Gramella and Shewanella were the major genera in both the fjord sediments. The above findings were confirmed by the comparative analysis of fjord metadata with the previously reported (secondary metadata) Arctic samples. This study demonstrated the potential of 16S rRNA gene metabarcoding in resolving bacterial composition and diversity thereby providing new in situ insights into Arctic fjord systems.
Collapse
Affiliation(s)
- Bhavya Kachiprath
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Solly Solomon
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
- Fishery Survey of India, Cochin Zonal Base, Kochangadi Road, Kochi, Kerala, 682005, India
| | - Jayanath Gopi
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Kingdom of Saudi Arabia
| | - P R Jayachandran
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Jabir Thajudeen
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403804, India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Anjali S Mohan
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - E R Chaithanya
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India
| | - Rosamma Philip
- Dept. of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, 682016, India.
| |
Collapse
|
4
|
Koike H, Miyamoto K, Teramoto M. Alcanivorax bacteria as important polypropylene degraders in mesopelagic environments. Appl Environ Microbiol 2023; 89:e0136523. [PMID: 37982621 PMCID: PMC10734414 DOI: 10.1128/aem.01365-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE PP biodegradation has not been clearly shown (it has been uncertain whether the PP structure is actually biodegraded or not). This is the first report on the obvious biodegradation of PP. At the same time, this study shows that Alcanivorax bacteria could be major degraders of PP in mesopelagic environments. Moreover, PP biodegradation has been investigated by using solid PP as the sole carbon source. However, this study shows that PP would not be used as a sole carbon and energy source. Our data thus provide very important and key knowledge for PP bioremediation.
Collapse
Affiliation(s)
- Hiroki Koike
- Department of Marine Resource Science, Kochi University, Nankoku, Kochi, Japan
| | - Kenji Miyamoto
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Maki Teramoto
- Department of Marine Resource Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
5
|
Jabir T, Jain A, Vipindas PV, Krishnan KP. Stochastic Processes Dominate in the Water Mass-Based Segregation of Diazotrophs in a High Arctic Fjord (Svalbard). MICROBIAL ECOLOGY 2023; 86:2733-2746. [PMID: 37532947 DOI: 10.1007/s00248-023-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Nitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N2) to ammonia (NH3+) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden. The principal environmental and ecological drivers of the observed variations were identified. The majority of the nifH gene sequences obtained in the present study belonged to cluster I and cluster III nifH phylotypes, accounting for 65% and 25% of the total nifH gene sequences. The nifH gene diversity and composition, irrespective of the size fractions (free-living and particle attached), showed a clear separation among water mass types, i.e., Atlantic-influenced versus glacier-influenced water mass. Higher nifH gene diversity and relative abundances of non-cyanobacterial nifH OTUs, affiliated with uncultured Rhizobiales, Burkholderiales, Alteromonadaceae, Gallionellaceae (cluster I) and uncultured Deltaproteobacteria including Desulfuromonadaceae (cluster III), were prevalent in GIW while uncultured Gammaproteobacteria and Desulfobulbaceae were abundant in AIW. The diazotrophic community assembly was dominated by stochastic processes, principally ecological drift, and to lesser degrees dispersal limitation and homogeneous dispersal. Differences in the salinity and dissolved oxygen content lead to the vertical segregation of diazotrophs among water mass types. These findings suggest that water column stratification affects the composition and assembly mechanism of diazotrophic communities and thus could affect nitrogen fixation in the Arctic fjord.
Collapse
Affiliation(s)
- Thajudeen Jabir
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India.
| | - Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| |
Collapse
|
6
|
Hay MC, Mitchell AC, Soares AR, Debbonaire AR, Mogrovejo DC, Els N, Edwards A. Metagenome-assembled genomes from High Arctic glaciers highlight the vulnerability of glacier-associated microbiota and their activities to habitat loss. Microb Genom 2023; 9. [PMID: 37937832 DOI: 10.1099/mgen.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.
Collapse
Affiliation(s)
- Melanie C Hay
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Andrew C Mitchell
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
| | - Andre R Soares
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Aliyah R Debbonaire
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - Diana C Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nora Els
- Department of Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Svalbard and Jan Mayen
| |
Collapse
|
7
|
Bendia AG, Moreira JCF, Ferreira JCN, Romano RG, Ferreira IGC, Franco DC, Evangelista H, Montone RC, Pellizari VH. Insights into Antarctic microbiomes: diversity patterns for terrestrial and marine habitats. AN ACAD BRAS CIENC 2023; 95:e20211442. [PMID: 37820122 DOI: 10.1590/0001-3765202320211442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/27/2022] [Indexed: 10/13/2023] Open
Abstract
Microorganisms in Antarctica are recognized for having crucial roles in ecosystems functioning and biogeochemical cycles. To explore the diversity and composition of microbial communities through different terrestrial and marine Antarctic habitats, we analyze 16S rRNA sequence datasets from fumarole and marine sediments, soil, snow and seawater environments. We obtained measures of alpha- and beta-diversities, as well as we have identified the core microbiome and the indicator microbial taxa of a particular habitat. Our results showed a unique microbial community structure according to each habitat, including specific taxa composing each microbiome. Marine sediments harbored the highest microbial diversity among the analyzed habitats. In the fumarole sediments, the core microbiome was composed mainly of thermophiles and hyperthermophilic Archaea, while in the majority of soil samples Archaea was absent. In the seawater samples, the core microbiome was mainly composed by cultured and uncultured orders usually identified on Antarctic pelagic ecosystems. Snow samples exhibited common taxa previously described for habitats of the Antarctic Peninsula, which suggests long-distance dispersal processes occurring from the Peninsula to the Continent. This study contributes as a baseline for further efforts on evaluating the microbial responses to environmental conditions and future changes.
Collapse
Affiliation(s)
- Amanda G Bendia
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Julio Cezar F Moreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Juliana C N Ferreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Renato G Romano
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Ivan G C Ferreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Diego C Franco
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Heitor Evangelista
- Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Rosalinda C Montone
- Universidade de São Paulo (USP), Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Vivian Helena Pellizari
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
8
|
Kong H, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Kim JH, Xu D. RNA outperforms DNA-based metabarcoding in assessing the diversity and response of microeukaryotes to environmental variables in the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162608. [PMID: 36871742 DOI: 10.1016/j.scitotenv.2023.162608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The Arctic Ocean (AO) has a harsh environment characterized by low temperatures, extensive ice coverage, and periodic freezing and melting of sea ice, which has provided diverse habitats for microorganisms. Prior studies primarily focused on microeukaryote communities in the upper water or sea ice based on environmental DNA, leaving the composition of active microeukaryotes in the diverse AO environments largely unknown. This study provided a vertical assessment of microeukaryote communities in the AO from snow and ice to sea water at a depth of 1670 m using high-throughput sequencing of co-extracted DNA and RNA. RNA extracts depicted microeukaryote community structure and intergroup correlations more accurately and responded more sensitively to environmental conditions than those derived from DNA. Using RNA:DNA ratios as a proxy for relative activity of major taxonomic groups, the metabolic activities of major microeukaryote groups were determined along depth. Analysis of co-occurrence networks showed that parasitism between Syndiniales and dinoflagellates/ciliates in the deep ocean may be significant. This study increased our knowledge of the diversity of active microeukaryote communities and highlighted the importance of using RNA-based sequencing over DNA-based sequencing to examine the relationship between microeukaryote assemblages and the responses of microeukaryotes to environmental variables in the AO.
Collapse
Affiliation(s)
- Hejun Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jee-Hoon Kim
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Are intratumoral microbiota involved in the progression of intraductal papillary mucinous neoplasms of the pancreas? Surgery 2023; 173:503-510. [PMID: 36404180 DOI: 10.1016/j.surg.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Microbiota have been reported to influence the development of various gastrointestinal neoplasms through the mechanism of sustained inflammation; however, few data are available regarding their influence on intraductal papillary mucinous neoplasms. The aim of this study was to assess the association between specific microbiota and the clinicopathologic characteristics of intraductal papillary mucinous neoplasms of the pancreas. METHODS DNA was extracted from formalin-fixed, paraffin-embedded samples of 30 patients who underwent pancreatectomy for intraductal papillary mucinous neoplasm, and polymerase chain reaction was used to create sequence libraries using the primer set for the V3 and V4 region of 16S recombinant DNA. Filtered sequence reads were then processed into operational taxonomic units with a 97% identity threshold and the relative abundance of bacteria compared between the 2 groups using operational taxonomic units. RESULTS There was a trend toward fewer Firmicutes and more Proteobacteria and Fusobacteria in the relative abundance of main duct operational taxonomic units than in branch duct operational taxonomic units. The relative abundances of Bacteroidetes (P < .01) and Fusobacteria (P = .04) were significantly higher in invasive intraductal papillary mucinous neoplasms than in noninvasive intraductal papillary mucinous neoplasms. The relative abundance of the intestinal type was significantly lower in Firmicutes than the relative abundance of the nonintestinal type (P = .04). Notably, main duct operational taxonomic units with the intestinal subtype were affected by increased proportions of Proteobacteria and Fusobacteria, and Fusobacteria were abundant in the intestinal type of invasive main duct operational taxonomic units. CONCLUSION Intratumoral microbiota may be involved in the progression of operational taxonomic units.
Collapse
|
10
|
Shoji F, Yamaguchi M, Okamoto M, Takamori S, Yamazaki K, Okamoto T, Maehara Y. Gut microbiota diversity and specific composition during immunotherapy in responders with non-small cell lung cancer. Front Mol Biosci 2022; 9:1040424. [PMID: 36353732 PMCID: PMC9638091 DOI: 10.3389/fmolb.2022.1040424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy including immune checkpoint inhibitors (ICI) has revolutionized non-small cell lung cancer (NSCLC) therapy. Recently, the microbiota status “before” initiation of ICI therapy has been emphasized as a predictive biomarker in patients undergoing ICI therapy. However, the microbiota diversity and composition “during” ICI therapy is unknown. This multicenter, prospective observational study analyzed both saliva and feces from 28 patients with NSCLC. We performed 16S ribosomal RNA gene sequencing, then analyzed associations of oral and gut microbiota diversity or composition with ICI response. At the genus level, the alpha diversity of the gut microbiota was significantly greater in responders (n = 17) than in non-responders (n = 11) (Chao 1, p = 0.0174; PD whole tree, p = 0.0219; observed species, p = 0.0238; Shannon, p = 0.0362), while the beta diversity of the gut microbiota was significantly different (principal coordinates analysis, p = 0.035). Compositional differences in the gut microbiota were observed between the two groups; in particular, g_Blautia was enriched in responders, whereas o_RF32 order unclassified was enriched in non-responders. The progression-free survival (PFS) of patients enriched gut microbiota of g_Blautia was significantly longer [median survival time (MST): not reached vs. 549 days, p = 0.0480] and the PFS of patients with gut microbiota of o_RF32 unclassified was significantly shorter (MST: 49 vs. 757 days, p = 0.0205). There were no significant differences between groups in the oral microbiota. This study revealed a strong association between gut microbiota diversity and ICI response in NSCLC patients. Moreover, specific gut microbiota compositions may influence the ICI response. These findings might be useful in identifying biomarkers to predict ICI response.
Collapse
Affiliation(s)
- Fumihiro Shoji
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
- *Correspondence: Fumihiro Shoji,
| | - Masafumi Yamaguchi
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Masaki Okamoto
- Department of Respiratory Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | | |
Collapse
|
11
|
Shoji F, Miura N, Tagawa T, Tsukamoto S, Okamoto T, Yamazaki K, Hamatake M, Takeo S. Chronological analysis of the gut microbiome for efficacy of atezolizumab-based immunotherapy in non-small cell lung cancer: Protocol for a multicenter prospective observational study. Thorac Cancer 2022; 13:2829-2833. [PMID: 36063818 PMCID: PMC9527175 DOI: 10.1111/1759-7714.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cancer immunotherapy with immune checkpoint inhibitors (ICIs) is an innovative treatment for non‐small cell lung cancer (NSCLC). Recently, the specific composition of the gut microbiome before initiation of cancer immunotherapy has been highlighted as a predictive biomarker in patients undergoing cancer immunotherapy, mainly in the US or Europe. However, the fact gut microbiome status is completely different in races or countries has been revealed. In addition, how the microbiome composition and diversity chronologically change during cancer immunotherapy is still unclear. Methods This multicenter, prospective observational study will analyze the association between the gut microbiome and therapeutic response in NSCLC patients who received atezolizumab‐based immunotherapy. The aim of the present study is to clarify not only how the specific composition of the gut microbiome influences clinical response in NSCLC patients but the chronological changes of gut microbiota during atezolizumab‐based immunotherapy. The gut microbiota will be analyzed using 16S rRNA gene sequencing. The main inclusion criteria are as follows: (1) Pathologically‐ or cytologically‐confirmed stage IV or postoperative recurrent NSCLC. (2) Patients ≥20 years old at the time of informed consent. (3) Planned to treat with atezolizumab‐based immunotherapy combined with platinum‐based chemotherapy (cohort 1) and monotherapy (cohort 2) as a first immunotherapy. (4) Patients to provide fecal samples. A total of 60 patients will be enrolled prospectively. Enrollment will begin in 2020 and the final analyses will be completed by 2024. Discussion This trial will provide more evidence of how gut microbiota composition and diversity chronologically change during cancer immunotherapy and contribute to the development of biomarkers to predict ICI response as well as biotic therapies which enhance the ICI response.
Collapse
Affiliation(s)
- Fumihiro Shoji
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.,Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Naoko Miura
- Department of Thoracic Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Tsukamoto
- Department of Thoracic Surgery, Kitakyushu Medical Center, Kitakyushu, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Motoharu Hamatake
- Department of Thoracic Surgery, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Sadanori Takeo
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
12
|
Shoji F, Yamashita T, Kinoshita F, Takamori S, Fujishita T, Toyozawa R, Ito K, Yamazaki K, Nakashima N, Okamoto T. Artificial intelligence-derived gut microbiome as a predictive biomarker for therapeutic response to immunotherapy in lung cancer: protocol for a multicentre, prospective, observational study. BMJ Open 2022; 12:e061674. [PMID: 35676015 PMCID: PMC9185567 DOI: 10.1136/bmjopen-2022-061674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Immunotherapy is the fourth leading therapy for lung cancer following surgery, chemotherapy and radiotherapy. Recently, several studies have reported about the potential association between the gut microbiome and therapeutic response to immunotherapy. Nevertheless, the specific composition of the gut microbiome or combination of gut microbes that truly predict the efficacy of immunotherapy is not definitive. METHODS AND ANALYSIS The present multicentre, prospective, observational study aims to discover the specific composition of the gut microbiome or combination of gut microbes predicting the therapeutic response to immunotherapy in lung cancer using artificial intelligence. The main inclusion criteria are as follows: (1) pathologically or cytologically confirmed metastatic or postoperative recurrent lung cancer including non-small cell lung cancer and small cell lung cancer; (2) age≥20 years at the time of informed consent; (3) planned treatment with immunotherapy including combination therapy and monotherapy, as the first-line immunotherapy; and (4) ability to provide faecal samples. In total, 400 patients will be enrolled prospectively. Enrolment will begin in 2021, and the final analyses will be completed by 2024. ETHICS AND DISSEMINATION The study protocol was approved by the institutional review board of each participating centre in 2021 (Kyushu Cancer Center, IRB approved No. 2021-13, 8 June 2021 and Kyushu Medical Center, IRB approved No. 21-076, 31 August 2021). Study results will be disseminated through peer-reviewed journals and national and international conferences. TRIAL REGISTRATION NUMBER UMIN000046428.
Collapse
Affiliation(s)
- Fumihiro Shoji
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | | | - Fumihiko Kinoshita
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Takatoshi Fujishita
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Kensaku Ito
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, National Hospital Organisation Kyushu Medical Center, Fukuoka, Japan
| | - Naoki Nakashima
- Medical Information Center, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
13
|
Winkel M, Trivedi CB, Mourot R, Bradley JA, Vieth-Hillebrand A, Benning LG. Seasonality of Glacial Snow and Ice Microbial Communities. Front Microbiol 2022; 13:876848. [PMID: 35651494 PMCID: PMC9149292 DOI: 10.3389/fmicb.2022.876848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
Blooms of microalgae on glaciers and ice sheets are amplifying surface ice melting rates, which are already affected by climate change. Most studies on glacial microorganisms (including snow and glacier ice algae) have so far focused on the spring and summer melt season, leading to a temporal bias, and a knowledge gap in our understanding of the variations in microbial diversity, productivity, and physiology on glacier surfaces year-round. Here, we investigated the microbial communities from Icelandic glacier surface snow and bare ice habitats, with sampling spanning two consecutive years and carried out in both winter and two summer seasons. We evaluated the seasonal differences in microbial community composition using Illumina sequencing of the 16S rRNA, 18S rRNA, and ITS marker genes and correlating them with geochemical signals in the snow and ice. During summer, Chloromonas, Chlainomonas, Raphidonema, and Hydrurus dominated surface snow algal communities, while Ancylonema and Mesotaenium dominated the surface bare ice habitats. In winter, algae could not be detected, and the community composition was dominated by bacteria and fungi. The dominant bacterial taxa found in both winter and summer samples were Bacteriodetes, Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria. The winter bacterial communities showed high similarities to airborne and fresh snow bacteria reported in other studies. This points toward the importance of dry and wet deposition as a wintertime source of microorganisms to the glacier surface. Winter samples were also richer in nutrients than summer samples, except for dissolved organic carbon-which was highest in summer snow and ice samples with blooming microalgae, suggesting that nutrients are accumulated during winter but primarily used by the microbial communities in the summer. Overall, our study shows that glacial snow and ice microbial communities are highly variable on a seasonal basis.
Collapse
Affiliation(s)
- Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - Christopher B Trivedi
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - Rey Mourot
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - James A Bradley
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany.,School of Geography, Queen Mary University of London, London, United Kingdom
| | - Andrea Vieth-Hillebrand
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - Liane G Benning
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Soto DF, Franzetti A, Gómez I, Huovinen P. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150305. [PMID: 34818790 DOI: 10.1016/j.scitotenv.2021.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 05/10/2023]
Abstract
The increasing temperatures at the West Antarctic Peninsula (Maritime Antarctic) could lead to a higher occurrence of snow algal blooms which are ubiquitous events that change the snow coloration, reducing albedo and in turn exacerbating melting. However, there is a limited understanding of snow algae blooms biodiversity, composition, and their functional profiles, especially in one of the world's areas most affected by climate change. In this study we used 16S rRNA and 18S rRNA metabarcoding, and shotgun metagenomics to assess the diversity, composition, and functional potential of the snow algae blooms bacterial and eukaryotic communities at three different sites of Maritime Antarctic, between different colors of the algae blooms and between seasonal and semi-permanent snowfields. We tested the hypothesis that the functional potential of snow algae blooms is conserved despite a changing taxonomic composition. Furthermore, we determined taxonomic co-occurrence patterns of bacteria and eukaryotes and assessed the potential for the exchange of metabolites among bacterial taxa. Here, we tested the prediction that there are co-occurring taxa within snow algae whose biotic interactions are marked by the exchange of metabolites. Our results show that the composition of snow algae blooms vary significantly among sites. For instance, a higher abundance of fungi and protists were detected in Fildes Peninsula compared with Doumer Island and O'Higgins. Likewise, the composition varied between snow colors and snow types. However, the functional potential varied only among sampling sites with a higher abundance of genes involved in tolerance to environmental stress at O'Higgins. Co-occurrence patterns of dominant bacterial genera such as Pedobacter, Polaromonas, Flavobacterium and Hymenobacter were recorded, contrasting the absence of co-occurring patterns displayed by Chlamydomonadales algae with other eukaryotes. Finally, genome-scale metabolic models revealed that bacteria within snow algae blooms likely compete for resources instead of forming cooperative communities.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
15
|
Millar JL, Bagshaw EA, Edwards A, Poniecka EA, Jungblut AD. Polar Cryoconite Associated Microbiota Is Dominated by Hemispheric Specialist Genera. Front Microbiol 2021; 12:738451. [PMID: 34899626 PMCID: PMC8660574 DOI: 10.3389/fmicb.2021.738451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cryoconite holes, supraglacial depressions containing water and microbe-mineral aggregates, are known to be hotspots of microbial diversity on glacial surfaces. Cryoconite holes form in a variety of locations and conditions, which impacts both their structure and the community that inhabits them. Using high-throughput 16S and 18S rRNA gene sequencing, we have investigated the communities of a wide range of cryoconite holes from 15 locations across the Arctic and Antarctic. Around 24 bacterial and 11 eukaryotic first-rank phyla were observed in total. The various biotic niches (grazer, predator, photoautotroph, and chemotroph), are filled in every location. Significantly, there is a clear divide between the bacterial and microalgal communities of the Arctic and that of the Antarctic. We were able to determine the groups contributing to this difference and the family and genus level. Both polar regions contain a "core group" of bacteria that are present in the majority of cryoconite holes and each contribute >1% of total amplicon sequence variant (ASV) abundance. Whilst both groups contain Microbacteriaceae, the remaining members are specific to the core group of each polar region. Additionally, the microalgal communities of Arctic cryoconite holes are dominated by Chlamydomonas whereas the Antarctic cryoconite holes are dominated by Pleurastrum. Therefore cryoconite holes may be a global feature of glacier landscapes, but they are inhabited by regionally distinct microbial communities. Our results are consistent with the notion that cryoconite microbiomes are adapted to differing conditions within the cryosphere.
Collapse
Affiliation(s)
- Jasmin L Millar
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom.,Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Elizabeth A Bagshaw
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
| | - Arwyn Edwards
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, United Kingdom
| | - Ewa A Poniecka
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
| | - Anne D Jungblut
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| |
Collapse
|
16
|
Fillinger L, Hürkamp K, Stumpp C, Weber N, Forster D, Hausmann B, Schultz L, Griebler C. Spatial and Annual Variation in Microbial Abundance, Community Composition, and Diversity Associated With Alpine Surface Snow. Front Microbiol 2021; 12:781904. [PMID: 34912321 PMCID: PMC8667604 DOI: 10.3389/fmicb.2021.781904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Understanding microbial community dynamics in the alpine cryosphere is an important step toward assessing climate change impacts on these fragile ecosystems and meltwater-fed environments downstream. In this study, we analyzed microbial community composition, variation in community alpha and beta diversity, and the number of prokaryotic cells and virus-like particles (VLP) in seasonal snowpack from two consecutive years at three high altitude mountain summits along a longitudinal transect across the European Alps. Numbers of prokaryotic cells and VLP both ranged around 104 and 105 per mL of snow meltwater on average, with variation generally within one order of magnitude between sites and years. VLP-to-prokaryotic cell ratios spanned two orders of magnitude, with median values close to 1, and little variation between sites and years in the majority of cases. Estimates of microbial community alpha diversity inferred from Hill numbers revealed low contributions of common and abundant microbial taxa to the total taxon richness, and thus low community evenness. Similar to prokaryotic cell and VLP numbers, differences in alpha diversity between years and sites were generally relatively modest. In contrast, community composition displayed strong variation between sites and especially between years. Analyses of taxonomic and phylogenetic community composition showed that differences between sites within years were mainly characterized by changes in abundances of microbial taxa from similar phylogenetic clades, whereas shifts between years were due to significant phylogenetic turnover. Our findings on the spatiotemporal dynamics and magnitude of variation of microbial abundances, community diversity, and composition in surface snow may help define baseline levels to assess future impacts of climate change on the alpine cryosphere.
Collapse
Affiliation(s)
- Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nina Weber
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Forster
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lotta Schultz
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Liu K, Liu Y, Hu A, Wang F, Zhang Z, Yan Q, Ji M, Vick-Majors TJ. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums. Environ Microbiol 2021; 23:6450-6462. [PMID: 34559463 DOI: 10.1111/1462-2920.15788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Glaciers represent important biomes of Earth and are recognized as key species pools for downstream aquatic environments. Worldwide, rapidly receding glaciers are driving shifts in hydrology, species distributions and threatening microbial diversity in glacier-fed aquatic ecosystems. However, the impact of glacier surface snow-originating taxa on the microbial diversity in downstream aquatic environments has been little explored. To elucidate the contribution of glacier surface snow-originating taxa to bacterial diversity in downstream aquatic environments, we collected samples from glacier surface snows, downstream streams and lakes along three glacier-fed hydrologic continuums on the Tibetan Plateau. Our results showed that glacier stream acts as recipients and vectors of bacteria originating from the glacier environments. The contributions of glacier surface snow-originating taxa to downstream bacterial communities decrease from the streams to lakes, which was consistently observed in three geographically separated glacier-fed ecosystems. Our results also revealed that some rare snow-originating bacteria can thrive along the hydrologic continuums and become dominant in downstream habitats. Finally, our results indicated that the dispersal patterns of bacterial communities are largely determined by mass effects and increasingly subjected to local sorting of species along the glacier-fed hydrologic continuums. Collectively, this study provides insights into the fate of bacterial assemblages in glacier surface snow following snow melt and how bacterial communities in aquatic environments are affected by the influx of glacier snow-originating bacteria.
Collapse
Affiliation(s)
- Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.,Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Anyi Hu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Trista J Vick-Majors
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
18
|
Mulec J, Oarga-Mulec A, Holko L, Pašić L, Kopitar AN, Eleršek T, Mihevc A. Microbiota entrapped in recently-formed ice: Paradana Ice Cave, Slovenia. Sci Rep 2021; 11:1993. [PMID: 33479448 PMCID: PMC7820503 DOI: 10.1038/s41598-021-81528-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022] Open
Abstract
Paradana is one of the biggest ice caves in Slovenia, with an estimated ice volume of 8,000 m3. Reflecting climatological conditions, the cave ice undergoes repeated freeze-thaw cycles and regular yearly deposition of fresh ice. Three distinct ice block samples, collected from the frozen lake in May 2016, were analysed to obtain data on ice physicochemical properties and the composition of associated microbiota. Isotopic composition of the ice samples (18O, 2H) and a local meteoric water line (LMWL) constructed for monthly precipitation at Postojna were used to estimate the isotopic composition of the water that formed the ice, which had high values of deuterium excess and low concentrations of chloride, sulphate and nitrate. The values of total organic carbon (1.93–3.95 mg/l) within the ice blocks fall within the range of those measured in karst streams. Total cell count in the ice was high and the proportion of cell viability increased along the depth gradient and ranged from 4.67 × 104 to 1.52 × 105 cells/ml and from 51.0 to 85.4%, respectively. Proteobacteria represented the core of the cave-ice microbiome (55.9–79.1%), and probably play an essential role in this ecosystem. Actinobacteria was the second most abundant phylum (12.0–31.4%), followed in abundance by Bacteroidetes (2.8–4.3%). Ice phylotypes recorded amounted to 442 genera, but only 43 genera had abundances greater than 0.5%. Most abundant were Pseudomonas, a well-known ice dweller, and Lysobacter, which previously was not reported in this context. Finally, two xanthophytes, Chloridella glacialis and Ellipsoidion perminimum, known from polar environments, were cultured from the ice. This indicates that the abundance and ecological role of phototrophs in such environments might be greater than previously deduced.
Collapse
Affiliation(s)
- Janez Mulec
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Titov trg 2, 6230, Postojna, Slovenia. .,UNESCO Chair on Karst Education, University of Nova Gorica, Glavni trg 8, 5271, Vipava, Slovenia.
| | - Andreea Oarga-Mulec
- School of Environmental Sciences, University of Nova Gorica, Glavni trg 8, 5271, Vipava, Slovenia
| | - Ladislav Holko
- Institute of Hydrology of the Slovak Academy of Sciences, Dúbravská cesta 9, 84104, Bratislava, Slovak Republic
| | - Lejla Pašić
- School of Medicine, University Sarajevo School of Science and Technology, Hrasnička cesta 3a, 71000, Sarajevo, Bosnia and Herzegovina
| | - Andreja Nataša Kopitar
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Tina Eleršek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Andrej Mihevc
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Titov trg 2, 6230, Postojna, Slovenia.,UNESCO Chair on Karst Education, University of Nova Gorica, Glavni trg 8, 5271, Vipava, Slovenia
| |
Collapse
|
19
|
Monaco P, Divino F, Naclerio G, Bucci A. Microbial community analysis with a specific statistical approach after a record breaking snowfall in Southern Italy. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01604-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
Snow and ice ecosystems present unexpectedly high microbial abundance and diversity. Although arctic and alpine snow environments have been intensively investigated from a microbiological point of view, few studies have been conducted in the Apennines. Accordingly, the main purpose of this research was to analyze the microbial communities of the snow collected in two different locations of Capracotta municipality (Southern Italy) after a snowfall record occurred on March 2015 (256 cm of snow in less than 24 h).
Methods
Bacterial communities were analyzed by the Next-Generation Sequencing techniques. Furthermore, a specific statistical approach for taxonomic hierarchy data was introduced, both for the assessment of diversity within microbial communities and the comparison between different microbiotas. In general, diversity and similarity indices are more informative when computed at the lowest level of the taxonomic hierarchy, the species level. This is not the case with microbial data, for which the species level is not necessarily the most informative. Indeed, the possibility to detect a large number of unclassified records at every level of the hierarchy (even at the top) is very realistic due to both the partial knowledge about the cultivable fraction of microbial communities and limitations to taxonomic assignment connected to the quality and completeness of the 16S rRNA gene reference databases. Thus, a global approach considering information from the whole taxonomic hierarchy was adopted in order to obtain a more consistent assessment of the biodiversity.
Result
The main phyla retrieved in the investigated snow samples were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Interestingly, DNA from bacteria adapted to thrive at low temperatures, but also from microorganisms normally associated with other habitats, whose presence in the snow could be justified by wind-transport, was found. Biomolecular investigations and statistical data analysis showed relevant differences in terms of biodiversity, composition, and distribution of bacterial species between the studied snow samples.
Conclusion
The relevance of this research lies in the expansion of knowledge about microorganisms associated with cold environments in contexts poorly investigated such as the Italian Apennines, and in the development of a global statistical approach for the assessment of biological diversity and similarity of microbial communities as an additional tool to be usefully combined with the barcoding methods.
Collapse
|
20
|
Exploration of Microbial Diversity of Himalayan Glacier Moraine Soil Using 16S Amplicon Sequencing and Phospholipid Fatty Acid Analysis Approaches. Curr Microbiol 2020; 78:78-85. [PMID: 33112975 DOI: 10.1007/s00284-020-02259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Changme Khangpu glacier is located in the northern district of Sikkim which comes under UNESCO heritage site Kanchenjunga Biosphere Reserve which is considered as one of the important biological hotspot regions in the Eastern Himalayas. This is the first report on microbial diversity analysis of moraine soil from one of the unexplored glaciers of Sikkim using high throughput sequencing platform and phospholipid fatty acids analysis (PLFA). It was found that the 16S amplicon sequence comprised 362,902 raw sequences with a sequence length of 150 bp and (G + C) content 52%. A total of 156,821 pre-processed reads were clustered into 378 OTUs (operational taxonomic units) comprising 6 bacterial phyla. The top four dominant phyla based on the 16S amplicon sequences were Proteobacteria (56%), Firmicutes (16%), Actinobacteria (12%), and Bacteroidetes (8%), respectively. PLFA analysis confirmed the dominance of Gram positive bacteria (72%) followed by Gram negative bacteria (32%) and the major fatty acids which are present in the moraine soil sample were PUFA (61%), and 18:2ω6,9c (29%). This is the primary study and first of its kind done on moraine soil from glaciers of Sikkim. Based on 16S amplicon sequencing and PLFA analysis of moraine soil samples from glaciers of Sikkim suggest that this glaciers harbours rich microbial diversity and thus can have wide industrial and biotechnological potential. Thus, there is an escalating scope to further study these extreme biomes with respect to their microbial diversity and their functional capabilities.
Collapse
|
21
|
Sułowicz S, Bondarczuk K, Ignatiuk D, Jania JA, Piotrowska-Seget Z. Microbial communities from subglacial water of naled ice bodies in the forefield of Werenskioldbreen, Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138025. [PMID: 32213417 DOI: 10.1016/j.scitotenv.2020.138025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
We assessed the structure of microbial communities in the subglacial drainage system of the Werenskioldbreen glacier, Svalbard, which consists of three independent channels. Dome-shaped naled ice bodies that had been forming and releasing subglacial water in the glacial forefield during accumulations season were used to study glacial microbiome. We tested the hypothesis that the properties of the water transported by these channels are site-dependent and influence bacterial diversity. We therefore established the phylogenetic structure of the subglacial microbial communities using next generation sequencing (NGS) of the 16S rRNA gene and performed bioinformatics analyses. A total of 1409 OTUs (operational taxonomic units) belonged to 40 phyla; mostly Proteobacteria, Gracilibacteria, Bacteroidetes, Actinobacteria and Parcubacteria were identified. Sites located on the edge of Werenskioldbreen forefield (Angell, Kvisla) were mainly dominated by Betaproteobacteria. In the central site (Dusan) domination of Epsilonproteobacteria class was observed. Gracilibacteria (GN02) and Gammaproteobacteria represented the dominant taxa only in the sample Kvisla 2. Principal Coordinate Analysis (PCoA) of beta diversity revealed that phylogenetic profiles grouped in three different clusters according to the sampling site. Moreover, higher similarity of bacterial communities from Angell and Kvisla compared to Dusan was confirmed by cluster analysis and Venn diagrams. The highest alpha index values was measured in Dusan. Richness and phylogenetic diversity indices were significantly (p < .05) and positively correlated with pH values of subglacial water and negatively with concentration of Cl-, Br-, and NO3- anions. These anions negatively impacted the values of richness indices but positively correlated with abundance of some microbial phyla. Our results indicated that subglacial water from naled ice bodies offer the possibility to study the glacial microbiome. In the studied subglacial water, the microbial community structure was sampling site specific and dependent on the water properties, which in turn were probably influenced by the local bedrock composition.
Collapse
Affiliation(s)
- Sławomir Sułowicz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Kinga Bondarczuk
- Medical University of Bialystok, Centre for Bioinformatics and Data Analysis, Waszyngtona 13a, 15-269 Bialystok, Poland
| | - Dariusz Ignatiuk
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Bedzinska 60, 41-205 Sosnowiec, Poland; Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, Svalbard Science Centre, P.O. Box 156, N-9171 Longyearbyen, Svalbard, Norway
| | - Jacek A Jania
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Bedzinska 60, 41-205 Sosnowiec, Poland
| | - Zofia Piotrowska-Seget
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
22
|
Holland AT, Bergk Pinto B, Layton R, Williamson CJ, Anesio AM, Vogel TM, Larose C, Tranter M. Over Winter Microbial Processes in a Svalbard Snow Pack: An Experimental Approach. Front Microbiol 2020; 11:1029. [PMID: 32547512 PMCID: PMC7273115 DOI: 10.3389/fmicb.2020.01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Snow packs cover large expanses of Earth’s land surface, making them integral components of the cryosphere in terms of past climate and atmospheric proxies, surface albedo regulators, insulators for other Arctic environments and habitats for diverse microbial communities such as algae, bacteria and fungi. Yet, most of our current understanding of snow pack environments, specifically microbial activity and community interaction, is limited to the main microbial growing season during spring ablation. At present, little is known about microbial activity and its influence on nutrient cycling during the subfreezing temperatures and 24-h darkness of the polar winter. Here, we examined microbial dynamics in a simulated cold (−5°C), dark snow pack to determine polar winter season microbial activity and its dependence on critical nutrients. Snow collected from Ny-Ålesund, Svalbard was incubated in the dark over a 5-week period with four different nutrient additions, including glacial mineral particles, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and a combined treatment of DIN plus DIP. Data indicate a consumption of dissolved inorganic nutrients, particularly DIN, by heterotrophic communities, suggesting a potential nitrogen limitation, contradictory to phosphorus limitations found in most aquatic environments. 16S amplicon sequencing also reveal a clear difference in microbial community composition in the particulate mineral treatment compared to dissolved nutrient treatments and controls, suggesting that certain species of heterotrophs living within the snow pack are more likely to associate with particulates. Particulate phosphorus analyses indicate a potential ability of heterotrophic communities to access particulate sources of phosphorous, possibly explaining the lack of phosphorus limitation. These findings have importance for understanding microbial activity during the polar winter season and its potential influences on the abundance and bioavailability of nutrients released to surface ice and downstream environments during the ablation season.
Collapse
Affiliation(s)
- Alexandra T Holland
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Benoît Bergk Pinto
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France
| | - Rose Layton
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France.,ENOVEO, Lyon, France
| | - Christopher J Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Copenhagen, Denmark
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France
| | - Catherine Larose
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France
| | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Thomas FA, Sinha RK, Krishnan KP. Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135264. [PMID: 31848061 DOI: 10.1016/j.scitotenv.2019.135264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The bacterial community composition of a valley glacier in Svalbard, its pro-glacial channels, and the associated downstream fjord ecosystem was investigated so as to figure out the degree to which downslope transport of microbes from the glacier systems along a hydrological continuum impose an effect on the patterns of diversity in the fjord system. A combination of culture based and high-throughput amplicon sequencing approach was followed which resulted in significant variation (R = 0.873, p = 0.001) in the bacterial community structure between these ecosystems. Dominance of sequences belonging to class β-Proteobacteria was seen in the glacier snow, ice and melt waters (MW) while a relatively higher abundance of OTUs belonging to α-Proteobacteria and Verrucomicrobiae demarcated the fjord waters. Similarity percentage (SIMPER) analysis of the Operational Taxonomic Units (OTUs) showed that OTU 1,105,280 (9.15%) and OTU 331 (6.5%) belonging to Burkholderiaceae (β-proteobacteria) and OTU 101,660 (5.76%) and OTU 520 (5.07%) belonging to Rhodobacteraceae (α-proteobacteria) contributed maximum to the overall dissimilarity between the sampling sites. The bacterial community from the MWs were found to be true signatures of the glacier ecosystem while the Kongsfjorden bacterial fraction mostly represented heterotrophic marine taxa influenced by warm Atlantic waters and presence of organic matter. Significant presence of unknown taxa in the MWs suggests the need to study such unexplored, transient niches for a better understanding of the associated microbial processes. Among the various environmental parameters measured, nutrients (NO3- and SiO42-) were found to exhibit strong association with the MW bacterial community while temperature, trace metals, Cl- and SO42- ions were found to influence the fjord bacterial community. The significant differences in the bacterial community composition between the glacier and the fjord ecosystem suggest the unique nature of these systems which in turn is influenced by the associated environmental parameters.
Collapse
Affiliation(s)
- Femi Anna Thomas
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau Goa 403206, India
| | - Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
24
|
Els N, Greilinger M, Reisecker M, Tignat-Perrier R, Baumann-Stanzer K, Kasper-Giebl A, Sattler B, Larose C. Comparison of Bacterial and Fungal Composition and Their Chemical Interaction in Free Tropospheric Air and Snow Over an Entire Winter Season at Mount Sonnblick, Austria. Front Microbiol 2020; 11:980. [PMID: 32508790 PMCID: PMC7251065 DOI: 10.3389/fmicb.2020.00980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated the interactions of air and snow over one entire winter accumulation period as well as the importance of chemical markers in a pristine free-tropospheric environment to explain variation in a microbiological dataset. To overcome the limitations of short term bioaerosol sampling, we sampled the atmosphere continuously onto quartzfiber air filters using a DIGITEL high volume PM10 sampler. The bacterial and fungal communities, sequenced using Illumina MiSeq, as well as the chemical components of the atmosphere were compared to those of a late season snow profile. Results reveal strong dynamics in the composition of bacterial and fungal communities in air and snow. In fall the two compartments were similar, suggesting a strong interaction between them. The overlap diminished as the season progressed due to an evolution within the snowpack throughout winter and spring. Certain bacterial and fungal genera were only detected in air samples, which implies that a distinct air microbiome might exist. These organisms are likely not incorporated in clouds and thus not precipitated or scavenged in snow. Although snow appears to be seeded by the atmosphere, both air and snow showed differing bacterial and fungal communities and chemical composition. Season and alpha diversity were major drivers for microbial variability in snow and air, and only a few chemical markers were identified as important in explaining microbial diversity. Air microbial community variation was more related to chemical markers than snow microbial composition. For air microbial communities Cl–, TC/OC, SO42–, Mg2+, and Fe/Al, all compounds related to dust or anthropogenic activities, were identified as related to bacterial variability while dust related Ca2+ was significant in snow. The only common driver for snow and air was SO42–, a tracer for anthropogenic sources. The occurrence of chemical compounds was coupled with boundary layer injections in the free troposphere (FT). Boundary layer injections also caused the observed variations in community composition and chemistry between the two compartments. Long-term monitoring is required for a more valid insight in post-depositional selection in snow.
Collapse
Affiliation(s)
- Nora Els
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marion Greilinger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria
| | - Michael Reisecker
- Avalanche Warning Service Tyrol, Department of Civil Protection, Federal State Government of Tyrol, Innsbruck, Austria
| | - Romie Tignat-Perrier
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, Écully, France
| | | | - Anne Kasper-Giebl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Catherine Larose
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, Écully, France
| |
Collapse
|
25
|
Edwards A, Cameron KA, Cook JM, Debbonaire AR, Furness E, Hay MC, Rassner SM. Microbial genomics amidst the Arctic crisis. Microb Genom 2020; 6:e000375. [PMID: 32392124 PMCID: PMC7371112 DOI: 10.1099/mgen.0.000375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.
Collapse
Affiliation(s)
- Arwyn Edwards
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Karen A. Cameron
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Joseph M. Cook
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Aliyah R. Debbonaire
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Eleanor Furness
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Melanie C. Hay
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Sara M.E. Rassner
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| |
Collapse
|
26
|
Soto DF, Fuentes R, Huovinen P, Gómez I. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Valdespino-Castillo PM, Cerqueda-García D, Espinosa AC, Batista S, Merino-Ibarra M, Taş N, Alcántara-Hernández RJ, Falcón LI. Microbial distribution and turnover in Antarctic microbial mats highlight the relevance of heterotrophic bacteria in low-nutrient environments. FEMS Microbiol Ecol 2019; 94:5047302. [PMID: 29982398 DOI: 10.1093/femsec/fiy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/04/2018] [Indexed: 11/14/2022] Open
Abstract
Maritime Antarctica has shown the highest increase in temperature in the Southern Hemisphere. Under this scenario, biogeochemical cycles may be altered, resulting in rapid environmental change for Antarctic biota. Microbes that drive biogeochemical cycles often form biofilms or microbial mats in continental meltwater environments. Limnetic microbial mats from the Fildes Peninsula were studied using high-throughput 16S rRNA gene sequencing. Mat samples were collected from 15 meltwater stream sites, comprising a natural gradient from ultraoligotrophic glacier flows to meltwater streams exposed to anthropogenic activities. Our analyses show that microbial community structure differences between mats are explained by environmental NH4+, NO3-, DIN, soluble reactive silicon and conductivity. Microbial mats living under ultraoligotrophic meltwater conditions did not exhibit a dominance of cyanobacterial photoautotrophs, as has been documented for other Antarctic limnetic microbial mats. Instead, ultraoligotrophic mat communities were characterized by the presence of microbes recognized as heterotrophs and photoheterotrophs. This suggests that microbial capabilities for recycling organic matter may be a key factor to dwell in ultra-low nutrient conditions. Our analyses show that phylotype level assemblages exhibit coupled distribution patterns in environmental oligotrophic inland waters. The evaluation of these microbes suggests the relevance of reproductive and structural strategies to pioneer these psychrophilic ultraoligotrophic environments.
Collapse
Affiliation(s)
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Ana Cecilia Espinosa
- LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Silvia Batista
- Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
28
|
Zhou L, Zhou Y, Hu Y, Cai J, Liu X, Bai C, Tang X, Zhang Y, Jang KS, Spencer RGM, Jeppesen E. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. WATER RESEARCH 2019; 160:18-28. [PMID: 31129378 DOI: 10.1016/j.watres.2019.05.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/25/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) from alpine glaciers is highly biolabile and plays a vital role in the biogeochemical cycle of meltwater-impacted environments. To unravel the composition and interactions of DOM with the bacterial community in glacier and glacier meltwater, we conducted sampling of two different Tibetan Plateau glaciers and carried out laboratory bio-incubation experiments. The field data revealed that four protein-like components accounted for 86.0 ± 11.9% of the total variability of all six fluorescence components, which suggests a predominantly microbial source of glacial chromophoric DOM (CDOM). The ice and meltwater samples displayed major contributions of molecular formulae associated with lipids and proteins (i.e. high H/C) as revealed by ultrahigh resolution mass spectrometry. Multiple linear regression models revealed that the abundant phyla explain 64.2%, 61.3%, and 65.0% of the variability of microbial and terrestrial humic-like, and protein-like components, respectively. Correlation-based network analysis determined the metabolic niches of the bacterial community members associated with different fluorescence types in biogeochemical processes. Furthermore, laboratory DOM bio-incubation experiments confirmed that sub-components of the CDOM pool differentially participate in bacterial metabolism. We therefore conclude that the bacterial community interacted closely with the compositional variability of DOM in the investigated alpine glacial environments by both producing and consuming of DOM.
Collapse
Affiliation(s)
- Lei Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Cai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- Shanghai Municipal Engineering Design Institute (Group) CO., LTD, Shanghai, 200092, China
| | - Chengrong Bai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, United States
| | - Erik Jeppesen
- Department of Bioscience and Arctic Research Centre, Aarhus University, DK-8600, Silkeborg, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China
| |
Collapse
|
29
|
Malard LA, Šabacká M, Magiopoulos I, Mowlem M, Hodson A, Tranter M, Siegert MJ, Pearce DA. Spatial Variability of Antarctic Surface Snow Bacterial Communities. Front Microbiol 2019; 10:461. [PMID: 30972032 PMCID: PMC6443967 DOI: 10.3389/fmicb.2019.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
It was once a long-held view that the Antarctic was a pristine environment with low biomass, low biodiversity and low rates of microbial activity. However, as the intensity of scientific investigation has increased, so these views have started to change. In particular, the role and impact of human activity toward indigenous microbial communities has started to come under more intense scrutiny. During the Subglacial Lake Ellsworth exploration campaign in December 2012, a microbiological survey was conducted to determine the extent and likelihood of exogenous input into the subglacial lake system during the hot-water drilling process. Snow was collected from the surface to represent that used for melt water production for hot-water drilling. The results of this study showed that snow used to provide melt water differed in its microbiological composition from that of the surrounding area and raised the question of how the biogeography of snow-borne microorganisms might influence the potential outcome of scientific analyses. In this study, we investigated the biogeography of microorganisms in snow around a series of Antarctic logistic hubs, where human activity was clearly apparent, and from which scientific investigations have been undertaken. A change in microbial community structure with geographical location was apparent and, notably, a decrease in alpha diversity at more remote southern latitudes. Soil-related microorganisms dominated microbial assemblages suggesting terrestrial input, most likely from long-range aeolian transport into continental Antarctica. We also observed that relic DNA was not a major issue when assessing snow samples. Overall, our observations might have profound implications for future scientific activities in Antarctica, such as the need to establish "no-go" protected areas, the need for better characterization of field sites and improved protocols for sterilization and verification of ice drilling equipment.
Collapse
Affiliation(s)
- Lucie A. Malard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle upon Tyne, United Kingdom
| | - Marie Šabacká
- Centre for Polar Ecology, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Iordanis Magiopoulos
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
- Ocean Technology and Engineering Group, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Matt Mowlem
- Ocean Technology and Engineering Group, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Andy Hodson
- Arctic Geology, University Centre in Svalbard, Longyearbyen, Norway
- Department of Environmental Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Martyn Tranter
- Bristol Glaciology Centre, University of Bristol, Bristol, United Kingdom
| | - Martin J. Siegert
- Grantham Institute, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - David A. Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle upon Tyne, United Kingdom
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
30
|
Kosek K, Luczkiewicz A, Kozioł K, Jankowska K, Ruman M, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 1: Bacterial abundance, community structure and nutrient levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1571-1584. [PMID: 30545665 DOI: 10.1016/j.scitotenv.2018.11.378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
The Arctic hosts a set of unique ecosystems, characterised by extreme environmental conditions and undergoing a rapid change resulting from the average temperature rising. We present a study on an aquatic ecosystem of the Revelva catchment (Spitsbergen), based on samples collected from the lake, river and their tributaries, in the summer of 2016. The landscape variety of the study site and the seasonal change in the hydrological regime modify the availability of nutrients. In general, the upper part of the catchment consists of the mountain rocky slopes which are especially abundant in iron minerals, sulphides and phosphorus minerals. The lower part of the catchment is covered by plants - lichens, saxifrages and bryophytes, which are a different source of nutrients. In the analysed water samples, the maximum concentrations of nutrients such as iron, boron and phosphorus were 0.28 μg L-1, 4.52 μg L-1 and 1.91 μg L-1, respectively, in June, while in September, Fe and B reached the concentrations of 1.32 μg L-1 and 2.71 μg L-1, respectively. The concentration of P in September was below the detection limit of 1.00 μg L-1, which may be explained by the necessity of bacteria to consume it immediately on current needs. We noted also an increase in TOC concentration between the June and September samples, which could originate both from the biomass accumulation in the catchment and the permafrost melting contributing to the hydrological regime of the river. The bacterial community developed in this environment consisted mainly of Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes phylum, while the presence of Acidobacteria was less pronounced than in other tundra-related environments. The described catchment shows that despite the relatively small amount of bioavailable nutrients, the Revelva system is biodiverse and one of the most significant biogeochemical changes occurs there in response to seasonally switching water sources.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2 St., Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Marek Ruman
- Faculty of Earth Sciences, University of Silesia,60 Będzińska St., Sosnowiec 41-200, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
31
|
Redeker KR, Chong JPJ, Aguion A, Hodson A, Pearce DA. Microbial metabolism directly affects trace gases in (sub) polar snowpacks. J R Soc Interface 2018; 14:rsif.2017.0729. [PMID: 29263129 DOI: 10.1098/rsif.2017.0729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/12/2022] Open
Abstract
Concentrations of trace gases trapped in ice are considered to develop uniquely from direct snow/atmosphere interactions at the time of contact. This assumption relies upon limited or no biological, chemical or physical transformations occurring during transition from snow to firn to ice; a process that can take decades to complete. Here, we present the first evidence of environmental alteration due to in situ microbial metabolism of trace gases (methyl halides and dimethyl sulfide) in polar snow. We collected evidence for ongoing microbial metabolism from an Arctic and an Antarctic location during different years. Methyl iodide production in the snowpack decreased significantly after exposure to enhanced UV radiation. Our results also show large variations in the production and consumption of other methyl halides, including methyl bromide and methyl chloride, used in climate interpretations. These results suggest that this long-neglected microbial activity could constitute a potential source of error in climate history interpretations, by introducing a so far unappreciated source of bias in the quantification of atmospheric-derived trace gases trapped within the polar ice caps.
Collapse
Affiliation(s)
- K R Redeker
- Department of Biology, University of York, York, North Yorkshire, UK
| | - J P J Chong
- Department of Biology, University of York, York, North Yorkshire, UK
| | - A Aguion
- Department of Biology, University of York, York, North Yorkshire, UK
| | - A Hodson
- Department of Geography, University of Sheffield, Sheffield, UK.,Department of Arctic Geology, University Centre in Svalbard, Svalbard, Norway
| | - D A Pearce
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE66 1UG, UK
| |
Collapse
|
32
|
Microbial connectivity and sorting in a High Arctic watershed. ISME JOURNAL 2018; 12:2988-3000. [PMID: 30087410 DOI: 10.1038/s41396-018-0236-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 06/09/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Aquatic ecosystems in the High Arctic are facing unprecedented changes as a result of global warming effects on the cryosphere. Snow pack is a central feature of northern landscapes, but the snow microbiome and its microbial connectivity to adjacent and downstream habitats have been little explored. To evaluate these aspects, we sampled along a hydrologic continuum at Ward Hunt Lake (latitude 83°N) in the Canadian High Arctic, from snow banks, water tracks in the permafrost catchment, the upper and lower strata of the lake, and the lake outlet and its coastal marine mixing zone. The microbial communities were analyzed by high-throughput sequencing of 16 and 18S rRNA to determine the composition of potentially active Bacteria, Archaea and microbial Eukarya. Each habitat had distinct microbial assemblages, with highest species richness in the subsurface water tracks that connected the melting snow to the lake. However, up to 30% of phylotypes were shared along the hydrologic continuum, showing that many taxa originating from the snow can remain in the active fraction of downstream microbiomes. The results imply that changes in snowfall associated with climate warming will affect microbial community structure throughout all spatially connected habitats within snow-fed polar ecosystems.
Collapse
|
33
|
Wei Z, Feng K, Li S, Zhang Y, Chen H, Yin H, Xu M, Deng Y. Exploring abundance, diversity and variation of a widespread antibiotic resistance gene in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2018; 117:186-195. [PMID: 29753149 DOI: 10.1016/j.envint.2018.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
An updated sul1 gene sequence database was constructed and new degenerate primers were designed to better investigate the abundance, diversity, and variation of a ubiquitous antibiotic resistance gene, sul1, with PCR-based methods in activated sludge from wastewater treatment plants (WWTPs). The newly designed degenerate primers showed high specificity and higher coverage in both in-silico evaluations and activated sludge samples compared to previous sul1 primers. Using the new primers, the abundance and diversity of sul1 gene, together with 16S rRNA gene, in activated sludge from five WWTPs in summer and winter were determined by quantitative PCR and MiSeq sequencing. The sul1 gene was found to be prevalent and displayed a comparable abundance (0.081 copies per bacterial cell in average) to the total bacteria across all samples. However, compared to the significant seasonal and geographical divergences in the quantity and diversity of bacterial communities in WWTPs, there were no significant seasonal or geographical variations of representative clusters of sul1 gene in most cases. Additionally, the representative sul1 clusters showed fairly close phylogeny and there was no obvious correlation between sul1 gene and the dominant bacterial genera, as well as the int1 gene, suggesting that bacterial hosts of sul1 gene is not stable, the sul1 gene may be carried by mobile genetic elements, sometimes integrated with class 1 integrons and sometimes not. Thus mobile genetic elements likely play a greater role than specific microbial taxa in determining the composition of sul1 gene in WWTPs.
Collapse
Affiliation(s)
- Ziyan Wei
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Li
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrui Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Smith HJ, Dieser M, McKnight DM, SanClements MD, Foreman CM. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiol Ecol 2018; 94:4995909. [DOI: 10.1093/femsec/fiy090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- HJ Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - M Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - DM McKnight
- INSTAAR, University of Colorado Boulder, Boulder, CO 80303, USA
| | - MD SanClements
- INSTAAR, University of Colorado Boulder, Boulder, CO 80303, USA
- National Ecological Observatory Network, Boulder, CO 80301, USA
| | - CM Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
35
|
Äijö T, Müller CL, Bonneau R. Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing. Bioinformatics 2018; 34:372-380. [PMID: 28968799 PMCID: PMC5860357 DOI: 10.1093/bioinformatics/btx549] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Motivation The number of microbial and metagenomic studies has increased drastically due to advancements in next-generation sequencing-based measurement techniques. Statistical analysis and the validity of conclusions drawn from (time series) 16S rRNA and other metagenomic sequencing data is hampered by the presence of significant amount of noise and missing data (sampling zeros). Accounting uncertainty in microbiome data is often challenging due to the difficulty of obtaining biological replicates. Additionally, the compositional nature of current amplicon and metagenomic data differs from many other biological data types adding another challenge to the data analysis. Results To address these challenges in human microbiome research, we introduce a novel probabilistic approach to explicitly model overdispersion and sampling zeros by considering the temporal correlation between nearby time points using Gaussian Processes. The proposed Temporal Gaussian Process Model for Compositional Data Analysis (TGP-CODA) shows superior modeling performance compared to commonly used Dirichlet-multinomial, multinomial and non-parametric regression models on real and synthetic data. We demonstrate that the nonreplicative nature of human gut microbiota studies can be partially overcome by our method with proper experimental design of dense temporal sampling. We also show that different modeling approaches have a strong impact on ecological interpretation of the data, such as stationarity, persistence and environmental noise models. Availability and implementation A Stan implementation of the proposed method is available under MIT license at https://github.com/tare/GPMicrobiome. Contact taijo@flatironinstitute.org or rb113@nyu.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
36
|
Sanyal A, Antony R, Samui G, Thamban M. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 2018; 208:32-42. [PMID: 29551210 DOI: 10.1016/j.micres.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 02/03/2023]
Abstract
Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica, and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13-60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes. Biodegradation tests of organic compounds such as lactate, acetate, formate, propionate and oxalate that are present in cryoconite hole water show that microbes have good potential to metabolize the compounds tested. Substrate utilization tests on Biolog Ecoplate show that microbial communities in the Himalayan samples are able to oxidize a diverse array of organic substrates including carbohydrates, carboxylic acids, amino acids, amines/amides and polymers, while Antarctic communities generally utilized complex polymers. In addition, as determined by the extracellular enzyme activities, majority of the microbes (82%, total of 355) isolated in this study (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Basidiomycota) had ability to degrade a variety of compounds such as proteins, lipids, carbohydrates, cellulose and lignin that are documented to be present within cryoconite holes. Thus, microbial communities have good potential to metabolize organic compounds found in the cryoconite hole environment, thereby influencing the water chemistry in these holes. Moreover, microbes exported downstream during melting and flushing of cryoconite holes may participate in carbon cycling processes in recipient ecosystems.
Collapse
Affiliation(s)
- Aritri Sanyal
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| | - Runa Antony
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India.
| | - Gautami Samui
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| | - Meloth Thamban
- ESSO-National centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| |
Collapse
|
37
|
Chen S, Wang F, Zhang Y, Qin S, Wei S, Wang S, Hu C, Liu B. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environ Microbiol 2018; 20:980-992. [PMID: 29266729 DOI: 10.1111/1462-2920.14027] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
Abstract
Microbes in the deep vadose zone play an essential role in the mitigation of nitrate leaching; however, limited information is available on the mechanisms of microbial denitrification due to sampling difficulties. We experimentally studied the factors that affect denitrification in soils collected down to 10.5 meters deep along the soil profile. After an anoxic pre-incubation, denitrification rates moderately increased and the N2 O/(N2 O + N2 ) ratios declined while the microbial abundance and diversity did not change significantly in most of the layers. Denitrification rate was significantly enhanced and the abundance of the denitrification genes was simultaneously elevated by the increased availability of organic carbon in all studied layers, to a greater extent in the subsurface layers than in the surface layers, suggesting the severe scarcity of carbon in the deep vadose zone. The genera Pseudomonas and Bacillus, which are made up of a number of species that have been previously identified as denitrifiers in soil, were the major taxa that respond to carbon addition. Overall, our results suggested that the limited denitrification in the deep vadose zone is not because of the lack of denitrifiers, but due to the low abundance of denitrifiers which is caused by low carbon availability.
Collapse
Affiliation(s)
- Shuaimin Chen
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fenghua Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Yuming Zhang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Shuping Qin
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Shoucai Wei
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| |
Collapse
|
38
|
Hannula SE, Morriën E, de Hollander M, van der Putten WH, van Veen JA, de Boer W. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. THE ISME JOURNAL 2017; 11:2294-2304. [PMID: 28585935 PMCID: PMC5607372 DOI: 10.1038/ismej.2017.90] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Activities of rhizosphere microbes are key to the functioning of terrestrial ecosystems. It is commonly believed that bacteria are the major consumers of root exudates and that the role of fungi in the rhizosphere is mostly limited to plant-associated taxa, such as mycorrhizal fungi, pathogens and endophytes, whereas less is known about the role of saprotrophs. In order to test the hypothesis that the role of saprotrophic fungi in rhizosphere processes increases with increased time after abandonment from agriculture, we determined the composition of fungi that are active in the rhizosphere along a chronosequence of ex-arable fields in the Netherlands. Intact soil cores were collected from nine fields that represent three stages of land abandonment and pulse labeled with 13CO2. The fungal contribution to metabolization of plant-derived carbon was evaluated using phospholipid analysis combined with stable isotope probing (SIP), whereas fungal diversity was analyzed using DNA-SIP combined with 454-sequencing. We show that in recently abandoned fields most of the root-derived 13C was taken up by bacteria but that in long-term abandoned fields most of the root-derived 13C was found in fungal biomass. Furthermore, the composition of the active functional fungal community changed from one composed of fast-growing and pathogenic fungal species to one consisting of beneficial and slower-growing fungal species, which may have essential consequences for the carbon flow through the soil food web and consequently nutrient cycling and plant succession.
Collapse
Affiliation(s)
- S Emilia Hannula
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Elly Morriën
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, Department of Ecosytem and Landscape Dynamics (IBED-ELD), University of Amsterdam, Amsterdam, The Netherlands
| | - Mattias de Hollander
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Insititute of Biology, Leiden University, Leiden, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Soil Quality, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
39
|
Ambrosini R, Musitelli F, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Mayer C, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Franzetti A. Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier. MICROBIAL ECOLOGY 2017; 73:827-837. [PMID: 27999874 DOI: 10.1007/s00248-016-0914-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Cryoconite holes are small ponds that form on the surface of glaciers that contain a dark debris, the cryoconite, at the bottom and host active ecological communities. Differences in the structure of bacterial communities have been documented among Arctic and mountain glaciers, and among glaciers in different areas of the world. In this study, we investigated the structure of bacterial communities of cryoconite holes of Baltoro Glacier, a large (62 km in length and 524 km2 of surface) glacier of the Karakoram, by high-throughput sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene. We found that Betaproteobacteria dominated bacterial communities, with large abundance of genera Polaromonas, probably thanks to its highly versatile metabolism, and Limnohabitans, which may have been favoured by the presence of supraglacial lakes in the area where cryoconite holes were sampled. Variation in bacterial communities among different sampling areas of the glacier could be explained by divergent selective processes driven by variation in environmental conditions, particularly pH, which was the only environmental variable that significantly affected the structure of bacterial communities. This variability may be due to both temporal and spatial patterns of variation in environmental conditions.
Collapse
Affiliation(s)
- Roberto Ambrosini
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federica Musitelli
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federico Navarra
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Ilario Tagliaferri
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Isabella Gandolfi
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Giuseppina Bestetti
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Christoph Mayer
- Bavarian Academy of Sciences and Humanities, Munich, Germany
| | - Umberto Minora
- "A. Desio" Dept. of Earth Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | - Claudio Smiraglia
- "A. Desio" Dept. of Earth Sciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Franzetti
- Dept. of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy.
| |
Collapse
|
40
|
Hamilton TL, Havig J. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. GEOBIOLOGY 2017; 15:280-295. [PMID: 27917584 PMCID: PMC5324535 DOI: 10.1111/gbi.12219] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
The majority of geomicrobiological research conducted on glacial systems to date has focused on glaciers that override primarily carbonate or granitic bedrock types, with little known of the processes that support microbial life in glacial systems overriding volcanic terrains (e.g., basalt or andesite). To better constrain the role of the supraglacial ecosystems in the carbon and nitrogen cycles, to gain insight into microbiome composition and function in alpine glacial systems overriding volcanic terrains, and to constrain potential elemental sequestration or release through weathering processes associated with snow algae communities, we examined the microbial community structure and primary productivity of snow algae communities on stratovolcanoes in the Cascade Range of the Pacific Northwest. Here, we present the first published values for carbon fixation rates of snow algae communities on glaciers in the Pacific Northwest. We observed varying levels of light-dependent carbon fixation on supraglacial and periglacial snowfields at Mt. Hood, Mt. Adams, and North Sister. Recovery of abundant 18S rRNA transcripts affiliated with photoautotrophs and 16S rRNA transcripts affiliated with heterotrophic bacteria is consistent with previous studies indicating the majority of primary productivity on snow and ice can be attributed to photoautotrophs. In contrast to previous observations of glacial ecosystems, our geochemical, isotopic, and microcosm data suggest these assemblages are not limited by phosphorus or fixed nitrogen availability. Furthermore, our data indicate these snow algae communities actively sequester Fe, Mn, and P leached from minerals sourced from the local rocks. Our observations of light-dependent primary productivity on snow are consistent with similar studies in polar ecosystems; however, our data may suggest that DIC may be a limiting nutrient in contrast to phosphorus or fixed nitrogen as has been observed in other glacial ecosystems. Our data underscore the need for similar studies on glacier surfaces and seasonal snowfields to better constrain the role of local bedrock and nutrient delivery on carbon fixation and biogeochemical cycling in these ecosystems.
Collapse
Affiliation(s)
- T. L. Hamilton
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOHUSA
| | - J. Havig
- Department of GeologyUniversity of CincinnatiCincinnatiOHUSA
| |
Collapse
|
41
|
Ntougias S, Polkowska Ż, Nikolaki S, Dionyssopoulou E, Stathopoulou P, Doudoumis V, Ruman M, Kozak K, Namieśnik J, Tsiamis G. Bacterial Community Structures in Freshwater Polar Environments of Svalbard. Microbes Environ 2016; 31:401-409. [PMID: 27725345 PMCID: PMC5158112 DOI: 10.1264/jsme2.me16074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two thirds of Svalbard archipelago islands in the High Arctic are permanently covered with glacial ice and snow. Polar bacterial communities in the southern part of Svalbard were characterized using an amplicon sequencing approach. A total of 52,928 pyrosequencing reads were analyzed in order to reveal bacterial community structures in stream and lake surface water samples from the Fuglebekken and Revvatnet basins of southern Svalbard. Depending on the samples examined, bacterial communities at a higher taxonomic level mainly consisted either of Bacteroidetes, Betaproteobacteria, and Microgenomates (OP11) or Planctomycetes, Betaproteobacteria, and Bacteroidetes members, whereas a population of Microgenomates was prominent in 2 samples. At the lower taxonomic level, bacterial communities mostly comprised Microgenomates, Comamonadaceae, Flavobacteriaceae, Legionellales, SM2F11, Parcubacteria (OD1), and TM7 members at different proportions in each sample. The abundance of OTUs shared in common among samples was greater than 70%, with the exception of samples in which the proliferation of Planctomycetaceae, Phycisphaeraceae, and Candidatus Methylacidiphilum spp. lowered their relative abundance. A multi-variable analysis indicated that As, Pb, and Sb were the main environmental factors influencing bacterial profiles. We concluded that the bacterial communities in the polar aquatic ecosystems examined mainly consisted of freshwater and marine microorganisms involved in detritus mineralization, with a high proportion of zooplankton-associated taxa also being identified.
Collapse
Affiliation(s)
- Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lutz S, Anesio AM, Edwards A, Benning LG. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ Microbiol 2016; 19:551-565. [PMID: 27511455 DOI: 10.1111/1462-2920.13494] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Abstract
Distinct microbial habitats on glacial surfaces are dominated by snow and ice algae, which are the critical players and the dominant primary colonisers and net producers during the melt season. Here for the first time we have evaluated the role of these algae in association with the full microbial community composition (i.e., algae, bacteria, archaea) in distinct surface habitats and on 12 glaciers and permanent snow fields in Svalbard and Arctic Sweden. We cross-correlated these data with the analyses of specific metabolites such as fatty acids and pigments, and a full suite of potential critical physico-chemical parameters including major and minor nutrients, and trace metals. It has been shown that correlations between single algal species, metabolites, and specific geochemical parameters can be used to unravel mixed metabolic signals in complex communities, further assign them to single species and infer their functionality. The data also clearly show that the production of metabolites in snow and ice algae is driven mainly by nitrogen and less so by phosphorus limitation. This is especially important for the synthesis of secondary carotenoids, which cause a darkening of glacial surfaces leading to a decrease in surface albedo and eventually higher melting rates.
Collapse
Affiliation(s)
- Stefanie Lutz
- GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, 14473, Germany.,Cohen Laboratories, School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
| | - Arwyn Edwards
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3FL, UK.,Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, SY23 3FL, UK
| | - Liane G Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, 14473, Germany.,Cohen Laboratories, School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
43
|
Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. THE ISME JOURNAL 2016; 10:1625-41. [PMID: 26771926 PMCID: PMC4918445 DOI: 10.1038/ismej.2015.238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/09/2015] [Accepted: 11/08/2015] [Indexed: 11/09/2022]
Abstract
Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.
Collapse
Affiliation(s)
- Thomas Rime
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
44
|
The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun 2016; 7:11968. [PMID: 27329445 PMCID: PMC4917964 DOI: 10.1038/ncomms11968] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/17/2016] [Indexed: 11/08/2022] Open
Abstract
The Arctic is melting at an unprecedented rate and key drivers are changes in snow
and ice albedo. Here we show that red snow, a common algal habitat blooming after
the onset of melting, plays a crucial role in decreasing albedo. Our data reveal
that red pigmented snow algae are cosmopolitan as well as independent of
location-specific geochemical and mineralogical factors. The patterns for snow algal
diversity, pigmentation and, consequently albedo, are ubiquitous across the Arctic
and the reduction in albedo accelerates snow melt and increases the time and area of
exposed bare ice. We estimated that the overall decrease in snow albedo by red
pigmented snow algal blooms over the course of one melt season can be
13%. This will invariably result in higher melt rates. We argue that such
a ‘bio-albedo' effect has to be considered in climate
models. The Arctic is melting at an unprecedented rate and key drivers are
changes in snow and ice albedo. Here, the authors show that red pigmented snow algae
play a crucial role in decreasing surface albedo and their patterns for diversity,
pigmentation, and consequently albedo, are ubiquitous across the Arctic.
Collapse
|
45
|
Rassner SME, Anesio AM, Girdwood SE, Hell K, Gokul JK, Whitworth DE, Edwards A. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control? Front Microbiol 2016; 7:956. [PMID: 27446002 PMCID: PMC4914498 DOI: 10.3389/fmicb.2016.00956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023] Open
Abstract
Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems.
Collapse
Affiliation(s)
- Sara M E Rassner
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth UniversityAberystwyth, UK; Department of Geography and Earth Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Alexandre M Anesio
- School of Geographical Sciences, Bristol Glaciology Centre, University of Bristol Bristol, UK
| | - Susan E Girdwood
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| | - Katherina Hell
- Institute of Ecology, University of Innsbruck Innsbruck, Austria
| | - Jarishma K Gokul
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| | - David E Whitworth
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| |
Collapse
|
46
|
Wunderlin T, Ferrari B, Power M. Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. FEMS Microbiol Ecol 2016; 92:fiw132. [PMID: 27297721 DOI: 10.1093/femsec/fiw132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome.
Collapse
Affiliation(s)
- Tina Wunderlin
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Zurich, Switzerland
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Randwick, Sydney 2052, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia
| |
Collapse
|
47
|
Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow. Front Microbiol 2016; 7:398. [PMID: 27064693 PMCID: PMC4814470 DOI: 10.3389/fmicb.2016.00398] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.
Collapse
Affiliation(s)
- Anna Lopatina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia; Department of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia; Research Complex of "Nanobiotechnology", Saint-Petersburg State Polytechnical UniversitySaint-Petersburg, Russia
| | - Sofia Medvedeva
- Department of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and TechnologySkolkovo, Russia
| | - Sergey Shmakov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology Skolkovo, Russia
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University Moscow, Russia
| | - Vjacheslav Krylenkov
- Department of Botany, Saint-Petersburg State University Saint-Petersburg, Russia
| | - Konstantin Severinov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia; Research Complex of "Nanobiotechnology", Saint-Petersburg State Polytechnical UniversitySaint-Petersburg, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and TechnologySkolkovo, Russia
| |
Collapse
|
48
|
Liu Q, Zhou YG, Xin YH. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing. Syst Appl Microbiol 2015; 38:578-85. [DOI: 10.1016/j.syapm.2015.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
|
49
|
Singh P, Singh SM, Roy U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic. J Basic Microbiol 2015; 56:275-85. [PMID: 26567474 DOI: 10.1002/jobm.201500298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/18/2015] [Indexed: 11/05/2022]
Abstract
Glacier ice and firn cores have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal ice cores from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7) cells ml(-1) (mean 3.12 × 10(6) cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard ice cores. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research.
Collapse
Affiliation(s)
- Purnima Singh
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| | - Shiv Mohan Singh
- National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa-403804, India
| | - Utpal Roy
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
50
|
Maccario L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Res Microbiol 2015; 166:782-95. [PMID: 26408452 DOI: 10.1016/j.resmic.2015.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laura Sanguino
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|