1
|
Hou J, Wang Y, Zhu P, Yang N, Liang L, Yu T, Niu M, Konhauser K, Woodcroft BJ, Wang F. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. SCIENCE ADVANCES 2023; 9:eadf5069. [PMID: 37406125 PMCID: PMC10321748 DOI: 10.1126/sciadv.adf5069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system. Highly diversified and versatile carbon metabolisms were found among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 billion years, followed by three major diversifications at ~3.0, ~2.5, and ~1.8 to 1.7 billion years, likely driven by continental emergence, growth, and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 million years perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary history of Bathyarchaeia potentially has been shaped by geological forces, which, in turn, affected Earth's surface environment.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kurt Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
2
|
Segaran TC, Azra MN, Lananan F, Wang Y. Microbe, climate change and marine environment: Linking trends and research hotspots. MARINE ENVIRONMENTAL RESEARCH 2023:106015. [PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Liu J, Huang F, Liu J, Liu X, Lin R, Zhong X, Austin B, Zhang XH. Phylotype resolved spatial variation and association patterns of planktonic Thaumarchaeota in eastern Chinese marginal seas. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:257-270. [PMID: 37275536 PMCID: PMC10232715 DOI: 10.1007/s42995-023-00169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
The majority of marine ammonia oxidizers belong to Thaumarchaeota, a phylum of Archaea, which is distributed throughout the water column. Marine surface waters contain distinct thaumarchaeotal phylotypes compared to the deeper ocean, but spatial dynamics of the surface-associated lineages are largely unsolved. This study of 120 seawater samples from the eastern Chinese marginal seas identified contrasting distribution and association patterns among thaumarchaeotal phylotypes across different dimensions. Horizontally, Nitrosopumilus-like and Nitrosopelagicus-like phylotypes dominated the surface water (3 m) of the Yellow Sea (YS) and East China Sea (ECS), respectively, along with increased abundance of total free-living Thaumarchaeota in ECS. Similar compositional changes were observed in the surface microlayer. The spatial heterogeneity of particle-attached Thaumarchaeota was less clear in surface microlayers than in surface waters. Vertically, the Nitrosopelagicus-like phylotype increased in abundance from surface to 90 m in ECS, which led to an increase in the proportion of Thaumarchaeota relative to total prokaryotes. This occurred mainly in the free-living fraction. These results indicate a clear size-fractionated niche partitioning, which is more pronounced at lower depths than in the surface water/surface microlayer. In addition, associations of Thaumarchaeota with other microbial taxa varied between phylotypes and size fractions. Our results show that a phylotype-resolved and size-fractionated spatial heterogeneity of the thaumarchaeotal community is present in surface oceanic waters and a vertical variation of the Nitrosopelagicus-like phylotype is present in shallow shelf waters. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00169-y.
Collapse
Affiliation(s)
- Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Fuyan Huang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Jiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Xiaoyue Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Ruiyun Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Xiaosong Zhong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao, 266100 China
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
4
|
Parada AE, Mayali X, Weber PK, Wollard J, Santoro AE, Fuhrman JA, Pett-Ridge J, Dekas AE. Constraining the composition and quantity of organic matter used by abundant marine Thaumarchaeota. Environ Microbiol 2023; 25:689-704. [PMID: 36478085 DOI: 10.1111/1462-2920.16299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.
Collapse
Affiliation(s)
- Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
5
|
Zhang X, Zhang C, Liu Y, Zhang R, Li M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol 2022; 31:586-600. [PMID: 36567186 DOI: 10.1016/j.tim.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Coastal zones are among the world's most productive ecosystems. They store vast amounts of organic carbon, as 'blue carbon' reservoirs, and impact global climate change. Archaeal communities are integral components of coastal microbiomes but their ecological roles are often overlooked. However, archaeal diversity, metabolism, evolution, and interactions, revealed by recent studies using rapidly developing cutting-edge technologies, place archaea as important players in coastal carbon biogeochemical cycling. We here summarize the latest advances in the understanding of archaeal carbon cycling processes in coastal ecosystems, specifically, archaeal involvement in CO2 fixation, organic biopolymer transformation, and methane metabolism. We also showcase the potential to use of archaeal communities to increase carbon sequestration and reduce methane production, with implications for mitigating climate change.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Zou D, Li H, Du P, Wang B, Lin H, Liu H, Chen J, Li M. Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary. Microbiol Spectr 2022; 10:e0194722. [PMID: 36066619 PMCID: PMC9602602 DOI: 10.1128/spectrum.01947-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were "key stone" archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level.
Collapse
Affiliation(s)
- Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Ping Du
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Bin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hua Lin
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hongbin Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Lobanov V, Keesman KJ, Joyce A. Plants Dictate Root Microbial Composition in Hydroponics and Aquaponics. Front Microbiol 2022; 13:848057. [PMID: 35509321 PMCID: PMC9058158 DOI: 10.3389/fmicb.2022.848057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
The role of the microbial community in mediating fish and plant co-culture is often considered the black box of aquaponics. Despite widespread recognition regarding the dependency of plants on their rhizosphere, the extent to which upstream aquaculture influences downstream hydroponic root communities has been poorly described in the literature. In this study we performed a taxonomic survey (16S rRNA metabarcoding) of microbial communities originating in the facility water source, hydroponic nutrient solution (HNS) sump, nutrient supplemented biofilter effluent (BF) sump, and recirculating aquaculture system tanks stocked with Nile tilapia (Oreochromis niloticus). Lettuce (Lactuca sativa) was then grown using the HNS and BF effluent under sterilized or mature (prior aquaponics/hydroponics lettuce culture water) conditions, likewise, the influence of probiotic addition or inoculation with soil-grown lettuce rhizosphere was assessed. Compositional similarities across treatments suggest that under soil-less conditions, plants are able to exert a stronger discriminatory influence on their rhizosphere composition than is done by colonization from upstream sources. Furthermore, cluster dendrograms grouped the sterilized and unsterilized treatments more consistently together than hydroponics and aquaponics treatments. These findings contradict conventional beliefs that microbial communities in the water column colonize roots based on their presence alone, ignoring the role that plants play in rhizosphere community selection.
Collapse
Affiliation(s)
- Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Karel J. Keesman
- Mathematical and Statistical Methods Group – Biometris, Wageningen University & Research, Wageningen, Netherlands
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6523362. [DOI: 10.1093/femsec/fiac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
|
9
|
Seasonal Dynamics of Bathyarchaeota-Dominated Benthic Archaeal Communities Associated with Seagrass (Zostera japonica) Meadows. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Little is known about the seasonal dynamic of archaeal communities and their potential ecological functions in temperate seagrass ecosystems. In this study, seasonal changes in diversity, community structure, and potential metabolic functions of benthic archaea in surface sediments of two seagrass meadows along the northern Bohai Sea in China were investigated using Miseq sequencing of the 16S rRNA gene and Tax4Fun2 functional prediction. Overall, Crenarchaeota (mainly Bathy-15, Bathy-8, and Bathy-6) dominated, followed by Thermoplasmatota, Asgardarchaeota, and Halobacterota, in terms of alpha diversities and relative abundance. Significant seasonal changes in the entire archaeal community structure were observed. The major phyla Methanobacteria, Nitrosopumilales, and genus Methanolobus had higher proportions in spring, while MBG-D and Bathyarchaeota were more abundant in summer and autumn, respectively. Alpha diversities (Shannon and Simpson) were the highest in summer and the lowest in autumn (ANOVA test, p < 0.05). Salinity, total organic carbon, and total organic nitrogen were the most significant factors influencing the entire archaeal community. Higher cellulose and hemicellulose degradation potentials occurred in summer, while methane metabolism potentials were higher in winter. This study indicated that season had strong effects in modulating benthic archaeal diversity and functional potentials in the temperate seagrass ecosystems.
Collapse
|
10
|
Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in " Candidatus Bathyarchaeia". mSystems 2021; 6:e0025221. [PMID: 34282939 PMCID: PMC8407382 DOI: 10.1128/msystems.00252-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Bathyarchaeia" is a phylogenetically diverse and widely distributed lineage often in high abundance in anoxic submarine sediments; however, their evolution and ecological roles in terrestrial geothermal habitats are poorly understood. In the present study, 35 Ca. Bathyarchaeia metagenome-assembled genomes (MAGs) were recovered from hot spring sediments in Tibet and Yunnan, China. Phylogenetic analysis revealed all MAGs of Ca. Bathyarchaeia can be classified into 7 orders and 15 families. Among them, 4 families have been first discovered in the present study, significantly expanding the known diversity of Ca. Bathyarchaeia. Comparative genomics demonstrated Ca. Bathyarchaeia MAGs from thermal habitats to encode a large variety of genes related to carbohydrate degradation, which are likely a metabolic adaptation of these organisms to a lifestyle at high temperatures. At least two families are potential methanogens/alkanotrophs, indicating a potential for the catalysis of short-chain hydrocarbons. Three MAGs from Family-7.3 are identified as alkanotrophs due to the detection of an Mcr complex. Family-2 contains the largest number of genes relevant to alkyl-CoM transformation, indicating the potential for methylotrophic methanogenesis, although their evolutionary history suggests the ancestor of Ca. Bathyarchaeia was unable to metabolize alkanes. Subsequent lineages have acquired the ability via horizontal gene transfer. Overall, our study significantly expands our knowledge and understanding of the metabolic capabilities, habitat adaptations, and evolution of Ca. Bathyarchaeia in thermal environments. IMPORTANCE Ca. Bathyarchaeia MAGs from terrestrial hot spring habitats are poorly revealed, though they have been studied extensively in marine ecosystems. In this study, we uncovered the metabolic capabilities and ecological role of Ca. Bathyarchaeia in hot springs and give a comprehensive comparative analysis between thermal and nonthermal habitats to reveal the thermal adaptability of Ca. Bathyarchaeia. Also, we attempt to determine the evolutionary history of methane/alkane metabolism in Ca. Bathyarchaeia, since it appears to be the first archaea beyond Euryarchaeota which contains the mcrABG genes. The reclassification of Ca. Bathyarchaeia and significant genomic differences among different lineages largely expand our knowledge on these cosmopolitan archaea, which will be beneficial in guiding the future studies.
Collapse
|
11
|
Suominen S, Dombrowski N, Sinninghe Damsté JS, Villanueva L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ Microbiol 2021; 23:2709-2728. [PMID: 31858660 PMCID: PMC8359207 DOI: 10.1111/1462-2920.14902] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022]
Abstract
Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.
Collapse
Affiliation(s)
- Saara Suominen
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| |
Collapse
|
12
|
Suominen S, van Vliet DM, Sánchez-Andrea I, van der Meer MTJ, Sinninghe Damsté JS, Villanueva L. Organic Matter Type Defines the Composition of Active Microbial Communities Originating From Anoxic Baltic Sea Sediments. Front Microbiol 2021; 12:628301. [PMID: 34025597 PMCID: PMC8131844 DOI: 10.3389/fmicb.2021.628301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon cycling in anoxic marine sediments is dependent on uncultured microbial communities. Niches of heterotrophic microorganisms are defined by organic matter (OM) type and the different phases in OM degradation. We investigated how OM type defines microbial communities originating from organic-rich, anoxic sediments from the Baltic Sea. We compared changes in the sediment microbial community, after incubation with different stable isotope labeled OM types [i.e., particulate algal organic matter (PAOM), protein, and acetate], by using DNA stable isotope probing (DNA-SIP). Incorporation of 13C and/or 15N label was predominantly detected in members of the phyla Planctomycetes and Chloroflexi, which also formed the majority (>50%) of the original sediment community. While these phylum-level lineages incorporated label from all OM types, phylogenetic analyses revealed a niche separation at the order level. Members of the MSBL9 (Planctomycetes), the Anaerolineales (Chloroflexi), and the class Bathyarchaeota, were identified as initial degraders of carbohydrate-rich OM, while other uncultured orders, like the CCM11a and Phycisphaerales (Planctomycetes), Dehalococcoidia, and JG30-KF-CM66 (Chloroflexi), incorporated label also from protein and acetate. Our study highlights the importance of initial fermentation of complex carbon pools in shaping anoxic sediment microbial communities and reveals niche specialization at the order level for the most important initial degraders in anoxic sediments.
Collapse
Affiliation(s)
- Saara Suominen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Daan M. van Vliet
- Wageningen Food and Biobased Research (WFBR), Bornse Weilanden 9, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | | - Marcel T. J. van der Meer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Seyler LM, Trembath-Reichert E, Tully BJ, Huber JA. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. THE ISME JOURNAL 2021; 15:1192-1206. [PMID: 33273721 PMCID: PMC8115675 DOI: 10.1038/s41396-020-00843-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust.
Collapse
Affiliation(s)
- Lauren M Seyler
- School of Natural and Mathematical Sciences, Stockton University, Galloway, NJ, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | | | - Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
14
|
Loh HQ, Hervé V, Brune A. Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts - A Genome-Centric Analysis. Front Microbiol 2021; 11:635786. [PMID: 33613473 PMCID: PMC7886697 DOI: 10.3389/fmicb.2020.635786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Symbiotic digestion of lignocellulose in the hindgut of higher termites is mediated by a diverse assemblage of bacteria and archaea. During a large-scale metagenomic study, we reconstructed 15 metagenome-assembled genomes of Bathyarchaeia that represent two distinct lineages in subgroup 6 (formerly MCG-6) unique to termite guts. One lineage (TB2; Candidatus Termitimicrobium) encodes all enzymes required for reductive acetogenesis from CO2 via an archaeal variant of the Wood–Ljungdahl pathway, involving tetrahydromethanopterin as C1 carrier and an (ADP-forming) acetyl-CoA synthase. This includes a novel 11-subunit hydrogenase, which possesses the genomic architecture of the respiratory Fpo-complex of other archaea but whose catalytic subunit is phylogenetically related to and shares the conserved [NiFe] cofactor-binding motif with [NiFe] hydrogenases of subgroup 4 g. We propose that this novel Fpo-like hydrogenase provides part of the reduced ferredoxin required for CO2 reduction and is driven by the electrochemical membrane potential generated from the ATP conserved by substrate-level phosphorylation; the other part may require the oxidation of organic electron donors, which would make members of TB2 mixotrophic acetogens. Members of the other lineage (TB1; Candidatus Termiticorpusculum) are definitely organotrophic because they consistently lack hydrogenases and/or methylene-tetrahydromethanopterin reductase, a key enzyme of the archaeal Wood–Ljungdahl pathway. Both lineages have the genomic capacity to reduce ferredoxin by oxidizing amino acids and might conduct methylotrophic acetogenesis using unidentified methylated compound(s). Our results indicate that Bathyarchaeia of subgroup 6 contribute to acetate formation in the guts of higher termites and substantiate the genomic evidence for reductive acetogenesis from organic substrates, possibly including methylated compounds, in other uncultured representatives of the phylum.
Collapse
Affiliation(s)
- Hui Qi Loh
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Brune
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
15
|
Hu W, Pan J, Wang B, Guo J, Li M, Xu M. Metagenomic insights into the metabolism and evolution of a new Thermoplasmata order (Candidatus Gimiplasmatales). Environ Microbiol 2020; 23:3695-3709. [PMID: 33295091 DOI: 10.1111/1462-2920.15349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023]
Abstract
Thermoplasmata is a widely distributed and ecologically important archaeal class in the phylum Euryarchaeota. Because few cultures and genomes are available, uncharacterized Thermoplasmata metabolisms remain unexplored. In this study, we obtained four medium- to high-quality archaeal metagenome-assembled genomes (MAGs) from the filamentous fragments of black-odorous aquatic sediments (Foshan, Guangdong, China). Based on their 16S rRNA gene and ribosomal protein phylogenies, the four MAGs belong to the previously unnamed Thermoplasmata UBA10834 clade. We propose that this clade (five reference genomes from the Genome Taxonomy Database (GTDB) and four MAGs from this study) be considered a new order, Candidatus Gimiplasmatales. Metabolic pathway reconstructions indicated that the Ca. Gimiplasmatales MAGs can biosynthesize isoprenoids and nucleotides de novo. Additionally, some taxa have genes for formaldehyde and acetate assimilation, and the Wood-Ljungdahl CO2 -fixation pathway, indicating a mixotrophic lifestyle. Sulfur reduction, hydrogen metabolism, and arsenic detoxification pathways were predicted, indicating sulfur-, hydrogen-, and arsenic-transformation potentials. Comparative genomics indicated that the H4 F Wood-Ljungdahl pathway of both Ca. Gimiplasmatales and Methanomassiliicoccales was likely obtained by the interdomain lateral gene transfer from the Firmicutes. Collectively, this study elucidates the taxonomic and potential metabolic diversity of the new order Ca. Gimiplasmatales and the evolution of this subgroup and its sister lineage Methanomassiliicoccales.
Collapse
Affiliation(s)
- Wenzhe Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jie Pan
- Shenzhen key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meng Li
- Shenzhen key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
van Grinsven S, Sinninghe Damsté JS, Villanueva L. Assessing the Effect of Humic Substances and Fe(III) as Potential Electron Acceptors for Anaerobic Methane Oxidation in a Marine Anoxic System. Microorganisms 2020; 8:E1288. [PMID: 32846903 PMCID: PMC7564286 DOI: 10.3390/microorganisms8091288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Marine anaerobic methane oxidation (AOM) is generally assumed to be coupled to sulfate reduction, via a consortium of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). ANME-1 are, however, often found as single cells, or only loosely aggregated with SRB, suggesting they perform a form of AOM independent of sulfate reduction. Oxidized metals and humic substances have been suggested as potential electron acceptors for ANME, but up to now, AOM linked to reduction of these compounds has only been shown for the ANME-2 and ANME-3 clades. Here, the effect of the electron acceptors anthraquinone-disulfonate (AQDS), a humic acids analog, and Fe3+ on anaerobic methane oxidation were assessed by incubation experiments with anoxic Black Sea water containing ANME-1b. Incubation experiments with 13C-methane and AQDS showed a stimulating effect of AQDS on methane oxidation. Fe3+ enhanced the ANME-1b abundance but did not substantially increase methane oxidation. Sodium molybdate, which was added as an inhibitor of sulfate reduction, surprisingly enhanced methane oxidation, possibly related to the dominant abundance of Sulfurospirillum in those incubations. The presented data suggest the potential involvement of ANME-1b in AQDS-enhanced anaerobic methane oxidation, possibly via electron shuttling to AQDS or via interaction with other members of the microbial community.
Collapse
Affiliation(s)
- Sigrid van Grinsven
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
| |
Collapse
|
18
|
Wang H, Li J, Zhao Y, Xu C, Zhang K, Li J, Yan L, Gu JD, Wei D, Wang W. Establishing practical strategies to run high loading corn stover anaerobic digestion: Methane production performance and microbial responses. BIORESOURCE TECHNOLOGY 2020; 310:123364. [PMID: 32334357 DOI: 10.1016/j.biortech.2020.123364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
It is significant to understand corn stover (CS) in anaerobic digestion (AD) under high organic loadings. A semi-continuous mesophilic (37 ± 1 °C) CS AD was conducted in this study with increasing loadings. The initial total solids (TS) gradually increased with 1% gradient at every 10 days from 8% to 15% until the system was acidified. Adding different ratios of cattle manure (CM) (20%, 30% and 40% (v/v)) to rescue this system back to a stable operation was adopted. The diversity of bacteria and archaea was analyzed by 16S rRNA gene sequencing technology. The results showed that when loading TS content was increased to 15%, AD system was acidized with pH value of 5.13. 30% of CM was the optimal ratio to recover biogas production. High abundance (31.07%) of Bathyarchaeota was first found in AD system. Acidification of high loading CS AD can be highly correlating with bacterial community, specially Clostridium and Caproiciproducens.
Collapse
Affiliation(s)
- Haipeng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiawei Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yiquan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Congfeng Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, China
| | - Jiajia Li
- Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100081, China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
19
|
Dinter T, Geihser S, Gube M, Daniel R, Kuzyakov Y. Impact of sea level change on coastal soil organic matter, priming effects and prokaryotic community assembly. FEMS Microbiol Ecol 2020; 95:5551479. [PMID: 31425573 DOI: 10.1093/femsec/fiz129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/18/2019] [Indexed: 01/09/2023] Open
Abstract
Salt marshes are coastal areas storing high amounts of soil organic matter (SOM) while simultaneously being prone to tidal changes. Here, SOM-decomposition and accompanied priming effects (PE), which describe interactions between labile and old SOM, were studied under controlled flooding conditions. Soil samples from two Wadden Sea salt marsh zones, pioneer (Pio), flooded two times/day, and lower salt marsh (Low), flooded ∼eight times/month, were measured for 56 days concerning CO2-efflux and prokaryotic community shifts during three different inundation-treatments: total-drained (Drained), all-time-flooded (Waterlogged) or temporal-flooding (Tidal). Priming was induced by 14C-glucose addition. CO2-efflux from soil followed Low>Pio and Tidal>Drained>Waterlogged, likely due to O2-depletion and moisture maintenance, two key factors governed by tidal inundation with regard to SOM mineralisation. PEs in both zones were positive (Drained) or absent (Waterlogged, Tidal), presumably as a result of prokaryotes switching from production of extracellular enzymes to direct incorporation of labile C. A doubled amount of prokaryotic biomass in Low compared to Pio probably induced higher chances of cometabolic effects and higher PE. 16S-rRNA-gene-amplicon-based analysis revealed differences in bacterial and archaeal community composition between both zones, revealing temporal niche adaptation with flooding treatment. Strongest alterations were found in Drained, likely due to inundation-mediated changes in C-binding capacities.
Collapse
Affiliation(s)
- Thomas Dinter
- Soil Science of Temperate Ecosystems, Büsgenweg 2, 37077 Göttingen, University of Göttingen, Germany
| | - Simone Geihser
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, University of Göttingen, Germany
| | - Matthias Gube
- Soil Science of Temperate Ecosystems, Büsgenweg 2, 37077 Göttingen, University of Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, University of Göttingen, Germany
| | - Yakov Kuzyakov
- Soil Science of Temperate Ecosystems, Büsgenweg 2, 37077 Göttingen, University of Göttingen, Germany
| |
Collapse
|
20
|
Compte-Port S, Fillol M, Gich F, Borrego CM. Metabolic versatility of freshwater sedimentary archaea feeding on different organic carbon sources. PLoS One 2020; 15:e0231238. [PMID: 32267873 PMCID: PMC7141681 DOI: 10.1371/journal.pone.0231238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Members of the phylum Bathyarchaeota and the class Thermoplasmata are widespread in marine and freshwater sediments where they have been recognized as key players in the carbon cycle. Here, we tested the responsiveness of archaeal communities on settled plant debris and sediment from a karstic lake to different organic carbon amendments (amino acids, plant-derived carbohydrates, and aromatics) using a lab-scale microcosm. Changes in the composition and abundance of sediment and biofilm archaeal communities in both DNA and RNA fractions were assessed by 16S rRNA gene amplicon sequencing and qPCR, respectively, after 7 and 30 days of incubation. Archaeal communities showed compositional changes in terms of alpha and beta diversity in relation to the type of carbon source (amino acids vs. plant-derived compounds), the nucleic acid fraction (DNA vs. RNA), and the incubation time (7 vs. 30 days). Distinct groups within the Bathyarchaeota (Bathy-15 and Bathy-6) and the Thermoplasmata (MBG-D) differently reacted to carbon supplements as deduced from the analysis of RNA libraries. Whereas Bathyarchaeota in biofilms showed a long-term positive response to humic acids, their counterparts in the sediment were mainly stimulated by the addition of tryptophan, suggesting the presence of different subpopulations in both habitats. Overall, our work presents an in vitro assessment of the versatility of archaea inhabiting freshwater sediments towards organic carbon and introduces settled leaf litter as a new habitat for the Bathyarchaeota and the Thermoplasmata.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Frederic Gich
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Carles M. Borrego
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
21
|
Pan J, Zhou Z, Béjà O, Cai M, Yang Y, Liu Y, Gu JD, Li M. Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota. MICROBIOME 2020; 8:43. [PMID: 32234071 PMCID: PMC7110647 DOI: 10.1186/s40168-020-00820-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bathyarchaeota, a newly proposed archaeal phylum, is considered as an important driver of the global carbon cycle. However, due to the great diversity of them, there is limited genomic information that accurately encompasses the metabolic potential of the entire archaeal phylum. RESULTS In the current study, nine metagenome-assembled genomes of Bathyarchaeota from four subgroups were constructed from mangrove sediments, and metatranscriptomes were obtained for evaluating their in situ transcriptional activities. Comparative analyses with reference genomes and the transcripts of functional genes posit an expanded role for Bathyarchaeota in phototrophy, autotrophy, and nitrogen and sulfur cycles, respectively. Notably, the presence of genes for rhodopsins, cobalamin biosynthesis, and the oxygen-dependent metabolic pathways in some Bathyarchaeota subgroup 6 genomes suggest a light-sensing and microoxic lifestyle within this subgroup. CONCLUSIONS The results of this study expand our knowledge of metabolic abilities and diverse lifestyles of Bathyarchaeota, highlighting the crucial role of Bathyarchaeota in geochemical cycle. Video abstract.
Collapse
Affiliation(s)
- Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhichao Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Zou D, Pan J, Liu Z, Zhang C, Liu H, Li M. The Distribution of Bathyarchaeota in Surface Sediments of the Pearl River Estuary Along Salinity Gradient. Front Microbiol 2020; 11:285. [PMID: 32174899 PMCID: PMC7056671 DOI: 10.3389/fmicb.2020.00285] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Bathyarchaeota, a recently proposed archaeal phylum, is globally distributed and highly abundant in anoxic sediments. Metabolic pathways of the Bathyarchaeota members are diverse and, hence, this phylum has been proposed to play an important role in global biogeochemical cycles. Bathyarchaeota members are distributed in the estuarine environments. However, limited information is available about their detailed community structure, abundance, and functions in the Pearl River estuary (PRE). In the current study, we performed a comprehensive investigation of the archaeal community in the PRE surface sediments along a salinity gradient, with a focus on Bathyarchaeota. Bathyarchaeota was the dominant archaeal phylum, with the abundance of the bathyarchaeotal 16S rRNA gene ranging from 1.43 × 108 to 1.22 × 109 copies/g sediment dry weight (d.w.), and Bathy-8 was the dominant subgroup. Thaumarchaeota, Lokiarchaeota, and Euryarchaeota, including Thermoprofundales (MBG-D archaea), were the other major archaeal groups in the PRE. The differences of community distributions in the high- and low-salinity sediments were hence investigated. Statistical analysis revealed that besides salinity, ammonium, and total organic carbon were the most important environmental factors influencing the archaea community structure, including that of Bathyarchaeota, in the PRE. The archaeal network indicated the cooccurrence among Bathyarchaeota, Lokiarchaeota, and Euryarchaeota, while Bathy-6 presented unique correlations compared with other bathyarchaeotal subgroups. These observations indicate that Bathyarchaeota may play a role in ecosystem function through microbe-microbe interactions, revealing a possible different lifestyle for Bathy-6 in eutrophic estuarine sediments.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zongbao Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Progressive Microbial Community Networks with Incremental Organic Loading Rates Underlie Higher Anaerobic Digestion Performance. mSystems 2020; 5:5/1/e00357-19. [PMID: 31911462 PMCID: PMC6946792 DOI: 10.1128/msystems.00357-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biotic interactions among members of microbial communities have been conceived to be crucial for community assembly, it remains unclear how changes in environmental conditions affect microbial interaction and consequently system performance. Here, we adopted a random matrix theory-based network analysis to explore microbial interactions in triplicate anaerobic digestion (AD) systems, which is widely applied for organic pollutant treatments. The digesters were operated with incremental organic loading rates (OLRs) from 1.0 g volatile solids (VS)/liter/day to 1.3 g VS/liter/day and then to 1.5 g VS/liter/day, which increased VS removal and methane production proportionally. Higher resource availability led to networks with higher connectivity and shorter harmonic geodesic distance, suggestive of more intense microbial interactions and quicker responses to environmental changes. Strikingly, a number of topological properties of microbial network showed significant (P < 0.05) correlation with AD performance (i.e., methane production, biogas production, and VS removal). When controlling for environmental parameters (e.g., total ammonia, pH, and the VS load), node connectivity, especially that of the methanogenic archaeal network, still correlated with AD performance. Last, we identified the Methanothermus, Methanobacterium, Chlorobium, and Haloarcula taxa and an unclassified Thaumarchaeota taxon as keystone nodes of the network.IMPORTANCE AD is a biological process widely used for effective waste treatment throughout the world. Biotic interactions among microbes are critical to the assembly and functioning of the microbial community, but the response of microbial interactions to environmental changes and their influence on AD performance are still poorly understood. Using well-replicated time series data of 16S rRNA gene amplicons and functional gene arrays, we constructed random matrix theory-based association networks to characterize potential microbial interactions with incremental OLRs. We demonstrated striking linkage between network topological features of methanogenic archaea and AD functioning independent of environmental parameters. As the intricate balance of multiple microbial functional groups is responsible for methane production, our results suggest that microbial interaction may be an important, previously unrecognized mechanism in determining AD performance.
Collapse
|
24
|
Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol 2019; 5:248-255. [PMID: 31873205 DOI: 10.1038/s41564-019-0630-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
Abstract
The genomes of the Asgard superphylum of Archaea hold clues pertaining to the nature of the host cell that acquired the mitochondrion at the origin of eukaryotes1-4. Representatives of the Asgard candidate phylum Candidatus Lokiarchaeota (Lokiarchaeon) have the capacity for acetogenesis and fermentation5-7, but how their metabolic activity responds to environmental conditions is poorly understood. Here, we show that in anoxic Namibian shelf sediments, Lokiarchaeon gene expression levels are higher than those of bacterial phyla and increase with depth below the seafloor. Lokiarchaeon gene expression was significantly different across a hypoxic-sulfidic redox gradient, whereby genes involved in growth, fermentation and H2-dependent carbon fixation had the highest expression under the most reducing (sulfidic) conditions. Quantitative stable isotope probing revealed that anaerobic utilization of CO2 and diatomaceous extracellular polymeric substances by Lokiarchaeon was higher than the bacterial average, consistent with higher expression of Lokiarchaeon genes, including those involved in transport and fermentation of sugars and amino acids. The quantitative stable isotope probing and gene expression data demonstrate homoacetogenic activity of Candidatus Lokiarchaeota, whereby fermentative H2 production from organic substrates is coupled with the Wood-Ljungdahl carbon fixation pathway8. The high energetic efficiency provided by homoacetogenesis8 helps to explain the elevated metabolic activity of Lokiarchaeon in this anoxic, energy-limited setting.
Collapse
|
25
|
DNA- and RNA-SIP Reveal Nitrospira spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilters. mBio 2019; 10:mBio.01870-19. [PMID: 31690672 PMCID: PMC6831773 DOI: 10.1128/mbio.01870-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrification, the oxidative process converting ammonia to nitrite and nitrate, is driven by microbes and plays a central role in the global nitrogen cycle. Our earlier investigations based on 16S rRNA and amoA amplicon analysis, amoA quantitative PCR and metagenomics of groundwater-fed biofilters indicated a consistently high abundance of comammox Nitrospira Here, we hypothesized that these nonclassical nitrifiers drive ammonia-N oxidation. Hence, we used DNA and RNA stable isotope probing (SIP) coupled with 16S rRNA amplicon sequencing to identify the active members in the biofilter community when subjected to a continuous supply of NH4 + or NO2 - in the presence of 13C-HCO3 - (labeled) or 12C-HCO3 - (unlabeled). Allylthiourea (ATU) and sodium chlorate were added to inhibit autotrophic ammonia- and nitrite-oxidizing bacteria, respectively. Our results confirmed that lineage II Nitrospira dominated ammonia oxidation in the biofilter community. A total of 78 (8 by RNA-SIP and 70 by DNA-SIP) and 96 (25 by RNA-SIP and 71 by DNA-SIP) Nitrospira phylotypes (at 99% 16S rRNA sequence similarity) were identified as complete ammonia- and nitrite-oxidizing, respectively. We also detected significant HCO3 - uptake by Acidobacteria subgroup10, Pedomicrobium, Rhizobacter, and Acidovorax under conditions that favored ammonia oxidation. Canonical Nitrospira alone drove nitrite oxidation in the biofilter community, and activity of archaeal ammonia-oxidizing taxa was not detected in the SIP fractions. This study provides the first in situ evidence of ammonia oxidation by comammox Nitrospira in an ecologically relevant complex microbiome.IMPORTANCE With this study we provide the first in situ evidence of ecologically relevant ammonia oxidation by comammox Nitrospira in a complex microbiome and document an unexpectedly high H13CO3 - uptake and growth of proteobacterial and acidobacterial taxa under ammonia selectivity. This finding raises the question of whether comammox Nitrospira is an equally important ammonia oxidizer in other environments.
Collapse
|
26
|
Aepfler RF, Bühring SI, Elvert M. Substrate characteristic bacterial fatty acid production based on amino acid assimilation and transformation in marine sediments. FEMS Microbiol Ecol 2019; 95:5555570. [PMID: 31504469 DOI: 10.1093/femsec/fiz131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 01/25/2023] Open
Abstract
Polar lipid-derived fatty acids (PLFAs) and their stable carbon isotopes are frequently combined to characterize microbial populations involved in the degradation of organic matter, offering a link to biogeochemical processes and carbon sources used. However, PLFA patterns derive from multiple species and may be influenced by substrate types. Here, we investigated such dependencies by monitoring the transformation of position-specifically 13C-labeled amino acids (AAs) in coastal marine sediments dominated by heterotrophic bacteria. Alanine was assimilated into straight-chain FAs, while valine and leucine incorporation led to the characteristic production of even- and odd-numbered iso-series FAs. This suggests that identical microbial communities adjust lipid biosynthesis according to substrate availability. Transformation into precursor molecules for FA biosynthesis was manifested in increased 13C recoveries of the corresponding volatiles acetate, isobutyrate and isovalerate of up to 39.1%, much higher than for PLFAs (<0.9%). A significant fraction of 13C was found in dissolved inorganic carbon (up to 37.9%), while less was recovered in total organic carbon (up to 17.3%). We observed a clear discrimination against the carboxyl C, whereby C2 and C3 positions were preferentially incorporated into PLFAs. Therefore, position-specific labeling is an appropriate tool for reconstructing the metabolic fate of protein-derived AAs in marine environments.
Collapse
Affiliation(s)
- Rebecca F Aepfler
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany.,Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| |
Collapse
|
27
|
Zhang Q, Li Y, Xing J, Brookes PC, Xu J. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:723-731. [PMID: 30583167 DOI: 10.1016/j.scitotenv.2018.12.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Archaea play crucial roles in geochemical cycles and influence the emission of greenhouse gases in acidic soils. However, little is known about the distribution pattern of total archaeal diversity and community composition with increasing elevation, especially in acidic agricultural ecosystems. Terraces, characterized by vertical climate changes and unique hydrological properties, are "natural experiments" to explore the spatial distribution of microorganisms along elevation in paddy soils. Here we investigated the diversity and structure of soil archaeal communities in nine increasingly elevated acidic paddy soils of the Yunhe terrace, China. Archaeal communities were dominated by Methanomicrobia of Euryarchaeota (38.5%), Group 1.1a-associated cluster (SAGSCG-1) of Thaumarchaeota (22.0%) and Subgroup-6 (previously described as crenarchaeotal group 1.3b) of Bathyarchaeota (17.8%). The archaeal phylotype richness decreased with increasing elevation. Both the species richness and phylogenetic diversity of the archaeal communities were significantly negatively correlated with soil available phosphorus (AP) content according to linear regression analyses. The archaeal communities differed greatly between soils of increasing elevation, and were roughly clustered into three groups, mostly in relation to AP contents. A variation partitioning analysis further confirmed that edaphic factors including the content of AP (17.1%), nitrate (7.83%), soil organic carbon (4.69%), dissolved organic carbon (4.22%) and soil pH (4.07%) shaped the archaeal community. The variation of soil properties were probably induced by elevation. The co-occurrence network indicated a modular structure of the archaeal community. Overall, our results emphasized that soil AP content was the best predictor of archaeal diversity and community structure, and the impacts of elevation on soil archaeal communities were not diminished by long-term rice cultivation, although minor compared with the effects of soil properties.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xing
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical Distribution of Bathyarchaeotal Communities in Mangrove Wetlands Suggests Distinct Niche Preference of Bathyarchaeota Subgroup 6. MICROBIAL ECOLOGY 2019; 77:417-428. [PMID: 30612184 DOI: 10.1007/s00248-018-1309-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Bathyarchaeota is a diverse, abundant, and widespread archaeal phylum that may play an important role in global carbon cycling. The vertical distribution of Bathyarchaeota and environmental impact on bathyarchaeotal community in deep-sea and lake sediments are known; however, little information is available on Bathyarchaeota in eutrophic and brackish environments, such as mangrove wetlands. In the current study, we investigated the bathyarchaeotal community in the mangrove ecosystem of Futian Nature Reserve, Shenzhen. By slicing the profile into 2-cm layers from the surface to bottom, 110 sediment samples were obtained from three mangrove and three mud flat profiles. High-throughput sequencing of archaeal 16S rRNA genes, quantification of bathyarchaeotal 16S rRNA genes with optimized quantitative primers, and the ensuing statistical analyses revealed the vertical distribution of Bathyarchaeota in the mangrove ecosystem, indicating that Bathyarchaeota was the dominant archaeal phylum therein, with Bathyarchaeota subgroups 6, 8, 15, and 17 as the most abundant subgroups. The abundance of Bathyarchaeota was higher in the mangrove than in the mud flat and other oligotrophic or freshwater habitats. Total organic carbon (TOC) and nitric oxide were significantly correlated with the abundance of Bathyarchaeota, and pH was the major factor shaping the community composition. Further, the data suggested that Bathyarchaeota subgroup 6 preferentially dwelled in slightly acidic, high TOC, and subsurface environments, indicating a potentially distinct role in the global geochemical cycle. These findings expand the knowledge of the distribution and niche preference of Bathyarchaeota, emphasizing the need for continuous characterization of bathyarchaeotal subgroups.
Collapse
Affiliation(s)
- Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yulian Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yongming Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
29
|
Dyksma S, Lenk S, Sawicka JE, Mußmann M. Uncultured Gammaproteobacteria and Desulfobacteraceae Account for Major Acetate Assimilation in a Coastal Marine Sediment. Front Microbiol 2018; 9:3124. [PMID: 30619197 PMCID: PMC6305295 DOI: 10.3389/fmicb.2018.03124] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Acetate is a key intermediate in anaerobic mineralization of organic matter in marine sediments. Its turnover is central to carbon cycling, however, the relative contribution of different microbial populations to acetate assimilation in marine sediments is unknown. To quantify acetate assimilation by in situ abundant bacterial populations, we incubated coastal marine sediments with 14C-labeled acetate and flow-sorted cells that had been labeled and identified by fluorescence in situ hybridization. Subsequently, scintillography determined the amount of 14C-acetate assimilated by distinct populations. This approach fostered a high-throughput quantification of acetate assimilation by phylogenetically identified populations. Acetate uptake was highest in the oxic-suboxic surface layer for all sorted bacterial populations, including deltaproteobacterial sulfate-reducing bacteria (SRB), which accounted for up to 32% of total bacterial acetate assimilation. We show that the family Desulfobulbaceae also assimilates acetate in marine sediments, while the more abundant Desulfobacteraceae dominated acetate assimilation despite lower uptake rates. Unexpectedly, members of Gammaproteobacteria accounted for the highest relative acetate assimilation in all sediment layers with up to 31–62% of total bacterial acetate uptake. We also show that acetate is used to build up storage compounds such as polyalkanoates. Together, our findings demonstrate that not only the usual suspects SRB but a diverse bacterial community may substantially contribute to acetate assimilation in marine sediments. This study highlights the importance of quantitative approaches to reveal the roles of distinct microbial populations in acetate turnover.
Collapse
Affiliation(s)
- Stefan Dyksma
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences, Emden, Germany
| | - Sabine Lenk
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Joanna E Sawicka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marc Mußmann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Zhou Z, Pan J, Wang F, Gu JD, Li M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 2018; 42:639-655. [PMID: 29790926 DOI: 10.1093/femsre/fuy023] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/18/2018] [Indexed: 11/12/2022] Open
Abstract
Bathyarchaeota, formerly known as the Miscellaneous Crenarchaeotal Group, is a phylum of global generalists that are widespread in anoxic sediments, which host relatively high abundance archaeal communities. Until now, 25 subgroups have been identified in the Bathyarchaeota. The distinct bathyarchaeotal subgroups diverged to adapt to marine and freshwater environments. Based on the physiological and genomic evidence, acetyl-coenzyme A-centralized heterotrophic pathways of energy conservation have been proposed to function in Bathyarchaeota; these microbes are able to anaerobically utilize (i) detrital proteins, (ii) polymeric carbohydrates, (iii) fatty acids/aromatic compounds, (iv) methane (or short chain alkane) and methylated compounds, and/or (v) potentially other organic matter. Furthermore, bathyarchaeotal members have wide metabolic capabilities, including acetogenesis, methane metabolism, and dissimilatory nitrogen and sulfur reduction, and they also have potential interactions with anaerobic methane-oxidizing archaea, acetoclastic methanogens and heterotrophic bacteria. These results have not only demonstrated multiple and important ecological functions of this archaeal phylum, but also paved the way for a detailed understanding of the evolution and metabolism of archaea as such. This review summarizes the recent findings pertaining to the ecological, physiological and genomic aspects of Bathyarchaeota, highlighting the vital role of this phylum in global carbon cycling.
Collapse
Affiliation(s)
- Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China.,Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
31
|
Qi X, Liu B, Wu H, Song Q, Jiang J, Bu Y, Rui J, Zou B, Zhou G. Bacterial communities under long-term conventional and transgenic cotton farming systems using V3-V5 and V5-V9 of 16s rDNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:618-628. [PMID: 30165339 DOI: 10.1016/j.ecoenv.2018.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Understanding the community structure of soil microbes is required to evaluate the potential effects of genetically modified (GM) plants on ecological environments. Bacterial communities in soil planted with conventional cotton (CC) and transgenic cultivar (TC) in a natural ecosystem for three years were characterized by 454 pyrosequencing of the V3-V5 and V5-V9 regions of 16S rDNA from June to September 2013. V3-V5 and V5-V9 regions yielded a total of 12,848 and 10,541 OTUs, respectively. The V5-V9 amplicon was additionally used to detect phyla that were poorly sequenced by V3-V5 (such as Chlamydiae, Crenarchaeota and Archaea). Among the species detected by each primer pair, 46% of the species identified from V3-V5 and 60% of those identified from V5-V9 were detected by both primer pairs. Although distinct bacterial compositions existed between the two amplified regions, statistical analysis revealed no significant difference in the diversity indexes or phylogenetic patterns in TC versus compared to those in the CC control. Further, clustering analysis in both regions indicated that there was no unambiguous aggregation in TC compared to that in CC control. Of all 26 phyla detected by both regions, each region detected 2 distinct phyla exhibiting significant variations in abundance. The species unique to each treatment field accounted for less than 27% of all species and were rare taxa (abundance < 0.15%). However, a small fraction of diagnostic taxa with specific ecological functions differed significantly between TC and CC. These differences were not driven by any obvious environmental factors. The results established a comprehensive inventory of the bacterial communities associated with GM plants and indicated that transgenic cotton may not significantly affect soil microorganisms compared with conventional cotton over a three-year period. Furthermore, diagnostic taxa were provided for monitoring the perturbation in soil, but further verification in future studies is required.
Collapse
Affiliation(s)
- Xiemin Qi
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Biao Liu
- Key Laboratory of Biosafety, Ministry of Environmental Protection of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Haiping Wu
- Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, China
| | - Qinxin Song
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China; Department of Pharmaceutical Analysis, Jiangsu key lab of drug screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwei Jiang
- Department of Pharmaceutical Analysis, Jiangsu key lab of drug screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bu
- Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, China
| | - Jianzhong Rui
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China.
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
32
|
Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment. ISME JOURNAL 2018; 13:277-289. [PMID: 30206424 PMCID: PMC6331629 DOI: 10.1038/s41396-018-0269-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment.
Collapse
|
33
|
Pala C, Molari M, Nizzoli D, Bartoli M, Viaroli P, Manini E. Environmental Drivers Controlling Bacterial and Archaeal Abundance in the Sediments of a Mediterranean Lagoon Ecosystem. Curr Microbiol 2018; 75:1147-1155. [PMID: 29766233 PMCID: PMC6096605 DOI: 10.1007/s00284-018-1503-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
The environmental factors controlling the abundance of Bacteria and Archaea in lagoon ecosystems are poorly understood. Here, an integrated physico-chemical, biogeochemical, and microbiological survey was applied in the Sacca di Goro lagoon (Po River Delta, Italy) to investigate the variation of bacterial and archaeal abundance, as assessed by Fluorescence In Situ Hybridization, along winter and summer environmental gradients. We hypothesised that bacterial and archaeal cells respond differentially to physico-chemical parameters of the sediment, which can be manifested in variations of total cells number. Our results suggest that Archaea are an important component of microbial communities (up to 20%) and they are also quite constant along the sediment depth investigated, while Bacteria tend to decrease in the subsurface sediments. The abiotic (i.e. temperature, ammonium, pH) and trophic parameters (i.e. chlorophyll a) explain differentially the variations of bacterial and archaeal distribution, and raise interesting questions about the ecological significance of the microbial composition in this area.
Collapse
Affiliation(s)
- Claudia Pala
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy.
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | - Massimiliano Molari
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Pierluigi Viaroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Manini
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| |
Collapse
|
34
|
Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea. Appl Microbiol Biotechnol 2018; 102:8035-8048. [PMID: 29946932 DOI: 10.1007/s00253-018-9147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/05/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
Thaumarchaeota and Bathyarchaeota (formerly named Miscellaneous Crenarchaeotal Group, MCG) are globally occurring archaea playing potential roles in nitrogen and carbon cycling, especially in marine benthic biogeochemical cycle. Information on their distributional and compositional patterns could provide critical clues to further delineate their physiological and biochemical characteristics. Profiles of thaumarchaeotal and the total archaeal community in the northern South China Sea surface sediments revealed a successively transitional pattern of Thaumarchaeota composition using MiSeq sequencing. Shallow-sea sediment enriched phylotypes decreased gradually along the slope from estuarine and coastal marine region to the deep-sea, while deep-sea sediment enriched phylotypes showed a trend of increasing. Proportion of Thaumarchaeota within the total archaea increased with seawater depth. Phylotypes enriched in shallow- and deep-sea sediments were affiliated to OTUs originated from similar niches, suggesting that physiological adaption not geographical distance shaped the distribution of Thaumarchaeota lineages. Quantitative PCR also depicted a successive decrease of thaumarchaeotal 16S rRNA gene abundance from the highest at shallow-sea sites E708S and E709S (2.57 × 106 and 2.73 × 106 gene copies/g of dry sediment) to the lowest at deep-sea sites E525S and E407S (1.97 × 106 and 2.14 × 106 gene copies/g of dry sediment). Both of the abundance fractions of Bathyarchaeota subgroups (including subgroups 1, 6, 8, 10, 13, 15, 17, and ungrouped Bathyarchaeota) and the total Bathyarchaeota in the total archaea showed a negative distribution to seawater depth. Partitioned distribution of Bathyarchaeota fraction in the total archaea is documented for the first time in this study, and the shallow- and deep-sea Bathyarchaeota could account for 17.8 and 0.8%, respectively, on average. Subgroups 6 and 8, enriched subgroups in shallow-sea sediments, largely explained this partitioned distribution pattern according to seawater depth. Their prevalence in shallow-sea and suboxic estuarine sediments rather than deep-sea sediments hints that their metabolic properties of carbon metabolism are adapted to carbon substrates in these environments.
Collapse
|
35
|
Abstract
Members of the archaeal phylum Bathyarchaeota are among the most abundant microorganisms on Earth. Although versatile metabolic capabilities such as acetogenesis, methanogenesis, and fermentation have been suggested for bathyarchaeotal members, no direct confirmation of these metabolic functions has been achieved through growth of Bathyarchaeota in the laboratory. Here we demonstrate, on the basis of gene-copy numbers and probing of archaeal lipids, the growth of Bathyarchaeota subgroup Bathy-8 in enrichments of estuarine sediments with the biopolymer lignin. Other organic substrates (casein, oleic acid, cellulose, and phenol) did not significantly stimulate growth of Bathyarchaeota Meanwhile, putative bathyarchaeotal tetraether lipids incorporated 13C from 13C-bicarbonate only when added in concert with lignin. Our results are consistent with organoautotrophic growth of a bathyarchaeotal group with lignin as an energy source and bicarbonate as a carbon source and shed light into the cycling of one of Earth's most abundant biopolymers in anoxic marine sediment.
Collapse
|
36
|
Mayali X, Weber PK. Quantitative isotope incorporation reveals substrate partitioning in a coastal microbial community. FEMS Microbiol Ecol 2018; 94:4944225. [PMID: 29562328 DOI: 10.1093/femsec/fiy047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/17/2018] [Indexed: 11/13/2022] Open
Abstract
To quantitatively link microbial identity with biogeochemical function, we carried out 14 simultaneous stable isotope probing experiments with organic and inorganic C and N substrates to measure the isotope incorporation by over one hundred co-occurring eukaryotic and prokaryotic populations in a coastal community. We found that nitrate was the most commonly incorporated substrate, and that light-driven carbon fixation was carried out by some bacterial taxa from the Flavobacteriales and OM60 (NOR5) clade, in addition to photoautotrophic phytoplankton. We found that organisms that incorporated starch, maltose, glucose, lactose and bicarbonate were phylogenetically clustered, suggesting that specific bacterial lineages specialized in the incorporation of these substrates. The data further revealed that coastal microorganisms spanned a range of resource utilization strategies from generalists to specialists and demonstrated a high level of substrate partitioning, with two thirds of taxa exhibiting unique substrate incorporation patterns and the remaining third shared by no more than three OTUs each. Specialists exhibited more extreme incorporation levels (high or low), whereas generalists displayed more intermediate activity levels. These results shed valuable insights into the bottom-up ecological strategies enabling the persistence of high microbial diversity in aquatic ecosystems.
Collapse
Affiliation(s)
- Xavier Mayali
- Nuclear and Chemical Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550 USA
| | - Peter K Weber
- Nuclear and Chemical Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550 USA
| |
Collapse
|
37
|
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M. Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:167. [PMID: 29951113 PMCID: PMC6010159 DOI: 10.1186/s13068-018-1162-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/01/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. RESULTS Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. CONCLUSIONS For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.
Collapse
Affiliation(s)
- Irena Maus
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Madis Rumming
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
- Computational Metagenomics, Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ingo Bergmann
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Kathrin Heeg
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Marcel Pohl
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Edith Nettmann
- Urban Water Management and Environmental Engineering, Faculty of Civil and Environmental Engineering, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Sebastian Jaenicke
- Dept. Bioinformatics and Systems Biology, Justus-Liebig University Gießen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Jochen Blom
- Dept. Bioinformatics and Systems Biology, Justus-Liebig University Gießen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
- Computational Metagenomics, Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
38
|
Sun W, Krumins V, Dong Y, Gao P, Ma C, Hu M, Li B, Xia B, He Z, Xiong S. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria. MICROBIAL ECOLOGY 2018; 75:113-122. [PMID: 28669057 DOI: 10.1007/s00248-017-1017-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.
Collapse
Affiliation(s)
- Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science and Technology, Guangzhou, 510650, China.
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Yiran Dong
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Pin Gao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Chunyan Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science and Technology, Guangzhou, 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science and Technology, Guangzhou, 510650, China
| | - Bingqing Xia
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science and Technology, Guangzhou, 510650, China
| | - Zijun He
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science and Technology, Guangzhou, 510650, China
| | - Shangling Xiong
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, 315211, China
| |
Collapse
|
39
|
Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, Hedlund BP, Wang P, Fang H, Deng M, Zhang CL. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol 2017; 20:734-754. [PMID: 29235710 DOI: 10.1111/1462-2920.14004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to ∼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10‰ salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10‰ salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Senthil K Murugapiran
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.,MetaGénoPolis, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Songze Chen
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Huaying Fang
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Minghua Deng
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Chuanlun L Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
40
|
Compte-Port S, Subirats J, Fillol M, Sànchez-Melsió A, Marcé R, Rivas-Ruiz P, Rosell-Melé A, Borrego CM. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula. MICROBIAL ECOLOGY 2017; 74:776-787. [PMID: 28508926 DOI: 10.1007/s00248-017-0989-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jèssica Subirats
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Rafael Marcé
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Pedro Rivas-Ruiz
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Rosell-Melé
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain.
| |
Collapse
|
41
|
Lee SH, Megonigal PJ, Kang H. How do Elevated CO 2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System. MICROBIAL ECOLOGY 2017; 74:670-680. [PMID: 28331950 DOI: 10.1007/s00248-017-0960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 120-749, South Korea
| | | | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 120-749, South Korea.
| |
Collapse
|
42
|
Moisander PH, Benavides M, Bonnet S, Berman-Frank I, White AE, Riemann L. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments. Front Microbiol 2017; 8:1736. [PMID: 28943875 PMCID: PMC5596534 DOI: 10.3389/fmicb.2017.01736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2) fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs) remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1). Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.
Collapse
Affiliation(s)
- Pia H Moisander
- Department of Biology, University of Massachusetts DartmouthNorth Dartmouth, MA, United States
| | - Mar Benavides
- Marine Biology Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Sophie Bonnet
- Centre National de la Recherche Scientifique, IRD, Aix-Marseille Université, Université de ToulonMarseille, France
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat Gan, Israel
| | - Angelicque E White
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| |
Collapse
|
43
|
The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME JOURNAL 2017; 11:2407-2425. [PMID: 28777382 DOI: 10.1038/ismej.2017.122] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/07/2017] [Accepted: 06/07/2017] [Indexed: 01/19/2023]
Abstract
The Archaea occupy a key position in the Tree of Life, and are a major fraction of microbial diversity. Abundant in soils, ocean sediments and the water column, they have crucial roles in processes mediating global carbon and nutrient fluxes. Moreover, they represent an important component of the human microbiome, where their role in health and disease is still unclear. The development of culture-independent sequencing techniques has provided unprecedented access to genomic data from a large number of so far inaccessible archaeal lineages. This is revolutionizing our view of the diversity and metabolic potential of the Archaea in a wide variety of environments, an important step toward understanding their ecological role. The archaeal tree is being rapidly filled up with new branches constituting phyla, classes and orders, generating novel challenges for high-rank systematics, and providing key information for dissecting the origin of this domain, the evolutionary trajectories that have shaped its current diversity, and its relationships with Bacteria and Eukarya. The present picture is that of a huge diversity of the Archaea, which we are only starting to explore.
Collapse
|
44
|
Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci Rep 2017; 7:7252. [PMID: 28775334 PMCID: PMC5543129 DOI: 10.1038/s41598-017-07354-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 01/26/2023] Open
Abstract
Recent discoveries have shown that the marker gene for anaerobic methane cycling (mcrA) is more widespread in the Archaea than previously thought. However, it remains unclear whether novel mcrA genes associated with the Bathyarchaeota and Verstraetearchaeota are distributed across diverse environments. We examined two geochemically divergent but putatively methanogenic regions of Yellowstone National Park to investigate whether deeply-rooted archaea possess and express novel mcrA genes in situ. Small-subunit (SSU) rRNA gene analyses indicated that Bathyarchaeota were predominant in seven of ten sediment layers, while the Verstraetearchaeota and Euryarchaeota occurred in lower relative abundance. Targeted amplification of novel mcrA genes suggested that diverse taxa contribute to alkane cycling in geothermal environments. Two deeply-branching mcrA clades related to Bathyarchaeota were identified, while highly abundant verstraetearchaeotal mcrA sequences were also recovered. In addition, detection of SSU rRNA and mcrA transcripts from one hot spring suggested that predominant Bathyarchaeota were also active, and that methane cycling genes are expressed by the Euryarchaeota, Verstraetearchaeota, and an unknown lineage basal to the Bathyarchaeota. These findings greatly expand the diversity of the key marker gene for anaerobic alkane cycling and outline the need for greater understanding of the functional capacity and phylogenetic affiliation of novel mcrA variants.
Collapse
|
45
|
Yu T, Liang Q, Niu M, Wang F. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:374-382. [PMID: 28419783 DOI: 10.1111/1758-2229.12539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The archaeal phylum Bathyarchaeota, which is composed of a large number of diverse lineages, is widespread and abundant in marine sediments. Environmental factors that control the distribution, abundance and evolution of this largely diversified archaeal phylum are currently unclear. In this study, a new pair of specific primers that target the major marine subgroups of bathyarchaeotal 16S rRNA genes was designed and evaluated to investigate the distribution and abundance of Bathyarchaeota in marine sediments. The abundance of Bathyarchaeota along two sediment cores from the deep-sea sediments of South China Sea (SCS, each from the Dongsha and Shenhu area) was determined. A strong correlation was found between the bathyarchaeotal abundance and the content of total organic carbon (TOC), suggesting an important role of Bathyarchaeota in organic matter remineralisation in the sediments of SCS. Furthermore, diversity analysis revealed that subgroups Bathy-2, Bathy-8 and Bathy-10 were dominant bathyarchaeotal members of the deep-sea sediments in the SCS. Bathy-8 was found predominantly within the reducing and deeper sediment layers, while Bathy-10 occurred preferentially in the oxidizing and shallower sediment layers. Our study lays a foundation for the further understanding of the ecological functions and niche differentiation of the important but not well-understood sedimentary archaeal group.
Collapse
Affiliation(s)
- Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyong Liang
- Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510070, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Mahajan R, Nikitina A, Nozhevnikova A, Goel G. Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region. ENVIRONMENTAL TECHNOLOGY 2016; 37:2694-2702. [PMID: 26934210 DOI: 10.1080/09593330.2016.1159733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion of agricultural biomass or wastes can offer renewable energy, to help meet the rise in energy demands. The performance of an anaerobic digester considerably depends upon the complex interactions between bacterial and archaeal microbiome, which is greatly influenced by environmental factors. In the present study, we evaluate a microbial community of digester located at two different geographical locations, to understand whether the biogeographical proximity of a digester to a geothermally active region has any influence on microbial composition. The comparative microbial community profiling, highlights coexistence of specific bacterial and archaeal representatives (especially, Prosthecochloris sp., Conexibacter sp., Crenarchaeota isolate (Caldivirga sp.), Metallosphaera sp., Pyrobaculum sp. and Acidianus sp.) in a digester with close proximity to geothermally active region (Site I) and their absence in a digester located far-off from geothermally active region (Site II). A Sörensen's index of similarity of 83.33% and 66.66% for bacterial and archaeal community was observed in both the reactors, respectively.
Collapse
Affiliation(s)
- Rishi Mahajan
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat, Solan, India
| | - Anna Nikitina
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , 33,bld. 2, Leninsky ave., Moscow , Russia , 119071
| | - Alla Nozhevnikova
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , 33,bld. 2, Leninsky ave., Moscow , Russia , 119071
| | - Gunjan Goel
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat, Solan, India
| |
Collapse
|
47
|
He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 2016; 1:16035. [PMID: 27572832 DOI: 10.1038/nmicrobiol.2016.35] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 01/13/2023]
Abstract
Members of the archaeal phylum Bathyarchaeota are widespread and abundant in the energy-deficient marine subsurface sediments. However, their life strategies have remained largely elusive. Here, we provide genetic evidence that some lineages of Bathyarchaeota are acetogens, being capable of homoacetogenesis, a metabolism so far restricted to the domain Bacteria. Metabolic reconstruction based on genomic bins assembled from the metagenome of deep-sea subsurface sediments shows that the metabolism of some lineages of Bathyarchaeota is similar to that of bona fide bacterial homoacetogens, by having pathways for acetogenesis and for the fermentative utilization of a variety of organic substrates. Heterologous expression and activity assay of the acetate kinase gene ack from Bathyarchaeota, demonstrate further the capability of these Bathyarchaeota to grow as acetogens. The presence and expression of bathyarchaeotal genes indicative of active acetogenesis was also confirmed in Peru Margin subsurface sediments where Bathyarchaeota are abundant. The analyses reveal that this ubiquitous and abundant subsurface archaeal group has adopted a versatile life strategy to make a living under energy-limiting conditions. These findings further expand the metabolic potential of Archaea and argue for a revision of the role of Archaea in the carbon cycle of marine sediments.
Collapse
Affiliation(s)
- Y He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - M Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - V Perumal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - X Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - J Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - J Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - S M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - F Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME JOURNAL 2016; 10:1696-705. [PMID: 26824177 DOI: 10.1038/ismej.2015.233] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022]
Abstract
Marine and estuary sediments contain a variety of uncultured archaea whose metabolic and ecological roles are unknown. De novo assembly and binning of high-throughput metagenomic sequences from the sulfate-methane transition zone in estuary sediments resulted in the reconstruction of three partial to near-complete (2.4-3.9 Mb) genomes belonging to a previously unrecognized archaeal group. Phylogenetic analyses of ribosomal RNA genes and ribosomal proteins revealed that this group is distinct from any previously characterized archaea. For this group, found in the White Oak River estuary, and previously registered in sedimentary samples, we propose the name 'Thorarchaeota'. The Thorarchaeota appear to be capable of acetate production from the degradation of proteins. Interestingly, they also have elemental sulfur and thiosulfate reduction genes suggesting they have an important role in intermediate sulfur cycling. The reconstruction of these genomes from a deeply branched, widespread group expands our understanding of sediment biogeochemistry and the evolutionary history of Archaea.
Collapse
Affiliation(s)
- Kiley W Seitz
- Department of Marine Science, University of Texas Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Cassandre S Lazar
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Department of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas P Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Marine Science Institute, Port Aransas, TX, USA
| |
Collapse
|
49
|
Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 2016; 18:1200-11. [PMID: 26626228 DOI: 10.1111/1462-2920.13142] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/28/2022]
Abstract
Investigations of the biogeochemical roles of benthic Archaea in marine sediments are hampered by the scarcity of cultured representatives. In order to determine their metabolic capacity, we reconstructed the genomic content of four widespread uncultured benthic Archaea recovered from estuary sediments at 48% to 95% completeness. Four genomic bins were found to belong to different subgroups of the former Miscellaneous Crenarcheota Group (MCG) now called Bathyarchaeota: MCG-6, MCG-1, MCG-7/17 and MCG-15. Metabolic predictions based on gene content of the different genome bins indicate that subgroup 6 has the ability to hydrolyse extracellular plant-derived carbohydrates, and that all four subgroups can degrade detrital proteins. Genes encoding enzymes involved in acetate production as well as in the reductive acetyl-CoA pathway were detected in all four genomes inferring that these Archaea are organo-heterotrophic and autotrophic acetogens. Genes involved in nitrite reduction were detected in all Bathyarchaeota subgroups and indicate a potential for dissimilatory nitrite reduction to ammonium. Comparing the genome content of the different Bathyarchaeota subgroups indicated preferences for distinct types of carbohydrate substrates and implicitly, for different niches within the sedimentary environment.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- University of North Carolina Chapel Hill, Marine Sciences, Chapel Hill, NC, USA.,Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany.,Institute of Ecology, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany
| | - Brett J Baker
- University of Texas Austin, Department of Marine Science, Marine Science Institute, Port Aransas, TX, 78383, USA
| | - Kiley Seitz
- University of Texas Austin, Department of Marine Science, Marine Science Institute, Port Aransas, TX, 78383, USA
| | - Andrew S Hyde
- University of North Carolina Chapel Hill, Marine Sciences, Chapel Hill, NC, USA
| | - Gregory J Dick
- University of Michigan, Earth and Environmental Sciences, Ann Arbor, MI, 48109, USA
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andreas P Teske
- University of North Carolina Chapel Hill, Marine Sciences, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Sanni GO, Coulon F, McGenity TJ. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15230-15247. [PMID: 25869427 DOI: 10.1007/s11356-015-4313-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0-2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0-2-mm section of sediment were only significant at days 12 to 28, and the 2-4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2-4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods.
Collapse
Affiliation(s)
- Gbemisola O Sanni
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Frédéric Coulon
- School of Energy, Environment and Agrifood, Cranfield University, Building 40, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|