1
|
Rajakaruna S, Bandow B, Pérez-Burillo S, Navajas-Porras B, Rufián-Henares JÁ, Cool DR, Cho KJ, Paliy O. Human gut microbiota-fermented asparagus powder protects human epithelial cells from injury and inflammation. Food Funct 2025; 16:1060-1071. [PMID: 39821238 DOI: 10.1039/d4fo03504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Dietary consumption of green asparagus has been associated with several health benefits. These beneficial properties are attributed to the presence of many bioactive compounds in asparagus, including saponins, phenolics, flavonoids, as well as dietary fiber mostly comprising fructans and inulins, which are prebiotics capable of supporting the growth of beneficial members of gut microbiota. In this study, we used the in vitro Human Gut Simulator system to assess the fermentation of oro-gastro-intestinally digested asparagus powder by the human gut microbiota. Microbial community composition differed between communities grown on the asparagus digest and on the Western diet derived medium. Asparagus supported beneficial Ruminococcus but also hydrogen sulfide producing members of Desulfovibrionaceae. Fermentation of asparagus released more antioxidants into the environment compared to the Western diet medium, and supernatant of asparagus-grown cultures protected cultured human epithelial cells against damage and inflammation. We thus showed that asparagus powder has potential to be used as a functional food, offering protection against intestinal damage and inflammation - effects mediated by the gut microbiota.
Collapse
Affiliation(s)
- Sumudu Rajakaruna
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Brant Bandow
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Sergio Pérez-Burillo
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Beatriz Navajas-Porras
- Department of Nutrition and Food Sciences, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, University of Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Department of Nutrition and Food Sciences, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, University de Granada, Granada, Spain.
| | - David R Cool
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
2
|
Sprague KL, Rajakaruna S, Bandow B, Burchat N, Bottomley M, Sampath H, Paliy O. Gut Microbiota Fermentation of Digested Almond-Psyllium-Flax Seed-Based Artisan Bread Promotes Mediterranean Diet-Resembling Microbial Community. Microorganisms 2024; 12:1189. [PMID: 38930571 PMCID: PMC11205402 DOI: 10.3390/microorganisms12061189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Different modifications of the standard bread recipe have been proposed to improve its nutritional and health benefits. Here, we utilized the in vitro Human Gut Simulator (HGS) to assess the fermentation of one such artisan bread by human gut microbiota. Dried and milled bread, composed of almond flour, psyllium husks, and flax seeds as its three main ingredients, was first subjected to an in vitro protocol designed to mimic human oro-gastro-intestinal digestion. The bread digest was then supplied to complex human gut microbial communities, replacing the typical Western diet-based medium (WM) of the GHS system. Switching the medium from WM to bread digest resulted in statistically significant alterations in the community structure, encoded functions, produced short-chain fatty acids, and available antioxidants. The abundances of dietary fiber degraders Enterocloster, Mitsuokella, and Prevotella increased; levels of Gemmiger, Faecalibacterium, and Blautia decreased. These community alterations resembled the previously revealed differences in the distal gut microbiota of healthy human subjects consuming typical Mediterranean vs. Western-pattern diets. Therefore, the consumption of bread high in dietary fiber and unsaturated fatty acids might recapitulate the beneficial effects of the Mediterranean diet on the gut microbiota.
Collapse
Affiliation(s)
- Kourtney L. Sprague
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Sumudu Rajakaruna
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Brant Bandow
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Natalie Burchat
- New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Michael Bottomley
- Statistical Consulting Center, Wright State University, Dayton, OH 45435, USA
| | - Harini Sampath
- New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
Otaru N, Pugin B, Plüss S, Hojsak I, Braegger C, Lacroix C. A pilot case-control study on the fecal microbiota of pediatric functional abdominal pain-not otherwise specified and the role of early life stress. MICROBIOME RESEARCH REPORTS 2024; 3:32. [PMID: 39421253 PMCID: PMC11485736 DOI: 10.20517/mrr.2023.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Background: Gut microbial features and the role of early life stress in pediatric functional abdominal pain-not otherwise specified (FAP-NOS) have never been investigated before. Here, we hypothesize that early life stress is more prevalent in FAP-NOS compared to healthy controls and that fecal microbial profiles and related metabolites differ between groups. Methods: In an international multicenter case-control study, FAP-NOS patients (n = 40) were compared to healthy controls (n = 55). Stool samples and demographic and clinical data including early life traumatic events and antibiotics treatments were collected from children aged four to twelve years. Fecal microbial profiles were assessed with 16S rRNA gene amplicon sequencing. Microbial metabolite concentrations in fecal supernatant, including short-chain fatty acids and amino acids, were detected via liquid chromatography. Results: Microbial richness was increased in FAP-NOS compared to healthy controls and microbial composition (unweighted UniFrac) differed between groups. Three distinct amplicon sequencing variants and two distinct species were enriched in FAP-NOS compared to controls, with no observed changes at higher taxonomic levels. No differences in microbial metabolites and early life stress were observed between groups. Conclusion: The presented hypothesis could not be proven, with no observed differences in occurrence of early life stress, and fecal microbial metabolic profiles between pediatric FAP-NOS and healthy controls. Pediatric FAP-NOS patients exhibited mild differences in the fecal microbial community compared with controls. Further large-scale studies with high-resolution techniques are warranted to address the biological relevance of present observations.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children’s Hospital Zürich, Zürich 8032, Switzerland
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Benoît Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children’s Hospital Zagreb, Zagreb 10000, Croatia
- University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Christian Braegger
- Nutrition Research Unit, University Children’s Hospital Zürich, Zürich 8032, Switzerland
- Authors contributed equally
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
- Authors contributed equally
| |
Collapse
|
4
|
Zeevenhooven J, Zeevenhooven L, Biesbroek A, Schappin R, Vlieger AM, van Sleuwen BE, L'Hoir MP, Benninga MA. Functional gastrointestinal disorders, quality of life, and behaviour in adolescents with history of infant colic. Acta Paediatr 2024; 113:1435-1443. [PMID: 38535502 DOI: 10.1111/apa.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 06/09/2024]
Abstract
AIM To assess the prevalence of functional gastrointestinal disorders (FGIDs), health-related quality of life (HRQOL), and behavioural problems in a cohort of adolescents with a history of infant colic (IC), as defined by Wessel's criteria. METHODS 388 adolescents, aged 15-18 years, who participated in a randomised controlled trial for infants with colic, were invited for our observational follow-up study. Prevalence of FGIDs was assessed with the Rome IV Questionnaire on Paediatric Gastrointestinal Disorders (RIV-QPGD), HRQOL through self-report of the Paediatric Quality of Life Inventory (PedsQL), and behavioural problems through parent-report of the child behaviour checklist (CBCL). Multivariable models were used to compare prevalence rates of FGIDs and HRQOL scores. RESULTS 190 (49%) adolescents with a history of IC (cases) and 381 controls were included (median age 17.0 [IQR 16.0-17.0] and 16.0 [15.0-17.0] years, respectively). Cases had a significantly higher risk for postprandial distress syndrome compared to controls (aOR 2.49 (95%CI 1.18-5.25), p = 0.002). After multivariable regression, total, physical and school HRQOL scores were significantly lower in cases compared to controls (p = 0.003, 0.001, and 0.009). CONCLUSION Adolescents with a history of IC demonstrate higher prevalence rates of postprandial distress syndrome compared to controls. However, conclusions should be made with caution due to attrition and information bias.
Collapse
Affiliation(s)
- Judith Zeevenhooven
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Emma Children's Hospital, Amsterdam UMC, Pediatric Gastroenterology, Hepatology and Nutrition, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucas Zeevenhooven
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angela Biesbroek
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renske Schappin
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arine M Vlieger
- Department of Pediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Monique P L'Hoir
- Nutrition and Health over the Lifecourse, Wageningen University & Research, Wageningen, The Netherlands
| | - Marc A Benninga
- Emma Children's Hospital, Amsterdam UMC, Pediatric Gastroenterology, Hepatology and Nutrition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Joldrichsen MR, Kim E, Steiner HE, Jeong YJ, Premanandan C, Hsueh W, Ziouzenkova O, Cormet-Boyaka E, Boyaka PN. Loss of Paneth cells dysregulates gut ILC subsets and enhances weight gain response to high fat diet in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587349. [PMID: 38617293 PMCID: PMC11014498 DOI: 10.1101/2024.03.29.587349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Obesity has been associated with dysbiosis, but innate mechanisms linking intestinal epithelial cell subsets and obesity remain poorly understood. Using mice lacking Paneth cells (Sox9 ΔIEC mice), small intestinal epithelial cells specialized in the production of antimicrobial products and cytokines, we show that dysbiosis alone does not induce obesity or metabolic disorders. Loss of Paneth cells reduced ILC3 and increased ILC2 numbers in the intestinal lamina propria. High-fat diet (HFD) induced higher weight gain and more severe metabolic disorders in Sox9 ΔIEC mice. Further, HFD enhances the number of ILC1 in the intestinal lamina propria of Sox9 ΔIEC mice and increases intestinal permeability and the accumulation of immune cells (inflammatory macrophages and T cells, and B cells) in abdominal fat tissues of obese Sox9 ΔIEC . Transplantation of fecal materials from Sox9 ΔIEC mice in germ-free mice before HFD further confirmed the regulatory role of Paneth cells for gut ILC subsets and the development of obesity.
Collapse
|
6
|
Yan X, Huang W, Suo X, Pan S, Li T, Liu H, Tan B, Zhang S, Yang Y, Dong X. Integrated analysis of microbiome and host transcriptome reveals the damage/protective mechanism of corn oil and olive oil on the gut health of grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Int J Biol Macromol 2023; 253:127550. [PMID: 37865354 DOI: 10.1016/j.ijbiomac.2023.127550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
As digestive and immune organs of animals, the gut was frequently used to evaluate the health status of aquatic animals. In previous oil source alternatives study, corn oil (CO) had been found to induce gut inflammation, while olive oil (OO) had been found to be effective in protecting intestinal health. Three diets with different oil sources (fish oil, CO, OO) were formulated for an 8-week culture experiment, and it was proposed to combine 16S sequencing and transcriptome sequencing analysis to preliminarily elucidate the damage/protection mechanism of CO and OO on the gut health of grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). We found that CO indeed damaged to gut health and destroyed the gut structure, while OO had a positive outcome in protecting the gut structure, promoting digestibility and relieving enteritis. Photobacterium, Romboutsia and Epulopiscium were significantly enriched in OO group and Staphylococcus were significantly enriched in CO group. Transcriptome sequencing further revealed CO could activated Complement and coagulation cascades, Staphylococcus aureus infection, Systemic lupus erythematosus, and Tuberculosis pathways; conversely, OO activated B-cell signaling receptors, promoted B-cell proliferation and apoptosis, and thus activated B-cell signaling pathways to enhance immunity, whereas OO can regulate IL17 signaling pathway and TNF signaling pathway to inhibit NF-κB signaling pathway to reduce pro-inflammatory response. By integrating the microbiome and transcriptome, further identified all differential microorganisms were directly and significantly correlated with differential genes, and Clostridium_sensu_stricto_1, Romboutsia, Staphylococcus might as the core regulates the expression of differential gene in the organism. These results reveal that different oil sources alter gut gene expression mainly by modulating the composition and abundance of gut microbiota, further regulating the health status of the gut. Gut microbiota could be used as biomarkers to provide reference and solutions for the mitigation of inflammation in aquatic animals.
Collapse
Affiliation(s)
- Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China.
| |
Collapse
|
7
|
Garcia-Mazcorro JF, Amieva-Balmori M, Triana-Romero A, Wilson B, Smith L, Reyes-Huerta J, Rossi M, Whelan K, Remes-Troche JM. Fecal Microbial Composition and Predicted Functional Profile in Irritable Bowel Syndrome Differ between Subtypes and Geographical Locations. Microorganisms 2023; 11:2493. [PMID: 37894151 PMCID: PMC10608977 DOI: 10.3390/microorganisms11102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Increasing evidence suggests a microbial pathogenesis in irritable bowel syndrome (IBS) but the relationship remains elusive. Fecal DNA samples from 120 patients with IBS, 82 Mexican (IBS-C: n = 33, IBS-D: n = 24, IBS-M: n = 25) and 38 British (IBS-C: n = 6, IBS-D: n = 27, IBS-M: n = 5), were available for analysis using 16S rRNA gene sequencing. Firmicutes (mean: 82.1%), Actinobacteria (10.2%), and Bacteroidetes (4.4%) were the most abundant taxa. The analysis of all samples (n = 120), and females (n = 94) only, showed no significant differences in bacterial microbiota, but the analysis of Mexican patients (n = 82) showed several differences in key taxa (e.g., Faecalibacterium) among the different IBS subtypes. In IBS-D there were significantly higher Bacteroidetes in British patients (n = 27) than in Mexican patients (n = 24), suggesting unique fecal microbiota signatures within the same IBS subtype. These differences in IBS-D were also observed at lower phylogenetic levels (e.g., higher Enterobacteriaceae and Streptococcus in Mexican patients) and were accompanied by differences in several alpha diversity metrics. Beta diversity was not different among IBS subtypes when using all samples, but the analysis of IBS-D patients revealed consistent differences between Mexican and British patients. This study suggests that fecal microbiota is different between IBS subtypes and also within each subtype depending on geographical location.
Collapse
Affiliation(s)
| | - Mercedes Amieva-Balmori
- Instituto de Investigaciones Médico Biológicas, Universidad Veracruzana, Veracruz 91700, Mexico
| | - Arturo Triana-Romero
- Instituto de Investigaciones Médico Biológicas, Universidad Veracruzana, Veracruz 91700, Mexico
| | - Bridgette Wilson
- Department of Nutritional Sciences, King’s College London, London WC2R 2LS, UK
| | - Leanne Smith
- Department of Nutritional Sciences, King’s College London, London WC2R 2LS, UK
| | - Job Reyes-Huerta
- Instituto de Investigaciones Médico Biológicas, Universidad Veracruzana, Veracruz 91700, Mexico
| | - Megan Rossi
- Department of Nutritional Sciences, King’s College London, London WC2R 2LS, UK
| | - Kevin Whelan
- Department of Nutritional Sciences, King’s College London, London WC2R 2LS, UK
| | - Jose M. Remes-Troche
- Instituto de Investigaciones Médico Biológicas, Universidad Veracruzana, Veracruz 91700, Mexico
| |
Collapse
|
8
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
McHarg AS, Leach S. The role of the gut microbiome in paediatric irritable bowel syndrome. AIMS Microbiol 2022; 8:454-469. [PMID: 36694592 PMCID: PMC9834077 DOI: 10.3934/microbiol.2022030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common and disabling condition in children. The pathophysiology of IBS is thought to be multifactorial but remains incompletely understood. There is growing evidence implicating the gut microbiome in IBS. Intestinal dysbiosis has been demonstrated in paediatric IBS cohorts; however, no uniform or consistent pattern has been identified. The exact mechanisms by which this dysbiosis contributes to IBS symptoms remain unknown. Available evidence suggests the imbalance produces a functional dysbiosis, with altered production of gases and metabolites that interact with the intestinal wall to cause symptoms, and enrichment or depletion of certain metabolic pathways. Additional hypothesised mechanisms include increased intestinal permeability, visceral hypersensitivity and altered gastrointestinal motility; however, these remain speculative in paediatric patients, with studies limited to animal models and adult populations. Interaction between dietary components and intestinal microbiota, particularly with fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), has drawn increasing attention. FODMAPs have been found to trigger and worsen IBS symptoms. This is thought to be related to products of their fermentation by a dysbiotic microbial population, although this remains to be proven. A low-FODMAP diet has shown promising success in ameliorating symptoms in some but not all patients. There remains much to be discovered about the role of the dysbiotic microbiome in paediatric IBS.
Collapse
Affiliation(s)
- Alexandra S McHarg
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Westfield Research Laboratories, Sydney Children's Hospital, Randwick, NSW, Australia,* Correspondence:
| | - Steven Leach
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Westfield Research Laboratories, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
10
|
Dietary Melanoidins from Biscuits and Bread Crust Alter the Structure and Short-Chain Fatty Acid Production of Human Gut Microbiota. Microorganisms 2022; 10:microorganisms10071268. [PMID: 35888986 PMCID: PMC9323165 DOI: 10.3390/microorganisms10071268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoidins are the products of the Maillard reaction between carbonyl and amino groups of macromolecules and are readily formed in foods, especially during heat treatment. In this study we utilized the three-stage Human Gut Simulator system to assess the effect of providing melanoidins extracted from either biscuits or bread crust to the human gut microbiota. Addition of melanoidins to the growth medium led to statistically significant alterations in the microbial community composition, and it increased short-chain fatty acid and antioxidant production by the microbiota. The magnitude of these changes was much higher for cultures grown with biscuit melanoidins. Several lines of evidence indicate that such differences between these melanoidin sources might be due to the presence of lipid components in biscuit melanoidin structures. Because melanoidins are largely not degraded by human gastrointestinal enzymes, they provide an additional source of microbiota-accessible nutrients to our gut microbes.
Collapse
|
11
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut–brain axis. It is increasingly evident that sex–microbiota–brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota–brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders. The human microbiome is a unique set of organisms affecting health via the gut–brain axis. Neuropsychiatric disorders, eating disorders, neurodevelopmental disorders, and neurodegenerative disorders are regulated by the microbiota–gut–brain axis in a sex-specific manner. Understanding the role of the microbiota–gut–brain axis and its sex differences in various diseases can lead to better therapeutic methods.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yan Z, Zhang K, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Song X, Li J. Integrated 16S rDNA Gene Sequencing and Untargeted Metabolomics Analyses to Investigate the Gut Microbial Composition and Plasma Metabolic Phenotype in Calves With Dampness-Heat Diarrhea. Front Vet Sci 2022; 9:703051. [PMID: 35242833 PMCID: PMC8885629 DOI: 10.3389/fvets.2022.703051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Dampness-heat diarrhea (DHD), a common syndrome in Chinese dairy farms, is mainly resulted from digestive system disorders, and accompanied with metabolic disorders in some cases. However, the underlying mechanisms in the intestinal microbiome and plasma metabolome in calves with DHD remain unclear. In order to investigate the pathogenesis of DHD in calves, multi-omics techniques including the 16S rDNA gene sequencing and metabolomics were used to analyze gut microbial compositions and plasma metabolic changes in calves. The results indicated that DHD had a significant effect on the intestinal microbial compositions in calves, which was confirmed by changes in microbial population and distribution. A total of 14 genera were changed, including Escherichia-Shigella, Bacteroides, and Fournierella, in calves with DHD (P < 0.05). Functional analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that 11 metabolic functions (level 2) were significantly enriched in DHD cases. The untargeted metabolomics analysis showed that 440 metabolites including bilineurin, phosphatidylcholine, and glutamate were significantly different between two groups (VIP > 1 and P < 0.05), and they were related to 67 signal pathways. Eight signal pathways including alpha-linolenic acid, linoleic acid, and glycerophospholipid metabolism were significantly enriched (P < 0.05), which may be potential biomarkers of plasma in calves with DHD. Further, 107 pairs of intestinal microbiota-plasma metabolite correlations were determined, e.g., Escherichia-Shigella was significantly associated with changes of sulfamethazine, butyrylcarnitine, and 14 other metabolites, which reflected that metabolic activity was influenced by the microbiome. These microbiota-metabolite pairs might have a relationship with DHD in calves. In conclusion, the findings revealed that DHD had effect on intestinal microbial compositions and plasma metabolome in calves, and the altered metabolic pathways and microorganisms might serve as diagnostic markers and potential therapeutic targets for DHD in calves.
Collapse
Affiliation(s)
- Zunxiang Yan
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Kai Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Guibo Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhengying Qiu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Xiaoping Song
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- *Correspondence: Jianxi Li
| |
Collapse
|
13
|
Mujagic Z, Kasapi M, Jonkers DMAE, Garcia-Perez I, Vork L, Weerts ZZR, Serrano-Contreras JI, Zhernakova A, Kurilshikov A, Scotcher J, Holmes E, Wijmenga C, Keszthelyi D, Nicholson JK, Posma JM, Masclee AAM. Integrated fecal microbiome-metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome. Gut Microbes 2022; 14:2063016. [PMID: 35446234 PMCID: PMC9037519 DOI: 10.1080/19490976.2022.2063016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS), several modalities of biological and clinical data must be combined. We aimed to identify profiles of fecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Fecal metabolites were measured using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gut microbiome using shotgun metagenomic sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HCs) with extensive clinical, biological and phenotype information. Data were analyzed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on fecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal (GI) symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavorable stress response related to GI symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS.
Collapse
Affiliation(s)
- Zlatan Mujagic
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK,CONTACT Zlatan Mujagic Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Melpomeni Kasapi
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Daisy MAE Jonkers
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Lisa Vork
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Zsa Zsa R.M. Weerts
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jose Ivan Serrano-Contreras
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jamie Scotcher
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Elaine Holmes
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK,The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, Perth, Australia
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jeremy K Nicholson
- The Australian National Phenome Center, Harry Perkins Institute, Murdoch University, Perth, Australia
| | - Joram M Posma
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, South Kensington Campus, Imperial College London, London, UK
| | - Ad AM Masclee
- Division Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Nutrim School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Metabolic adaption to extracellular pyruvate triggers biofilm formation in Clostridioides difficile. THE ISME JOURNAL 2021; 15:3623-3635. [PMID: 34155333 PMCID: PMC8630010 DOI: 10.1038/s41396-021-01042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile infections are associated with gut microbiome dysbiosis and are the leading cause of hospital-acquired diarrhoea. The infectious process is strongly influenced by the microbiota and successful infection relies on the absence of specific microbiota-produced metabolites. Deoxycholate and short-chain fatty acids are microbiota-produced metabolites that limit the growth of C. difficile and protect the host against this infection. In a previous study, we showed that deoxycholate causes C. difficile to form strongly adherent biofilms after 48 h. Here, our objectives were to identify and characterize key molecules and events required for biofilm formation in the presence of deoxycholate. We applied time-course transcriptomics and genetics to identify sigma factors, metabolic processes and type IV pili that drive biofilm formation. These analyses revealed that extracellular pyruvate induces biofilm formation in the presence of deoxycholate. In the absence of deoxycholate, pyruvate supplementation was sufficient to induce biofilm formation in a process that was dependent on pyruvate uptake by the membrane protein CstA. In the context of the human gut, microbiota-generated pyruvate is a metabolite that limits pathogen colonization. Taken together our results suggest that pyruvate-induced biofilm formation might act as a key process driving C. difficile persistence in the gut.
Collapse
|
15
|
Bervoets L, Ippel JH, Smolinska A, van Best N, Savelkoul PHM, Mommers MAH, Penders J. Practical and Robust NMR-Based Metabolic Phenotyping of Gut Health in Early Life. J Proteome Res 2021; 20:5079-5087. [PMID: 34587745 PMCID: PMC8576838 DOI: 10.1021/acs.jproteome.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.
Collapse
Affiliation(s)
- Liene Bervoets
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Niels van Best
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Institute of Medical Microbiology, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VUMC, 1081 HV Amsterdam, The Netherlands
| | - Monique A H Mommers
- Department of Epidemiology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
16
|
Metabolic Profiling of Plasma in Patients with Irritable Bowel Syndrome after a 4-Week Starch- and Sucrose-Reduced Diet. Metabolites 2021; 11:metabo11070440. [PMID: 34357334 PMCID: PMC8306703 DOI: 10.3390/metabo11070440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
A 4-week dietary intervention with a starch- and sucrose-restricted diet (SSRD) was conducted in patients with irritable bowel syndrome (IBS) to examine the metabolic profile in relation to nutrient intake and gastrointestinal symptoms. IBS patients were randomized to SSRD intervention (n = 69) or control continuing with their ordinary food habits (n = 22). Food intake was registered and the questionnaires IBS-symptoms severity scale (IBS-SSS) and visual analog scale for IBS (VAS-IBS) were completed. Metabolomics untargeted analysis was performed by gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) in positive and negative ionization modes. SSRD led to marked changes in circulating metabolite concentrations at the group level, most prominent for reduced starch intake and increased polyunsaturated fat, with small changes in the control group. On an individual level, the correlations were weak. The marked reduction in gastrointestinal symptoms did not correlate with the metabolic changes. SSRD was observed by clear metabolic effects mainly related to linoleic acid metabolism, fatty acid biosynthesis, and beta-oxidation.
Collapse
|
17
|
Pérez-Burillo S, Molino S, Navajas-Porras B, Valverde-Moya ÁJ, Hinojosa-Nogueira D, López-Maldonado A, Pastoriza S, Rufián-Henares JÁ. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nat Protoc 2021; 16:3186-3209. [PMID: 34089022 DOI: 10.1038/s41596-021-00537-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Knowledge of the effect of foods on gut microbiota composition and functionality is expanding. To isolate the effect of single foods and/or single nutrients (i.e., fiber, polyphenols), this protocol describes an in vitro batch fermentation procedure to be carried out after an in vitro gastrointestinal digestion. Therefore, this is an extension of the previous protocol described by Brodkorb et al. (2019) for studying in vitro digestion. The current protocol uses an oligotrophic fermentation medium with peptone and a high concentration of fecal inoculum from human fecal samples both to provide the microbiota and as the main source of nutrients for the bacteria. This protocol is recommended for screening work to be performed when many food samples are to be studied. It has been used successfully to study gut microbiota fermentation of different foodstuffs, giving insights into their functionality, community structure or ability to degrade particular substances, which can contribute to the development of personalized nutrition strategies. The procedure does not require a specific level of expertise. The protocol takes 4-6 h for preparation of fermentation tubes and 20 h for incubation.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Álvaro Jesús Valverde-Moya
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alicia López-Maldonado
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain.
| |
Collapse
|
18
|
Ahluwalia B, Iribarren C, Magnusson MK, Sundin J, Clevers E, Savolainen O, Ross AB, Törnblom H, Simrén M, Öhman L. A Distinct Faecal Microbiota and Metabolite Profile Linked to Bowel Habits in Patients with Irritable Bowel Syndrome. Cells 2021; 10:cells10061459. [PMID: 34200772 PMCID: PMC8230381 DOI: 10.3390/cells10061459] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with irritable bowel syndrome (IBS) are suggested to have an altered intestinal microenvironment. We therefore aimed to determine the intestinal microenvironment profile, based on faecal microbiota and metabolites, and the potential link to symptoms in IBS patients. The faecal microbiota was evaluated by the GA-mapTM dysbiosis test, and tandem mass spectrometry (GC-MS/MS) was used for faecal metabolomic profiling in patients with IBS and healthy subjects. Symptom severity was assessed using the IBS Severity Scoring System and anxiety and depression were assessed using the Hospital Anxiety and Depression Scale. A principal component analysis based on faecal microbiota (n = 54) and metabolites (n = 155) showed a clear separation between IBS patients (n = 40) and healthy subjects (n = 18). Metabolites were the main driver of this separation. Additionally, the intestinal microenvironment profile differed between IBS patients with constipation (n = 15) and diarrhoea (n = 11), while no clustering was detected in subgroups of patients according to symptom severity or anxiety. Furthermore, ingenuity pathway analysis predicted amino acid metabolism and several cellular and molecular functions to be altered in IBS patients. Patients with IBS have a distinct faecal microbiota and metabolite profile linked to bowel habits. Intestinal microenvironment profiling, based on faecal microbiota and metabolites, may be considered as a future non-invasive diagnostic tool, alongside providing valuable insights into the pathophysiology of IBS.
Collapse
Affiliation(s)
- Bani Ahluwalia
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; (B.A.); (C.I.); (M.K.M.); (J.S.)
- Calmino Group AB, Research and Development, 413 46 Gothenburg, Sweden
| | - Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; (B.A.); (C.I.); (M.K.M.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden; (E.C.); (H.T.); (M.S.)
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; (B.A.); (C.I.); (M.K.M.); (J.S.)
| | - Johanna Sundin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; (B.A.); (C.I.); (M.K.M.); (J.S.)
| | - Egbert Clevers
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden; (E.C.); (H.T.); (M.S.)
- GI Motility and Sensitivity Research Group, Translational Research Centre for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (O.S.); (A.B.R.)
| | - Alastair B. Ross
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (O.S.); (A.B.R.)
- Proteins and Metabolites Team, AgResearch, Lincoln 7674, New Zealand
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden; (E.C.); (H.T.); (M.S.)
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden; (E.C.); (H.T.); (M.S.)
- Center for Functional Gastrointestinal and Motility Disorders, Division of Gastroenterology & Hepatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden; (B.A.); (C.I.); (M.K.M.); (J.S.)
- Correspondence: ; Tel.: +46-31-786-6214
| |
Collapse
|
19
|
Ma M, Lu H, Yang Z, Chen L, Li Y, Zhang X. Differences in microbiota between acute and chronic perianal eczema. Medicine (Baltimore) 2021; 100:e25623. [PMID: 33879734 PMCID: PMC8078401 DOI: 10.1097/md.0000000000025623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 01/04/2023] Open
Abstract
Microbiota has been suggested to play a role in patients with intestinal and cutaneous diseases. However, the profiling of perianal eczema microbiota has not been described. We have explored the general profile and possible differences between acute and chronic perianal eczema. A total of 101 acute perianal eczema (APE) and 156 chronic perianal eczema (CPE) patients were enrolled in this study and the perianal microbiota was profiled via Illumina sequencing of the 16S rRNA V4 region.The microbial α-diversity and structure are similar in APE and CPE patients; however, the perianal microbiota of the APE patients had a higher content of Staphylococcus (22.2%, P < .01) than that of CPE patients. Top10 genera accounting for more than 60% (68.81% for APE and 65.47% for CPE) of the whole microbiota, including Prevotella, Streptococcus, and Bifidobacterium, show an upregulation trend in the case of APE without reaching statistically significant differences. This study compared the microbiota profiles of acute and chronic perianal eczema. Our results suggest that the microbiota of acute perianal eczema patients is enriched in Staphylococcus compared with that in the chronic group. Our findings provide data for further studies.
Collapse
Affiliation(s)
- Ming Ma
- Department of Dermatology, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing
| | - Hongmei Lu
- Department of Dermatology, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang
- Cipher Gene LLC
| | - Li Chen
- Department of Dermatology, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing
| | | | - Xiu Zhang
- Department of Internal Medicine, Beijing Coloproctological Hospital, Beijing Erlonglu Hospital, Beijing, China
| |
Collapse
|
20
|
Walke JB, Becker MH, Krinos A, Chang EAB, Santiago C, Umile TP, Minbiole KPC, Belden LK. Seasonal changes and the unexpected impact of environmental disturbance on skin bacteria of individual amphibians in a natural habitat. FEMS Microbiol Ecol 2021; 97:6024676. [PMID: 33278302 DOI: 10.1093/femsec/fiaa248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/02/2020] [Indexed: 01/16/2023] Open
Abstract
Amphibians host diverse skin bacteria that have a role in pathogen defense, but these skin communities could change over time and impact this function. Here, we monitored individual Eastern red-spotted newts (Notophthalmus viridescens; N = 17) for 2 years in a field pond enclosure and assessed the effects of season and disturbance on skin bacterial community dynamics. We created disturbances by adding additional pond substrate to the enclosure at two timepoints. We planned to sample the skin bacterial community and metabolite profiles of each newt every 6 weeks; we ultimately sampled eight individuals at least six times. We used 16S rRNA gene amplicon sequencing to characterize the bacterial communities and HPLC-MS for metabolite profiling. We found that disturbance had a dramatic effect on skin bacterial communities and metabolite profiles, while season had an effect only using select metrics. There were seven core bacterial taxa (97% OTUs) that were found on all newts in all seasons, pre- and post-disturbance. Lastly, there was a correlation between bacterial and metabolite profiles post-disturbance, which was not observed pre-disturbance. This longitudinal study suggests that environmental disturbances can have lasting effects on skin bacterial communities that overwhelm seasonal changes, although the core bacteria remain relatively consistent over time.
Collapse
Affiliation(s)
- Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Arianna Krinos
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Celina Santiago
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Thomas P Umile
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
21
|
Chumpitazi BP, Hoffman KL, Smith DP, McMeans AR, Musaad S, Versalovic J, Petrosino JF, Shulman RJ. Fructan-sensitive children with irritable bowel syndrome have distinct gut microbiome signatures. Aliment Pharmacol Ther 2021; 53:499-509. [PMID: 33314183 PMCID: PMC8281336 DOI: 10.1111/apt.16204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dietary fructans may worsen gastrointestinal symptoms in children with irritable bowel syndrome (IBS). AIM To determine whether gut microbiome composition and function are associated with childhood IBS fructan-induced symptoms. METHODS Faecal samples were collected from 38 children aged 7-17 years with paediatric Rome III IBS, who previously completied a double-blind, randomised, placebo-controlled crossover (fructan vs maltodextrin) trial. Fructan sensitivity was defined as an increase of ≥30% in abdominal pain frequency during the fructan diet. Gut microbial composition was determined via 16Sv4 rDNA sequencing. LEfSe evaluated taxonomic composition differences. Tax4Fun2 predicted microbial fructan metabolic pathways. RESULTS At baseline, 17 fructan-sensitive (vs 21 fructan-tolerant) subjects had lower alpha diversity (q < 0.05) and were enriched in the genus Holdermania. In contrast, fructan-tolerant subjects were enriched in 14 genera from the class Clostridia. During the fructan diet, fructan-sensitive (vs tolerant) subjects were enriched in both Agathobacter (P = 0.02) and Cyanobacteria (P = 0.0001). In contrast, fructan-tolerant subjects were enriched in three genera from the Clostridia class. Comparing the fructan vs maltodextrin diet, fructan-sensitive subjects had a significantly increased relative abundance of Bifidobacterium (P = 0.02) while fructan-tolerant subjects had increased Anaerostipes (P = 0.03) during the fructan diet. Only fructan-sensitive subjects had a trend towards increased predicted β-fructofuranosidase during the fructan vs maltodextrin diet. CONCLUSIONS Fructan-sensitive children with IBS have distinct gut microbiome signatures. These microbiome signatures differ both at baseline and in response to a fructan challenge.
Collapse
Affiliation(s)
- Bruno P. Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX,Children’s Nutrition Research Center, United States Department of Agriculture, Houston, TX
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX,Alkek Center for Metagenomic and Microbiome Research, Houston, TX
| | - Daniel P. Smith
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX,Alkek Center for Metagenomic and Microbiome Research, Houston, TX
| | - Ann R. McMeans
- Department of Pediatrics, Baylor College of Medicine, Houston, TX,Children’s Nutrition Research Center, United States Department of Agriculture, Houston, TX
| | - Salma Musaad
- Children’s Nutrition Research Center, United States Department of Agriculture, Houston, TX
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX,Texas Children’s Microbiome Center, Houston, TX
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX,Alkek Center for Metagenomic and Microbiome Research, Houston, TX
| | - Robert J. Shulman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX,Children’s Nutrition Research Center, United States Department of Agriculture, Houston, TX
| |
Collapse
|
22
|
Holster S, Repsilber D, Geng D, Hyötyläinen T, Salonen A, Lindqvist CM, Rajan SK, de Vos WM, Brummer RJ, König J. Correlations between microbiota and metabolites after faecal microbiota transfer in irritable bowel syndrome. Benef Microbes 2020; 12:17-30. [PMID: 33350360 DOI: 10.3920/bm2020.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Faecal microbiota transfer (FMT) consists of the infusion of donor faecal material into the intestine of a patient with the aim to restore a disturbed gut microbiota. In this study, it was investigated whether FMT has an effect on faecal microbial composition, its functional capacity, faecal metabolite profiles and their interactions in 16 irritable bowel syndrome (IBS) patients. Faecal samples from eight different time points before and until six months after allogenic FMT (faecal material from a healthy donor) as well as autologous FMT (own faecal material) were analysed by 16S RNA gene amplicon sequencing and gas chromatography coupled to mass spectrometry (GS-MS). The results showed that the allogenic FMT resulted in alterations in the microbial composition that were detectable up to six months, whereas after autologous FMT this was not the case. Similar results were found for the functional profiles, which were predicted from the phylogenetic sequencing data. While both allogenic FMT as well as autologous FMT did not have an effect on the faecal metabolites measured in this study, correlations between the microbial composition and the metabolites showed that the microbe-metabolite interactions seemed to be disrupted after allogenic FMT compared to autologous FMT. This shows that FMT can lead to altered interactions between the gut microbiota and its metabolites in IBS patients. Further research should investigate if and how this affects efficacy of FMT treatments.
Collapse
Affiliation(s)
- S Holster
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - D Repsilber
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - D Geng
- Man-Technology-Environmental Research Centre, Faculty of Business, Science and Engineering, School of Science and Technology, Örebro University, Örebro, Sweden
| | - T Hyötyläinen
- Man-Technology-Environmental Research Centre, Faculty of Business, Science and Engineering, School of Science and Technology, Örebro University, Örebro, Sweden
| | - A Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - C M Lindqvist
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - S K Rajan
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - R J Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - J König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
23
|
Osadchiy V, Mayer EA, Gao K, Labus JS, Naliboff B, Tillisch K, Chang L, Jacobs JP, Hsiao EY, Gupta A. Analysis of brain networks and fecal metabolites reveals brain-gut alterations in premenopausal females with irritable bowel syndrome. Transl Psychiatry 2020; 10:367. [PMID: 33139708 PMCID: PMC7608552 DOI: 10.1038/s41398-020-01071-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023] Open
Abstract
Alterations in brain-gut-microbiome (BGM) interactions have been implicated in the pathogenesis of irritable bowel syndrome (IBS). Here, we apply a systems biology approach, leveraging neuroimaging and fecal metabolite data, to characterize BGM interactions that are driving IBS pathophysiology. Fecal samples and resting state fMRI images were obtained from 138 female subjects (99 IBS, 39 healthy controls (HCs)). Partial least-squares discriminant analysis (PLS-DA) was conducted to explore group differences, and partial correlation analysis explored significantly changed metabolites and neuroimaging data. All correlational tests were performed controlling for age, body mass index, and diet; results are reported after FDR correction, with q < 0.05 as significant. Compared to HCs, IBS showed increased connectivity of the putamen with regions of the default mode and somatosensory networks. Metabolite pathways involved in nucleic acid and amino acid metabolism differentiated the two groups. Only a subset of metabolites, primarily amino acids, were associated with IBS-specific brain changes, including tryptophan, glutamate, and histidine. Histidine was the only metabolite positively associated with both IBS-specific alterations in brain connectivity. Our findings suggest a role for several amino acid metabolites in modulating brain function in IBS. These metabolites may alter brain connectivity directly, by crossing the blood-brain-barrier, or indirectly through peripheral mechanisms. This is the first study to integrate both neuroimaging and fecal metabolite data supporting the BGM model of IBS, building the foundation for future mechanistic studies on the influence of gut microbial metabolites on brain function in IBS.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- UCLA Microbiome Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Kan Gao
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer S Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Bruce Naliboff
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Kirsten Tillisch
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- UCLA Microbiome Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- UCLA Microbiome Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Liu J, Huang S, Li G, Zhao J, Lu W, Zhang Z. High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt's voles (Lasiopodomys brandtii). Horm Behav 2020; 126:104838. [PMID: 32791065 DOI: 10.1016/j.yhbeh.2020.104838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
Density-dependence is an important mechanism in the population regulation of small mammals. Stressors induced by high-density (e.g., crowding and aggression) can cause physiological and neurological disorders, and are hypothesized to be associated with alterations in gut microbiota, which may in turn reduce the fitness of animals by increasing stress- or disease-associated microbes. In this study, we examined the effects of housing density on the hormone levels, immunity, and composition of gut microbiota in male Brandt's voles (Lasiopodomys brandtii) by conducting two specific housing density experiments with or without physical contact between voles. Voles in high density groups exhibited higher serum corticosterone (CORT), serotonin (5-HT), and immunoglobulin G (IgG) levels, as well as higher testosterone (T) levels only in the experiment with physical contact. Meanwhile, high-density treatments induced significant changes in the composition of gut microbiota by increasing disease-associated microbes. The levels of hormones and immunity (i.e., CORT, 5-HT, and IgG) elevated by the high density treatment were significantly correlated with some specific microbes. These results imply that high-density-induced stress may shape the fitness of animals under natural conditions by altering their gut microbiota. Our study provides novel insights into the potential roles of gut microbiota in the density-dependent population regulation of small rodents as well as the potential mechanisms underlying psychological disorders in humans and animals under crowded conditions.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Kim B, Cho EJ, Yoon JH, Kim SS, Cheong JY, Cho SW, Park T. Pathway-Based Integrative Analysis of Metabolome and Microbiome Data from Hepatocellular Carcinoma and Liver Cirrhosis Patients. Cancers (Basel) 2020; 12:E2705. [PMID: 32967314 PMCID: PMC7563418 DOI: 10.3390/cancers12092705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrations of the human microbiome are associated with diverse liver diseases, including hepatocellular carcinoma (HCC). Even if we can associate specific microbes with particular diseases, it is difficult to know mechanistically how the microbe contributes to the pathophysiology. Here, we sought to reveal the functional potential of the HCC-associated microbiome with the human metabolome which is known to play a role in connecting host phenotype to microbiome function. To utilize both microbiome and metabolomic data sets, we propose an innovative, pathway-based analysis, Hierarchical structural Component Model for pathway analysis of Microbiome and Metabolome (HisCoM-MnM), for integrating microbiome and metabolomic data. In particular, we used pathway information to integrate these two omics data sets, thus providing insight into biological interactions between different biological layers, with regard to the host's phenotype. The application of HisCoM-MnM to data sets from 103 and 97 patients with HCC and liver cirrhosis (LC), respectively, showed that this approach could identify HCC-related pathways related to cancer metabolic reprogramming, in addition to the significant metabolome and metagenome that make up those pathways.
Collapse
Affiliation(s)
- Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea;
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (E.J.C.); (J.-H.Y.)
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (E.J.C.); (J.-H.Y.)
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (S.S.K.); (J.Y.C.); (S.W.C.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (S.S.K.); (J.Y.C.); (S.W.C.)
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (S.S.K.); (J.Y.C.); (S.W.C.)
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea;
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
26
|
Wilder-Smith CH, Drewes AM, Materna A, Olesen SS. Extragastrointestinal Symptoms and Sensory Responses During Breath Tests Distinguish Patients With Functional Gastrointestinal Disorders. Clin Transl Gastroenterol 2020; 11:e00192. [PMID: 32955198 PMCID: PMC7431249 DOI: 10.14309/ctg.0000000000000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Patients with functional gastrointestinal disorders (FGIDs) are classified based on their gastrointestinal (GI) symptoms, without considering their frequent extra-GI symptoms. This study defined subgroups of patients using both GI and extra-GI symptoms and examined underlying mechanisms with fructose and lactose breath tests. METHODS Latent class analysis defined distinct clusters of patients with FGID based on their long-term GI and extra-GI symptoms. Sensory and breath gas responses after fructose and lactose ingestion were compared across symptom clusters to investigate differences in sensory function and fermentation by intestinal microbiota. RESULTS Six symptom clusters were identified in 2,083 patients with FGID. Clusters were characterized mainly by GI fermentation-type (cluster 1), allergy-like (cluster 2), intense pain-accentuated GI symptoms (cluster 3), central nervous system (cluster 4), musculoskeletal (cluster 5), and generalized extra-GI (cluster 6) symptoms. In the 68% of patients with complete breath tests, the areas under the curve of GI and central nervous system symptoms after fructose and lactose ingestion differed across the clusters (P < 0.001). The clusters with extensive long-term extra-GI symptoms had greater symptoms after the sugars and were predominantly women, with family or childhood allergy histories. Importantly, the areas under the curves of hydrogen and methane breath concentrations were similar (P > 0.05) across all symptom clusters. Rome III criteria did not distinguish between the symptom clusters. DISCUSSION Patients with FGID fall into clusters defined extensively by extra-GI symptoms. Greater extra-GI symptoms are associated with evidence of generalized sensory hypersensitivity to sugar ingestion, unrelated to intestinal gas production. Possible underlying mechanisms include metabolites originating from the intestinal microbiota and somatization.
Collapse
Affiliation(s)
| | - Asbjørn M. Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Andrea Materna
- Brain-Gut Research Group, Gastroenterology Group Practice, Bern, Switzerland
| | - Søren S. Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
27
|
Liu T, Gu X, Li LX, Li M, Li B, Cui X, Zuo XL. Microbial and metabolomic profiles in correlation with depression and anxiety co-morbidities in diarrhoea-predominant IBS patients. BMC Microbiol 2020; 20:168. [PMID: 32552668 PMCID: PMC7302156 DOI: 10.1186/s12866-020-01841-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Psychological co-morbidities in irritable bowel syndrome (IBS) have been widely recognized, whereas less is known regarding the role of gut microbial and host metabolic changes in clinical and psychological symptoms in IBS. RESULTS A total of 70 diarrhoea-predominant IBS (IBS-D) patients and 46 healthy controls were enrolled in this study. Stool and urine samples were collected from both groups for 16S rRNA gene sequencing and metabolomic analysis. The results showed that fecal microbiota in IBS-D featured depleted Faecalibacterium (adjusted P = 0.034), Eubacterium rectale group (adjusted P = 0.048), Subdoligranulum (adjusted P = 0.041) and increased Prevotella (adjusted P = 0.041). O-ureido-L-serine, 3,4-dihydroxybenzenesulfonic acid and (R)-2-Hydroxyglutarate demonstrated lower urinary concentrations in IBS-D patients. We further built correlation matrices between gut microbe abundance, differentiated metabolite quantities and clinical parameters. Dialister manifested negative association with IBS severity (r = - 0.285, P = 0.017), anxiety (r = - 0.347, P = 0.003) and depression level (r = - 0.308, P = 0.010). Roseburia was negatively associated with IBS severity (r = - 0.298, P = 0.012). Twenty metabolites correlated with anxiety or depression levels, including 3,4-dihydroxymandelaldehyde with SAS (r = - 0.383, P = 0.001), 1-methylxanthine with SDS (r = - 0.347, P = 0.004) and 1D-chiro-inositol with SAS (r = - 0.336, P = 0.005). In analysis of microbe-metabolite relationship, 3,4-dihydroxymandelaldehyde and 1-methylxanthine were negatively correlated with relative abundance of Clostridiumsensu stricto. CONCLUSIONS Our findings demonstrated altered microbial and metabolomic profiles associated with clinically and psychological symptoms in IBS-D patients, which may provide insights for further investigations.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Cui
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
28
|
Bennet SM, Keshteli AH, Bercik P, Madsen KL, Reed D, Vanner SJ. Application of metabolomics to the study of irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13884. [PMID: 32426922 DOI: 10.1111/nmo.13884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
The pathophysiology of irritable bowel syndrome and the detection of biomarkers of specific mechanisms and/or predictors of therapeutic response remain elusive. This roadblock reflects, in large part, the complexity and heterogeneity of the disorder. Recently, there has been growing evidence of a dietary and/or microbiome interaction with the host that may trigger symptoms in a subset of patients. While a number of techniques are available to examine these potential interactions, "omic" approaches such as metabolomics are becoming more widely used. Metabolomics measures hundreds and potentially thousands of known and unknown small molecule chemicals (metabolites) to provide a unique look into mechanisms that underlie symptom generation and potential predictors of therapeutic response. In this issue of the journal, Lee et al use nuclear magnetic resonance (NMR) to demonstrate the value of this approach to study IBS. This review examines the use of metabolomics to better understand IBS, focusing on what has been learned to date, practical and technical considerations, its potential for future research and how the study by Lee et al have contributed to these concepts.
Collapse
Affiliation(s)
- Sean M Bennet
- GI Diseases Research Unit, Queen's University, Kingston General Hospital, Kingston, ON, Canada
| | | | - Premysl Bercik
- Department of Medicine, Farncombe Institute, McMaster University, ON, Canada
| | | | - David Reed
- GI Diseases Research Unit, Queen's University, Kingston General Hospital, Kingston, ON, Canada
| | - Stephen J Vanner
- GI Diseases Research Unit, Queen's University, Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
29
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
30
|
Jeffery IB, Das A, O'Herlihy E, Coughlan S, Cisek K, Moore M, Bradley F, Carty T, Pradhan M, Dwibedi C, Shanahan F, O'Toole PW. Differences in Fecal Microbiomes and Metabolomes of People With vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology 2020; 158:1016-1028.e8. [PMID: 31843589 DOI: 10.1053/j.gastro.2019.11.301] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/16/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is a heterogeneous disorder, but diagnoses and determination of subtypes are made based on symptoms. We profiled the fecal microbiomes of patients with and without IBS to identify biomarkers of this disorder. METHODS We collected fecal and urine samples from 80 patients with IBS (Rome IV criteria; 16-70 years old) and 65 matched individuals without IBS (control individuals), along with anthropometric, medical, and dietary information. Shotgun and 16S ribosomal RNA amplicon sequencing were performed on feces, whereas urine and fecal metabolites were analyzed by gas chromatography and liquid chromatography-mass spectrometry. Co-occurrence networks were generated based on significant Spearman correlations between data. Bile acid malabsorption (BAM) was identified in patients with diarrhea by retention of radiolabeled selenium-75 homocholic acid taurine. RESULTS Patients with IBS had significant differences in network connections between diet and fecal microbiomes compared with control individuals; these were accompanied by differences in fecal metabolomes. We did not find significant differences in fecal microbiota composition among patients with different IBS symptom subtypes. Fecal metabolome profiles could discriminate patients with IBS from control individuals. Urine metabolomes also differed significantly between patients with IBS and control individuals, but most discriminatory metabolites were related to diet or medications. Fecal metabolomes, but not microbiomes, could distinguish patients with IBS with vs those without BAM. CONCLUSIONS Despite the heterogeneity of IBS, patients have significant differences in urine and fecal metabolomes and fecal microbiome vs control individuals, independent of symptom-based subtypes of IBS. Fecal metabolome analysis can be used to distinguish patients with IBS with vs those without BAM. These findings might be used for developing microbe-based treatments for these disorders.
Collapse
Affiliation(s)
- Ian B Jeffery
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Anubhav Das
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Eileen O'Herlihy
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Simone Coughlan
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Katryna Cisek
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Michael Moore
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Fintan Bradley
- Medical Physics Department, Cork University Hospital, Cork, Ireland
| | - Tom Carty
- Medical Physics Department, Cork University Hospital, Cork, Ireland
| | - Meenakshi Pradhan
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Chinmay Dwibedi
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Paul W O'Toole
- 4D pharma Cork Limited, Cavanagh Pharmacy Building, University College Cork, National University of Ireland, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland; School of Microbiology, University College Cork, Ireland.
| |
Collapse
|
31
|
Liang Y, Dong T, Chen M, He L, Wang T, Liu X, Chang H, Mao JH, Hang B, Snijders AM, Xia Y. Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles. mSphere 2020; 5:e00763-19. [PMID: 31915218 DOI: 10.1128/msphere.0763-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
The contribution of human gastrointestinal (GI) microbiota and metabolites to host health has recently become much clearer. However, many confounding factors can influence the accuracy of gut microbiome and metabolome studies, resulting in inconsistencies in published results. In this study, we systematically investigated the effects of fecal sampling regions and storage and retrieval conditions on gut microbiome and metabolite profiles from three healthy children. Our analysis indicated that compared to homogenized and snap-frozen samples (standard control [SC]), different sampling regions did not affect microbial community alpha diversity, while a total of 22 of 176 identified metabolites varied significantly across different sampling regions. In contrast, storage conditions significantly influenced the microbiome and metabolome. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles. Sample storage in RNALater showed a significant level of variation in both microbiome and metabolome profiles, independent of the storage or retrieval conditions. The effect of RNALater on the metabolome was stronger than the effect on the microbiome, and individual variability between study participants outweighed the effect of RNALater on the microbiome. We conclude that homogenizing stool samples was critical for metabolomic analysis but not necessary for microbiome analysis. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles and is recommended for short-term fecal sample storage. In addition, our study indicates that the use of RNALater as a storage medium of stool samples for microbial and metabolomic analyses is not recommended.IMPORTANCE The gastrointestinal microbiome and metabolome can provide a new angle to understand the development of health and disease. Stool samples are most frequently used for large-scale cohort studies. Standardized procedures for stool sample handling and storage can be a determining factor for performing microbiome or metabolome studies. In this study, we focused on the effects of stool sampling regions and stool sample storage conditions on variations in the gut microbiome composition and metabolome profile.
Collapse
Affiliation(s)
- Yali Liang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lianping He
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Tingzhang Wang
- Zhejiang Institute of Microbiology, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles. mSphere 2020; 5:5/1/e00763-19. [PMID: 31915218 PMCID: PMC6952195 DOI: 10.1128/msphere.00763-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal microbiome and metabolome can provide a new angle to understand the development of health and disease. Stool samples are most frequently used for large-scale cohort studies. Standardized procedures for stool sample handling and storage can be a determining factor for performing microbiome or metabolome studies. In this study, we focused on the effects of stool sampling regions and stool sample storage conditions on variations in the gut microbiome composition and metabolome profile. The contribution of human gastrointestinal (GI) microbiota and metabolites to host health has recently become much clearer. However, many confounding factors can influence the accuracy of gut microbiome and metabolome studies, resulting in inconsistencies in published results. In this study, we systematically investigated the effects of fecal sampling regions and storage and retrieval conditions on gut microbiome and metabolite profiles from three healthy children. Our analysis indicated that compared to homogenized and snap-frozen samples (standard control [SC]), different sampling regions did not affect microbial community alpha diversity, while a total of 22 of 176 identified metabolites varied significantly across different sampling regions. In contrast, storage conditions significantly influenced the microbiome and metabolome. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles. Sample storage in RNALater showed a significant level of variation in both microbiome and metabolome profiles, independent of the storage or retrieval conditions. The effect of RNALater on the metabolome was stronger than the effect on the microbiome, and individual variability between study participants outweighed the effect of RNALater on the microbiome. We conclude that homogenizing stool samples was critical for metabolomic analysis but not necessary for microbiome analysis. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles and is recommended for short-term fecal sample storage. In addition, our study indicates that the use of RNALater as a storage medium of stool samples for microbial and metabolomic analyses is not recommended. IMPORTANCE The gastrointestinal microbiome and metabolome can provide a new angle to understand the development of health and disease. Stool samples are most frequently used for large-scale cohort studies. Standardized procedures for stool sample handling and storage can be a determining factor for performing microbiome or metabolome studies. In this study, we focused on the effects of stool sampling regions and stool sample storage conditions on variations in the gut microbiome composition and metabolome profile.
Collapse
|
33
|
Singh R, Haque MM, Mande SS. Lifestyle-Induced Microbial Gradients: An Indian Perspective. Front Microbiol 2019; 10:2874. [PMID: 31921052 PMCID: PMC6928055 DOI: 10.3389/fmicb.2019.02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction: Urbanization is a globally pervasive trend. Although urban settings provide better access to infrastructure and opportunities, urban lifestyles have certain negative consequences on human health. A number of recent studies have found interesting associations between the structure of human gut microbiota and the prevalence of metabolic conditions characterizing urban populations. The present study attempts to expand the footprint of these investigations to an Indian context. The objectives include elucidating specific patterns and gradients based on resident habitat and lifestyles (i.e., tribal and urban) that characterize gut microbial communities. Methods: Available 16S rRNA sequence datasets corresponding to the gut microbiota of urban and tribal populations from multiple regions of India have been rigorously compared. This analysis was carried out to understand the overall community structure, resident taxa, and their (inferred) functional components as well as their correlations with available meta-information. Results: The gut microbiota of urban and tribal communities are observed to have characteristically different signatures with respect to diversity as well as taxonomic and functional composition. Primarily, the gut microbiota in tribal communities is found to harbor significantly higher species diversity and richness as compared to that in urban populations. In spite of geographical segregation and diet-related differences, gut microbial diversity was not found to differ significantly between tribal groups. Furthermore, while the taxonomic profiles of different tribal communities cluster together irrespective of their geographic location, enterotype analysis indicates that samples from urban communities form two distinct clusters. Taxonomic analysis of samples in one of these clusters reveals the presence of microbes that are common to both urban and tribal cohorts, indicating a probable transient evolutionary state. Prevotella, previously reported to be the dominant genus resident in Indian gut microbiota, is found to have distinct OTUs and strain-specific oligotypes characterizing resident habitats and diet patterns. Certain interesting associations between microbial abundances and specific metadata have also been observed. Overall, urban lifestyle and diet appear to impact the structure and function of gut microbial communities, and the results of this study provide further evidence of this likely detrimental association. Conclusion: This study attempts to analyze, in an Indian context, the impact of urbanization on the human gut microbiota. Overall, the analysis elucidates interesting taxonomic and functional signatures characterizing the evolutionary transition in gut microbiota from tribal to urban.
Collapse
Affiliation(s)
- Rashmi Singh
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services, Pune, India
| | | | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services, Pune, India
| |
Collapse
|
34
|
Zhang WX, Zhang Y, Qin G, Li KM, Wei W, Li SY, Yao SK. Altered profiles of fecal metabolites correlate with visceral hypersensitivity and may contribute to symptom severity of diarrhea-predominant irritable bowel syndrome. World J Gastroenterol 2019; 25:6416-6429. [PMID: 31798278 PMCID: PMC6881512 DOI: 10.3748/wjg.v25.i43.6416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fecal metabolites are associated with gut visceral sensitivity, mucosal immune function and intestinal barrier function, all of which have critical roles in the pathogenesis of irritable bowel syndrome (IBS). However, the metabolic profile and pathophysiology of IBS are still unclear. We hypothesized that altered profiles of fecal metabolites might be involved in the pathogenesis of IBS with predominant diarrhea (IBS-D). AIM To investigate the fecal metabolite composition and the role of metabolites in IBS-D pathophysiology. METHODS Thirty IBS-D patients and 15 age- and sex-matched healthy controls (HCs) underwent clinical and psychological assessments, including the IBS Symptom Severity System (IBS-SSS), an Italian modified version of the Bowel Disease Questionnaire, the Bristol Stool Form Scale (BSFS), the Hospital Anxiety and Depression Scale, and the Visceral Sensitivity Index. Visceral sensitivity to rectal distension was tested using high-resolution manometry system by the same investigator. Fecal metabolites, including amino acids and organic acids, were measured by targeted metabolomics approaches. Correlation analyses between these parameters were performed. RESULTS The patients presented with increased stool water content, more psychological symptoms and increased visceral hypersensitivity compared with the controls. In fecal metabolites, His [IBS-D: 0.0642 (0.0388, 0.1484), HC: 0.2636 (0.0780, 0.3966), P = 0.012], Ala [IBS-D: 0.5095 (0.2826, 0.9183), HC: 1.0118 (0.6135, 1.4335), P = 0.041], Tyr [IBS-D: 0.1024 (0.0173, 0.4527), HC: 0.5665 (0.2436, 1.3447), P = 0.018], Phe [IBS-D: 0.1511 (0.0775, 0.3248), HC: 0.3967 (0.1388, 0.7550), P = 0.028], and Trp [IBS-D: 0.0323 (0.0001, 0.0826), HC: 0.0834 (0.0170, 0.1759), P = 0.046] were decreased in IBS-D patients, but isohexanoate [IBS-D: 0.0127 (0.0060, 0.0246), HC: 0.0070 (0.0023, 0.0106), P = 0.028] was significantly increased. Only Tyr was mildly correlated with BSFS scores in all subjects (r = -0.347, P = 0.019). A possible potential biomarker panel was identified to correlate with IBS-SSS score (R 2 Adjusted = 0.693, P < 0.001). In this regression model, the levels of Tyr, Val, hexanoate, fumarate, and pyruvate were significantly associated with the symptom severity of IBS-D. Furthermore, visceral sensation, including abdominal pain and visceral hypersensitivity, was correlated with isovalerate, valerate and isohexanoate. CONCLUSION Altered profiles of fecal metabolites may be one of the origins or exacerbating factors of symptoms in IBS-D via increasing visceral sensitivity.
Collapse
Affiliation(s)
- Wen-Xue Zhang
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Zhang
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Geng Qin
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kai-Min Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Wei
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Su-Yun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
35
|
Zhu S, Liu S, Li H, Zhang Z, Zhang Q, Chen L, Zhao Y, Chen Y, Gu J, Min L, Zhang S. Identification of Gut Microbiota and Metabolites Signature in Patients With Irritable Bowel Syndrome. Front Cell Infect Microbiol 2019; 9:346. [PMID: 31681624 PMCID: PMC6813219 DOI: 10.3389/fcimb.2019.00346] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. However, the underlying mechanism of IBS is not fully understood. The aim of this study was to investigate potential mechanism and novel biomarkers of IBS through evaluation of the metabolomic and microbiologic profile. Methods: Fecal samples were collected from 15 irritable bowel syndrome patients and 15 healthy controls. By using gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) and 16S rDNA amplicon sequencing, fecal metabolites and microbiota of healthy controls and the IBS patients were measured. Results: IBS patients had a significantly differential metabolite profile as compared to healthy controls, and 4 clusters with 31 metabolites, including a group of amino acids and fatty acids, were significantly up-regulated as compared to the healthy controls. In addition, 19 microbes were significantly up-regulated, and 12 microbes were down-regulated in the IBS group, when compared with the healthy controls. Some clusters of fecal metabolites or microorganisms were significantly correlated with the severity of IBS symptoms, such as the frequency of abdominal pain/discomfort and the number of bowel movements. Correlation of the metabolite levels with abundances of microbial genera showed some statistically significant metabolite-microbe associations. Four differentially abundant amino acids clustered together were positively correlated with some microbes, including Lachnospira, Clostridium, and so on. Conclusion: The finding of this study puts a global perspective on metabolomics and microbiota profiling in IBS patients and provides a theoretical basis for future research on pathophysiology of IBS.
Collapse
Affiliation(s)
- Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, Department of Automation, BNRist, Tsinghua University, Beijing, China
| | - Junchao Gu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| |
Collapse
|
36
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2463] [Impact Index Per Article: 410.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Mallick H, Franzosa EA, Mclver LJ, Banerjee S, Sirota-Madi A, Kostic AD, Clish CB, Vlamakis H, Xavier RJ, Huttenhower C. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat Commun 2019; 10:3136. [PMID: 31316056 PMCID: PMC6637180 DOI: 10.1038/s41467-019-10927-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this 'predictive metabolomic' approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.
Collapse
Affiliation(s)
- Himel Mallick
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Lauren J Mclver
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Soumya Banerjee
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alexandra Sirota-Madi
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Aleksandar D Kostic
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Liu S, Si C, Yu Y, Zhao G, Chen L, Zhao Y, Zhang Z, Li H, Chen Y, Min L, Zhang S, Zhu S. Multi-omics Analysis of Gut Microbiota and Metabolites in Rats With Irritable Bowel Syndrome. Front Cell Infect Microbiol 2019; 9:178. [PMID: 31192167 PMCID: PMC6549239 DOI: 10.3389/fcimb.2019.00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal dysfunctional disease. The pathophysiology of IBS is, however, largely unknown. This study aimed to determine whether evaluation of fecal metabolite and microbiota profiles may offer an opportunity to identify a novel pathophysiological target for IBS, and to reveal possible gut microbe–metabolite associations. By using gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) and 16S rRNA gene sequencing, we measured fecal metabolites and microbiota of the control and water avoidance stress (WAS)-induced IBS rats. We found a significantly differential metabolite profile between the IBS and control groups; a cluster of metabolites was also found to be significantly associated with the amount of defecations. Moreover, the WAS group exhibited a decreased alpha diversity of the microbial population as compared to the control group. However, the characteristics of gut microbiota could not differentiate the IBS group from the control group. Correlation of the metabolite level with the number of microbial genera showed no significant association between the control and IBS groups. This study provides a global perspective on metabolomics and microbiota profiling in WAS-induced IBS model and a theoretical basis for research on the pathophysiology of IBS.
Collapse
Affiliation(s)
- Si Liu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Guiping Zhao
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Lei Chen
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Yu Zhao
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Zheng Zhang
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Hengcun Li
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, BNRist, Department of Automation, Bioinformatics Division, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Li Min
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Li H, Li T, Qu J. Stochastic processes govern bacterial communities from the blood of pikas and from their arthropod vectors. FEMS Microbiol Ecol 2019; 94:4990947. [PMID: 29722798 DOI: 10.1093/femsec/fiy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Vector-borne microbes influence pathogen transmission and blood microbiomes, thereby affecting the emergence of infectious diseases. Thus, understanding the relationship between host and vector microbiomes is of importance. In this study, we investigated the bacterial community composition, diversity and assembly of the flea (Rhadinopsylla dahurica vicina), torsalo (Hypoderma curzonial), and the blood and gut of their shared pika host, Ochotona curzoniae. Bartonella, Sphingomonas and Bradyrhizobium were enriched in blood, while Wolbachia and Fusobacterium were more abundant in fleas and torsaloes. Most of potential pathogenic microbes (belonging to Fusobacterium, Rickettsia, Kingella, Porphyromonas, Bartonella and Mycoplasma) were present in the blood of pikas and their vectors. Blood communities were more similar to those from fleas than other sample types and were independent of host factors or geographical sites. Notably, blood microbes originate mainly from fleas rather than gut or torsaloes. Interestingly, the community assembly of blood, fleas or torsaloes was primarily governed by stochastic processes, while the gut microbiome was determined by deterministic processes. Ecological drift plays a dominant role in the assembly of blood and flea microbiomes. These results reflect the difficulty for predicting and regulating the microbial ecology of fleas for the prevention of potential microbiome-associated diseases.
Collapse
Affiliation(s)
- Huan Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.,Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Region, Qinghai 810008, China
| |
Collapse
|
40
|
Fisher K, Hutcheon D, Ziegler J. Elimination of Fermentable Carbohydrates to Reduce Gastrointestinal Symptoms in Pediatric Patients With Irritable Bowel Syndrome: A Narrative Review. Nutr Clin Pract 2019; 35:231-245. [PMID: 30937981 DOI: 10.1002/ncp.10269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Irritable bowel syndrome (IBS) is classified as a functional gastrointestinal (GI) disorder characterized by abdominal pain, bloating, and changes in bowel function. Although the pathophysiology of IBS is incompletely understood, fermentable carbohydrates are implicated as a potential cause of symptoms. An elimination diet, such as a low-FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) diet, represents a potential intervention for reducing GI symptoms in patients with IBS. The role of fermentable carbohydrates in symptom onset is well studied in adult patients with IBS; however, less research exists in the pediatric population. This review sought to explore evidence for the role of dietary fermentable carbohydrate elimination to reduce GI symptoms (abdominal pain, stool changes, abdominal bloating) in children and adolescents (4-19 years of age) diagnosed with IBS based on Rome III or IV criteria. Five studies of neutral to positive quality rating were identified and analyzed using the Academy of Nutrition and Dietetics Evidence Analysis Process. These studies demonstrate that dietary elimination of fermentable carbohydrates, such as through a low-FODMAP diet, reduces the severity of 1 or more GI symptoms in about one-quarter to one-half of pediatric patients with IBS. Patients without improvement are considered "nonresponders" and may require an alternative intervention. More research is needed to establish the best way to identify patients who would respond to elimination diets vs other IBS treatment strategies.
Collapse
Affiliation(s)
- Kelly Fisher
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Deborah Hutcheon
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| | - Jane Ziegler
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
41
|
Pérez-Burillo S, Mehta T, Esteban-Muñoz A, Pastoriza S, Paliy O, Ángel Rufián-Henares J. Effect of in vitro digestion-fermentation on green and roasted coffee bioactivity: The role of the gut microbiota. Food Chem 2018; 279:252-259. [PMID: 30611488 DOI: 10.1016/j.foodchem.2018.11.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
Abstract
Coffee is one of the most consumed beverages and has been linked to health in different studies. However, green and roasted coffees have different chemical composition and therefore their health properties might differ as well. Here, we study the effect of in vitro digestion-fermentation on the antioxidant capacity, phenolic profile, production of short-chain fatty acids (SCFAs), and gut microbiota community structure of green and roasted coffee brews. Roasted coffees showed higher antioxidant capacity than green coffees, with the highest level achieved in fermented samples. Polyphenol profile was similar between green and roasted coffees in regular coffee brews and the digested fraction, but very different after fermentation. Production of SCFAs was higher after fermentation of green coffee brews. Fermentation of coffee brews by human gut microbiota led to different community structure between green and roasted coffees. All these data suggest that green and roasted coffees behave as different types of food.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Trupthi Mehta
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Adelaida Esteban-Muñoz
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, Spain.
| |
Collapse
|
42
|
Dietary Fatty Acids Sustain the Growth of the Human Gut Microbiota. Appl Environ Microbiol 2018; 84:AEM.01525-18. [PMID: 30242004 DOI: 10.1128/aem.01525-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
While a substantial amount of dietary fats escape absorption in the human small intestine and reach the colon, the ability of resident microbiota to utilize these dietary fats for growth has not been investigated in detail. In this study, we used an in vitro multivessel simulator system of the human colon to reveal that the human gut microbiota is able to utilize typically consumed dietary fatty acids to sustain growth. Gut microbiota adapted quickly to a macronutrient switch from a balanced Western diet-type medium to its variant lacking carbohydrates and proteins. We defined specific genera that increased in their abundances on the fats-only medium, including Alistipes, Bilophila, and several genera of the class Gammaproteobacteria In contrast, the abundances of well-known glycan and protein degraders, including Bacteroides, Clostridium, and Roseburia spp., were reduced under such conditions. The predicted prevalences of microbial genes coding for fatty acid degradation enzymes and anaerobic respiratory reductases were significantly increased in the fats-only environment, whereas the abundance of glycan degradation genes was diminished. These changes also resulted in lower microbial production of short-chain fatty acids and antioxidants. Our findings provide justification for the previously observed alterations in gut microbiota observed in human and animal studies of high-fat diets.IMPORTANCE Increased intake of fats in many developed countries has raised awareness of potentially harmful and beneficial effects of high fat consumption on human health. Some dietary fats escape digestion in the small intestine and reach the colon where they can be metabolized by gut microbiota. We show that human gut microbes are able to maintain a complex community when supplied with dietary fatty acids as the only nutrient and carbon sources. Such fatty acid-based growth leads to lower production of short-chain fatty acids and antioxidants by community members, which potentially have negative health consequences on the host.
Collapse
|
43
|
Kim E, Lembert M, Fallata GM, Rowe JC, Martin TL, Satoskar AR, Reo NV, Paliy O, Cormet-Boyaka E, Boyaka PN. Intestinal Epithelial Cells Regulate Gut Eotaxin Responses and Severity of Allergy. Front Immunol 2018; 9:1692. [PMID: 30123215 PMCID: PMC6085436 DOI: 10.3389/fimmu.2018.01692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/10/2018] [Indexed: 01/16/2023] Open
Abstract
Intestinal epithelial cells (IECs) are known to regulate allergic sensitization. We addressed the role of the intrinsic IKKβ signaling in IECs in the effector phase of allergy following oral allergen challenge and its impact on the severity of responses is poorly. Upon orally sensitization by co-administration of ovalbumin with cholera toxin as adjuvant, wild-type and mice lacking IKKβ in IECs (IKKβΔIEC mice) developed similar levels of serum IgE and allergen-specific secretory IgA in the gut. However, subsequent allergen challenges in the gut promoted allergic lower responses in KKβΔIEC mice. Analysis of cytokines and chemokines in serum and gut tissues after oral allergen challenge revealed impaired eotaxin responses in IKKβΔIEC mice, which correlated with lower frequencies of eosinophils in the gut lamina propria. We also determined that IECs were a major source of eotaxin and that impaired eotaxin production was due to the lack of IKKβ signaling in IECs. Oral administration of CCL11 to IKKβΔIEC mice during oral allergen challenge enhanced allergic responses to levels in wild-type mice, confirming the role of IEC-derived eotaxin as regulator of the effector phase of allergy following allergen challenge. Our results identified targeting IEC-derived eotaxin as potential strategy to limit the severity of allergic responses to food antigens.
Collapse
Affiliation(s)
- Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Melanie Lembert
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Ghaith M Fallata
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - John C Rowe
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Tara L Martin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Nicholas V Reo
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
44
|
Sakaram S, Craig MP, Hill NT, Aljagthmi A, Garrido C, Paliy O, Bottomley M, Raymer M, Kadakia MP. Identification of novel ΔNp63α-regulated miRNAs using an optimized small RNA-Seq analysis pipeline. Sci Rep 2018; 8:10069. [PMID: 29968742 PMCID: PMC6030203 DOI: 10.1038/s41598-018-28168-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Advances in high-throughput sequencing have enabled profiling of microRNAs (miRNAs), however, a consensus pipeline for sequencing of small RNAs has not been established. We built and optimized an analysis pipeline using Partek Flow, circumventing the need for analyzing data via scripting languages. Our analysis assessed the effect of alignment reference, normalization method, and statistical model choice on biological data. The pipeline was evaluated using sequencing data from HaCaT cells transfected with either a non-silencing control or siRNA against ΔNp63α, a p53 family member protein which is highly expressed in non-melanoma skin cancer and shown to regulate a number of miRNAs. We posit that 1) alignment and quantification to the miRBase reference provides the most robust quantitation of miRNAs, 2) normalizing sample reads via Trimmed Mean of M-values is the most robust method for accurate downstream analyses, and 3) use of the lognormal with shrinkage statistical model effectively identifies differentially expressed miRNAs. Using our pipeline, we identified previously unrecognized regulation of miRs-149-5p, 18a-5p, 19b-1-5p, 20a-5p, 590-5p, 744-5p and 93-5p by ΔNp63α. Regulation of these miRNAs was validated by RT-qPCR, substantiating our small RNA-Seq pipeline. Further analysis of these miRNAs may provide insight into ΔNp63α's role in cancer progression. By defining the optimal alignment reference, normalization method, and statistical model for analysis of miRNA sequencing data, we have established an analysis pipeline that may be carried out in Partek Flow or at the command line. In this manner, our pipeline circumvents some of the major hurdles encountered during small RNA-Seq analysis.
Collapse
Affiliation(s)
- Suraj Sakaram
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael P Craig
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Natasha T Hill
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Amjad Aljagthmi
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Christian Garrido
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Oleg Paliy
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Bottomley
- Math and Microbiology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Raymer
- Computer Science and Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
45
|
Wu W, Xiao Z, An W, Dong Y, Zhang B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS One 2018; 13:e0197762. [PMID: 29795613 PMCID: PMC5967726 DOI: 10.1371/journal.pone.0197762] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
This study investigated the effects of dietary sodium butyrate (SB) supplementation, provided as a specially coated product, on growth performance, intestinal development, morphological structure and function in broilers. In total, 720 one-day-old Arbor Acres male broilers were randomly allocated into six treatment groups with six replicates each and then fed basal diets (control) supplemented with 0, 200, 400, 800 or 1000 mg/kg of SB or with antibiotics (100 mg/kg aureomycin and 20 mg/kg colistin sulfate). The growth trial lasted for 42 days. No differences (P>0.05) in growth performance were detected between groups during the grower period (1–21 d) or over the total (1–42 d) trial period, whereas the addition of SB improved the intestinal structure by stimulating (P<0.05) goblet cells on jejunal and ileal villi accompanied by a trend towards increased (Pdiets<0.10) ileal villus height. In addition, more inerratic leaf-shaped villi and mucus secretion and significantly fewer erosions were demonstrated by scanning electron microscopy. Apart from decreased (P<0.05) malondialdehyde (MDA) in the ileal mucosa at 21 d of age, supplemental SB at higher doses (800 mg/kg) led to greater (P<0.05) total antioxidant capacity and depressed (P<0.05) MDA concentrations in the jejunal mucosa. Birds fed with 400 mg/kg and 800 mg/kg SB had higher (P<0.05) acetic acid concentrations at 42 d and higher butyric acid at 21 d in the jejunum chyme. Morever, chicks fed SB diet were found to have higher concentrations of butyric acid (P<0.05) in the ileal chyme. SB additions at 400 mg/kg displayed higher Firmicutes and Proteobacteria levels, while a higher (P<0.05) relative abundance of Bacteroidetes was observed at 800 mg/kg. Furthermore, we found a striking decrease in Enterobacteriaceae and increases in Lachnospiraceae and Rikenellaceae in the cecal lumen of birds fed 800 mg/kg SB as well as a higher proportion of Ruminococcaceae and a noticeable reduction (P<0.05) of Lactobacillaceae in birds treated with 400 mg/kg SB. Taken together, our results support the importance of SB in improving the intestinal development, morphological structure and biological functions of broilers through modulation of the microbial community, which seems to be optimized for gut health at higher doses (800 mg/kg) of SB.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhibin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Wenyi An
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
46
|
Long X, Li M, Li LX, Sun YY, Zhang WX, Zhao DY, Li YQ. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol Motil 2018; 30:e13227. [PMID: 29052293 DOI: 10.1111/nmo.13227] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Altered visceral sensation is common in irritable bowel syndrome (IBS) and nerve growth factor (NGF) participates in visceral pain development. Sodium butyrate (NaB) could induce colonic hypersensitivity via peripheral up-regulation of NGF in animals. Enteric glial cells (EGCs) appear to be an important source of NGF. Whether butyrate could induce visceral hypersensitivity via increased EGC-derived NGF is still unknown. METHODS CRL-2690 cells were used for transcriptome analyses after butyrate treatment. Rats received butyrate enemas to induce colonic hypersensitivity. Colorectal distention test was performed to assess visceral sensitivity. Immunofluorescence studies were used to evaluate the co-expression of glial fibrillary acidic protein (GFAP) and NGF or growth associated protein 43 in animal model. NGF expression in rat colon was also investigated. In vitro, CRL-2690 cells were stimulated with NaB or trichostatin A (TSA). NGF or GFAP expression was also examined. KEY RESULTS Transcriptome analyses showed that butyrate induced marked changes of genes expression related to neurotrophic signaling pathways. NaB-treated rats showed increased visceral sensitivity. An improved NGF expression level was observed in NaB-treated rats. Meanwhile, a 2.1-fold increase in co-expression of GFAP and NGF was also determined in rats received NaB enemas. In cultured cells, both NaB and TSA treatment could cause obvious NGF expression. Thus, butyrate might regulate EGC function via histone deacetylase inhibition. CONCLUSIONS & INFERENCES Butyrate-EGC interplay may play a pivotal role in regulation of NGF expression and the development of colonic hypersensitivity in IBS-like animal model.
Collapse
Affiliation(s)
- X Long
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - M Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - L-X Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Y-Y Sun
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - W-X Zhang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - D-Y Zhao
- Department of Gastroenterology, General Hospital of Puyang Oilfield, Puyang, China
| | - Y-Q Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
47
|
Lau SKP, Teng JLL, Chiu TH, Chan E, Tsang AKL, Panagiotou G, Zhai SL, Woo PCY. Differential Microbial Communities of Omnivorous and Herbivorous Cattle in Southern China. Comput Struct Biotechnol J 2018; 16:54-60. [PMID: 29686799 PMCID: PMC5910514 DOI: 10.1016/j.csbj.2018.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 02/13/2018] [Indexed: 10/25/2022] Open
Abstract
In Hong Kong, cattle were traditionally raised by farmers as draft animals to plough rice fields. Due to urbanization in the 20th century, they were gradually abandoned and became wild cattle straying in suburban Hong Kong. Recently, these cattle were observed to have become omnivorous by eating leftover barbeque food waste in country parks. Microbiome analysis was performed on fecal samples of the omnivorous cattle using deep sequencing and the resulting microbiome was compared with that of traditional herbivorous cattle in Southern China. A more diverse gut microbiome was observed in the omnivorous cattle, suggesting that microbiota diversity increases as diet variation increases. At the genus level, the relative abundance of Anaeroplasma, Anaerovorax, Bacillus, Coprobacillus and Solibacillus significantly increased and those of Anaerofustis, Butyricimonas, Campylobacter, Coprococcus, Dehalobacterium, Phascolarctobacterium, rc4.4, RFN20, Succinivibrio and Turicibacter significantly decreased in the omnivorous group. The increase in microbial community levels of Bacillus and Anaerovorax likely attributes to the inclusion of meat in the diet; while the decrease in relative abundance of Coprococcus, Butyricimonas, Succinivibrio, Campylobacter and Phascolarctobacterium may reflect the reduction in grass intake. Furthermore, an increased consumption of resistant starch likely resulted in the increase in abundance of Anaeroplasma. In conclusion, a significant change in the gut microbial community was observed in the omnivorous cattle, suggesting that diet may be one of the factors that may signal an adaptation response by the cattle to maintain feed efficiency as a consequence of the change in environment.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, Hong Kong.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jade L L Teng
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, Hong Kong.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tsz Ho Chiu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elaine Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alan K L Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, Hong Kong.,Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Shao-Lun Zhai
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, Hong Kong.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
48
|
Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide. Genes (Basel) 2017; 8:genes8120350. [PMID: 29182580 PMCID: PMC5748668 DOI: 10.3390/genes8120350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023] Open
Abstract
Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides. The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus. The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter. Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.
Collapse
|
49
|
Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of hog waste. PLoS One 2017; 12:e0181395. [PMID: 28732056 PMCID: PMC5521784 DOI: 10.1371/journal.pone.0181395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/02/2017] [Indexed: 11/19/2022] Open
Abstract
Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a "black box." We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester.
Collapse
|
50
|
Rea K, O'Mahony SM, Dinan TG, Cryan JF. The Role of the Gastrointestinal Microbiota in Visceral Pain. Handb Exp Pharmacol 2017; 239:269-287. [PMID: 28035535 DOI: 10.1007/164_2016_115] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A growing body of preclinical and clinical evidence supports a relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health status. Under normal homeostatic conditions this microbial population helps maintain intestinal peristalsis, mucosal integrity, pH balance, immune priming and protection against invading pathogens. Furthermore, these microbes can influence centrally regulated emotional behaviour through mechanisms including microbially derived bioactive molecules (amino acid metabolites, short-chain fatty acids, neuropeptides and neurotransmitters), mucosal immune and enteroendocrine cell activation, as well as vagal nerve stimulation.The microbiota-gut-brain axis comprises a dynamic matrix of tissues and organs including the brain, autonomic nervous system, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis and resist perturbation to the system. Changes to the microbial environment, as a consequence of illness, stress or injury, can lead to a broad spectrum of physiological and behavioural effects locally including a decrease in gut barrier integrity, altered gut motility, inflammatory mediator release as well as nociceptive and distension receptor sensitisation. Centrally mediated events including hypothalamic-pituitary-adrenal (HPA) axis, neuroinflammatory events and neurotransmitter systems are concomitantly altered. Thus, both central and peripheral pathways associated with pain manifestation and perception are altered as a consequence of the microbiota-gut-brain axis imbalance.In this chapter the involvement of the gastrointestinal microbiota in visceral pain is reviewed. We focus on the anatomical and physiological nodes whereby microbiota may be mediating pain response, and address the potential for manipulating gastrointestinal microbiota as a therapeutic target for visceral pain.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|