1
|
Liu L, Ma Y, Xu Y, Liu B, Wang C, Feng J, Li M, Yin H, Sun L, Li P, Li ZH. Mechanisms of eco-corona effects on micro(nano)plastics in marine medaka: Insights into translocation, immunity, and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136236. [PMID: 39442301 DOI: 10.1016/j.jhazmat.2024.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Biomolecules, prevalent in the marine environment, can readily adsorb onto the surface of micro(nano)plastics (MNPs), forming eco-corona. This study indicated that 50 nm polystyrene nanoplastics (NP50), whether wrapped with eco-corona or not, can passively enter embryos, whereas 5 µm polystyrene microplastics (MP5) cannot. Additionally, translocation of MP5 from the intestine to the liver was observed in larvae, a process facilitated by eco-corona. Notably, eco-corona prolonged the retention time of MNPs in larvae. However, NP50 was more challenging to purify than MP5, irrespective of the presence of eco-corona. Interestingly, eco-corona degraded in the intestine during the uptake of MNPs, and the hard coronae that readily formed on NP50 may restrict the degradation rate. Although NP50 significantly disrupted larval microbiota homeostasis compared with MP5, eco-corona was more likely to exacerbate MP5's damage to the intestine and liver by disrupting microbiota homeostasis. Additionally, NP50 caused more significant damage to immunity and energy metabolism compared with MP5, regardless of the presence of eco-corona. This study revealed that previously overlooked biomolecules in the marine environment can enhance the translocation of MNPs and subsequently exacerbate their toxic effects, providing theoretical support for assessing the ecological risks of MNPs in real environments.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
2
|
Guo X, Zhao W, Yin D, Mei Z, Wang F, Tiedje J, Ling S, Hu S, Xu T. Aspirin altered antibiotic resistance genes response to sulfonamide in the gut microbiome of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124566. [PMID: 39025292 DOI: 10.1016/j.envpol.2024.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.
Collapse
Affiliation(s)
- Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wanting Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhi Mei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Wei Q, Song Z, Chen Y, Yang H, Chen Y, Liu Z, Yu Y, Tu Q, Du J, Li H. Metagenomic Sequencing Elucidated the Microbial Diversity of Rearing Water Environments for Sichuan Taimen ( Hucho bleekeri). Genes (Basel) 2024; 15:1314. [PMID: 39457438 PMCID: PMC11507828 DOI: 10.3390/genes15101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sichuan taimen (Hucho bleekeri) is a fish species endemic to China's upper Yangtze River drainage and has significant value as an aquatic resource. It was listed as a first-class state-protected wild animal by the Chinese government due to its very limited distribution and wild population at present. METHODS To elucidate the diversity of microorganisms in rearing water environments for H. bleekeri, metagenomic sequencing was applied to water samples from the Maerkang and Jiguanshan fish farms, where H. bleekeri were reared. RESULTS The results revealed that Pseudomonadota was the dominant phylum in the microbial communities of the water samples. Among the shared bacterial groups, Cyanobacteriota, Actinomycetota, Planctomycetota, Nitrospirota, and Verrucomicrobiota were significantly enriched in the water environment of Jiguanshan (p < 0.01), while Bacteroidota was more enriched in that of Maerkang (p < 0.01). Additionally, the Shannon diversity and Simpson index of the microbial community in the water environment of Maerkang were lower than in that of Jiguanshan. CONCLUSIONS The present study demonstrated the similarities and differences in the microbial compositions of rearing water environments for H. bleekeri, which are expected to benefit the artificial breeding of H. bleekeri in the future.
Collapse
Affiliation(s)
- Qinyao Wei
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Yeyu Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Huanchao Yang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yanling Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Zhao Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yi Yu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Quanyu Tu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Jun Du
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Hua Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| |
Collapse
|
4
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes are not underscored by different gut microbiomes. Ecol Evol 2024; 14:e70237. [PMID: 39219576 PMCID: PMC11362613 DOI: 10.1002/ece3.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Although bold and shy behavioral phenotypes in zebrafish (Danio rerio) have been selectively bred and maintained over multiple generations, it is unclear if they are underscored by different gut microbiota. Using the microbiota-gut-brain concept, we examined the relationship between gut microbiota and the behavioral phenotypes within this model animal system to assess possible gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced 16S rRNA gene amplicons from the guts of bold and shy zebrafish individuals using the Illumina Miseq platform. We did not record any significant differences in within-group microbial diversity nor between-group community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiome profiles between the two phenotypes would suggest that in this species, there might exist a stable core gut microbiome, regardless of behavioral phenotypes, and possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This study characterized the gut microbiomes of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and did not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A. Ayayee
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| | - Ryan Y. Wong
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
5
|
Zhou S, Lin H, Liu Z, Lian X, Pan CG, Dong Z, Lin Z, Li C, Hou L, Liang YQ. The impact of co-exposure to polystyrene microplastics and norethindrone on gill histology, antioxidant capacity, reproductive system, and gut microbiota in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107018. [PMID: 38968675 DOI: 10.1016/j.aquatox.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
In recent years, studies have focused on the combined ecological risks posed by microplastics and other organic pollutants. Although both microplastics and progestin residues are frequently detected in the aquatic environments, their ecological implications remain unknown. Adult zebrafish were exposed to polystyrene microplastics (PS, 200 nm, 200 μg/L), norethindrone (NET, 69.6 ng/L), and their mixture (200 μg/L PS + 63.1 ng/L NET) for 30 days. The results demonstrated that exposure to PS and NET resulted in gill damage. Notably, the PS and PS+NET exhibited a significant decrease in glutathione (GSH) and oxidized glutathione (GSSG) content, as well as reduced antioxidase activity in the gills. The oxidative stress in PS+NET primarily originated from PS. The PS, NET, or their mixture resulted in a decrease in testosterone (T) and estradiol (E2) levels in female. Furthermore, compared to NET, the PS+NET showed a significant reduction in E2 levels, thereby augmenting the inhibitory effect on reproductive ability mediated by NET. However, males showed an increase in 11-ketodihydrotestosterone (11-KT) content, accompanied by a significant decrease in spermatogonia (Sg) and increase in spermatocytes (Sc). Consequently, it can be inferred that PS enhances the androgenic effect of NET. In female fish brain, NET alone resulted in transcriptional down-regulation of partial hormone receptors; however, co-administration of PS effectively mitigated the interference effects. Furthermore, transcriptional downregulation of 17-alpha-hydroxylase (cyp17), hydroxysteroid 3-beta dehydrogenase (hsd3b), estrogen receptor 1 (esr1), and estrogen receptor 2a (esr2b) genes in the ovary was found to be associated with the androgenic activity induced by NET. Moreover, in comparison to PS or NET alone, PS+NET resulted in a notable decrease in Cetobacterium abundance and an increase in Aeromonas population, suggesting that the co-exposure of PS+NET may exacerbate intestinal burden. The findings highlight the importance of studying the combined toxicity of PS and NET.
Collapse
Affiliation(s)
- Shuhui Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjie Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziyun Liu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyi Lian
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Duan M, Xu H, Guo W, Yang H, Duan Y, Wang C. Life cycle assessment of hepatotoxicity induced by cyhalofop-butyl in environmental concentrations on zebrafish in light of gut-liver axis. ENVIRONMENTAL RESEARCH 2024; 252:119135. [PMID: 38740291 DOI: 10.1016/j.envres.2024.119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cyhalofop-butyl (CB) poses a significant threat to aquatic organisms, but there is a discrepancy in evidence about hepatotoxicity after prolonged exposure to environmental levels. The aim of this study was to investigate long-term hepatotoxicity and its effects on the gut-liver axis through the exposure of zebrafish to environmental concentrations of CB (0.1,1,10 μg/L) throughout their life cycle. Zebrafish experienced abnormal obesity symptoms and organ index after a prolonged exposure of 120 days. The gut-liver axis was found to be damaged both morphologically and functionally through an analysis of histology, electron microscopy subcellular structure, and liver function. The disruption of the gut-liver axis inflammatory process by CB is suggested by the rise in inflammatory factors and the alteration of inflammatory genes. Furthermore, there was a noticeable alteration in the blood and gut-liver axis biochemical parameters as well as gene expression linked to lipid metabolism, which may led to an imbalance in the gut flora. In conclusion, the connection between the gut-liver axis, intestinal microbiota, and liver leads to the metabolic dysfunction of zebrafish exposed to long-term ambient concentrations of CB, and damaged immune system and liver lipid metabolism. This study gives another knowledge into the hepatotoxicity component of long haul openness to ecological centralization of CB, and might be useful to assess the potential natural and wellbeing dangers of aryloxyphenoxypropionate herbicides.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Hui Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuting Duan
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Tawfik MM, Lorgen-Ritchie M, Król E, McMillan S, Norambuena F, Bolnick DI, Douglas A, Tocher DR, Betancor MB, Martin SAM. Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages. Anim Microbiome 2024; 6:38. [PMID: 38951941 PMCID: PMC11218362 DOI: 10.1186/s42523-024-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Marlene Lorgen-Ritchie
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Elżbieta Król
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Stuart McMillan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | | | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Mónica B Betancor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
9
|
Shi F, Ma L, Chen Z, Huang Y, Lin L, Qin Z. Long-term disinfectant exposure on intestinal immunity and microbiome variation of grass carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106942. [PMID: 38788458 DOI: 10.1016/j.aquatox.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiome is crucial in maintaining fish health homeostasis. Disinfectants can kill important pathogens and disinfect fish eggs, yet their effect on the immune pathways and intestinal microbiome in healthy fish remains unknown. In this study, we investigated the effects of two disinfectants on the transcriptome profiles, immunological response, and gut microbiota dynamics of grass carp over a four-week trial. In particular, aquatic water was disinfected with 80 μg/L glutaraldehyde or 50 μg/L povidone-iodine. We found that glutaraldehyde and povidone-iodine induced gut antioxidant system and depressed the function of grass carp digestive enzymes. The results of the 16S rDNA high-throughput sequencing identified a reduction in the diversity of grass carp gut microbiota following the disinfectant treatment. Moreover, transcriptome profiling revealed that disinfectant exposure altered the immune-related pathways of grass carp and inhibited the expression of inflammation and tight junction related genes. Finally, the histopathological observation and apoptosis detection results suggested that the long-term diet of disinfectant destroyed intestinal structural integrity and promoted apoptosis. In conclusion, long-term exposure to disinfectants was observed to reduce oxidation resistance, suppress the immune response, dysbiosis of the intestinal flora, and resulted in increasing the apoptosis in intestinal of grass carp.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lixin Ma
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhilong Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yao Huang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
10
|
Stagaman K, Alexiev A, Sieler MJ, Hammer A, Kasschau KD, Truong L, Tanguay RL, Sharpton TJ. The zebrafish gut microbiome influences benzo[a]pyrene developmental neurobehavioral toxicity. Sci Rep 2024; 14:14618. [PMID: 38918492 PMCID: PMC11199668 DOI: 10.1038/s41598-024-65610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Alexandra Alexiev
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Austin Hammer
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Ortiz de Ora L, Wiles ET, Zünd M, Bañuelos MS, Haro-Ramirez N, Suder DS, Ujagar N, Angulo JA, Trinh C, Knitter C, Gonen S, Nicholas DA, Wiles TJ. Phollow: Visualizing Gut Bacteriophage Transmission within Microbial Communities and Living Animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598711. [PMID: 38915633 PMCID: PMC11195241 DOI: 10.1101/2024.06.12.598711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Bacterial viruses (known as "phages") shape the ecology and evolution of microbial communities, making them promising targets for microbiome engineering. However, knowledge of phage biology is constrained because it remains difficult to study phage transmission dynamics within multi-member communities and living animal hosts. We therefore created "Phollow": a live imaging-based approach for tracking phage replication and spread in situ with single-virion resolution. Combining Phollow with optically transparent zebrafish enabled us to directly visualize phage outbreaks within the vertebrate gut. We observed that virions can be rapidly taken up by intestinal tissues, including by enteroendocrine cells, and quickly disseminate to extraintestinal sites, including the liver and brain. Moreover, antibiotics trigger waves of interbacterial transmission leading to sudden shifts in spatial organization and composition of defined gut communities. Phollow ultimately empowers multiscale investigations connecting phage transmission to transkingdom interactions that have the potential to open new avenues for viral-based microbiome therapies.
Collapse
Affiliation(s)
- Lizett Ortiz de Ora
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Elizabeth T Wiles
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Mirjam Zünd
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Maria S Bañuelos
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Nancy Haro-Ramirez
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Diana S Suder
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Naveena Ujagar
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Julio Ayala Angulo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Calvin Trinh
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Courtney Knitter
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Shane Gonen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Dequina A Nicholas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
- Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, California, USA
| | - Travis J Wiles
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
12
|
Childers L, Park E, Wang S, Liu R, Barry R, Watts SA, Rawls JF, Bagnat M. Protein absorption in the zebrafish gut is regulated by interactions between lysosome rich enterocytes and the microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597998. [PMID: 38895310 PMCID: PMC11185774 DOI: 10.1101/2024.06.07.597998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.
Collapse
Affiliation(s)
- Laura Childers
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Esther Park
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Carolina Institute of Developmental Disabilities, Chapel Hill, NC 27510, USA
| | - Siyao Wang
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Richard Liu
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Robert Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Stephen A. Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - John F. Rawls
- Department of Molecular Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Lead Contact
| |
Collapse
|
13
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes not underscored by different gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596447. [PMID: 38853862 PMCID: PMC11160693 DOI: 10.1101/2024.05.29.596447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Different animal behavioral phenotypes maintained and selectively bred over multiple generations may be underscored by dissimilar gut microbial community compositions or not have any significant dissimilarity in community composition. Operating within the microbiota-gut-brain axis framework, we anticipated differences in gut microbiome profiles between zebrafish (Danio rerio) selectively bred to display the bold and shy personality types. This would highlight gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced a fragment of the 16S rRNA gene from the guts of bold and shy zebrafish individuals (n=10) via Miseq. We uncovered no significant difference in within-group microbial diversity nor between-group microbial community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiota profiles between the two phenotypes would suggest that in this species, there might exist a stable "core" gut microbiome, regardless of behavioral phenotypes, and or possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This is the first study to characterize the gut microbial community of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
14
|
Wang ZZ, Wang ZT, Wang WL, Lei KK, Zhou JS. Effects of Different Farming Modes on Salmo trutta fario Growth and Intestinal Microbial Community. Microorganisms 2024; 12:1082. [PMID: 38930465 PMCID: PMC11205959 DOI: 10.3390/microorganisms12061082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiota plays a pivotal role in upholding intestinal health, fostering intestinal development, fortifying organisms against pathogen intrusion, regulating nutrient absorption, and managing the body's lipid metabolism. However, the influence of different cultivation modes on the growth indices and intestinal microbes of Salmo trutta fario remains underexplored. In this study, we employed high-throughput sequencing and bioinformatics techniques to scrutinize the intestinal microbiota in three farming modes: traditional pond aquaculture (TPA), recirculating aquaculture (RA), and flow-through aquaculture (FTA). We aimed to assess the impact of different farming methods on the water environment and Salmo trutta fario's growth performance. Our findings revealed that the final weight and weight gain rate in the FTA model surpassed those in the other two. Substantial disparities were observed in the composition, relative abundance, and diversity of Salmo trutta fario gut microbiota under different aquaculture modes. Notably, the dominant genera of Salmo trutta fario gut microbiota varied across farming modes: for instance, in the FTA model, the most prevalent genera were SC-I-84 (7.34%), Subgroup_6 (9.93%), and UTCFX1 (6.71%), while, under RA farming, they were Bacteroidetes_vadinHA17 (10.61%), MBNT15 (7.09%), and Anaeromyxoactor (6.62%). In the TPA model, dominant genera in the gut microbiota included Anaeromyxobacter (8.72%), Bacteroidetes_vadinHA17 (8.30%), and Geobacter (12.54%). From a comparative standpoint, the genus-level composition of the gut microbiota in the RA and TPA models exhibited relative similarity. The gut microbiota in the FTA model showcased the most intricate functional diversity, while TPA farming displayed a more intricate interaction pattern with the gut microbiota. Transparency, pH, dissolved oxygen, conductivity, total dissolved solids, and temperature emerged as pivotal factors influencing Salmo trutta fario gut microbiota under diverse farming conditions. These research findings offer valuable scientific insights for fostering healthy aquaculture practices and disease prevention and control measures for Salmo trutta fario, holding substantial significance for the sustainable development of the cold-water fish industry in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Zhuang-Zhuang Wang
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lasa 850032, China
| | - Zhi-Tong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wan-Liang Wang
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lasa 850032, China
- Center for Research on Breeding and Utilization Techniques of Indigenous Fish Species in Xizang, Lasa 850032, China
| | - Kuan-Kuan Lei
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian-She Zhou
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lasa 850032, China
| |
Collapse
|
15
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
16
|
Sumithra TG, Sharma SRK, Suresh G, Gop AP, Surya S, Gomathi P, Anil MK, Sajina KA, Reshma KJ, Ebeneezar S, Narasimapallavan I, Gopalakrishnan A. Mechanistic insights into the early life stage microbiota of silver pompano ( Trachinotus blochii). Front Microbiol 2024; 15:1356828. [PMID: 38694807 PMCID: PMC11061439 DOI: 10.3389/fmicb.2024.1356828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Deep investigations of host-associated microbiota can illuminate microbe-based solutions to improve production in an unprecedented manner. The poor larval survival represents the critical bottleneck in sustainable marine aquaculture practices. However, little is known about the microbiota profiles and their governing eco-evolutionary processes of the early life stages of marine teleost, impeding the development of suitable beneficial microbial management strategies. The study provides first-hand mechanistic insights into microbiota and its governing eco-evolutionary processes in early life stages of a tropical marine teleost model, Trachinotus blochii. Methods The microbiota profiles and their dynamics from the first day of hatching till the end of metamorphosis and that of fingerling's gut during the routine hatchery production were studied using 16S rRNA amplicon-based high-throughput sequencing. Further, the relative contributions of various external factors (rearing water, live feed, microalgae, and formulated feed) to the microbiota profiles at different ontogenies was also analyzed. Results A less diverse but abundant core microbial community (~58% and 54% in the whole microbiota and gut microbiota, respectively) was observed throughout the early life stages, supporting 'core microbiota' hypothesis. Surprisingly, there were two well-differentiated clusters in the whole microbiota profiles, ≤10 DPH (days post-hatching) and > 10 DPH samples. The levels of microbial taxonomic signatures of stress indicated increased stress in the early stages, a possible explanation for increased mortality during early life stages. Further, the results suggested an adaptive mechanism for establishing beneficial strains along the ontogenetic progression. Moreover, the highly transient microbiota in the early life stages became stable along the ontogenetic progression, hypothesizing that the earlier life stages will be the best window to influence the microbiota. The egg microbiota also crucially affected the microbial community. Noteworthily, both water and the feed microbiota significantly contributed to the early microbiota, with the feed microbiota having a more significant contribution to fish microbiota. The results illustrated that rotifer enrichment would be the optimal medium for the early larval microbiota manipulations. Conclusion The present study highlighted the crucial foundations for the microbial ecology of T. blochii during early life stages with implications to develop suitable beneficial microbial management strategies for sustainable mariculture production.
Collapse
Affiliation(s)
- T. G. Sumithra
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - S. R. Krupesha Sharma
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
- Cochin University of Science and Technology, Kochi, Kerala, India
| | - Ambarish P. Gop
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - S. Surya
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - P. Gomathi
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - M. K. Anil
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, Kerala, India
| | - K. A. Sajina
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - K. J. Reshma
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Sanal Ebeneezar
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Iyyapparaja Narasimapallavan
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - A. Gopalakrishnan
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| |
Collapse
|
17
|
Riddle MR, Nguyen NK, Nave M, Peuß R, Maldonado E, Rohner N, Tabin CJ. Host evolution shapes gut microbiome composition in Astyanax mexicanus. Ecol Evol 2024; 14:e11192. [PMID: 38571802 PMCID: PMC10985381 DOI: 10.1002/ece3.11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, Astyanax mexicanus, in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation. We found that lab-reared fish exhibited increased microbiome richness and distinct composition compared to their wild counterparts, underscoring the significant influence of habitat. Most notably, however, we found that morphotypes reared on the same diet throughout life developed distinct microbiomes suggesting that genetic loci resulting from cavefish evolution shape microbiome composition. We observed stable differences in Fusobacteriota abundance between morphotypes and demonstrated that this could be used as a trait for quantitative trait loci mapping to uncover the genetic basis of microbial community structure.
Collapse
Affiliation(s)
| | | | | | - Robert Peuß
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Ernesto Maldonado
- Institute of Marine Sciences and LimnologyUniversidad Nacional Autonoma de Mexico, UNAMPuerto MorelosMexico
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | | |
Collapse
|
18
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
19
|
Xu H, Wang J, Wang Q, Tu W, Jin Y. Co-exposure to polystyrene microplastics and cypermethrin enhanced the effects on hepatic phospholipid metabolism and gut microbes in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133051. [PMID: 38016319 DOI: 10.1016/j.jhazmat.2023.133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Microplastics (MPs) can absorb environmental pollutants from the aquatic environment to cause mixed toxicity, which has received widespread attention. However, studies on the joint effects of MPs and insecticides are limited. As one of the most widely used pyrethroids, there was a large amount of residual cypermethrin (CYP) in water due to insufficient decomposition. Here, adult female zebrafish were exposed to MPs, CYP, and their mixtures for 21 days, respectively. After exposures, the MPs and CYP caused tissue damage to the liver. Hepatic triglyceride (TG) level increased significantly after MPs + CYP exposure, and the expression of genes about glycolipids metabolism was significantly altered. Furthermore, metabolome results suggested that MPs + CYP exposure resulted in increased content of some glycerophospholipid, affecting phospholipid metabolism-related pathways. In addition, through 16 s rDNA sequencing, it was found that MPs + CYP led to significant changes in the proportion of dominant phyla. Interestingly, Cetobacterium which increased in CYP and the co-exposure group was positively correlated with most lipid metabolites. Our results suggested that co-exposure to MPs and CYP enhanced the disturbances in hepatic phospholipid metabolism by affecting the gut microbial composition, while these changes were not observed in separate treatment groups. These results emphasized the importance of studying the joint toxicity of MPs and insecticides.
Collapse
Affiliation(s)
- Haigui Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
20
|
Pamanji R, Kumareshan TN, Priya S L, Sivan G, Selvin J. Exploring the impact of antibiotics, microplastics, nanoparticles, and pesticides on zebrafish gut microbiomes: Insights into composition, interactions, and health implications. CHEMOSPHERE 2024; 349:140867. [PMID: 38048833 DOI: 10.1016/j.chemosphere.2023.140867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
This review addresses the impact of various chemical entities like pesticides, antibiotics, nanoparticles and microplastic on gut microbiota of zebrafish. Gut microbiota plays a vital role in metabolic regulation in every organism. As majority of metabolic pathways coordinated by microbiota, small alterations associated with mild to serious outcomes. Because of their unstoppable usage in day-to-day life, the present-day research on gut microbiota is mostly comprising aforementioned chemicals. It is better to understand how gut microbiome is dysbiosed by various environmental factors, to keep our microbiota safe. We tried to delineate the natural flora of zebrafish gut microbiome and the metabolic and other pathways associated and what are the common flora that was dysbiosed during the treatment. Based on the existing literature, we reviewed pesticides like Imazalil, Difenoconazole, Chlorpyrifos, Metamifop, Carbendazim, Imidacloprid, Phoxim, Niclosamide, Dieldrin, and antibiotics like Oxytetracycline, Enrofloxacin, Florfenicol, Sulfamethoxazole, Tetracycline, Streptomycin, Doxycycline, and in the category of nanoparticles, Titanium dioxide nanoparticles (nTiO2), Abalone viscera hydrolysates decorated silver nanoparticles (AVH-AgNPs), Lead-halide perovskite nanoparticles (LHP NPs), Copper nanoparticles (Cu-NPs), silver nanoparticles (Ag-NPs) and microplastic types like polyethylene and polystyrene microplastic. Other studies with miscellaneous chemical entities on zebrafish gut microbiome include Ferulic acid, Polychlorinated biphenyls, Cadmium, Disinfection by-products, Triclosan, microcystin-LR, Fluoride, and Amitriptyline.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India.
| | - T N Kumareshan
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | - Lakshmi Priya S
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | - Gisha Sivan
- Division Medical Research, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| |
Collapse
|
21
|
Thompson WA, Rajeswari JJ, Holloway AC, Vijayan MM. Excess feeding increases adipogenesis but lowers leptin transcript abundance in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109816. [PMID: 38061616 DOI: 10.1016/j.cbpc.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Although fish exposed to municipal wastewater effluents (MWWE) show higher lipid accumulation, whether this is due to adipogenesis is unclear. The objective here was to identify molecular markers of adipogenesis in zebrafish (Danio rerio) larvae for use as high throughput screening tools for environmental contaminants, including obesogens in MWWE. Zebrafish larvae were fed a commercial diet at a maintenance level (5 % body mass) or in excess (25 or 50 % body mass) from day 6 to 30 days post-fertilization (dpf) to stimulate adipogenesis. We monitored fat accumulation and markers of lipid metabolism, including peroxisome proliferator-activated receptor γ (ppar γ), fatty acid synthase (fas), ELOVL fatty acid elongase 2 (elovl2), diacylglycerol O-acyltransferase 2 (dgat2), leptin (lepa and lepb), leptin receptor (lepr), and lipoprotein lipase (lpl). Excess feeding led to a higher growth rate, protein content and an increase in igf1 transcript abundance. Also, these larvae had higher triglyceride levels and accumulated lipids droplets in the abdominal cavity and viscera. The molecular markers of adipogenesis, including fas, elovl2, and dgat2, were upregulated, while the transcript abundance of lpl, a lipolytic gene, was transiently lower due to excess feeding. The increased adiposity seen at 30 dpf due to excess feeding coincided with a lower lep but not lepr transcript abundance in zebrafish. Our results demonstrate that excess feeding alters the developmental programming of key genes involved in lipid homeostasis, leading to excess lipid accumulation in zebrafish larvae. Overall, fas, elovl2, lpl, and dgat2, but not lep or ppar γ, have the potential to be biomarkers of adipogenesis in zebrafish larvae.
Collapse
Affiliation(s)
- William Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jithine Jayakumar Rajeswari
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
22
|
Green GBH, Williams MB, Brandom JL, Chehade SB, Fay CX, Morrow CD, Lawrence AL, Bej AK, Watts SA. A Bacterial-Sourced Protein Diet Induces Beneficial Shifts in the Gut Microbiome of the Zebrafish, Danio rerio. Curr Dev Nutr 2024; 8:102077. [PMID: 38357379 PMCID: PMC10865222 DOI: 10.1016/j.cdnut.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Background Bacterial-sourced single-cell proteins (SCPs) offer an alternative protein source for diet formulation for Zebrafish (Danio rerio) and other aquaculture models. In addition, the use of a single-cell bacterial protein source derived from multiple species provides a unique insight into the interplay among nutrients in the diet, microbial populations in the diet, and the gut microbiome in D. rerio. Objective Our objective in this study was to evaluate the impact of dietary replacement of fish protein hydrolysate in a standard reference (SR) with a single-cell bacterial protein source on D. rerio gut microbiome. Methods We investigated gut microbial compositions of D. rerio fed an open-formulation standard reference (SR) diet or a bacterial-sourced protein (BP) diet, utilizing microbial taxonomic co-occurrence networks, and predicted functional profiles. Results Microbial communities in the SR diet were primarily composed of Firmicutes. In contrast, the BP diet was mainly composed of Proteobacteria. Alpha diversity revealed significant differences in microbial communities between the 2 diets, and between the guts of D. rerio fed either of the 2 diets. D. rerio fed with the SR diet resulted in abundance of Aeromonas and Vibrio. In contrast, D. rerio fed with a BP diet displayed a large abundance of members from the Rhodobacteraceae family. Taxonomic co-occurrence networks display unique microbial interactions, and key taxons in D. rerio gut samples were dependent on diet and gender. Predicted functional profiling of the microbiome across D. rerio fed SR or BP diets revealed distinct metabolic pathway differences. Female D. rerio fed the BP diet displayed significant upregulation of pathways related to primary and secondary bile acid synthesis. Male D. rerio fed the BP diet revealed similar pathway shifts and, additionally, a significant upregulation of the polyketide sugar unit biosynthesis pathway. Conclusions The use of a BP dramatically affects the composition and activity of the gut microbiome. Future investigations should further address the interplay among biological systems and diet and may offer insights into potential health benefits in preclinical and translational animal models.
Collapse
Affiliation(s)
- George BH Green
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B Williams
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeri L. Brandom
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie B Chehade
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian X Fay
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Addison L Lawrence
- Texas A&M AgriLife Extension Agriculture and Life Sciences, TAMU College Station, TX, United States
| | - Asim K Bej
- J. Frank Barefield, Jr. Department of Criminal Justice, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen A Watts
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Zhang S, Liu S, Liu H, Li H, Luo J, Zhang A, Ding Y, Ren T, Chen W. Stochastic Assembly Increases the Complexity and Stability of Shrimp Gut Microbiota During Aquaculture Progression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:92-102. [PMID: 38165637 DOI: 10.1007/s10126-023-10279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiota of aquaculture species contributes to their food metabolism and regulates their health, which has been shown to vary during aquaculture progression of their hosts. However, limited research has examined the outcomes and mechanisms of these changes in the gut microbiota of hosts. Here, Kuruma shrimps from the beginning, middle, and late stages of aquaculture progression (about a time duration of 2 months between each stage) were collected and variations in the gut microbiota of Kuruma shrimp during the whole aquaculture process were examined. High-throughput sequencing demonstrated increases in the diversity and richness of the shrimp gut microbiota with aquaculture progression. In addition, the gut microbiota composition differed among cultural stages, with enrichment of Firmicutes, RF39, and Megamonas and a reduction in Proteobacteria in the mid-stage. Notably, only very few taxa were persistent in the shrimp gut microbiota during the whole aquaculture progression, while the number of taxa that specific to the end of aquaculture was high. Network analysis revealed increasing complexity of the shrimp gut microbiota during aquaculture progression. Moreover, the shrimp gut microbiota became significantly more stable towards the end of aquaculture. According to the results of neutral community model, contribution of stochastic processes for shaping the shrimp gut microbiota was elevated along the aquaculture progression. This study showed substantial variations in shrimp gut microbiota during aquaculture progression and explored the underlying mechanisms regulating these changes.
Collapse
Affiliation(s)
- Saisai Zhang
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Shuang Liu
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Hongwei Liu
- Dalian Ocean University, Dalian Liaoning, 116023, China
| | - Hui Li
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Jun Luo
- Dalian Sun Asia Tourism Holding Co. Ltd., Dalian, Liaoning, 116023, China
| | - Aili Zhang
- Dalian Ocean School, Dalian, Liaoning, 116023, China
| | - Yinpeng Ding
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Tongjun Ren
- Dalian Ocean University, Dalian Liaoning, 116023, China
| | - Wenbo Chen
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China.
| |
Collapse
|
24
|
Bellot M, Carrillo MP, Bedrossiantz J, Zheng J, Mandal R, Wishart DS, Gómez-Canela C, Vila-Costa M, Prats E, Piña B, Raldúa D. From dysbiosis to neuropathologies: Toxic effects of glyphosate in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115888. [PMID: 38150752 DOI: 10.1016/j.ecoenv.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Paula Carrillo
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Vila-Costa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Benjamí Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
25
|
Balasubramanian S, Haneen MA, Sharma G, Perumal E. Acute copper oxide nanoparticles exposure alters zebrafish larval microbiome. Life Sci 2024; 336:122313. [PMID: 38035991 DOI: 10.1016/j.lfs.2023.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are being used in healthcare industries due to its antimicrobial properties. The increased consumption of NPs could lead to the rise of these NPs in the environment affecting the biological systems. Altered microbiome has been correlated to disease pathology in humans as well as xenobiotic toxicity in experimental animal models. However, CuO NPs-induced microbiome alterations in vertebrates have not been reported so far. In this study, for the first time, zebrafish larvae at 96 hpf (hours post fertilization) were exposed to CuO NPs for 24 h at 10, 20, and 40 ppm. After exposure, the control and treated larvae were subjected to 16S rRNA amplicon sequencing followed by relative taxa abundance, alpha and beta diversity analysis, single factor analysis, LEfSe, Deseq2, and functional profiling. No significant alteration was detected in the microbial richness and diversity, however, specific taxa constituting the core microbiome such as phylum Proteobacteria were significantly increased and Bacterioidetes and Firmicutes were decreased in the treated groups, indicating a core microbiota dysbiosis. Further, the family Lachnospiraceae, and genus Syntrophomonas involved in butyrate production and the metabolism of lipids and glucose were significantly altered. In addition, the opportunistic pathogens belonging to order Flavobacteriales were increased in CuO NPs treated groups. Moreover, the taxa involved in host immune response (Shewanella, Delftia, and Bosea) were found to be enriched in CuO NPs exposed larvae. These results indicate that CuO NPs exposure causes alteration in the core microbiota, which could cause colitis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
26
|
Calvigioni M, Mazzantini D, Celandroni F, Ghelardi E. Animal and In Vitro Models as Powerful Tools to Decipher the Effects of Enteric Pathogens on the Human Gut Microbiota. Microorganisms 2023; 12:67. [PMID: 38257894 PMCID: PMC10818369 DOI: 10.3390/microorganisms12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Examining the interplay between intestinal pathogens and the gut microbiota is crucial to fully comprehend the pathogenic role of enteropathogens and their broader impact on human health. Valid alternatives to human studies have been introduced in laboratory practice to evaluate the effects of infectious agents on the gut microbiota, thereby exploring their translational implications in intestinal functionality and overall health. Different animal species are currently used as valuable models for intestinal infections. In addition, considering the recent advances in bioengineering, futuristic in vitro models resembling the intestinal environment are also available for this purpose. In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with specific emphasis on results derived from investigations employing animal and in vitro models.
Collapse
Affiliation(s)
| | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.C.)
| |
Collapse
|
27
|
Qiao Y, Han F, Peng X, Rombenso A, Li E. Dietary β-Glucan Alleviates Antibiotic-Associated Side Effects by Increasing the Levels of Antioxidant Enzyme Activities and Modifying Intestinal Microbiota in Pacific White Shrimp ( Litopenaeus vannamei). Antioxidants (Basel) 2023; 13:52. [PMID: 38247477 PMCID: PMC10812432 DOI: 10.3390/antiox13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Antibiotics and their secondary metabolites are commonly found in aquatic ecosystems, leading to the passive exposure of many aquatic animals to low doses of antibiotics, which can affect their health. However, there is limited information available on how to mitigate the side effects of antibiotics on normal aquatic animals. This study aimed to investigate the potential of dietary β-glucan to alleviate the side effects induced by antibiotics in Pacific white shrimp (Litopenaeus vannamei) (0.37 ± 0.02 g). A six-week feeding trial was conducted with four dietary treatments including a control, 1 g/kg β-glucan (β-glucan), 50 mg/kg oxytetracycline (OTC), and a combination of 50 mg/kg OTC and 1 g/kg β-glucan (Mix) groups. At the end of the trial, the growth performance, intestinal microbial composition, antioxidant capacity, and immune response of the shrimp were assessed. There were no significant differences in growth performance among the groups, but the condition factor of the shrimp in the Mix group was significantly decreased when compared to the control and β-glucan groups. The activities of hepatopancreas catalase (CAT) and serum phenol oxidase in the OTC group were significantly lower than those in the control group. On the other hand, the activities of hepatopancreas superoxide dismutase and CAT enzymes in the β-glucan group were significantly higher than those in the OTC group. The supplementation of β-glucan in combination with antibiotics significantly increased the CAT activity and bacteriolytic activity compared to the OTC and control groups, respectively. Moreover, an analysis of the intestinal microbiota revealed that the Observed_species estimator in the Mix group was significantly higher than that in the control group. Dietary antibiotics significantly increased the abundance of Actinobacteria at the phylum level, but the Mix group showed no significant difference. The supplementation of β-glucan in combination with antibiotics also significantly increased the relative abundance of Meridianimaribacter compared to the control group. Additionally, the synergistic influence of β-glucan with antibiotics increased the beta diversity of intestinal microbiotas. These findings suggest that the supplementation of β-glucan in combination with antibiotics on Pacific white shrimp can alleviate the low antioxidant capacity and immune response caused by antibiotics while enhancing the intestinal microbial composition. This provides a potential solution to mitigate the negative impacts of antibiotics in aquaculture.
Collapse
Affiliation(s)
- Yanbing Qiao
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Xuhan Peng
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Artur Rombenso
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Livestock & Aquaculture Program, Bribie Island Research Centre, Bribie Island, Brisbane, QLD 4507, Australia;
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
28
|
Lin D, Hong J, Sanogo B, Du S, Xiang S, Hui JHL, Ding T, Wu Z, Sun X. Core gut microbes Cloacibacterium and Aeromonas associated with different gastropod species could be persistently transmitted across multiple generations. MICROBIOME 2023; 11:267. [PMID: 38017581 PMCID: PMC10685545 DOI: 10.1186/s40168-023-01700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Studies on the gut microbiota of animals have largely focused on vertebrates. The transmission modes of commensal intestinal bacteria in mammals have been well studied. However, in gastropods, the relationship between gut microbiota and hosts is still poorly understood. To gain a better understanding of the composition of gut microbes and their transmission routes in gastropods, a large-scale and long-term experiment on the dynamics and transmission modes of gut microbiota was conducted on freshwater snails. RESULTS We analyzed 244 microbial samples from the digestive tracts of freshwater gastropods and identified Proteobacteria and Bacteroidetes as dominant gut microbes. Aeromonas, Cloacibacterium, and Cetobacterium were identified as core microbes in the guts, accounting for over 50% of the total sequences. Furthermore, both core bacteria Aeromonas and Cloacibacterium, were shared among 7 gastropod species and played an important role in determining the gut microbial community types of both wild and cultured gastropods. Analysis of the gut microbiota at the population level, including wild gastropods and their offspring, indicated that a proportion of gut microbes could be consistently vertically transmitted inheritance, while the majority of the gut microbes resulted from horizontal transmission. Comparing cultured snails to their wild counterparts, we observed an increasing trend in the proportion of shared microbes and a decreasing trend in the number of unique microbes among wild gastropods and their offspring reared in a cultured environment. Core gut microbes, Aeromonas and Cloacibacterium, remained persistent and dispersed from wild snails to their offspring across multiple generations. Interestingly, under cultured environments, the gut microbiota in wild gastropods could only be maintained for up to 2 generations before converging with that of cultured snails. The difference observed in gut bacterial metabolism functions was associated with this transition. Our study also demonstrated that the gut microbial compositions in gastropods are influenced by developmental stages and revealed the presence of Aeromonas and Cloacibacterium throughout the life cycle in gastropods. Based on the dynamics of core gut microbes, it may be possible to predict the health status of gastropods during their adaptation to new environments. Additionally, gut microbial metabolic functions were found to be associated with the adaptive evolution of gastropods from wild to cultured environments. CONCLUSIONS Our findings provide novel insights into the dynamic processes of gut microbiota colonization in gastropod mollusks and unveil the modes of microbial transmission within their guts. Video Abstract.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Benjamin Sanogo
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Parasitology, Institut National de Recherche en Sante Publique, Bamako, Mali
| | - Shuling Du
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Jerome Ho-Lam Hui
- State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Ding
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongdao Wu
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
29
|
Zhu J, Song Y, Xiao Y, Ma L, Hu C, Yang H, Wang X, Lyu W. Metagenomic reconstructions of caecal microbiome in Landes, Roman and Zhedong White geese. Br Poult Sci 2023; 64:565-576. [PMID: 37493577 DOI: 10.1080/00071668.2023.2239172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
1. The caecal microbiota in geese play a crucial role in determining the host's health, disease status and behaviour, as evidenced by extensive epidemiological data. The present investigation conducted 10× metagenomic sequencing of caecal content samples obtained from three distinct goose species, namely Landes geese, Roman geese and Zhedong White geese (n = 5), to explore the contribution of the gut microbiome to carbohydrate metabolism.2. In total, 337GB of Illumina data were generated, which identified 1,048,575 complete genes and construction of 331 metagenomic bins, encompassing 78 species from nine phyla. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Bacteria were identified as the dominant phyla while Prevotella, Bacteroides, Streptococcus, and Subdoligranulum were the most abundant genera in the caecum of geese.3. The genes were allocated to 375 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The most abundant classes in the caecum of geese were confirmed to be glycoside hydrolases (GHs), glycosyl transferases (GTs), as identified through the carbohydrate-active enzyme (CAZyme) database mapping. Subdoligranulum variabile and Mediterraneibacter glycyrrhizinilyticus were discovered to potentially facilitate carbohydrate digestion in geese.4. Notwithstanding, further investigation and validation are required to establish a connection between these species and CAZymes. Based on binning analysis, Mediterraneibacter glycyrrhizinilyticus and Ruminococcus sp. CAG:177 are potential species in LD geese that contribute to the production of fatty liver.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Y Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - C Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - H Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Wang X, Zhao Z, Jiang J, Mi R, Guan X, Dong Y, Li S, Chen Z, Gao S, Wang B, Xiao Y, Pan Y, Zhou Z. Temporal stability and assembly mechanisms of gut microbiota in sea cucumbers response to nanoplastics treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115407. [PMID: 37639828 DOI: 10.1016/j.ecoenv.2023.115407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Aquaculture provides essential food for humans, and the health of farmed species is particularly important for the aquaculture industry. Aquaculture environment could be a sink of plastic debris (PDs) due to the enclosed character and heavy use of plastics. Gut microbiota of aquaculture species could respond to the exogenous pollutants and regulate the health of hosts. Here, variations in gut microbiota of Apostichopus japonicus induced by the ingested nanoplastics (NPs) were investigated by a lab experiment. We selected a NPs concentration gradient of 100 mg/kg and 500 mg/kg to simulate microplastic pollution to A. japonicus, and the significant differences in gut microbiota composition after 21 days of NP exposure were evaluated. According to the high-throughput sequencing from time series samples, a decrease of diversity in gut microbiota of A. japonicus with dietary NPs was observed. In addition, the gut microbiota compositions of sea cucumbers with and without NPs exposure were also distinct, expressing as enrichment of Bacteroidota while reducement of Proteobacteria under NPs stresses. Combined the results of network analysis, the less complexity and stability of gut microbiota in sea cucumbers with dietary NPs were proved. Based on the neutral community model, the ingested NPs elevated the contribution of stochastic processes for the gut microbiota assembly in sea cucumbers. Our study showed that substantial variations in gut microbiota of A. japonicus under NPs stresses, and also explored the underlying mechanisms regulating these changes. This research would offer new meaningful insights into the toxicity of NPs on sea cucumbers, contributing a solid fundament to improve the health of sea cucumbers under NPs stresses.
Collapse
Affiliation(s)
- Xuda Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Rui Mi
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Ying Dong
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shilei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yao Xiao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
31
|
Li P, Hong J, Wu M, Yuan Z, Li D, Wu Z, Sun X, Lin D. Metagenomic Analysis Reveals Variations in Gut Microbiomes of the Schistosoma mansoni-Transmitting Snails Biomphalaria straminea and Biomphalaria glabrata. Microorganisms 2023; 11:2419. [PMID: 37894077 PMCID: PMC10609589 DOI: 10.3390/microorganisms11102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Biomphalaria snails play a crucial role in the transmission of the human blood fluke Schistosoma mansoni. The gut microbiota of intermediate hosts is known to influence their physiological functions, but little is known about its composition and role in Biomphalaria snails. To gain insights into the biological characteristics of these freshwater intermediate hosts, we conducted metagenomic sequencing on Biomphalaria straminea and B. glabrata to investigate variations in their gut microbiota. This study revealed that the dominant members of the gut microbiota in B. glabrata belong to the phyla Bacteroidetes and Proteobacteria, which were also found to be the top two most abundant gut bacteria in B. straminea. We identified Firmicutes, Acidovorax and Bosea as distinctive gut microbes in B. straminea, while Aeromonas, Cloacibacterium and Chryseobacterium were found to be dependent features of the B. glabrata gut microbiota. We observed significant differences in the community structures and bacterial functions of the gut microbiota between the two host species. Notably, we found a distinctive richness of antibiotic resistance genes (ARGs) associated with various classes of antibiotics, including bacitracin, chloramphenicol, tetracycline, sulfonamide, penicillin, cephalosporin_ii and cephalosporin_i, fluoroquinolone, aminoglycoside, beta-lactam, multidrug and trimethoprim, in the digestive tracts of the snails. Furthermore, this study revealed the potential correlations between snail gut microbiota and the infection rate of S. mansoni using Spearman correlation analysis. Through metagenomic analysis, our study provided new insights into the gut microbiota of Biomphalaria snails and how it is influenced by host species, thereby enhancing our understanding of variant patterns of gut microbial communities in intermediate hosts. Our findings may contribute to future studies on gastropod-microbe interactions and may provide valuable knowledge for developing snail control strategies to combat schistosomiasis in the future.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510180, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
32
|
Härer A, Rennison DJ. Assessing the validity of fecal sampling for characterizing variation in threespine stickleback's gut microbiota. PLoS One 2023; 18:e0290875. [PMID: 37733779 PMCID: PMC10513271 DOI: 10.1371/journal.pone.0290875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota is crucial for many aspects of their hosts' biology, and it has been characterized for many species across the animal kingdom. Yet, we still don't have a good understanding of whether non-lethal sampling can accurately capture the diversity of gut-associated bacterial communities, as estimated from lethal sampling of intestinal tissue. We further lack knowledge on whether non-lethal sampling methods are suitable for detecting gut microbiota shifts associated with changes in environmental factors (e.g., diet). We addressed these questions in threespine stickleback fish, a model system for evolutionary ecology, by comparing bacterial communities from intestinal tissue and feces. Despite some differences in community composition between the two sample types and considerable temporal variation among fecal samples, bacterial communities appear to largely overlap. Further, we detected consistent and significant changes of fecal bacterial communities associated with an experimental diet manipulation. This suggests that fecal sampling can represent an adequate non-lethal method to characterize the gut microbiota of threespine stickleback, but additional studies will be necessary before drawing general conclusions regarding the validity of fecal sampling for gut microbiota studies. To this end, we give recommendations to improve the characterization of the gut microbiota via fecal sampling. Fecal sampling allows studying temporal gut microbiota shifts associated with environmental change at the individual level, which increases opportunities for future experimental gut microbiota research.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, United States of America
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
33
|
Leroux N, Sylvain FE, Holland A, Luis Val A, Derome N. Gut microbiota of an Amazonian fish in a heterogeneous riverscape: integrating genotype, environment, and parasitic infections. Microbiol Spectr 2023; 11:e0275522. [PMID: 37724869 PMCID: PMC10581195 DOI: 10.1128/spectrum.02755-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
A number of key factors can structure the gut microbiota of fish such as environment, diet, health state, and genotype. Mesonauta festivus, an Amazonian cichlid, is a relevant model organism to study the relative contribution of these factors on the community structure of fish gut microbiota. M. festivus has well-studied genetic populations and thrives in rivers with drastically divergent physicochemical characteristics. Here, we collected 167 fish from 12 study sites and used 16S and 18S rRNA metabarcoding approaches to characterize the gut microbiome structure of M. festivus. These data sets were analyzed in light of the host fish genotypes (genotyping-by-sequencing) and an extensive characterization of environmental physico-chemical parameters. We explored the relative contribution of environmental dissimilarity, the presence of parasitic taxa, and phylogenetic relatedness on structuring the gut microbiota. We documented occurrences of Nyctotherus sp. infecting a fish and linked its presence to a dysbiosis of the host gut microbiota. Moreover, we detected the presence of helminths which had a minor impact on the gut microbiota of their host. In addition, our results support a higher impact of the phylogenetic relatedness between fish rather than environmental similarity between sites of study on structuring the gut microbiota for this Amazonian cichlid. Our study in a heterogeneous riverscape integrates a wide range of factors known to structure fish gut microbiomes. It significantly improves understanding of the complex relationship between fish, their parasites, their microbiota, and the environment. IMPORTANCE The gut microbiota is known to play important roles in its host immunity, metabolism, and comportment. Its taxonomic composition is modulated by a complex interplay of factors that are hard to study simultaneously in natural systems. Mesonauta festivus, an Amazonian cichlid, is an interesting model to simultaneously study the influence of multiple variables on the gut microbiota. In this study, we explored the relative contribution of the environmental conditions, the presence of parasitic infections, and the genotype of the host on structuring the gut microbiota of M. festivus in Amazonia. Our results highlighted infections by a parasitic ciliate that caused a disruption of the gut microbiota and by parasitic worms that had a low impact on the microbiota. Finally, our results support a higher impact of the genotype than the environment on structuring the microbiota for this fish. These findings significantly improve understanding of the complex relationship among fish, their parasites, their microbiota, and the environment.
Collapse
Affiliation(s)
- Nicolas Leroux
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Quebec City, Quebec, Canada
| | - Francois-Etienne Sylvain
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Quebec City, Quebec, Canada
| | - Aleicia Holland
- Department of Environment and Genetics, Centre for Freshwater Ecosystems, Wodonga, Victoria, Australia
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Nicolas Derome
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Quebec City, Quebec, Canada
| |
Collapse
|
34
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
35
|
Sieler MJ, Al-Samarrie CE, Kasschau KD, Varga ZM, Kent ML, Sharpton TJ. Disentangling the link between zebrafish diet, gut microbiome succession, and Mycobacterium chelonae infection. Anim Microbiome 2023; 5:38. [PMID: 37563644 PMCID: PMC10413624 DOI: 10.1186/s42523-023-00254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan. RESULTS Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae. CONCLUSIONS Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.
Collapse
Affiliation(s)
- Michael J Sieler
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | | | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | - Zoltan M Varga
- Zebrafish International Resource Center, University of Oregon, Eugene, OR, 97330, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97330, USA
- Zebrafish International Resource Center, University of Oregon, Eugene, OR, 97330, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, 97330, USA.
| |
Collapse
|
36
|
Tucker TR, Knitter CA, Khoury DM, Eshghi S, Tran S, Sharrock AV, Wiles TJ, Ackerley DF, Mumm JS, Parsons MJ. An inducible model of chronic hyperglycemia. Dis Model Mech 2023; 16:dmm050215. [PMID: 37401381 PMCID: PMC10417516 DOI: 10.1242/dmm.050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute β-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain β-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.
Collapse
Affiliation(s)
- Tori R. Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Courtney A. Knitter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Deena M. Khoury
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sheida Eshghi
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sophia Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Travis J. Wiles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Paralika V, Kokou F, Karapanagiotis S, Makridis P. Characterization of Host-Associated Microbiota and Isolation of Antagonistic Bacteria from Greater Amberjack ( Seriola dumerili, Risso, 1810) Larvae. Microorganisms 2023; 11:1889. [PMID: 37630449 PMCID: PMC10456766 DOI: 10.3390/microorganisms11081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Greater amberjack (Seriola dumerili) is a new species in marine aquaculture with high mortalities at the larval stages. The microbiota of amberjack larvae was analyzed using 16S rDNA sequencing in two groups, one added copepod nauplii (Acartia tonsa) in the diet, and one without copepods (control). In addition, antagonistic bacteria were isolated from amberjack larvae and live food cultures. Proteobacteria was the most abundant phylum followed by Bacteroidota in amberjack larvae. The composition and diversity of the microbiota were influenced by age, but not by diet. Microbial community richness and diversity significantly increased over time. Rhodobacteraceae was the most dominant family followed by Vibrionaceae, which showed the highest relative abundance in larvae from the control group 31 days after hatching. Alcaligenes and Thalassobius genera exhibited a significantly higher relative abundance in the copepod group. Sixty-two antagonistic bacterial strains were isolated and screened for their ability to inhibit four fish pathogens (Aeromonas veronii, Vibrio harveyi, V. anguillarum, V. alginolyticus) using a double-layer test. Phaeobacter gallaeciensis, Phaeobacter sp., Ruegeria sp., and Rhodobacter sp. isolated from larvae and Artemia sp. inhibited the fish pathogens. These antagonistic bacteria could be used as host-derived probiotics to improve the growth and survival of the greater amberjack larvae.
Collapse
Affiliation(s)
| | - Fotini Kokou
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | | | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Rio, Greece;
| |
Collapse
|
38
|
Chen HY, Li CQ, Chen SY, Xiao H. Metagenomic analysis reveals hidden links between gut microbes and habitat adaptation among cave and surface dwelling Sinocyclocheilus species. Zool Res 2023; 44:793-807. [PMID: 37464937 PMCID: PMC10415777 DOI: 10.24272/j.issn.2095-8137.2022.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Intestinal microbes are closely related to vital host functions such as digestion and nutrient absorption, which play important roles in enhancing host adaptability. As a natural "laboratory", caves provide an outstanding model for understanding the significance of gut microbes and feeding habits in the habitat adaptability of hosts. However, research on the relationship between gut microbes, feeding habits, and the adaptability of troglobites remains insufficient. In this study, we compared the characteristics of the intestinal microbes of Sinocyclocheilus cavefish and surface fish and further established the relationship between intestinal and habitat microbes. Furthermore, we conducted environmental DNA (eDNA) (metabarcoding) analysis of environmental samples to clarify the composition of potential food resources in the habitats of the Sinocyclocheilus cavefish and surface fish. Results showed that the structure of the Sinocyclocheilus gut microbes was more related to ecological type (habitat type) than phylogenetic relationships. While horizontal transfer of habitat microbes was a source of gut microbes, hosts also showed strong selection for inherent microbes as dominant microorganisms. Differences in the composition and structure of gut microbes, especially dominant microbes, may enhance the adaptability of the two Sinocyclocheilus fish types from the perspectives of food intake, nutrient utilization, and harmful substance metabolism, suggesting that food resources, predation patterns, intestinal flora, digestive and absorptive capacity, and feeding habits and preferences are linked to habitat adaptability. These results should facilitate our understanding of the significance of fish gut microbes to habitat adaptation and provide a new perspective for studying the adaptive mechanisms of cavefish.
Collapse
Affiliation(s)
- Hong-Yu Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Kunming, Yunnan 650031, China
| | - Chun-Qing Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Shan-Yuan Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China. E-mail:
| | - Hen Xiao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China. E-mail:
| |
Collapse
|
39
|
Fiedler AW, Drågen MKR, Lorentsen ED, Vadstein O, Bakke I. The stability and composition of the gut and skin microbiota of Atlantic salmon throughout the yolk sac stage. Front Microbiol 2023; 14:1177972. [PMID: 37485532 PMCID: PMC10358989 DOI: 10.3389/fmicb.2023.1177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The bacterial colonization of newly hatched fish is important for the larval development and health. Still, little is known about the ontogeny of the early microbiota of fish. Here, we conducted two independent experiments with yolk sac fry of Atlantic salmon that were (1) either reared conventionally, with the eggs as the only source for bacteria (egg-derived microbiota; EDM) or (2) hatched germ-free and re-colonized using lake water (lake-derived microbiota; LDM). First, we characterized the gut and skin microbiota at 6, 9, and 13 weeks post hatching based on extracted RNA. In the second experiment, we exposed fry to high doses of either a fish pathogen or a commensal bacterial isolate and sampled the microbiota based on extracted DNA. The fish microbiota differed strongly between EDM and LDM treatments. The phyla Proteobacteria, Bacteroidetes, and Actinobacteria dominated the fry microbiota, which was found temporarily dynamic. Interestingly, the microbiota of EDM fry was more stable, both between replicate rearing flasks, and over time. Although similar, the skin and gut microbiota started to differentiate during the yolk sac stage, several weeks before the yolk was consumed. Addition of high doses of bacterial isolates to fish flasks had only minor effects on the microbiota.
Collapse
|
40
|
Almeida DB, Semedo M, Magalhães C, Blanquet I, Mucha AP. Sole microbiome progression in a hatchery life cycle, from egg to juvenile. Front Microbiol 2023; 14:1188876. [PMID: 37434707 PMCID: PMC10331008 DOI: 10.3389/fmicb.2023.1188876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Recirculating aquaculture systems (RAS) pose unique challenges in microbial community management since they rely on a stable community with key target groups, both in the RAS environment and in the host (in this case, Solea senegalensis). Our goal was to determine how much of the sole microbiome is inherited from the egg stage, and how much is acquired during the remainder of the sole life cycle in an aquaculture production batch, especially regarding potentially probiotic and pathogenic groups. Our work comprises sole tissue samples from 2 days before hatching and up to 146 days after hatching (-2 to 146 DAH), encompassing the egg, larval, weaning, and pre-ongrowing stages. Total DNA was isolated from the different sole tissues, as well as from live feed introduced in the first stages, and 16S rRNA gene was sequenced (V6-V8 region) using the Illumina MiSeq platform. The output was analysed with the DADA2 pipeline, and taxonomic attribution with SILVAngs version 138.1. Using the Bray-Curtis dissimilarity index, both age and life cycle stage appeared to be drivers of bacterial community dissimilarity. To try to distinguish the inherited (present since the egg stage) from the acquired community (detected at later stages), different tissues were analysed at 49, 119 and 146 DAH (gill, intestine, fin and mucus). Only a few genera were inherited, but those that were inherited accompany the sole microbiome throughout the life cycle. Two genera of potentially probiotic bacteria (Bacillus and Enterococcus) were already present in the eggs, while others were acquired later, in particularly, forty days after live feed was introduced. The potentially pathogenic genera Tenacibaculum and Vibrio were inherited from the eggs, while Photobacterium and Mycobacterium seemed to be acquired at 49 and 119 DAH, respectively. Significant co-occurrence was found between Tenacibaculum and both Photobacterium and Vibrio. On the other hand, significantly negative correlations were detected between Vibrio and Streptococcus, Bacillus, Limosilactobacillus and Gardnerella. Our work reinforces the importance of life cycle studies, which can contribute to improve production husbandry strategies. However, we still need more information on this topic as repetition of patterns in different settings is essential to confirm our findings.
Collapse
Affiliation(s)
- Diana Bastos Almeida
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- SEA EIGHT - Safiestela S.A., Estela, Portugal
| | - Miguel Semedo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Catarina Magalhães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- FCUP – Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Ana Paula Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- FCUP – Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Lorgen-Ritchie M, Uren Webster T, McMurtrie J, Bass D, Tyler CR, Rowley A, Martin SAM. Microbiomes in the context of developing sustainable intensified aquaculture. Front Microbiol 2023; 14:1200997. [PMID: 37426003 PMCID: PMC10327644 DOI: 10.3389/fmicb.2023.1200997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in "closed" aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.
Collapse
Affiliation(s)
| | - Tamsyn Uren Webster
- Centre for Sustainable Aquatic Research, Swansea University, Swansea, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David Bass
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Charles R. Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
42
|
Morshed SM, Lee TH. The role of the microbiome on fish mucosal immunity under changing environments. FISH & SHELLFISH IMMUNOLOGY 2023:108877. [PMID: 37302678 DOI: 10.1016/j.fsi.2023.108877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
The environment is crucial for fish as their mucosal surfaces face continuous challenges in the water. Fish mucosal surfaces harbor the microbiome and mucosal immunity. Changes in the environment could affect the microbiome, thus altering mucosal immunity. Homeostasis between the microbiome and mucosal immunity is crucial for the overall health of fish. To date, very few studies have investigated mucosal immunity and its interaction with the microbiome in response to environmental changes. Based on the existing studies, we can infer that environmental factors can modulate the microbiome and mucosal immunity. However, we need to retrospectively examine the existing literature to investigate the possible interaction between the microbiome and mucosal immunity under specific environmental conditions. In this review, we summarize the existing literature on the effects of environmental changes on the fish microbiome and mucosal immunity. This review mainly focuses on temperature, salinity, dissolved oxygen, pH, and photoperiod. We also point out a gap in the literature and provide directions to go further in this research field. In-depth knowledge about mucosal immunity-microbiome interaction will also improve aquaculture practices by reducing loss during environmental stressful conditions.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
43
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Bera AK, Chowdhury H, Ghatak S, Malick RC, Chakraborty N, Chakraborty HJ, Swain HS, Hassan MA, Das BK. Microbiome analysis reveals potential for modulation of gut microbiota through polysaccharide-based prebiotic feeding in Oreochromis niloticus (Linnaeus, 1758). Front Physiol 2023; 14:1168284. [PMID: 37362433 PMCID: PMC10285058 DOI: 10.3389/fphys.2023.1168284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Characterization and functional profiling of the gut microbiota are essential for guiding nutritional interventions in fish and achieving favorable host-microbe interactions. Thus, we conducted a 30 days study to explore and document the gut microbial community of O. niloticus, as well as to evaluate the effects of a polysaccharide-based prebiotics with 0.5% and 0.75% Aloe vera extract on the gut microbiome through genomic analysis. The V3-V4 region of 16S rRNA was amplified and sequenced using Illumina HiSeq 2500, resulting in 1,000,199 reads for operational taxonomic unit (OTU) identification. Out of 8,894 OTUs, 1,181 were selected for further analysis. Our results revealed that Planctomycetes, Firmicutes, Proteobacteria, Verrucomicrobia, Actinobacteria, and Fusobacteria were the dominant phyla in both control and treatment samples. Higher doses of prebiotics were found to improve Planctomycetes and Firmicutes while decreasing Proteobacteria and Verrucomicrobia. We observed increasing trends in the abundance of Bacilli, Bacillaceae, and Bacillus bacteria at the class, family, and genus levels, respectively, in a dose-dependent manner. These findings were consistent with the conventional colony count data, which showed a higher prevalence of Bacillus in prebiotic-supplemented groups. Moreover, predicted functional analysis using PICRUSt indicated a dose-dependent upregulation in glycolysis V, superpathway of glycol metabolism and degradation, glucose and xylose degradation, glycolysis II, and sulfoglycolysis pathways. Most of the energy, protein, and amino acid synthesis pathways were upregulated only at lower doses of prebiotic treatment. Our findings suggest that the gut microbiome of O. niloticus can be optimized through nutritional interventions with plant-based polysaccharides for improved growth performance in commercial fish.
Collapse
Affiliation(s)
- Asit Kumar Bera
- Central Inland Fisheries Research Institute (ICAR), Bārākpur, India
| | | | - Sandeep Ghatak
- The ICAR Research Complex for North Eastern Hill Region (ICAR RC NEH), Umiam, India
| | | | | | | | | | - M. A. Hassan
- Central Inland Fisheries Research Institute (ICAR), Bārākpur, India
| | | |
Collapse
|
45
|
Wang YF, Cai TG, Liu ZL, Cui HL, Zhu D, Qiao M. A new insight into the potential drivers of antibiotic resistance gene enrichment in the collembolan gut association with antibiotic and non-antibiotic agents. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131133. [PMID: 36889073 DOI: 10.1016/j.jhazmat.2023.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Effects of non-antibiotic pharmaceuticals on antibiotic resistance genes (ARGs) in soil ecosystem are still unclear. In this study, we explored the microbial community and ARGs variations in the gut of the model soil collembolan Folsomia candida following soil antiepileptic drug carbamazepine (CBZ) contamination, while comparing with antibiotic erythromycin (ETM) exposure. Results showed that, CBZ and ETM all significantly influenced ARGs diversity and composition in the soil and collembolan gut, increasing the relative abundance of ARGs. However, unlike ETM, which influences ARGs via bacterial communities, exposure to CBZ may have primarily facilitated enrichment of ARGs in gut through mobile genetic elements (MGEs). Although soil CBZ contamination did not pose an effect on the gut fungal community of collembolans, it increased the relative abundance of animal fungal pathogens contained therein. Soil ETM and CBZ exposure both significantly increased the relative abundance of Gammaproteobacteria in the collembolan gut, which may be used to indicate soil contamination. Together, our results provide a fresh perspective for the potential drivers of non-antibiotic drugs on ARG changes based on the actual soil environment, revealing the potential ecological risk of CBZ on soil ecosystems involving ARGs dissemination and pathogens enrichment.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Wang C, Sun D, Junaid M, Xie S, Xu G, Li X, Tang H, Zou J, Zhou A. Effects of tidal action on the stability of microbiota, antibiotic resistance genes, and microplastics in the Pearl River Estuary, Guangzhou, China. CHEMOSPHERE 2023; 327:138485. [PMID: 36966930 DOI: 10.1016/j.chemosphere.2023.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, the 16S rRNA gene amplicon sequencing technique was used to explore the microbial diversity and differences in the water environment of the Pearl River Estuary in Nansha District with various land use types such as the aquaculture area, industrial area, tourist area, agricultural plantation, and residential area. At the same time, the quantity, type, abundance, and distribution of two types of emerging environmental pollutants, antibiotic resistance genes (ARGs) and microplastics (MPs), are explored in the water samples from different functional areas. The results show that the dominant phyla in the five functional regions are Proteobacteria, Actinobacteria and Bacteroidetes, and the dominant genera are Hydrogenophaga, Synechococcus, Limnohabitans and Polynucleobacter. A total of 248 ARG subtypes were detected in the five regions, belonging to nine classes of ARGs (Aminoglycoside, Beta_Lactamase, Chlor, MGEs, MLSB, Multidrug, Sul, Tet, Van). Blue and white were the dominant MP colors in the five regions; 0.5-2 mm was the dominant MP size, and cellulose, rayon, and polyester comprised the highest proportion of the plastic polymers. This study provides the basis for understanding the environmental microbial distribution in estuaries and the prevention of environmental health risks from ARGs and microplastics.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 16 510070, China.
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| | - Huijuan Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| |
Collapse
|
47
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
48
|
Zhao C, Li Y, Tang J, Zhou Q, Lin X, Wen Z. Metaphocytes are IL-22BP-producing cells regulated by ETS transcription factor Spic and essential for zebrafish barrier immunity. Cell Rep 2023; 42:112483. [PMID: 37148242 DOI: 10.1016/j.celrep.2023.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Metaphocytes are tissue-resident macrophage (TRM)/dendritic cell (DC)-like cells of non-hematopoietic origin in zebrafish barrier tissues. One remarkable property of metaphocytes is their ability to capture soluble antigens from the external environment via transepithelial protrusions, a unique function manifested by specialized subpopulations of the TRMs/DCs in mammal barrier tissues. Yet, how metaphocytes acquire myeloid-like cell properties from non-hematopoietic precursors and how they regulate barrier immunity remains unknown. Here, we show that metaphocytes are in situ generated from local progenitors guided by the ETS transcription factor Spic, the deficiency of which results in the absence of metaphocytes. We further document that metaphocytes are the major IL-22BP-producing cells, and the depletion of metaphocytes causes dysregulated barrier immunity that resembles the phenotype of IL-22BP-deficient mice. These findings reveal the ontogeny, development, and function of metaphocytes in zebrafish, which facilitates our understanding of the nature and function of the mammalian TRM/DC counterparts.
Collapse
Affiliation(s)
- Changlong Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jinlin Tang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xi Lin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MS 02115, USA
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
49
|
Li W, Zhou Z, Li H, Wang S, Ren L, Hu J, Liu Q, Wu C, Tang C, Hu F, Zeng L, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Successional Changes of Microbial Communities and Host-Microbiota Interactions Contribute to Dietary Adaptation in Allodiploid Hybrid Fish. MICROBIAL ECOLOGY 2023; 85:1190-1201. [PMID: 35366074 DOI: 10.1007/s00248-022-01993-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Host-microbiota interactions play critical roles in host development, immunity, metabolism, and behavior. However, information regarding host-microbiota interactions is limited in fishes due to their complex living environment. In the present study, an allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) was used to investigate the successional changes of the microbial communities and host-microbiota interactions during herbivorous and carnivorous dietary adaptations. The growth level was not significantly different in any developmental stage between the two diet groups of fish. The diversity and composition of the dominant microbial communities showed similar successional patterns in the early developmental stages, but significantly changed during the two dietary adaptations. A large number of bacterial communities coexisted in all developmental stages, whereas the abundance of some genera associated with metabolism, including Acinetobacter, Gemmobacter, Microbacterium, Vibrio, and Aeromonas, was higher in either diet groups of fish. Moreover, the abundance of phylum Firmicutes, Actinobacteria, and Chloroflexi was positively correlated with the host growth level. In addition, Spearman's correlation analysis revealed that the differentially expressed homologous genes in the intestine associated with cell growth, immunity, and metabolism were related to the dominant gut microbiota. Our results present evidence that host genetics-gut microbiota interactions contribute to dietary adaptation in hybrid fish, which also provides basic data for understanding the diversity of dietary adaptations and evolution in fish.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zexun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hongqing Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lei Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Rulong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
50
|
Shi Q, Li Y, Deng S, Zhang H, Jiang H, Shen L, Pan T, Hong P, Wu H, Shu Y. The succession of gut microbiota in the concave-eared torrent frog ( Odorrana tormota) throughout developmental history. Ecol Evol 2023; 13:e10094. [PMID: 37214611 PMCID: PMC10199338 DOI: 10.1002/ece3.10094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
The gut microbiota of amphibians plays a crucial role in maintaining health and adapting to various developmental stages. The composition of gut microbial community is influenced by the phylogeny, habitat, diet, and developmental stage of the host. The present study analyzed the microbiota in the intestine of O. tormota at 11 developmental stages (from the tadpole at Gosner stage 24 to the 3-year-old adult) using high-throughput 16S rRNA sequencing. Alpha diversity index analysis of the microbiota revealed that the index decreased from tadpole at Gosner stage 24 to adult frog stage, remained stable during the adult frog stages, but increased significantly at the early metamorphosis and hibernation preparation stages. The gut microbiota structure is similar in adult frogs but differs significantly in other developmental stages. Furthermore, the dominant phyla of gut microbiota in tadpoles were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, whereas those in adult frogs were Proteobacteria, Firmicutes, Bacteroidetes, and Verrucomicrobia. Host and environmental factors jointly affected the gut microbial diversity and community composition of O. tormota, but developmental stage, feeding habit, and habitat type had a more significant influence. The microbial community in the gut varies with the developmental stage of the host and constantly adapts to the survival requirements of the host. These findings advance our understanding of the evolutionary mechanism of amphibian gut microbiota in maintaining health homeostasis and adaptation.
Collapse
Affiliation(s)
- Qingkai Shi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yue Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Shanghai Wildlife and Protected Natural Areas Research CenterShanghaiChina
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Liang Shen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Tao Pan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| |
Collapse
|