1
|
Tang F, Peng W, Kou X, Chen Z, Zhang L. High-throughput screening identification of apigenin that reverses the colistin resistance of mcr-1-positive pathogens. Microbiol Spectr 2024; 12:e0034124. [PMID: 39248524 PMCID: PMC11448233 DOI: 10.1128/spectrum.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 09/10/2024] Open
Abstract
The plasmid-mediated gene mcr-1 that makes bacteria resistant to the antibiotic colistin is spreading quickly, which means that colistin is no longer working well to treat Gram-negative bacterial infections. Herein, we utilized a computer-aided high-throughput screening drugs method to identify the natural product apigenin, a potential mcr-protein inhibitor, which effectively enhanced the antimicrobial activity of colistin. Several assays, including a checkerboard minimum inhibitory concentration assay, a time-kill assay, the combined disk test, molecular simulation dynamics, and animal infection models assay, were conducted to verify whether apigenin enhanced the ability of colistin to fight Gram-negative bacterial infections. The results showed that apigenin improved the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae infection. Moreover, apigenin not only did not increase the toxic effect of colistin but also had the ability to effectively inhibit the frequency of bacterial resistance mutations to colistin. Studies clearly elucidated that apigenin could interfere with the thermal stability of the protein by binding to the mcr-1 protein. Additionally, the combination of apigenin and colistin could exert multiple effects, including disrupting bacterial membranes, the generation of bacterial nitric oxide and reactive oxygen species, as well as inhibiting bacterial adenosine triphosphate production. Furthermore, the addition of apigenin was able to significantly inhibit colistin-stimulated high expression levels of the bacterial mcr-1 gene. Finally, apigenin exhibited a characteristic anti-inflammatory effect while enhancing the antimicrobial activity of colistin against mcr-1-positive Escherichia coli (E. coli) infected animals. In conclusion, as a potential lead compound, apigenin is promising in combination with colistin in the future treatment of mcr-1-positive E. coli infections.IMPORTANCEThis study found that apigenin was able to inhibit the activity of the mcr-1 protein using a high-throughput virtual screening method. Apigenin effectively enhanced the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae, including mcr-1-positive strains, in vitro and in vivo. This study will provide new options and strategies for the future treatment of multidrug-resistant pathogen infections.
Collapse
Affiliation(s)
- Feng Tang
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenjing Peng
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu Kou
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zeliang Chen
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Libo Zhang
- College of Animal Science and Veterinary Medicine, Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Salter T, Collinson I, Allen WJ. Whole Cell Luminescence-Based Screen for Inhibitors of the Bacterial Sec Machinery. Biochemistry 2024; 63:2344-2351. [PMID: 39207823 PMCID: PMC11411707 DOI: 10.1021/acs.biochem.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
There is a pressing need for new antibiotics to combat rising resistance to those already in use. The bacterial general secretion (Sec) system has long been considered a good target for novel antimicrobials thanks to its irreplacable role in maintaining cell envelope integrity, yet the lack of a robust, high-throughput method to screen for Sec inhibition has so far hampered efforts to realize this potential. Here, we have adapted our recently developed in vitro assay for Sec activity─based on the split NanoLuc luciferase─to work at scale and in living cells. A simple counterscreen allows compounds that specifically target Sec to be distinguished from those with other effects on cellular function. As proof of principle, we have applied this assay to a library of 5000 compounds and identified a handful of moderately effective in vivo inhibitors of Sec. Although these hits are unlikely to be potent enough to use as a basis for drug development, they demonstrate the efficacy of the screen. We therefore anticipate that the methods presented here will be scalable to larger compound libraries, in the ultimate quest for Sec inhibitors with clinically relevant properties.
Collapse
Affiliation(s)
- Tia Salter
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - William J. Allen
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
3
|
Doppalapudi S, Adrish M. Community-acquired pneumonia: The importance of the early detection of drug-resistant organisms. World J Crit Care Med 2024; 13:91314. [PMID: 38855277 PMCID: PMC11155498 DOI: 10.5492/wjccm.v13.i2.91314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024] Open
Abstract
Pneumonia is a disease associated with significant healthcare burden with over 1.5 million hospitalizations annually and is the eighth leading cause of death in the United States. While community-acquired pneumonia (CAP) is generally considered an acute time-limited illness, it is associated with high long-term mortality, with nearly one-third of patients requiring hospitalization dying within one year. An increasing trend of detecting multidrug-resistant (MDR) organisms causing CAP has been observed, especially in the Western world. In this editorial, we discuss about a publication by Jatteppanavar et al which reported that a case of a MDR organism was the culprit in developing pneumonia, bacteremia, and infective endocarditis that led to the patient's death. The early detection of these resistant organisms helps improve patient outcomes. Significant advances have been made in the biotechnological and research space, but preventive measures, diagnostic techniques, and treatment strategies need to be developed.
Collapse
Affiliation(s)
- Sai Doppalapudi
- Department of Medicine, Bronx Care Health System, New York Affiliated with The Icahn School of Medicine at Mount Sinai, Bronx, NY 10457, United States
| | - Muhammad Adrish
- Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
4
|
Thompson TP, Gilmore BF. Exploring halophilic environments as a source of new antibiotics. Crit Rev Microbiol 2024; 50:341-370. [PMID: 37079280 DOI: 10.1080/1040841x.2023.2197491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
Microbial natural products from microbes in extreme environments, including haloarchaea, and halophilic bacteria, possess a huge capacity to produce novel antibiotics. Additionally, enhanced isolation techniques and improved tools for genomic mining have expanded the efficiencies in the antibiotic discovery process. This review article provides a detailed overview of known antimicrobial compounds produced by halophiles from all three domains of life. We summarize that while halophilic bacteria, in particular actinomycetes, contribute the vast majority of these compounds the importance of understudied halophiles from other domains of life requires additional consideration. Finally, we conclude by discussing upcoming technologies- enhanced isolation and metagenomic screening, as tools that will be required to overcome the barriers to antimicrobial drug discovery. This review highlights the potential of these microbes from extreme environments, and their importance to the wider scientific community, with the hope of provoking discussion and collaborations within halophile biodiscovery. Importantly, we emphasize the importance of bioprospecting from communities of lesser-studied halophilic and halotolerant microorganisms as sources of novel therapeutically relevant chemical diversity to combat the high rediscovery rates. The complexity of halophiles will necessitate a multitude of scientific disciplines to unravel their potential and therefore this review reflects these research communities.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Li WX, Lu YF, Wang F, Ai B, Jin SB, Li S, Xu GH, Jin CH. Application of 18β-glycyrrhetinic acid in the structural modification of natural products: a review. Mol Divers 2024:10.1007/s11030-024-10864-2. [PMID: 38683490 DOI: 10.1007/s11030-024-10864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
18β-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.
Collapse
Affiliation(s)
- Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Fei Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Sheng-Bo Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
6
|
Tao Z, Li X, Yu H, Wu J, Wen Y, Liu T. Photodynamic Therapy of LD4-Photosensitizer Attenuates the Acute Pneumonia Induced by Klebsiella pneumoniae. ACS Pharmacol Transl Sci 2024; 7:1101-1113. [PMID: 38633581 PMCID: PMC11020065 DOI: 10.1021/acsptsci.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that induces acute lung injury (ALI) and inflammation in humans, necessitating immediate hospitalization and treatment. At present, the clinical treatment is largely dependent on hormones or antibiotics but is associated with drawbacks posed by the lack of eradication of the bacterium upon treatment and drug resistance. Therefore, there is an urgent need for novel and effective treatments. The current study investigated the treatment of K. pneumonia-induced ALI using a photosensitizer LD4 in conjunction with photodynamic therapy (PDT). The water content in the lungs (corresponding to edema) of a rat model of pneumonia induced by K. pneumoniae was reduced upon treatment with LD4-PDT. The counts of leukocyte, lymphocyte, and polymorphonuclear leukocyte in the blood were determined in the rat model of pneumonia, as were the concentrations of inflammatory cytokines (estimated using an enzyme-linked immunosorbent assay). The LD4-PDT treatment prominently reduced the levels of interleukin (IL)-6, IL-10, tumor necrosis factor-α, superoxide dismutase, and immune cells. Results suggest that LD4-PDT considerably alleviates the inflammation and oxidative stress caused by K. pneumoniae in the rat model of pneumonia. Furthermore, it could effectively improve the survival rate in the rat model of K. pneumonia-induced pneumonia and ameliorate histological changes while protecting the integrity of the pulmonary epithelial cells. These results highlight the potential application of LD4 as a photosensitizer for treating acute pneumonia induced by K. pneumoniae.
Collapse
Affiliation(s)
- Zhuo Tao
- Tianjin
Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science
and Peking Union Medical College, Tianjin 300192, China
| | - Xin Li
- Department
of Pathology, Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin 300350, China
| | - Hongzhi Yu
- Department
of Respiratory Medicine, Haihe Hospital, Tianjin 300350, China
| | - Junping Wu
- Department
of Infection, Haihe Hospital, Tianjin 300350, China
| | - Ying Wen
- Tianjin
Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science
and Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Tianjin
Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science
and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
7
|
Schwarte JV, Crochet A, Fromm KM. 4-[(E)-2-(1-Pyrenyl)Vinyl]Pyridine Complexes: How to Modulate the Toxicity of Heavy Metal Ions to Target Microbial Infections. Molecules 2024; 29:1565. [PMID: 38611844 PMCID: PMC11013842 DOI: 10.3390/molecules29071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.
Collapse
Affiliation(s)
- Justine V. Schwarte
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Fribourg Center for Nanomaterials, 1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Fribourg Center for Nanomaterials, 1700 Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Acharya KR, Cohen A, Brankston G, Soucy JPR, Hulth A, Löfmark S, Brownstein JS, Davidovich N, Ellen ME, Fisman DN, Moran-Gilad J, Steinman A, MacFadden DR, Greer AL. An Evaluation of the Impact of an OPEN Stewardship Generated Feedback Intervention on Antibiotic Prescribing among Primary Care Veterinarians in Canada and Israel. Animals (Basel) 2024; 14:626. [PMID: 38396594 PMCID: PMC10885889 DOI: 10.3390/ani14040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
An interrupted time-series study design was implemented to evaluate the impact of antibiotic stewardship interventions on antibiotic prescribing among veterinarians. A total of 41 veterinarians were enrolled in Canada and Israel and their prescribing data between 2019 and 2021 were obtained. As an intervention, veterinarians periodically received three feedback reports comprising feedback on the participants' antibiotic prescribing and prescribing guidelines. A change in the level and trend of antibiotic prescribing after the administration of the intervention was compared using a multi-level generalized linear mixed-effect negative-binomial model. After the receipt of the first (incidence rate ratios [IRR] = 0.88; 95% confidence interval (CI): 0.79, 0.98), and second (IRR = 0.85; 95% CI: 0.75, 0.97) feedback reports, there was a reduced prescribing rate of total antibiotic when other parameters were held constant. This decline was more pronounced among Israeli veterinarians compared to Canadian veterinarians. When other parameters were held constant, the prescribing of critical antibiotics by Canadian veterinarians decreased by a factor of 0.39 compared to that of Israeli veterinarians. Evidently, antibiotic stewardship interventions can improve antibiotic prescribing in a veterinary setting. The strategy to sustain the effect of feedback reports and the determinants of differences between the two cohorts should be further explored.
Collapse
Affiliation(s)
- Kamal R. Acharya
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Adar Cohen
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.C.); (A.S.)
| | - Gabrielle Brankston
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jean-Paul R. Soucy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (J.-P.R.S.); (D.N.F.)
| | - Anette Hulth
- Public Health Agency of Sweden, 171 82 Stockholm, Sweden; (A.H.); (S.L.)
| | - Sonja Löfmark
- Public Health Agency of Sweden, 171 82 Stockholm, Sweden; (A.H.); (S.L.)
| | - John S. Brownstein
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, MA 02115, USA;
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Nadav Davidovich
- School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (N.D.); (J.M.-G.)
| | - Moriah E. Ellen
- Department of Health Policy and Management, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Health Policy and Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - David N. Fisman
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (J.-P.R.S.); (D.N.F.)
| | - Jacob Moran-Gilad
- School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (N.D.); (J.M.-G.)
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (A.C.); (A.S.)
| | | | - Amy L. Greer
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
9
|
Ahmadi Y, Savini F, Mutter N, Barišić I. Application of Antimicrobial Peptides as Diagnostic Biosensors. Anal Chem 2024; 96:256-264. [PMID: 38115687 PMCID: PMC10783173 DOI: 10.1021/acs.analchem.3c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The COVID-19 pandemic has shown how emerging infectious diseases could quickly affect the global health and economy. New pathogens with pandemic potential are also expected to appear soon. Moreover, the large use of antibiotics has led to the development of different so-called "superbugs" capable of escaping all of the current antibiotics. In this context, the early and cost-effective detection of pathogens is crucial to avoid the spreading of new pathogens. Here, we present molecular sensors for the recognition of a broad panel of different bacterial species. The detection is based on the use of bacteria-binding peptides (BBPs) in combination with horseradish peroxidase (HRP). We developed a reliable ELISA-like assay that permits us to study the affinity of different BBPs toward some of the most important bacterial pathogens.
Collapse
Affiliation(s)
- Yasaman Ahmadi
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Filippo Savini
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Natalie Mutter
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Ivan Barišić
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
- Eko
Refugium, Crno Vrelo
2, 47240 Slunj, Croatia
| |
Collapse
|
10
|
Pei S, Lai L, Sun W, Lu Z, Hao J, Liu Y, Wu W, Guan S, Su X. Discovery of novel tetrahydrobenzothiophene derivatives as MSBA inhibitors for antimicrobial agents. Bioorg Chem 2024; 142:106932. [PMID: 37913586 DOI: 10.1016/j.bioorg.2023.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The incidence of infections caused by drug-resistant bacteria has been one of the most serious health threats in the past and is substantially increasing in an alarming rate. Therefore, the development of new antimicrobial agents to combat bacterial resistance effectively is urgent. This study focused on the design and synthesis of 40 novel tetrahydrobenzothiophene amide/sulfonamide derivatives and their antibacterial activities were evaluated. Compounds 2p, 6p, and 6 s exhibited significant inhibitory effects on the growth of bacteria. To assess their safety, the cytotoxicity of the compounds was assessed using human normal liver cells, revealing that compound 6p has lower cytotoxicity. A mouse wound healing experiment demonstrated that compound 6p effectively improved wound infection induced by trauma and accelerated the healing process. Compound 6p holds promise as a potential therapeutic agent for combating bacterial infections.
Collapse
Affiliation(s)
- Shuchen Pei
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Lin Lai
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wanlin Sun
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Zhaoyang Lu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Jielei Hao
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, PR China; Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, PR China.
| | - Xiaoyan Su
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
11
|
Tourabi M, Nouioura G, Touijer H, Baghouz A, El Ghouizi A, Chebaibi M, Bakour M, Ousaaid D, Almaary KS, Nafidi HA, Bourhia M, Farid K, Lyoussi B, Derwich E. Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3783. [PMID: 37960139 PMCID: PMC10650643 DOI: 10.3390/plants12213783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The present study aimed to explore the phytochemical profile, and evaluate the antioxidant, antimicrobial, and insecticidal properties, of Moroccan Mentha longifolia L. essential oil (ML-EO) using in vitro and in silico assays. Noteworthily, as chromatography (GC-MS/MS) revealed that ML-EO is majorly composed of piperitenone oxide (53.43%), caryophyllene (20.02%), and (-) germacrene D (16.53%). It possesses excellent antioxidant activity with an IC50 of 1.49 ± 0.00 for DPPH and 0.051 ± 0.06 μg/mL for ABTS. Moreover, the RP and TAC activities were 0.80 ± 0.01 μg/mL and 315.532 ± 0.00 mg EAA/g, respectively. ML-EO exhibited a potent antimicrobial effect, specifically against Pseudomonas aeruginosa. It also exhibited strong antifungal ability, especially against Candida albicans. Regarding insecticidal activity, for ML-EO, a dose of 20 µL/mL produced a complete reduction in fecundity, fertility, and emergence of adult C. maculatus with mortality rates reaching 100%. In silico results showed that the antioxidant activity is mostly attributed to α-Cadinol, the antibacterial efficiency is attributed to piperitenone oxide, and antifungal capacity is related to cis-Muurola-4(15),5-diene and piperitenone oxide. Accordingly, ML-EO has high potential to be used as an alternative for preserving food and stored grain and protecting them against microbes and insect pests in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Meryem Tourabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Hanane Touijer
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco;
| | - Asmae Baghouz
- Laboratory of Biotechnology, Conservation, and Valorization of Natural Resources, Department of Biology, Faculty of Science Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, B.P. 1796 Atlas, Fez 30003, Morocco;
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Khallouki Farid
- Ethnopharmacology and Pharmacognosy Team, Department of Biology, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
- Unity of GC/MS, GC-FID, City of Innovation, Sidi Mohamed bin Abdellah University, Fez 30003, Morocco
| |
Collapse
|
12
|
Sood A, Kesavan V. Synthesis and antibacterial activity of 2-benzylidene-3-oxobutanamide derivatives against resistant pathogens. RSC Med Chem 2023; 14:1817-1826. [PMID: 37731706 PMCID: PMC10507797 DOI: 10.1039/d3md00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Antibiotic resistance evolves naturally through random mutation. Resistance to antimicrobials is an urgent public health crisis that requires coordinated global action. The ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are primarily responsible for the rise in resistant pathogens. There is an immediate requirement to identify a novel molecular scaffold with potent anti-microbial properties. We developed an efficient one-step synthesis of 2-benzylidene-3-oxobutanamide and its derivatives, which allowed the introduction of an α,β-unsaturated ketone moiety in the quest to identify a new molecular scaffold. Seven compounds exhibited very good antibacterial activity in vitro against WHO priority drug-resistant bacteria such as methicillin resistant Staphyloccus aureus (MRSA) and Acinetobacter baumannii-Multi drug resistant (MDR-AB). In cultured human embryonic kidney cells and hemolysis assays, the potent compounds displayed minimal toxicity. These findings suggest that these small molecules with excellent diversity have the potential to combat antibacterial resistance.
Collapse
Affiliation(s)
- Ankur Sood
- Department of Biotechnology, Bhupat & Jyothi Mehta School of Biosciences Building, Indian Institute of Technology Madras Chennai-60036 India
| | - Venkitasamy Kesavan
- Department of Biotechnology, Bhupat & Jyothi Mehta School of Biosciences Building, Indian Institute of Technology Madras Chennai-60036 India
| |
Collapse
|
13
|
Li RS, Liu J, Wen C, Shi Y, Ling J, Cao Q, Wang L, Shi H, Huang CZ, Li N. Transformable nano-antibiotics for mechanotherapy and immune activation against drug-resistant Gram-negative bacteria. SCIENCE ADVANCES 2023; 9:eadg9601. [PMID: 37624881 PMCID: PMC10456869 DOI: 10.1126/sciadv.adg9601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The dearth of antibiotic candidates against Gram-negative bacteria and the rise of antibiotic resistance create a global health concern. The challenge lies in the unique Gram-negative bacterial outer membrane that provides the impermeable barrier for antibiotics and sequesters antigen presentation. We designed a transformable nano-antibiotics (TNA) that can transform from nontoxic nanoparticles to bactericidal nanofibrils with reasonable rigidity (Young's modulus, 21.6 ± 5.9 MPa) after targeting β-barrel assembly machine A (BamA) and lipid polysaccharides (LPSs) of Gram-negative bacteria. After morphological transformation, the TNA can penetrate and damage the bacterial envelope, disrupt electron transport and multiple conserved biosynthetic and metabolic pathways, burst bacterial antigen release from the outer membrane, and subsequently activate the innate and adaptive immunity. TNA kills Gram-negative bacteria in vitro and in vivo with undetectable resistance through multiple bactericidal modes of action. TNA treatment-induced vaccination results in rapid and long-lasting immune responses, protecting against lethal reinfections.
Collapse
Affiliation(s)
- Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Jiahui Liu
- Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, P. R. China
| | - Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yaru Shi
- School of Chemistry and Chemical Engineering, and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Jian Ling
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Qiue Cao
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Bio-medical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
15
|
Kim M, Cheon Y, Shin D, Choi J, Nielsen JE, Jeong MS, Nam HY, Kim S, Lund R, Jenssen H, Barron AE, Lee S, Seo J. Real-Time Monitoring of Multitarget Antimicrobial Mechanisms of Peptoids Using Label-Free Imaging with Optical Diffraction Tomography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302483. [PMID: 37341246 PMCID: PMC10460844 DOI: 10.1002/advs.202302483] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 06/22/2023]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutics in the fight against multidrug-resistant bacteria. As a mimic of AMPs, peptoids with N-substituted glycine backbone have been utilized for antimicrobials with resistance against proteolytic degradation. Antimicrobial peptoids are known to kill bacteria by membrane disruption; however, the nonspecific aggregation of intracellular contents is also suggested as an important bactericidal mechanism. Here,structure-activity relationship (SAR) of a library of indole side chain-containing peptoids resulting in peptoid 29 as a hit compound is investigated. Then, quantitative morphological analyses of live bacteria treated with AMPs and peptoid 29 in a label-free manner using optical diffraction tomography (ODT) are performed. It is unambiguously demonstrated that both membrane disruption and intracellular biomass flocculation are primary mechanisms of bacterial killing by monitoring real-time morphological changes of bacteria. These multitarget mechanisms and rapid action can be a merit for the discovery of a resistance-breaking novel antibiotic drug.
Collapse
Affiliation(s)
- Minsang Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Yeongmi Cheon
- Gwangju CenterKorea Basic Science Institute (KBSI)49, Dosicheomdansaneop‐ro, Nam‐guGwangju61751Republic of Korea
- Laboratory of Molecular BiochemistryChonnam National University77, Yongbong‐ro, Buk‐guGwangju61186Republic of Korea
- Department of Microbiology and Molecular BiologyChungnam National University99, Daehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Dongmin Shin
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Jieun Choi
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Josefine Eilsø Nielsen
- Department of Science and EnvironmentRoskilde UniversityUniversitetsvej 1Roskilde4000Denmark
- Department of Bioengineering, Schools of Medicine and EngineeringStanford University443 Via OrtegaStanfordCalifornia94305United States
| | - Myeong Seon Jeong
- Chuncheon CenterKorea Basic Science Institute (KBSI)1, Kangwondaehak‐gil, Chuncheon‐siGangwon‐do24341Republic of Korea
| | - Ho Yeon Nam
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Sung‐Hak Kim
- Laboratory of Molecular BiochemistryChonnam National University77, Yongbong‐ro, Buk‐guGwangju61186Republic of Korea
| | - Reidar Lund
- Department of ChemistryUniversity of OsloProblemveien 7Oslo0315Norway
| | - Håvard Jenssen
- Department of Science and EnvironmentRoskilde UniversityUniversitetsvej 1Roskilde4000Denmark
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and EngineeringStanford University443 Via OrtegaStanfordCalifornia94305United States
| | - Seongsoo Lee
- Gwangju CenterKorea Basic Science Institute (KBSI)49, Dosicheomdansaneop‐ro, Nam‐guGwangju61751Republic of Korea
- Department of Systems BiotechnologyChung‐Ang UniversityAnseong‐siGyeonggi‐do17546Republic of Korea
| | - Jiwon Seo
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| |
Collapse
|
16
|
de Sousa LP, Fortes CQ, Damasco PV, Barbosa GIF, Golebiovski WF, Weksler C, Garrido RQ, Siciliano RF, Lamas CDC. Infective Endocarditis due to Non-HACEK Gram-Negative Bacilli: Clinical Characteristics and Risk Factors from a Prospective Multicenter Brazilian Cohort. Trop Med Infect Dis 2023; 8:tropicalmed8050283. [PMID: 37235331 DOI: 10.3390/tropicalmed8050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Non-HACEK Gram-negative bacilli (NGNB) infective endocarditis (IE) has a growing frequency. We aimed to describe cases of NGNB IE and find associated risk factors. Methods: We conducted a prospective observational study of consecutive patients with definitive IE according to the modified Duke criteria in four institutions in Brazil. Results: Of 1154 adult patients enrolled, 38 (3.29%) had IE due to NGNB. Median age was 57 years, males predominated, accounting for 25/38 (65.8%). Most common etiologies were Pseudomonas aeruginosa and Klebsiella spp. (8 episodes, 21% each). Worsening heart failure occurred in 18/38 (47.4%). Higher prevalence of embolic events was found (55,3%), mostly to the central nervous system 7/38 (18.4%). Vegetations were most commonly on aortic valves 17/38 (44.7%). Recent healthcare exposure was found in 52.6% and a central venous catheter (CVC) in 13/38 (34.2%). Overall mortality was 19/38 (50%). Indwelling CVC (OR 5.93; 95% CI, 1.29 to 27.3; p = 0.017), hemodialysis (OR 16.2; 95% CI, 1.78 to 147; p = 0.008) and chronic kidney disease (OR 4.8; 95% IC, 1.2 to 19.1, p = 0.049) were identified as risk factors for mortality. Conclusions: The rate of IE due to NGNB was similar to that in previous studies. Enterobacterales and P. aeruginosa were the most common etiologies. NGNB IE was associated with central venous catheters, prosthetic valves, intracardiac devices and hemodialysis and had a high mortality rate.
Collapse
Affiliation(s)
- Leonardo Paiva de Sousa
- Instituto Nacional de Cardiologia, Rio de Janeiro 22240-006, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Cláudio Querido Fortes
- Serviço de Doenças Infecciosas e Parasitárias, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Paulo Vieira Damasco
- Serviço de Doenças Infecciosas e Parasitárias, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
- Departamento de Doenças Infecciosas, Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro 20270-004, Brazil
| | - Giovanna Ianini Ferraiuoli Barbosa
- Instituto Nacional de Cardiologia, Rio de Janeiro 22240-006, Brazil
- Serviço de Doenças Infecciosas e Parasitárias, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | | | - Clara Weksler
- Instituto Nacional de Cardiologia, Rio de Janeiro 22240-006, Brazil
| | | | | | - Cristiane da Cruz Lamas
- Instituto Nacional de Cardiologia, Rio de Janeiro 22240-006, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
17
|
Zhao X, Zhong X, Yang S, Deng K, Liu L, Song X, Zou Y, Li L, Zhou X, Jia R, Lin J, Tang H, Ye G, Yang J, Zhao S, Lang Y, Wan H, Yin Z, Kuipers OP. Elucidating the Mechanism of Action of the Gram-Negative-Pathogen-Selective Cyclic Antimicrobial Lipopeptide Brevicidine. Antimicrob Agents Chemother 2023; 67:e0001023. [PMID: 36912655 PMCID: PMC10190627 DOI: 10.1128/aac.00010-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 μM (0.8 mg/L) and 2 μM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 μM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.
Collapse
Affiliation(s)
- Xinghong Zhao
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinyi Zhong
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Shinong Yang
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Kai Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lu Liu
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Jianqing Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Shan Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Yao J, Zou P, Cui Y, Quan L, Gao C, Li Z, Gong W, Yang M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041188. [PMID: 37111673 PMCID: PMC10141387 DOI: 10.3390/pharmaceutics15041188] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial infection is a common clinical disease. Antibiotics have saved countless lives since their discovery and are a powerful weapon in the fight against bacteria. However, with the widespread use of antibiotics, the problem of drug resistance now poses a great threat to human health. In recent years, studies have investigated approaches to combat bacterial resistance. Several antimicrobial materials and drug delivery systems have emerged as promising strategies. Nano-drug delivery systems for antibiotics can reduce the resistance to antibiotics and extend the lifespan of novel antibiotics, and they allow targeting drug delivery compared to conventional antibiotics. This review highlights the mechanistic insights of using different strategies to combat drug-resistant bacteria and summarizes the recent advancements in antimicrobial materials and drug delivery systems for different carriers. Furthermore, the fundamental properties of combating antimicrobial resistance are discussed, and the current challenges and future perspectives in this field are proposed.
Collapse
Affiliation(s)
- Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
20
|
Stachura D, Nguyen S, Polyak SW, Jovcevski B, Bruning JB, Abell AD. Structural Study of Potent Triazole-Based Inhibitors of Staphylococcus aureus Biotin Protein Ligase. ACS Med Chem Lett 2023; 14:285-290. [PMID: 36923924 PMCID: PMC10009792 DOI: 10.1021/acsmedchemlett.2c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The rise of multidrug-resistant bacteria, such as Staphylococcus aureus, has highlighted global urgency for new classes of antibiotics. Biotin protein ligase (BPL), a critical metabolic regulatory enzyme, is an important target that shows significant promise in this context. Here we report the in silico docking, synthesis, and biological assay of a new series of N1-diphenylmethyl-1,2,3-triazole-based S. aureus BPL (SaBPL) inhibitors (8-19) designed to probe the adenine binding site and define whole-cell activity for this important class of inhibitor. Triazoles 13 and 14 with N1-propylamine and -butanamide substituents, respectively, were particularly potent with K i values of 10 ± 2 and 30 ± 6 nM, respectively, against SaBPL. A strong correlation was apparent between the K i values for 8-19 and the in silico docking, with hydrogen bonding to amino acid residues S128 and N212 of SaBPL likely contributing to potent inhibition.
Collapse
Affiliation(s)
- Damian
L. Stachura
- Department
of Chemistry and Centre for Nanoscale BioPhotonics (CNBP) and
Institute of Photonics and Advanced Sensing (IPAS), School of Biological
Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephanie Nguyen
- Department
of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven W. Polyak
- UniSA
Clinical and Health Sciences, University
of South Australia, Adelaide, SA 5005, Australia
| | - Blagojce Jovcevski
- Department
of Chemistry and Centre for Nanoscale BioPhotonics (CNBP) and
Institute of Photonics and Advanced Sensing (IPAS), School of Biological
Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B. Bruning
- Department
of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D. Abell
- Department
of Chemistry and Centre for Nanoscale BioPhotonics (CNBP) and
Institute of Photonics and Advanced Sensing (IPAS), School of Biological
Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
21
|
Lu Y, Guan T, Wang S, Zhou C, Wang M, Wang X, Zhang K, Han X, Lin J, Tang Q, Wang C, Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg Med Chem 2023; 83:117232. [PMID: 36940608 DOI: 10.1016/j.bmc.2023.117232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China
| | - Shaobing Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Cui Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Meizhu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Jinchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., 201315 Shanghai, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
22
|
Sun Y, Chan J, Bose K, Tam C. Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors. Sci Transl Med 2023; 15:eade2909. [PMID: 36888696 PMCID: PMC10173409 DOI: 10.1126/scitranslmed.ade2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/10/2023] [Indexed: 03/10/2023]
Abstract
Controlling infection-driven inflammation is a major clinical dilemma because of limited therapeutic options and possible adverse effects on microbial clearance. Compounding this difficulty is the continued emergence of drug-resistant bacteria, where experimental strategies aiming to augment inflammatory responses for enhanced microbial killing are not applicable treatment options for infections of vulnerable organs. As with corneal infections, severe or prolonged inflammation jeopardizes corneal transparency, leading to devastating vision loss. We hypothesized that keratin 6a-derived antimicrobial peptides (KAMPs) may be a two-pronged remedy capable of tackling bacterial infection and inflammation at once. We used murine peritoneal neutrophils and macrophages, together with an in vivo model of sterile corneal inflammation, to find that nontoxic and prohealing KAMPs with natural 10- and 18-amino acid sequences suppressed lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced NFκB and IRF3 activation, proinflammatory cytokine production, and phagocyte recruitment independently of their bactericidal function. Mechanistically, KAMPs not only competed with bacterial ligands for cell surface Toll-like receptor (TLR) and co-receptors (MD2, CD14, and TLR2) but also reduced cell surface availability of TLR2 and TLR4 through promotion of receptor endocytosis. Topical KAMP treatment effectively alleviated experimental bacterial keratitis, as evidenced by substantial reductions of corneal opacification, inflammatory cell infiltration, and bacterial burden. These findings reveal the TLR-targeting activities of KAMPs and demonstrate their therapeutic potential as a multifunctional drug for managing infectious inflammatory disease.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Karthikeyan Bose
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
23
|
Malysheva S, Kuimov V, Belovezhets L, Belogorlova N, Borovskaya M, Borovskii G. Phosphine chalcogenides and their derivatives from red phosphorus and functionalized pyridines, imidazoles, pyrazoles and their antimicrobial and cytostatic activity. Bioorg Chem 2023; 132:106363. [PMID: 36702003 DOI: 10.1016/j.bioorg.2023.106363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Tertiary phosphine oxides, phosphine sulfides, and phosphine selenides containing pyridine, imidazole, and pyrazole groups have been synthesized via the reaction of elemental phosphorus or secondary phosphine oxides with functional pyridines, imidazoles, and pyrazoles. Alkyl tris(2-pyridylethyl)phosphonium iodide and bromide are also obtained by quaternization of the corresponding phosphine. Antimicrobial activity of the synthesized compounds, including nitrogen-containing heterocycles, phosphorus, selenium, and sulfur, with respect to Enterococcus durans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa microorganisms is evaluated. It is found that phosphine chalcogenides bearing imidazole (14, 19), pyrazole (13), and pyridine fragments (5, 9) and phosphonium salts (11, 12) can be considered as new promising antibacterial agents. For some synthesized compounds, LC50 is determined. Phosphine oxide with methylpyrazole fragments (13) and phosphonium salts (11, 12) show strong profile of antimicrobial activity, and cytotoxic effect of phosphonium bromide having a long chain radical (12) is by order of magnitude higher than that of cisplatin. We believe that the results obtained may contribute to the development of highly effective agents for the treatment and prevention of bacterial infections and cancers.
Collapse
Affiliation(s)
- Svetlana Malysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Vladimir Kuimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Lyudmila Belovezhets
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Natalia Belogorlova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Marina Borovskaya
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk, 664033, Russia.
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk, 664033, Russia.
| |
Collapse
|
24
|
Guan D, Chen F, Shi W, Lan L, Huang W. Single Modification at the N-Terminus of Norvancomycin to Combat Drug-Resistant Gram-Positive Bacteria. ChemMedChem 2023; 18:e202200708. [PMID: 36823383 DOI: 10.1002/cmdc.202200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yanta, Shandong, 264117, P. R. China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
25
|
Synergistic Combinations of FDA-Approved Drugs with Ceftobiprole against Methicillin-Resistant Staphylococcus aureus. Microbiol Spectr 2023; 11:e0372622. [PMID: 36519895 PMCID: PMC9927495 DOI: 10.1128/spectrum.03726-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
New strategies are urgently needed to address the public health threat of antimicrobial resistance. Synergistic agent combinations provide one possible pathway toward addressing this need and are also of fundamental mechanistic interest. Effective methods for comprehensively identifying synergistic agent combinations are required for such efforts. In this study, an FDA-approved drug library was screened against methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300) in the absence and presence of sub-MIC levels of ceftobiprole, a PBP2a-targeted anti-MRSA β-lactam. This screening identified numerous potential synergistic agent combinations, which were then confirmed and characterized for synergy using checkerboard analyses. The initial group of synergistic agents (sum of the minimum fractional inhibitory concentration ∑FICmin ≤0.5) were all β-lactamase-resistant β-lactams (cloxacillin, dicloxacillin, flucloxacillin, oxacillin, nafcillin, and cefotaxime). Cloxacillin-the agent with the greatest synergy with ceftobiprole-is also highly synergistic with ceftaroline, another PBP2a-targeted β-lactam. Further follow-up studies revealed a range of ceftobiprole synergies with other β-lactams, including with imipenem, meropenem, piperacillin, tazobactam, and cefoxitin. Interestingly, given that essentially all other ceftobiprole-β-lactam combinations showed synergy, ceftaroline and ceftobiprole showed no synergy. Modest to no synergy (0.5 < ∑FICmin ≤ 1.0) was observed for several non-β-lactam agents, including vancomycin, daptomycin, balofloxacin, and floxuridine. Mupirocin had antagonistic activity with ceftobiprole. Flucloxacillin appeared particularly promising, with both a low intrinsic MIC and good synergy with ceftobiprole. That so many β-lactam combinations with ceftobiprole show synergy suggests that β-lactam combinations can generally increase β-lactam effectiveness and may also be useful in reducing resistance emergence and spread in MRSA. IMPORTANCE Antimicrobial resistance represents a serious threat to public health. Antibacterial agent combinations provide a potential approach to combating this problem, and synergistic agent combinations-in which each agent enhances the antimicrobial activity of the other-are particularly valuable in this regard. Ceftobiprole is a late-generation β-lactam antibiotic developed for MRSA infections. Resistance has emerged to ceftobiprole, jeopardizing this agent's effectiveness. To identify synergistic agent combinations with ceftobiprole, an FDA-approved drug library was screened for potential synergistic combinations with ceftobiprole. This screening and follow-up studies identified numerous β-lactams with ceftobiprole synergy.
Collapse
|
26
|
Schäfer AB, Steenhuis M, Jim KK, Neef J, O’Keefe S, Whitehead RC, Swanton E, Wang B, Halbedel S, High S, van Dijl JM, Luirink J, Wenzel M. Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA. ACS Infect Dis 2023; 9:253-269. [PMID: 36637435 PMCID: PMC9926488 DOI: 10.1021/acsinfecdis.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Maurice Steenhuis
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers - Location Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Amsterdam
University Medical Centers, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Sarah O’Keefe
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roger C. Whitehead
- School
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Eileithyia Swanton
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Biwen Wang
- Bacterial
Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sven Halbedel
- FG11
Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
- Institute
for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephen High
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Joen Luirink
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
27
|
-Aryl-2(trifluoromethyl)benzo[][1,8]naphthyridin-4(1)-one as Convenient Platform to Design High Photostable and Long-Lived Dyad Fluorophore with Potential Application in Live-Cell Imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
28
|
A 2.8 Å Structure of Zoliflodacin in a DNA Cleavage Complex with Staphylococcus aureus DNA Gyrase. Int J Mol Sci 2023; 24:ijms24021634. [PMID: 36675148 PMCID: PMC9865888 DOI: 10.3390/ijms24021634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water-metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
Collapse
|
29
|
Li X, Wang Q, Zheng J, Guan Y, Liu C, Han J, Liu S, Liu T, Xiao C, Wang X, Liu Y. PHT427 as an effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Front Microbiol 2023; 14:1168052. [PMID: 37138606 PMCID: PMC10150926 DOI: 10.3389/fmicb.2023.1168052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction With the increasingly serious problem of bacterial drug resistance caused by NDM-1, it is an important strategy to find effective inhibitors to assist β-lactam antibiotic treatment against NDM-1 resistant bacteria. In this study, PHT427 (4-dodecyl-N-1,3,4-thiadiazol-2-yl-benzenesulfonamide) was identified as a novel NDM-1 inhibitor and restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Methods We used a high throughput screening model to find NDM-1 inhibitor in the library of small molecular compounds. The interaction between the hit compound PHT427 and NDM-1 was analyzed by fluorescence quenching, surface plasmon resonance (SPR) assay, and molecular docking analysis. The efficacy of the compound in combination with meropenem was evaluated by determining the FICIs of Escherichia coli BL21(DE3)/pET30a(+)-bla NDM-1 and Klebsiella pneumoniae clinical strain C1928 (producing NDM-1). In addition, the mechanism of the inhibitory effect of PHT427 on NDM-1 was studied by site mutation, SPR, and zinc supplementation assays. Results PHT427 was identified as an inhibitor of NDM-1. It could significantly inhibit the activity of NDM-1 with an IC50 of 1.42 μmol/L, and restored the susceptibility of meropenem against E. coli BL21(DE3)/pET30a(+)-bla NDM-1 and K. pneumoniae clinical strain C1928 (producing NDM-1) in vitro. The mechanism study indicated that PHT427 could act on the zinc ions at the active site of NDM-1 and the catalytic key amino acid residues simultaneously. The mutation of Asn220 and Gln123 abolished the affinity of NDM-1 by PHT427 via SPR assay. Discussion This is the first report that PHT427 is a promising lead compound against carbapenem-resistant bacteria and it merits chemical optimization for drug development.
Collapse
Affiliation(s)
- Xiaohui Li
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ji Zheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yan Guan
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chennan Liu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Jiangxue Han
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sihan Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjun Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chunling Xiao
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Wang
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiao Wang,
| | - Yishuang Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yishuang Liu,
| |
Collapse
|
30
|
Alam K, Islam MM, Islam S, Hao J, Abbasi MN, Hayat M, Shoaib M, Zhang Y, Li A. Comparative genomics with evolutionary lineage in Streptomyces bacteria reveals high biosynthetic potentials. World J Microbiol Biotechnol 2022; 39:64. [PMID: 36581678 DOI: 10.1007/s11274-022-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022]
Abstract
Genome mining in silico approaches allow scientists to proficiently evaluate the genomic potency of secondary bioactive chemical producers and find new bioactive compounds in different bacteria. Streptomyces is one of the most ubiquitous bacterial genera in the environments, and well-known as prolific producers of diverse and valuable natural products (NPs) with significant biological activities. Mining and prioritizing of NP biosynthetic gene clusters (BGCs) would be the most important stage in the identification of novel compounds. Comparative genomics and genetic similarity network analysis of 62 Streptomyces public reference genomes demonstrated that individuals of these species exhibit a huge number of distinct NP BGCs, the most of which are cryptic and unconnected to any reported NPs with high phylogenetic variation among individuals. It was assumed that substantial heterogeneity across the varieties of species of Streptomyces drives outstanding biosynthetic and metabolic potential, making them plausible candidates for the identification of novel molecules.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Md Mahmudul Islam
- Department of Microbiology, Rajshahi Institute of Biosciences (RIB), Affiliated University of Rajshahi, Rajshahi, 6212, Bangladesh
| | - Saiful Islam
- Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, 4220, Bangladesh
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Muhammad Nazeer Abbasi
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Muhammad Hayat
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Muhammad Shoaib
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
31
|
Lohan S, Konshina AG, Efremov RG, Maslennikov I, Parang K. Structure-Based Rational Design of Small α-Helical Peptides with Broad-Spectrum Activity against Multidrug-Resistant Pathogens. J Med Chem 2022; 66:855-874. [PMID: 36574364 PMCID: PMC9841524 DOI: 10.1021/acs.jmedchem.2c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of small (7-12 mer) amphipathic cationic peptides were designed and synthesized to create short helical peptides with broad-range bactericidal activity and selectivity toward the bacterial cells. The analysis identified a lead 12-mer peptide 8b with broad-spectrum activity against Gram-positive (MIC = 3.1-6.2 μg/mL) and Gram-negative (MIC = 6.2-12.5 μg/mL) bacteria and selectivity toward prokaryotic versus eukaryotic cells (HC50 = 280 μg/mL, >75% cell viability at 150 μg/mL). The rapid membranolytic action of 8b was demonstrated by a calcein dye leakage assay and confirmed using scanning electron microscopy. According to circular dichroism and NMR spectroscopy, the peptides have an irregular spatial structure in water. A lipid bilayer induced an amphipathic helix only in 12-mer peptides, including 8b. Molecular dynamics simulations provided detailed information about the interaction of 8b and its closest analogues with bacterial and mammalian membranes and revealed the roles of particular amino acids in the activity and selectivity of peptides.
Collapse
Affiliation(s)
- Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, 94 01 Jeronimo Road, Irvine, California92618, United States,AJK
Biopharmaceutical, 5270
California Avenue, Irvine, California92617, United States
| | - Anastasia G. Konshina
- M.M.
Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow117997, Russia
| | - Roman G. Efremov
- M.M.
Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow117997, Russia,National
Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow101000, Russia,Moscow Institute
of Physics and Technology (State University), Dolgoprudny, Moscow Oblast141701, Russia
| | - Innokentiy Maslennikov
- Structural
Biology Research Center, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, 9401 Jeronimo Road, Irvine, California92618, United States,. Phone: +1-(714) 516-5448. Fax: +1-(714) 516-5481
| | - Keykavous Parang
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science
Campus, 94 01 Jeronimo Road, Irvine, California92618, United States,. Phone: +1-(714) 516-5489. Fax: +1-(714) 516-5481
| |
Collapse
|
32
|
Phytotoxicity and Antimicrobial Activity of Green Synthesized Silver Nanoparticles Using Nigella sativa Seeds on Wheat Seedlings. J CHEM-NY 2022. [DOI: 10.1155/2022/9609559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recently, the green synthesis of nanomaterials has grown in popularity and has become one of the most used approaches. Plant extracts are safe for the environment and could be cost-effective for nanoparticle preparation. Silver nanoparticles (AgNPs) have been synthesized using aqueous extracts of Nigella sativa (N. sativa) seeds. The formation of AgNPs was confirmed by using an X-ray diffractometer, a UV-visible spectrometer, and a transmission electron microscope. The phytotoxicity and genotoxicity of different AgNP concentrations (12.5, 25, 50, 75, and 100 μg·L−1) were evaluated by wheat (Triticum aestivum L.) seed germination. The results showed that AgNPs did not significantly affect germination, while root and coleoptile lengths decreased considerably. On the contrary, the biomass of seedlings markedly increased in response to AgNP treatments. Moreover, genotoxicity was detected, especially at high concentrations of AgNPs. DNA, RNA, and total soluble proteins of wheat seedlings significantly decreased. In addition, antimicrobial activities of biosynthesized AgNPs were detected.
Collapse
|
33
|
Harris PWR, Siow A, Yang SH, Wadsworth AD, Tan L, Hermant Y, Mao Y, An C, Hanna CC, Cameron AJ, Allison JR, Chakraborty A, Ferguson SA, Mros S, Hards K, Cook GM, Williamson DA, Carter GP, Chan STS, Painter GA, Sander V, Davidson AJ, Brimble MA. Synthesis, Antibacterial Activity, and Nephrotoxicity of Polymyxin B Analogues Modified at Leu-7, d-Phe-6, and the N-Terminus Enabled by S-Lipidation. ACS Infect Dis 2022; 8:2413-2429. [PMID: 36413173 DOI: 10.1021/acsinfecdis.1c00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew D Wadsworth
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Lyndia Tan
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yubing Mao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Chalice An
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Cameron C Hanna
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Jane R Allison
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Kiel Hards
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Gavin A Painter
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
34
|
Ghanaim AM, Foaad MA, Gomaa EZ, Dougdoug KAE, Mohamed GE, Arisha AH, Khamis T. Bacteriophage therapy as an alternative technique for treatment of multidrug-resistant bacteria causing diabetic foot infection. Int Microbiol 2022; 26:343-359. [PMID: 36350460 PMCID: PMC10148765 DOI: 10.1007/s10123-022-00293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Diabetic foot ulcer (DFU) represented the most feared diabetic complication that caused the hospitalization of the diabetic patient. DFU was usually characterized with delayed healing as the diabetic neuropathy, angiopathy, and ulcer concomitant infections, among them, are multidrug-resistant (MDR) bacteria that emphasized the clinical importance for developing new therapeutic strategy with safe and effective alternatives for the antibiotics to overcome DFU-MDR bacterial infection. Bacteriophage therapy was considered a novel approach to eradicate the MDR, but its role in the polymicrobial infection of the DFU remains elusive. Thus, the current work was designed to investigate the effect of the topical application of the phage cocktail on the healing of the diabetic wound infected with clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella variicola, Escherichia coli, and Proteus mirabilis. Bacterial isolation was performed from clinical hospitalized and non-hospitalized cases of DFU, identified morphologically, biochemically, molecularly via 16 s rRNA sequencing, and typed for the antibiotic resistance pattern. Moreover, phages were isolated from the aforementioned clinical isolates and identified with electron microscope. Forty-five adult male Sprague–Dawley rats were assigned in 3 groups (15 rats each), namely, the diabetic infected wound group, diabetic infected wound ceftriaxone-treated group, and the diabetic infected wound phage cocktail-treated group. The results revealed that phage cocktail had a superior effect over the ceftriaxone in wound healing parameters (wound size, wound index, wound bacterial load, and mRNA expression); wound healing markers (Cola1a, Fn1, MMP9, PCNA, and TGF-β); inflammatory markers (TNF-α, NF-κβ, IL-1β, IL-8, and MCP-1); anti-inflammatory markers (IL-10 and IL-4); and diabetic wound collagen deposition; and also the histomorphic picture of the diabetic infected wound. Based on the current findings, it could be speculated that phage therapy could be considered a novel antibiotic substitute in the DFU with MDR-polymicrobial infection therapeutic strategies.
Collapse
|
35
|
Novel antimicrobial activity of protein produced by Streptomyces lividans TK24 against the phytopathogen Clavibacter michiganensis. Arch Microbiol 2022; 204:687. [DOI: 10.1007/s00203-022-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
|
36
|
Du X, Wang M, Hu X, Nie T, Zhu M, Zhang G, You X, Wang Y. Synthesis and biological evaluation of novel N, N'-diarylurea derivatives as potent antibacterial agents against MRSA. Bioorg Med Chem Lett 2022; 75:128975. [PMID: 36067930 DOI: 10.1016/j.bmcl.2022.128975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
A series of new N, N'-diarylurea derivatives were designed and synthesized, some of which exhibited potent antibacterial activity against the drug-susceptible and drug-resistant Gram-positive strains. Especially, compounds 2c, 2g-2l showed broader antibacterial spectrum and more potent antibacterial activity (MIC = 0.30-2.72 μM) against MRSA and MRSE than the control levofloxacin (MIC = 0.69-22.14 μM). In addition, compounds 2c, 2g, 2h and 2l exhibited much better antibacterial activity (MIC = 1.29-2.86 μM) against VRE (E. faecium) than sorafenib (MIC = 275.37 μM), PK150 (MIC = 5.07-10.13 μM) and SC78 (MIC = 2.40-4.79 μM). More importantly, the low cytotoxicity of compounds on cell lines HeLa and HepG2 implied a relatively wide therapeutic window, which was of high importance for further study.
Collapse
Affiliation(s)
- Xiaonan Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Tongying Nie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
37
|
Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. J Med Chem 2022; 65:13910-13934. [PMID: 36219779 PMCID: PMC9826610 DOI: 10.1021/acs.jmedchem.2c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone 111 with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.06 μg/mL against numerous clinical isolates. Preliminary mechanism of action and resistance studies demonstrate that the 5-amino-4-quinolones are bacteriostatic, do not select for resistance, and selectively disrupt bacterial membranes. While the precise molecular mechanism has not been elucidated, the lead compound is nontoxic displaying a therapeutic index greater than 500, is devoid of hemolytic activity, and has attractive physicochemical properties (clog P = 3.8, molecular weight (MW) = 441) that warrant further investigation of this promising antibacterial scaffold for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- John R Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen K Costa
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Gorakhnath R Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Michaele Josten
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Chinedu Ejeh
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Travis Hammerstad
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hans Georg Sahl
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Pedro M Pereira
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Library Screening for Synergistic Combinations of FDA-Approved Drugs and Metabolites with Vancomycin against VanA-Type Vancomycin-Resistant Enterococcus faecium. Microbiol Spectr 2022; 10:e0141222. [PMID: 35969069 PMCID: PMC9603392 DOI: 10.1128/spectrum.01412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance is a major public health threat, and there is an urgent need for new strategies to address this issue. In a recent study, a library screening strategy was developed in which an FDA-approved drug library was screened against methicillin-resistant Staphylococcus aureus (MRSA) in both its original (unmetabolized [UM]) and its human liver microsome metabolized (postmetabolized [PM]) forms and in the absence and presence of a resistant-to antibiotic. This allows the identification of agents with active metabolites and agents that can act synergistically with the resistant-to antibiotic. In this study, this strategy is applied to VanA-type vancomycin-resistant Enterococcus faecium (VREfm) in the absence and presence of vancomycin. Thirteen drugs with minimum MICs that were ≤12.5 μM under any tested condition (UM/PM vs. -/+vancomycin) were identified. Seven of these appeared to act synergistically with vancomycin, and follow-up checkerboard analyses confirmed synergy (∑FICmin ≤0.5) for six of these. Ultimately four rifamycins, two pleuromutilins, mupirocin, and linezolid were confirmed as synergistic. The most synergistic agent was rifabutin (∑FICmin = 0.19). Linezolid, a protein biosynthesis inhibitor, demonstrated relatively weak synergy (∑FICmin = 0.5). Only mupirocin showed significantly improved activity after microsomal metabolism, indicative of a more active metabolite, but efforts to identify an active metabolite were unsuccessful. Spectra of activity of several hits and related agents were also determined. Gemcitabine showed activity against a number vancomycin-resistant E. faecium and E. faecalis strains, but this activity was substantially weaker than previously observed in MRSA. IMPORTANCE Resistance to currently used antibiotics poses a serious threat to public health. This study reports a complete screen of 1,000 FDA-approved drugs and their metabolites against vancomycin-resistant Enterococcus faecium (VREfm) in both the absence and presence of vancomycin. This identified potentially synergistic combinations of FDA-approved drugs with vancomycin, and a number of these were confirmed in follow-up checkerboard assays. Among intrinsically active FDA-approved drugs, gemcitabine was identified as having activity against a panel of VRE strains.
Collapse
|
39
|
Liu J, Li H, He Q, Chen K, Chen Y, Zhong R, Li H, Fang S, Liu S, Lin S. Design, synthesis, and biological evaluation of tetrahydroquinoline amphiphiles as membrane-targeting antimicrobials against pathogenic bacteria and fungi. Eur J Med Chem 2022; 243:114734. [PMID: 36088756 DOI: 10.1016/j.ejmech.2022.114734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
The rising prevalence of drug-resistant pathogens is one of the biggest threats to human health. The development of new antibiotics that can overcome drug resistance is in urgent need. Herein, we designed and synthesized a series of amphiphilic tetrahydroquinoline derivatives as small-molecule-based antimicrobial peptidomimetics. Two lead compounds 36 and 52 which contained the tetrahydroquinoline core, hydrophobic alkyl chains (n-nonyl or isoprenyl group), different spacer lengths (n = 4 or 8), and cationic guanidine moiety, showed poor hemolytic activity, low cytotoxicity, and potent broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as fungi. The further biological evaluation revealed that compounds 36 and 52 can kill bacteria and fungi rapidly via membrane-targeting action and avoid drug resistance development. More importantly, compounds 36 and 52 exhibited similarly potent in vivo antimicrobial activities in a murine corneal infection caused by Staphylococcus aureus ATCC29213 or Pseudomonas aeruginosa ATCC9027, as compared to vancomycin or gatifloxacin. These results suggest that compounds 36 and 52 have great potential as new broad-spectrum antimicrobial agents to combat microbial resistance.
Collapse
Affiliation(s)
- Jiayong Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qile He
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kaiting Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rongcui Zhong
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haizhou Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanfang Fang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shouping Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
40
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
41
|
Sharma P, Sharma S, Joshi S, Barman P, Bhatt A, Maan M, Singla N, Rishi P, Ali ME, Preet S, Saini A. Design, characterization and structure-function analysis of novel antimicrobial peptides based on the N-terminal CATH-2 fragment. Sci Rep 2022; 12:12058. [PMID: 35835842 PMCID: PMC9283491 DOI: 10.1038/s41598-022-16303-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence of multidrug resistance coupled with shrinking antibiotic pipelines has increased the demand of antimicrobials with novel mechanisms of action. Therefore, researchers across the globe are striving to develop new antimicrobial substances to alleviate the pressure on conventional antibiotic therapies. Host-Defence Peptides (HDPs) and their derivatives are emerging as effective therapeutic agents against microbial resistance. In this study, five analogs (DP1-5) of the N-terminal (N-15) fragment of CATH-2 were designed based on the delicate balance between various physicochemical properties such as charge, aliphatic character, amphipathicity and hydrophobicity. By means of in-silico and in-vitro studies a novel peptide (DP1) with the sequence "RFGRFLRKILRFLKK" was found to be more effective and less toxic than the N-terminal CATH-2 peptide. Circular dichroism spectroscopy and differential scanning calorimetry were applied for structural insights. Antimicrobial, haemolytic, and cytotoxic activities were also assessed. The resulting peptide was characterized by low cytotoxicity, low haemolytic activity, and efficient anti-microbial activity. Structurally, it displayed strong helical properties irrespective of the solvent environment and was stable in membrane-mimicking environments. Taken together, the data suggests that DP1 can be explored as a promising therapeutic agent with possible clinical applications.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Chandigarh, UT, 160014, India
| | - Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, 160014, India
| | - Aashish Bhatt
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, UT, 160014, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Simran Preet
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
42
|
Garcia Maset R, Hapeshi A, Hall S, Dalgliesh RM, Harrison F, Perrier S. Evaluation of the Antimicrobial Activity in Host-Mimicking Media and In Vivo Toxicity of Antimicrobial Polymers as Functional Mimics of AMPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32855-32868. [PMID: 35819416 PMCID: PMC9335526 DOI: 10.1021/acsami.2c05979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Activity tests for synthetic antimicrobial compounds are often limited to the minimal inhibitory concentration assay using standard media and bacterial strains. In this study, a family of acrylamide copolymers that act as synthetic mimics of antimicrobial peptides were synthesized and shown to have a disruptive effect on bacterial membranes and structural integrity through microscopy techniques and membrane polarization experiments. The polymers were tested for their antimicrobial properties using media that mimic clinically relevant conditions. Additionally, their activity was compared in two different strains of the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa. We showed that the medium composition can have an important influence on the polymer activity as there was a considerable reduction in minimal inhibitory concentrations against S. aureus grown in synthetic wound fluid (SWF), and against P. aeruginosa grown in synthetic cystic fibrosis sputum media (SCFM), compared to the concentrations in standard testing media. In contrast, we observed a complete loss of activity against P. aeruginosa in the serum-containing SWF. Finally, we made use of an emerging invertebrate in vivo model, using Galleria mellonella larvae, to assess toxicity of the polymeric antimicrobials, showing a good correlation with cell line toxicity measurements and demonstrating its potential in the evaluation of novel antimicrobial materials.
Collapse
Affiliation(s)
| | - Alexia Hapeshi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Stephen Hall
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0DE, U.K.
| | - Robert M. Dalgliesh
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0DE, U.K.
| | - Freya Harrison
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
43
|
Ding R, Wang X, Fu J, Chang Y, Li Y, Liu Y, Liu Y, Ma J, Hu J. Design, synthesis and antibacterial activity of novel pleuromutilin derivatives with thieno[2,3-d]pyrimidine substitution. Eur J Med Chem 2022; 237:114398. [PMID: 35468515 DOI: 10.1016/j.ejmech.2022.114398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
A series of novel pleuromutilin derivatives with substituted thienopyrimidines were designed, synthesized, and evaluated for antibacterial act ivity. In this study, the activities of these compounds were investigated using the inhibition circle test, the minimum inhibitory concentration (MIC) test, real-time growth curves, time-kill kinetic assays, cytotoxicity assays, and molecular docking. Most of the tested compounds exhibited moderate antibacterial activity against Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. Compound A11 was the most active and displayed bacteriostatic activities against methicillin-resistant S. aureus, with MIC values as low as 0.00191 μg/mL, which is 162 and 32 times lower than that of the marketed antibiotics tiamulin and retapamulin, respectively. Furthermore, the mechanism of action of A11 was confirmed by molecular docking studies.
Collapse
Affiliation(s)
- Rongcai Ding
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiaoxia Wang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jianfang Fu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yaoyao Chang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yingxue Li
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yue Liu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinlong Ma
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
44
|
Kuvarina AE, Roshka YA, Rogozhin EA, Nikitin DA, Kurakov AV, Sadykova VS. Antimicrobial Properties and the Effect of Temperature on the Formation of Secondary Metabolites in Psychrophilic Micromycetes. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The ability of representatives of psychrotolerant micromycetes to produce antimicrobial compounds was studied. A promising producer of antibiotics, Penicillium vulpinum KPB F-290, was selected (from 98 cultures) as a result of the screening. The producer was active against opportunistic fungi and bacteria. The isolated active fractions can be attributed to the group of antimicrobial compounds, including ß-lactam antibiotics and peptides.
Collapse
|
45
|
Investigations into the membrane activity of arenicin antimicrobial peptide AA139. Biochim Biophys Acta Gen Subj 2022; 1866:130156. [PMID: 35523364 DOI: 10.1016/j.bbagen.2022.130156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Arenicin-3 is an amphipathic β-hairpin antimicrobial peptide that is produced by the lugworm Arenicola marina. In this study, we have investigated the mechanism of action of arenicin-3 and an optimized synthetic analogue, AA139, by studying their effects on lipid bilayer model membranes and Escherichia coli bacterial cells. The results show that simple amino acid changes can lead to subtle variations in their interaction with membranes and therefore alter their pre-clinical potency, selectivity and toxicity. While the mechanism of action of arenicin-3 is primarily dependent on universal membrane permeabilization, our data suggest that the analogue AA139 relies on more specific binding and insertion properties to elicit its improved antibacterial activity and lower toxicity, as exemplified by greater selectivity between lipid composition when inserting into model membranes i.e. the N-terminus of AA139 seems to insert deeper into lipid bilayers than arenicin-3 does, with a clear distinction between zwitterionic and negatively charged lipid bilayer vesicles, and AA139 demonstrates a cytoplasmic permeabilization dose response profile that is consistent with its greater antibacterial potency against E. coli cells compared to arenicin-3.
Collapse
|
46
|
Maithani D, Sharma A, Gangola S, Choudhary P, Bhatt P. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiol Res 2022; 261:127053. [DOI: 10.1016/j.micres.2022.127053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 10/25/2022]
|
47
|
Mazraeh M, Eshrati Yeganeh F, Yousefi M, Baniyaghoob S, Farasati Far B, Akbarzadeh I, Bigham A, Ashrafizadeh M, Rabiee N, Makvandi P, Saeb MR. Multifunctional Tetracycline-Loaded Silica-Coated Core-Shell Magnetic Nanoparticles: Antibacterial, Antibiofilm, and Cytotoxic Activities. ACS APPLIED BIO MATERIALS 2022; 5:1731-1743. [PMID: 35380779 DOI: 10.1021/acsabm.2c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current study, the physicochemical and biological properties of tetracycline-loaded core-shell nanoparticles (Tet/Ni0.5Co0.5Fe2O4/SiO2 and Tet/CoFe2O4/SiO2) were investigated. The antibacterial activity of nanoparticles alone and in combination with tetracycline was investigated against a number of Gram-positive and Gram-negative bacteria for determining minimum inhibitory concentration (MIC) values. The MIC of Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles turned out to be significantly higher than that of Tet/CoFe2O4/SiO2 nanoparticles. Furthermore, Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles exhibited potent antibiofilm activity against pathogenic bacteria compared to Tet/CoFe2O4/SiO2 nanoparticles. The drug delivery potential of both carriers was assessed in vitro up to 124 h at different pH levels and it was found that the drug release rate was increased in acidic conditions. The cytotoxicity of nanoparticles was evaluated against a skin cancer cell line (melanoma A375) and a normal cell line (HFF). Our findings showed that Tet/Ni0.5Co0.5Fe2O4/SiO2 had greater cytotoxicity than CoFe2O4/SiO2 against the A375 cell line, whereas both synthesized nanoparticles had no significant cytotoxic effects on the normal cell line. Nonetheless, the biocompatibility of nanoparticles was assessed in vivo and the interaction of nanoparticles with the kidney was scrutinized up to 14 days. The overall results of the present study implied that the synthesized multifunctional magnetic nanoparticles with drug delivery potential, anticancer activity, and antibacterial activity are promising for biomedical applications.
Collapse
Affiliation(s)
- Maryam Mazraeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Mohammad Yousefi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran 19395-1495, Iran
| | - Sahar Baniyaghoob
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Mostra D'Oltremare pad. 20, Naples 80125, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, Istanbul 34956, Turkey
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 11/12, Gdańsk 80-233, Poland
| |
Collapse
|
48
|
Ezeobiora CE, Igbokwe NH, Amin DH, Enwuru NV, Okpalanwa CF, Mendie UE. Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00410-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Antibiotic resistance is on the rise, and new antibiotic research has slowed in recent years, necessitating the discovery of possibly novel microbial resources capable of producing bioactive compounds. Microbial infections are gaining resistance to existing antibiotics, emphasizing the need for novel medicinal molecules to be discovered as soon as possible. Because the possibilities of isolating undiscovered actinomycetes strains have decreased, the quest for novel products has shifted to rare actinomycetes genera from regular environments or the identification of new species identified in unusual habitats.
Main body of the abstract
The non-streptomyces actinobacteria are known as rare actinomycetes that are extremely difficult to cultivate. Rare actinomycetes are known to produce a variety of secondary metabolites with varying medicinal value. In this review, we reported the diversity of rare actinomycetes in several habitat including soil, plants, aquatic environment, caves, insects and extreme environments. We also reported some isolation methods to easily recover rare Actinobacteria from various sources guided with some procedures to identify the rare Actinobacteria isolates. Finally, we reported the biosynthetic potential of rare actinomycetes and its role in the production of unique secondary metabolites that could be used in medicine, agriculture, and industry. These microbial resources will be of interest to humanity, as antibiotics, insecticides, anticancer, antioxidants, to mention but a few.
Short conclusion
Rare actinomycetes are increasingly being investigated for new medicinal compounds that could help to address existing human health challenges such as newly emerging infectious illnesses, antibiotic resistance, and metabolic disorders. The bioactive secondary metabolites from uncommon actinomycetes are the subject of this review, which focuses on their diversity in different habitats, isolation, identification and biosynthetic potentials.
Collapse
|
49
|
Alla K, Vijayakumar V, Sarveswari S. Synthesis and In Vitro Antimicrobial Evaluation of New Quinolone Based 2-Arylamino Pyrimidines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2056209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - S. Sarveswari
- Department of Chemistry, VIT, Vellore, Tamilnadu, India
| |
Collapse
|
50
|
Varkhedkar R, Yang F, Dontha R, Zhang J, Liu J, Spingler B, van der Veen S, Duttwyler S. Natural-Product-Directed Catalytic Stereoselective Synthesis of Functionalized Fused Borane Cluster-Oxazoles for the Discovery of Bactericidal Agents. ACS CENTRAL SCIENCE 2022; 8:322-331. [PMID: 35350606 PMCID: PMC8949637 DOI: 10.1021/acscentsci.1c01132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 06/14/2023]
Abstract
The identification of an alternative chemical space in order to address the global challenge posed by emerging antimicrobial resistance is very much needed for the discovery of novel antimicrobial lead compounds. Boron clusters are currently being explored in drug discovery due to their unique steric and electronic properties. However, the challenges associated with the synthesis and derivatization techniques of these compounds have limited their utility in the rapid construction of a library of molecules for screening against various biological targets as an alternative molecular platform. Herein, we report a transition-metal-catalyzed regioselective direct B-H alkylation-annulation of the closo-dodecaborate anion with natural products such as menthol and camphor as the directing groups. This method allowed the rapid construction of a library of 1,2,3-trisubstituted clusters, which were evaluated in terms of their antibacterial activity against WHO priority pathogens. Several of the synthesized dodecaborate derivatives displayed medium- to high-level bactericidal activity against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Rajesh Varkhedkar
- Department
of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s
Republic of China
| | - Fan Yang
- Department
of Microbiology, and Department of Dermatology, Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, People’s Republic of China
| | - Rakesh Dontha
- Department
of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s
Republic of China
| | - Jianglin Zhang
- Department
of Microbiology, and Department of Dermatology, Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, People’s Republic of China
| | - Jiyong Liu
- Department
of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s
Republic of China
| | - Bernhard Spingler
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stijn van der Veen
- Department
of Microbiology, and Department of Dermatology, Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, People’s Republic of China
| | - Simon Duttwyler
- Department
of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s
Republic of China
| |
Collapse
|