1
|
Mass spectrometric determination of prostanoids in rat hypothalamic paraventricular nucleus microdialysates. Auton Neurosci 2014; 181:49-54. [DOI: 10.1016/j.autneu.2013.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 12/10/2013] [Accepted: 12/30/2013] [Indexed: 11/21/2022]
|
2
|
Birnie M, Morrison R, Camara R, Strauss KI. Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 2013; 14:303. [PMID: 23642095 PMCID: PMC3658912 DOI: 10.1186/1471-2164-14-303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter comprise a subset of the cytochrome P450 "Cyp" gene family that metabolize fatty acids, steroids, as well as endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor injury-related temporal expression have been studied in the brain.In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and 7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed. Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as negative controls and 3 highly expressed "housekeeping" genes. RESULTS Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene expression were observed in hippocampus and parietal cortex. CONCLUSIONS The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of these eicosanoid-related genes in the healthy and injured brain.
Collapse
Affiliation(s)
- Matthew Birnie
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ryan Morrison
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ramatoulie Camara
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Kenneth I Strauss
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
- Present Address: Michigan State University College of Human Medicine, 333 Bostwick Ave NE, 49503 Grand Rapids, MI, USA
| |
Collapse
|
3
|
|
4
|
Abstract
The cerebrovascular endothelium exerts a profound influence on cerebral vessels and cerebral blood flow. This review summarizes current knowledge of various dilator and constrictor mechanisms intrinsic to the cerebrovascular endothelium. The endothelium contributes to the resting tone of cerebral arteries and arterioles by tonically releasing nitric oxide (NO•). Dilations can occur by stimulated release of NO•, endothelium-derived hyperpolarization factor, or prostanoids. During pathological conditions, the dilator influence of the endothelium can turn to that of constriction by a variety of mechanisms, including decreased NO• bioavailability and release of endothelin-1. The endothelium may participate in neurovascular coupling by conducting local dilations to upstream arteries. Further study of the cerebrovascular endothelium is critical for understanding the pathogenesis of a number of pathological conditions, including stroke, traumatic brain injury, and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jon Andresen
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Suite 434D, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
5
|
Abstract
The use of stem cells in cell replacement therapy for neurodegenerative diseases has received a great deal of scientific and public interest in recent years. This is due to the remarkable pace at which paradigm-changing discoveries have been made regarding the neurogenic potential of embryonic, fetal, and adult cells. Over the last decade, clinical fetal tissue transplants have demonstrated that dopaminergic neurons can survive long term and provide functional clinical benefits for patients with Parkinson's disease. Pluripotent embryonic stem cells and multipotent neural stem cells may provide renewable sources that could replace these primary fetal grafts. Considerable advancement has been made in generating cultures with high numbers of neurons in general and of dopaminergic neurons using a varied array of techniques. However, much of this encouraging progress still remains to be tested on long-term expanded human cultures. Further problems include the low survival rate of these cells following transplantation and the tumorigenic tendencies of embryo-derived cells. However, pre-differentiation or genetic modification of stem cell cultures prior to transplantation may help lead to the generation of high numbers of cells of the desired phenotype following grafting. Boosting particular factors or substrates in the culture media may also protect grafted neurons from oxidative and metabolic stress, and provide epigenetic trophic support. Possible endogenous sources of cells for brain repair include the transdifferentiation of various types of adult cells into neurons. Despite the excitement generated by examples of this phenomenon, further work is needed in order to identify the precise instructive cues that generate neural cells from many other tissue types, and whether or not the new cells are functionally normal. Furthermore, issues such as cell homogeneity and fusion need to be addressed further before the true potential of transdifferentiation can be known. Endogenous stem cells also reside in the neurogenic zones of the adult brain (ventricle lining and hippocampus). Further elucidation of the mechanisms that stimulate cell division and migration are required in order to learn how to amplify the small amount of new cells generated by the adult brain and to direct these cells to areas of injury or degeneration. Finally, a more fundamental understanding of brain injury and disease is required in order to circumvent local brain environmental restrictions on endogenous cell differentiation and survival.
Collapse
Affiliation(s)
- Janel E Le Belle
- Cambridge Centre for Brain Repair, Forvie Site, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
6
|
de Lange EC, de Boer AG, Breimer DD. Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Deliv Rev 2000; 45:125-48. [PMID: 11108971 DOI: 10.1016/s0169-409x(00)00107-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microdialysis is an in vivo technique that permits monitoring of local concentrations of drugs and metabolites at specific sites in the body. Microdialysis has several characteristics, which makes it an attractive tool for pharmacokinetic research. About a decade ago the microdialysis technique entered the field of pharmacokinetic research, in the brain, and later also in peripheral tissues and blood. Within this period much has been learned on the proper use of this technique. Today, it has outgrown its child diseases and its potentials and limitations have become more or less well defined. As microdialysis is a delicate technique for which experimental factors appear to be critical with respect to the validity of the experimental outcomes, several factors should be considered. These include the probe; the perfusion solution; post-surgery interval in relation to surgical trauma, tissue integrity and repeated experiments; the analysis of microdialysate samples; and the quantification of microdialysate data. Provided that experimental conditions are optimized to give valid and quantitative results, microdialysis can provide numerous data points from a relatively small number of individual animals to determine detailed pharmacokinetic information. An example of one of the added values of this technique compared with other in vivo pharmacokinetic techniques, is that microdialysis reflects free concentrations in tissues and plasma. This gives the opportunity to assess information on drug transport equilibration across membranes such as the blood-brain barrier, which already has provided new insights. With the progress of analytical methodology, especially with respect to low volume/low concentration measurements and simultaneous measurement of multiple compounds, the applications and importance of the microdialysis technique in pharmacokinetic research will continue to increase.
Collapse
Affiliation(s)
- E C de Lange
- Leiden/Amsterdam Center for Drug Research, Division of Pharmacology, Sylvius Laboratory, University of Leiden, P.O. Box 9503, 2300 RA, Leiden, The Netherlands.
| | | | | |
Collapse
|
7
|
Okada S, Murakami Y, Nishihara M, Yokotani K, Osumi Y. Perfusion of the hypothalamic paraventricular nucleus with N-methyl-D-aspartate produces thromboxane A2 and centrally activates adrenomedullary outflow in rats. Neuroscience 2000; 96:585-90. [PMID: 10717438 DOI: 10.1016/s0306-4522(99)00598-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We applied a microdialysis technique for the measurement of hypothalamic thromboxane B2, a stable metabolite of thromboxane A2, in urethane-anesthetized rats. Perfusion with N-methyl-D-aspartate (1.5 and 2.5mM) of the paraventricular nucleus by microdialysis probe concentration-dependently elevated the levels of thromboxane B2 in this region and plasma levels of catecholamines. The elevation of adrenaline was much more marked than that of noradrenaline. Pretreatment with dizocilpine maleate (0.1 mM), a non-competitive antagonist of N-methyl-D-aspartate receptors, of the paraventricular nucleus by microdialysis probe attenuated the N-methyl-D-aspartate (1.5 mM)-induced elevations of both thromboxane B2 and plasma catecholamines. Intracerebroventricular administration of furegrelate (250 microg/animal), a thromboxane A2 synthase inhibitor, also abolished the responses evoked by N-methyl-D-aspartate. These results indicate that N-methyl-D-aspartate applied into the paraventricular nucleus produces thromboxane A2 in this region and elevates plasma levels of catecholamines, especially adrenaline. Thromboxane A2 produced in this hypothalamic nucleus is probably involved in the N-methyl-D-aspartate-induced central adrenomedullary outflow.
Collapse
Affiliation(s)
- S Okada
- Department of Pharmacology, Kochi Medical School, Nankoku, Kochi, Japan.
| | | | | | | | | |
Collapse
|
8
|
Watson CS, White SE, Homan JH, Kimura KA, Brien JF, Fraher L, Challis JR, Bocking AD. Increased cerebral extracellular adenosine and decreased PGE2 during ethanol-induced inhibition of FBM. J Appl Physiol (1985) 1999; 86:1410-20. [PMID: 10194230 DOI: 10.1152/jappl.1999.86.4.1410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine and PGE2 are neuromodulators, both of which inhibit fetal breathing movements (FBM). Although circulating PGE2 has been implicated as a mediator of ethanol-induced inhibition of FBM in the late-gestation ovine fetus, a role for adenosine has not been examined. The objective of this study was to determine the effect of maternal ethanol infusion on ovine fetal cerebral extracellular fluid adenosine and PGE2 concentrations by using in utero microdialysis and to relate any changes to ethanol-induced inhibition of FBM. Dialysate samples were obtained from the fetal parietal cortex over 70 h after surgery to determine steady-state extracellular fluid adenosine and PGE2 concentrations. On each of postoperative days 3 and 4, after a 2-h baseline period, ewes received a 1-h infusion of ethanol (1 g/kg maternal body wt) or an equivalent volume of saline, and the fetus was monitored for a further 11 h with 30-min dialysate samples collected throughout. Immediately after surgery, dialysate PGE2 and adenosine concentrations were 3.7 +/- 0.7 and 296 +/- 127 nM, respectively. PGE2 did not change over the 70 h, whereas adenosine decreased to 59 +/- 14 nM (P < 0.05) at 4 h and then remained unchanged. Ethanol decreased dialysate PGE2 concentration for 2 h (3.3 +/- 0.3 to 1.9 +/- 0.4 nM; P < 0.05) and increased adenosine concentration for 6 h (87 +/- 13 to a maximum of 252 +/- 59 nM, P < 0.05). Ethanol decreased FBM incidence from 47 +/- 7 to 16 +/- 5% (P < 0.01) for 8 h. Saline infusion did not change dialysate adenosine or PGE2 concentrations or FBM incidence. These data are consistent with the hypothesis that fetal cerebral adenosine, and not PGE2, is the primary mediator of ethanol-induced inhibition of FBM at 123 days of gestation in sheep.
Collapse
Affiliation(s)
- C S Watson
- Departments of Physiology and of Obstetrics and Gynaecology, Medical Research Council Group in Fetal and Neonatal Health and Development, Lawson Research Institute, University of Western Ontario, London, Ontario N6A 4V2, Canada M5S 1A8
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Torto N, Laurell T, Gorton L, Marko-Varga G. Recent trends in the application of microdialysis in bioprocesses1This paper has previously been published in vol. 374/2-3 of Analytica Chimica Acta. PII of original manuscript: PII S0003-2670(98)00404-8.1. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(98)00761-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Torto N, Laurell T, Gorton L, Marko-Varga G. Recent trends in the application of microdialysis in bioprocesses. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00404-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kjellström S, Emnéus J, Laurell T, Heintz L, Marko-Varga G. On-line coupling of microdialysis sampling with liquid chromatography for the determination of peptide and non-peptide leukotrienes. J Chromatogr A 1998; 823:489-96. [PMID: 9818423 DOI: 10.1016/s0021-9673(98)00361-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An automated on-line sampling method was developed using microdialysis as the simultaneous sampling and sample pre-treatment technique. The extraction fraction values of microdialysis probes sampling different eicosanoids were investigated. The impact of cyclodextrins in the perfusion liquid used for sampling hydrophobic eicosanoids in biological systems was also studied. The total time for one analysis was 7.6 min allowing seven measurements per hour for monitoring kinetic changes in biological systems.
Collapse
Affiliation(s)
- S Kjellström
- Department of Analytical Chemistry, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
12
|
McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998; 15:731-69. [PMID: 9814632 DOI: 10.1089/neu.1998.15.731] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms underlying secondary or delayed cell death following traumatic brain injury are poorly understood. Recent evidence from experimental models suggests that widespread neuronal loss is progressive and continues in selectively vulnerable brain regions for months to years after the initial insult. The mechanisms underlying delayed cell death are believed to result, in part, from the release or activation of endogenous "autodestructive" pathways induced by the traumatic injury. The development of sophisticated neurochemical, histopathological and molecular techniques to study animal models of TBI have enabled researchers to begin to explore the cellular and genomic pathways that mediate cell damage and death. This new knowledge has stimulated the development of novel therapeutic agents designed to modify gene expression, synthesis, release, receptor or functional activity of these pathological factors with subsequent attenuation of cellular damage and improvement in behavioral function. This article represents a compendium of recent studies suggesting that modification of post-traumatic neurochemical and cellular events with targeted pharmacotherapy can promote functional recovery following traumatic injury to the central nervous system.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104-6316, USA
| | | | | |
Collapse
|
13
|
Scammell TE, Griffin JD, Elmquist JK, Saper CB. Microinjection of a cyclooxygenase inhibitor into the anteroventral preoptic region attenuates LPS fever. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R783-9. [PMID: 9530246 DOI: 10.1152/ajpregu.1998.274.3.r783] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable evidence supports the role of prostaglandins in fever production, but the neuroanatomic sites of prostaglandin synthesis that produce fever remain unknown. With the use of a novel microinjection technique, we injected the cyclooxygenase inhibitor ketorolac into the preoptic area (POA) to determine which preoptic regions produce the prostaglandins required for fever. Initial experiments demonstrated that intravenous ketorolac blocked the fever normally produced by lipopolysaccharide (LPS) 5 micrograms/kg i.v. Microinjection of ketorolac into the POA had no effect on body temperature, and injection of artificial cerebrospinal fluid into the POA did not alter LPS fever. Injection of ketorolac into the anteroventral POA markedly decreased the fever produced by LPS, compared with injections into more rostral, caudal, or dorsal locations. These observations indicate that prostaglandin synthesis in the anteroventral preoptic region is necessary for the production of fever.
Collapse
Affiliation(s)
- T E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
14
|
Drugs in the Management of Cute Traumatic Brain Injury. Phys Med Rehabil Clin N Am 1997. [DOI: 10.1016/s1047-9651(18)30294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Abstract
The objective of this review is to survey the recent literature regarding the various applications of microdialysis in pharmacokinetics. Microdialysis is a relatively new technique for sampling tissue extracellular fluid that is gaining popularity in pharmacokinetic and pharmacodynamic studies, both in experimental animals and humans. The first part of this review discusses various aspects of the technique with regard to its use in pharmacokinetic studies, such as: quantitation of the microdialysis probe relative recovery, interfacing the sampling technique with analytical instrumentation, and consideration of repeated procedures using the microdialysis probe. The remainder of the review is devoted to a survey of the recent literature concerning pharmacokinetic studies that apply the microdialysis sampling technique. While the majority of the pharmacokinetic studies that have utilized microdialysis have been done in the central nervous system, a growing number of applications are being found in a variety of peripheral tissue types, e.g. skin, muscle, adipose, eye, lung, liver, and blood, and these are considered as well. Given the rising interest in this technique, and the ongoing attempts to adapt it to pharmacokinetic studies, it is clear that microdialysis sampling will have an important place in studying drug disposition and metabolism.
Collapse
Affiliation(s)
- W F Elmquist
- Department of Pharmaceutical Sciences, College of Pharmacy University of Nebraska Medical Center, Omaha 68198, USA
| | | |
Collapse
|
16
|
Abstract
Fever is thought to be initiated by pyrogenic cytokines inducing the production of prostaglandin E2 (PGE2) in the preoptic area (POA); PGE2 may act as a paracrine mediator that stimulates the neural pathways that raise body temperature. This essential role for prostaglandins in fever first was proposed 25 years ago, but the specific preoptic cell groups at which PGE2 acts and the pathways through which fever is produced remain poorly understood. To better define the role of preoptic PGE2 in fever, we developed a new method for combining acute brain injections with Fos immunohistochemistry. We microinjected a threshold dose of PGE2 to construct an anatomically detailed map of fever-producing preoptic sites. The most pyrogenic preoptic sites were clustered along the ventromedial aspect of the POA, surrounding and just anterior to the organum vasculosum of the lamina terminalis. We then used Fos immunohistochemistry to identify the pattern of neural activation induced by fever-producing preoptic injections of PGE2 and compared it with the Fos pattern seen after systemic immune stimulation. PGE2 fever was accompanied by Fos induction in the ventromedial POA and the parvicellular subnuclei of the paraventricular nucleus of the hypothalamus (PVH). In contrast to the Fos pattern seen after intravenous lipopolysaccharide administration, PGE2 injection did not induce Fos in the circumventricular organs or the magnocellular subnuclei of the PVH. These observations establish a potential site of PGE2 action during fever and help define candidate pathways through which fever occurs.
Collapse
|
17
|
Pettigrew LC, Meyer JJ, Craddock SD, Butler SM, Tai HH, Yokel RA. Delayed elevation of platelet activating factor in ischemic hippocampus. Brain Res 1995; 691:243-7. [PMID: 8590061 DOI: 10.1016/0006-8993(95)00709-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We used in vivo microdialysis to define the chronological relationship between release of thromboxane and platelet activating factor (PAF) into the extracellular space of ischemic hippocampus. The thromboxane level peaked after 20 min of postischemic reperfusion, followed by a delayed PAF response 120 min later. We conclude that cerebral ischemia causes delayed elevation of PAF in the extracellular space, long after the immediate synthesis and release of thromboxane metabolites.
Collapse
Affiliation(s)
- L C Pettigrew
- Stroke Program of the Sanders-Brown Center of Excellence in Aging, University of Kentucky College of Medicine, Lexington 40536-0230, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gerozissis K, De Saint Hilaire Z, Orosco M, Rouch C, Nicolaïdis S. Changes in hypothalamic prostaglandin E2 may predict the occurrence of sleep or wakefulness as assessed by parallel EEG and microdialysis in the rat. Brain Res 1995; 689:239-44. [PMID: 7583327 DOI: 10.1016/0006-8993(95)00583-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prostaglandin (PG) E2 is produced by mammalian hypothalamus and when administered exogenously prolongs wakefulness. In order to study the relation of endogenous hypothalamic PGE2 to sleep and wakefulness, we have used microdialysis in freely moving rats associated with EEG recording. Male Wistar rats were implanted with three cortical electrodes and with a guide cannula for microdialysis in the space between the paraventricular nucleus (PVN) and the ventromedial hypothalamus (VMH). PGE2 was measured by RIA in 3- or 6-min dialysates 15 days after surgery, when sleep patterns were normal again and PGE2 production stabilised. PGE2 levels were significantly higher during wakefulness (601 +/- 35 pg/ml, 5 experiments, 35 samples) than during slow-wave sleep (487 +/- 24 pg/ml, 5 experiments, 49 samples). Samples corresponding to paradoxical sleep showed a tendency towards higher PGE2 values compared to slow-wave sleep but lower compared to wakefulness. In epochs of wakefulness or sleep lasting at least 12 min, high PGE2 levels in the middle of wakefulness regularly dropped, thus announcing the occurrence of sleep. During sleep, PGE2 first went on dropping and then reincreased towards the values that characterize early periods of wakefulness. In its turn, this reincrease in PGE2 announced the end of sleep and the imminent occurrence of wakefulness. It is the first study to our knowledge showing that the evolvement in endogenous PG profile may predict the occurrence of sleep or wakefulness.
Collapse
Affiliation(s)
- K Gerozissis
- Laboratoire de Neurobiologie de Régulations, URA 1860, CNRS, Aff. INSERM, Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Pardridge WM. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 1995. [DOI: 10.1016/0169-409x(95)00003-p] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Lazarewicz JW, Salińska E. N-methyl-D-aspartate-evoked release of cyclo-oxygenase products in rabbit hippocampus: an in vivo microdialysis study. J Neurosci Res 1995; 40:660-6. [PMID: 7602616 DOI: 10.1002/jnr.490400511] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In vivo microdialysis of the rabbit hippocampus was used to study the effects of N-methyl-D-aspartate (NMDA) receptor stimulation on dialysate concentrations of thromboxane B2 (Tx B2)- and 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha)-immunoreactive materials that are stable metabolites of biologically active thromboxane A2 and prostacyclin. All pharmacological substances were applied in the dialysis medium. The application of 1 mM NMDA for 20 min resulted in five- and eightfold increases in Tx B2 and 6-keto PGF1 alpha concentrations, respectively. An increase in NMDA concentration to 2.5 mM did not potentiate a peak eicosanoid release, but significantly prolonged this effect. Either 10 microM MK-801 or the extrusion of Ca2+ from the dialysis medium inhibited the release by about 50%. Quinacrine, a phospholipase A2 inhibitor (250 microM), decreased the NMDA-evoked eicosanoid release by 30%, whereas 10 microM indomethacin, a cyclo-oxygenase inhibitor, completely suppressed the release. One hundred micromolar furegrelate, an inhibitor of thromboxane synthase, reduced by 75% Tx B2 release with concomitant 100% increase in 6-keto PGF1 alpha formation. Thus, stimulation of NMDA receptors induces calcium-dependent formation of thromboxane A2 and prostacyclin in the hippocampus, which may have pathophysiological implications. The neuronal site of their formation seems probable, although a transcellular mechanism of their synthesis should be also considered.
Collapse
Affiliation(s)
- J W Lazarewicz
- Department of Neurochemistry, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
21
|
Abstract
Free radicals and some free fatty acids, such as arachidonic acid metabolites, have been hypothesized to be contributors to secondary damage to the spinal cord upon injury. These two types of species may form a feedback loop in which generation of one type leads to formation of the other. In this study, to determine whether hydroxyl radical causes generation of arachidonic acid metabolites in vivo, we generated hydroxyl radical, a most reactive oxygen radical, in the rat spinal cord and measured resulting changes in levels of prostaglandin F2 alpha, an arachidonic acid metabolite that rises following traumatic injury. The hydroxyl radical was generated in the rat spinal cord by administering H2O2 through one microdialysis fiber and FeCl2/EDTA through a parallel fiber. The prostaglandin F2 alpha in the collected microdialysates was measured by HPLC as its 3-bromomethyl-6,7-dimethoxy-1-methyl-2-(1H)-quinoxalinone derivative. Prostaglandin F2 alpha dramatically increased in response to hydroxyl radical generation, but declined substantially after 3 h of exposure. Prostaglandin F2 alpha was undetectable when either H2O2 or FeCl2/EDTA was administered alone in control experiments, demonstrating that its formation was caused by generated hydroxyl radical.
Collapse
Affiliation(s)
- D Liu
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-0843, USA
| | | |
Collapse
|
22
|
de Lange EC, Danhof M, de Boer AG, Breimer DD. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res 1994; 666:1-8. [PMID: 7889356 DOI: 10.1016/0006-8993(94)90276-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this investigation was to determine the effect of experimental conditions on the concentrations of atenolol and acetaminophen in brain microdialysate, and to investigate the feasibility of performing repeated experiments within individual rats. Following intravenous bolus administration, reproducible concentration-time profiles were obtained in plasma and in brain dialysate. Based on corrections for in vitro recoveries of the intracerebral probe, the estimated ratio of the AUC in brain extracellular fluid (AUCbrain ECF) over the AUC in plasma (AUCplasma) +/- S.E.M. was 3.8 +/- 0.6% (n = 6) for atenolol and 18 +/- 2% (n = 6) for acetaminophen. Upon intracerebroventricular administration, interanimal differences in kinetics of acetaminophen in brain dialysate were observed while the concentrations of atenolol were below the detection limit of the assay. The influence of the use of isotonic versus hypotonic perfusate solutions on AUCbrain ECF values after intravenous bolus administration of both drugs was determined. Repeated experiments with the isotonic perfusate (24, 48 and 78 h post-surgery) resulted in AUCbrain ECF values with the ratio of 100: 98: 76% for acetaminophen and 100: 103: 98% for atenolol. Using a hypotonic perfusion solution the ratio of AUCbrain ECF values was 100: 154: 114% for acetaminophen and 100: 378: 427% for atenolol. A clear effect of the temperature of the hypotonic perfusate (24 vs 38 degrees C) on acetaminophen AUCbrain ECF values was revealed. The ratio of AUCbrain ECF values obtained at 24: 38 degrees C was 192: 100%.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E C de Lange
- Leiden/Amsterdam Center for Drug Research, Division of Pharmacology, Sylvius Laboratory, The Netherlands
| | | | | | | |
Collapse
|
23
|
Hoffman SW, Fülöp Z, Stein DG. Bilateral frontal cortical contusion in rats: behavioral and anatomic consequences. J Neurotrauma 1994; 11:417-31. [PMID: 7837282 DOI: 10.1089/neu.1994.11.417] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to develop a bilateral model of frontal cortical contusion in the rat that would demonstrate reproducible deficits typically found after frontal lobe injury in humans. We used a pneumatically controlled cortical impactor to create bilateral contusions of the medial prefrontal cortex (PFC) in adult male Sprague-Dawley rats. Cognitive, neurologic, physiologic, and histopathologic measures were used to evaluate changes caused by the injury. The cognitive task employed the Morris water maze (MWM). Contused rats performed worse than sham-operated controls on measures of time taken to find a submerged platform, distance to the platform, and swim strategy. Neurologic measures revealed impairments of tongue mobility and transient deficits of forelimb placing. Body weights of the contused rats were chronically reduced with respect to controls, indicating that cortical contusion produces disruption in homeostasis. All rats given bilateral PFC contusions developed marked necrotic cavities at the site of impact. The borders surrounding the cavities were heavily lined with astrocytes and ameboid microglia. There was subcortical gliosis in the medial caudate that extended throughout the rostral-caudal length of the caudate-putamen and into the mediodorsal (MD) and ventrolateral (VL) nuclei of the thalamus. The thalamus was also the site of distal transneuronal degeneration. In both the MD and the VL, there was significant neuronal loss in the contused rats as compared with sham-operated controls. This method of bilateral cortical contusion demonstrates clear, reproducible results that would be required for the development of future pharmacologic therapies designed to promote functional recovery.
Collapse
Affiliation(s)
- S W Hoffman
- Brain Research Laboratory, Rutgers University, Newark, New Jersey
| | | | | |
Collapse
|
24
|
Tagari P, Callaghan DH, Black C, Yerge JA. Measurement of canine urinary thromboxanes by GC-MS and HPLC-RIA. PROSTAGLANDINS 1994; 47:293-306. [PMID: 8041872 DOI: 10.1016/0090-6980(94)90024-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Immunoaffinity extraction/gas chromatography-mass spectrometry (IA/GC-MS) and high-performance liquid chromatography-radioimmunoassay (HPLC-RIA) methods were developed to analyse a major human urinary thromboxane metabolite, 2,3-dinor thromboxane B2, in the urine of dogs, a species commonly used for functional studies of thromboxane pharmacology. The beta-metabolite 2,3-dinor TXB2 was unequivocally identified in pooled normal canine urine by IA/GC-MS, and its excretion measured in 6 anesthetized dogs over a 7h period as 2001 +/- 132 pg 2,3-dinor TXB2/mg creatinine (range 624-4493 pg/mg). Thromboxane immunoreactivity co-eluting with synthetic 2,3-dinor TXB2 was also identified by HPLC-RIA and similarly determined (2585 +/- 276 pg/mg creatinine). Exogenous 2,3-dinor TXB2 could be quantitatively recovered by both methodologies over a wide range of concentrations (50-5000 pg/mL), although with better precision by IA/GC-MS (added vs recovered; m = 1.05, r = 0.99) compared with HPLC-RIA (added vs recovered; m = 0.89, r = 0.89). The cyclooxygenase inhibitor indomethacin given by infusion in anaesthetized dogs (2.5, 8 and 25 micrograms/kg/min) dose-dependently inhibited 2,3-dinor TXB2 excretion measured by IA/GC-MS, with maximal inhibition (83.0 +/- 4.2%) being achieved after 6h (25 micrograms/kg/min). Similar results were obtained by HPLC-RIA, with a correlation of 0.88 (slope = 0.9) between the methodologies in samples after drug treatment. These data suggest that the profile of metabolism and excretion of thromboxanes in dogs resembles that of man, and provide a useful animal model for the non-invasive in vivo assessment of inhibitors of thromboxane biosynthesis.
Collapse
Affiliation(s)
- P Tagari
- Dept of Pharmacology, Merck Frosst Centre for Therapeutic Research, Pointe Claire, Quebec, Canada
| | | | | | | |
Collapse
|
25
|
Steroid Hormone Transport through Blood–Brain Barrier: Methods and Concepts. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-12-185292-4.50007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J Neurotrauma 1993; 10:215-61. [PMID: 8258838 DOI: 10.1089/neu.1993.10.215] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Delayed or secondary neuronal damage following traumatic injury to the central nervous system (CNS) may result from pathologic changes in the brain's endogenous neurochemical systems. Although the precise mechanisms mediating secondary damage are poorly understood, posttraumatic neurochemical changes may include overactivation of neurotransmitter release or re-uptake, changes in presynaptic or postsynaptic receptor binding, or the pathologic release or synthesis of endogenous "autodestructive" factors. The identification and characterization of these factors and the timing of the neurochemical cascade after CNS injury provides a window of opportunity for treatment with pharmacologic agents that modify synthesis, release, receptor binding, or physiologic activity with subsequent attenuation of neuronal damage and improvement in outcome. Over the past decade, a number of studies have suggested that modification of postinjury events through pharmacologic intervention can promote functional recovery in both a variety of animal models and clinical CNS injury. This article summarizes recent work suggesting that pharmacologic manipulation of endogenous systems by such diverse pharmacologic agents as anticholinergics, excitatory amino acid antagonists, endogenous opioid antagonists, catecholamines, serotonin antagonists, modulators of arachidonic acid, antioxidants and free radical scavengers, steroid and lipid peroxidation inhibitors, platelet activating factor antagonists, anion exchange inhibitors, magnesium, gangliosides, and calcium channel antagonists may improve functional outcome after brain injury.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Surgery, University of Pennsylvania, Philadelphia
| |
Collapse
|
27
|
Patel PM, Drummond JC, Mitchell MD, Yaksh TL, Cole DJ. Eicosanoid production in the caudate nucleus and dorsal hippocampus after forebrain ischemia: a microdialysis study. J Cereb Blood Flow Metab 1992; 12:88-95. [PMID: 1727145 DOI: 10.1038/jcbfm.1992.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thromboxane (Tx)B2 and 6-keto-prostaglandin (6-keto-PG) F1 alpha formation in the hippocampus and caudate nucleus were evaluated by microdialysis during and following forebrain ischemia. Spontaneously hypertensive rats were subjected to bilateral carotid artery occlusion with simultaneous hypotension for 8, 14, or 20 min. Dialysate was collected during the ischemic interval and during the reperfusion period. TxB2 and 6-keto-PGF1 alpha levels were measured by radioimmunoassay. In both structures, TxB2 production increased significantly during the reperfusion period in all three ischemic groups. By contrast, increased 6-keto-PGF1 alpha elaboration was observed after only the longest ischemic duration. While TxB2 levels gradually decreased during the 3-h reperfusion period in all groups, the levels in the group subjected to 8 min of ischemia returned to control values most rapidly. A relationship between the duration of ischemia and TxB2 production was therefore evident. 6-Keto-PGF1 alpha levels increased in only the group subjected to 20 min of ischemia and, by contrast to the pattern of TxB2 change, 6-keto-PGF1 alpha levels remained elevated throughout the reperfusion period. During reperfusion, the ratio of TxB2 to 6-keto-PGF1 alpha increased substantially versus the preischemic period in both structures. The data demonstrate that eicosanoid elaboration following cerebral ischemia can be evaluated by the microdialysis technique. In addition, they indicate that the thresholds (duration of ischemia) for the postischemic production and the temporal profiles of TxB2 and 6-keto-PGF1 alpha in the caudate and hippocampus differ. They also demonstrate that there is regional heterogeneity in the patterns of eicosanoid elaboration after forebrain ischemia.
Collapse
Affiliation(s)
- P M Patel
- Department of Anesthesiology, University of California, San Diego 92093-0629
| | | | | | | | | |
Collapse
|
28
|
Giordano MJ, Mathur SN, Moore SA. Differential metabolism of hydroxyeicosatetraenoic acid isomers by mouse cerebromicrovascular endothelium. J Neurochem 1992; 58:374-82. [PMID: 1727444 DOI: 10.1111/j.1471-4159.1992.tb09321.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydroxyeicosatetraenoic acid (HETE) derivatives of arachidonic acid are produced in the brain and have been implicated as pathologic mediators in various types of brain injury. To understand better their fate in the brain, particularly in cerebral microvessels, several HETEs were incubated with cultured mouse cerebromicrovascular endothelium for 1, 2, and 4 h, followed by HPLC analysis of medium and cellular lipids. 5(S)-, 8(RS)-, and 9(RS)-HETE were not metabolized by the cells, but were extensively incorporated, unmodified, into cell lipids. On the other hand, 11(RS)-, 12(S)-, and 15(S)-HETE were extensively metabolized and only minimally incorporated into cell lipids. Previously, the major 12-HETE metabolite was identified as 8-hydroxyhexadecatrienoic acid. In the present study, we identified the major 11-HETE metabolite as 7-hydroxyhexadecatrienoic acid and the major 15-HETE metabolite as 11-hydroxyhexadecatrienoic acid. omega-3 compounds, 15(S)- and 12(S)-hydroxyeicosapentaenoic acids (HEPE), were also metabolized to more polar compounds, but to a lesser extent than their tetraenoic acid, omega-6 counterparts. Comparison of 5-, 12-, and 15-HETE enantiomers revealed no differences in metabolism or incorporation between the R and S stereoisomers. These data suggest that many isomers of HETE and HEPE can be incorporated into cell lipids or metabolized by pathways that do not distinguish between enantiomers. These pathways, however, are sensitive to the position or number of double bonds and are selective based on the position of the hydroxyl group.
Collapse
Affiliation(s)
- M J Giordano
- Department of Pathology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
29
|
Scheller D, Kolb J. The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods 1991; 40:31-8. [PMID: 1795551 DOI: 10.1016/0165-0270(91)90114-f] [Citation(s) in RCA: 211] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In microdialysis experiments, 'recovery' estimations are required to calculate extracellular concentrations of the compounds determined. Generally, relative recovery (RR) is determined in vitro as: RR = cd/cs, with (cd) being the concentration of a compound in a dialysate fraction and (cs) its known concentration within a sample solution. To determine recoveryin vivo, relative loss (RL) was defined RL = (cp-cd)/cp with (cp-cd) being the loss of a compound from the perfusate and (cp) its perfusate concentration. RL was determined in vitro and in vivo by adding an 'internal reference compound' to the perfusate. Here, 14C-labelled lactate was used as the compound of interest. Comparing RL and RR in vitro, we found both to be similar. In vivo, however, RL was 34% of RL(in) vitro (CSF) and 46% of RL(in) vitro in agar-containing CSF. During ischaemia, RL of lactate even decreased to only 35% of the pre-ischaemic control level. We conclude that RL and RR represent inverse measurements of 'recovery.' Whereas RR can only be determined in vitro, RL can be determined in vivo. We found recoveryin vivo to be different from recoveryin vitro. Moreover, recoveryin vivo decreased during ischaemia. By means of the measured recoveryin vivo extracellular lactate concentrations prior and during ischaemia were calculated. The results, therefore, validate the 'internal reference technique' as a practical method for estimating recoveryin vivo and for controlling dialysis efficacy in vivo even continuously.
Collapse
Affiliation(s)
- D Scheller
- Janssen Research Foundation, Neuss, Germany
| | | |
Collapse
|
30
|
The feasibility of repeated microdialysis for within-subjects design experiments: studies on the mesostriatal dopamine system. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-81194-3.50014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|