1
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
2
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
3
|
Kucherova KS, Koroleva ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. RUSSIAN NEUROLOGICAL JOURNAL 2024; 29:5-15. [DOI: 10.30629/2658-7947-2024-29-3-5-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Modern understanding of the mechanisms of the pathogenesis of ischemic stroke has expanded due to the study of neuroinfl ammation processes, in which matrix metalloproteinases (MMPs) play an important role. This literature review describes the main types of MMPs and provides current data on the pathophysiological role of this group of proteases in acute cerebral ischemia, which have multidirectional eff ects depending on the stage of the disease. Clinical studies assessing the role of MMPs in ischemic stroke are in most cases based on experimental models, and their results are ambiguous, which is determined by the versatility of their actions. MMPs are an important regulator of infl ammatory processes, the permeability of the blood-brain barrier and, as a consequence, cerebral edema. However, the positive eff ect of MMPs in the processes of angiogenesis, neurogenesis and neuroplasticity has been proven. Thus, further study of MMPs is relevant from the point of view of their role in functional recovery after ischemic stroke.
Collapse
|
4
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
5
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RLC, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China; Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Neurology, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjie Han
- Department of Neurosurgery, Pingdingshan Second People's Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
6
|
Strohalmová S, Levová K, Kuběna AA, Krška Z, Hoskovec D, Zima T, Kalousová M. The effect of surgery on the levels of matrix metalloproteinases in patients with inguinal hernia. Physiol Res 2021; 70:627-634. [PMID: 34062071 DOI: 10.33549/physiolres.934625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are associated with the alteration of extracellular matrix. The purpose of this study was to investigate how the levels of matrix metalloproteinases and their inhibitors - TIMPs are influenced by the presence of inguinal hernia as well as by its surgical treatment. The studied group consisted of 25 patients with inguinal hernia and 21 healthy controls for comparison. Two blood samples - before and after the treatment were collected from patients. Serum concentrations of MMPs and TIMPs were analysed by multiplex immunoassays. There was a difference in circulating levels of MMPs in patients before the surgery compared to healthy controls - the concentrations of MMP-2 and MMP-9 were significantly lower (p=0.026, p=0.018, respectively). After the surgery, the levels of MMPs, especially MMP-2 (p<0.0001), were significantly decreased in patients compared to the preoperative values, apart from MMP-9. On the contrary, MMP-9 showed significant increase after the surgery (p<0.0001). Circulation levels of TIMP-2 in patients were significantly decreased in comparison with controls (p=0.004), whereas levels of TIMP-1 were similar to controls. Both tested metalloproteinase inhibitors showed a significant decrease in detected levels (TIMP-1 p=0.0004; TIMP-2 p<0.0001) after the procedure compared to the preoperative values. The levels of MMPs, especially MMP-2 and MMP-9, and their inhibitors TIMP-1 and TIMP-2 are involved by the presence of inguinal hernia as well as are influenced by the surgery.
Collapse
Affiliation(s)
- S Strohalmová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
7
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hoogmartens J, Hens E, Engelborghs S, De Deyn PP, van der Zee J, Van Broeckhoven C, Cacace R. Investigation of the role of matrix metalloproteinases in the genetic etiology of Alzheimer's disease. Neurobiol Aging 2021; 104:105.e1-105.e6. [PMID: 33892965 DOI: 10.1016/j.neurobiolaging.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinases (MMPs) are a multigene family of proteinases regulating the functions of a large number of signaling and scaffolding molecules that are involved in neuro-inflammation, synaptic dysfunction and neuronal death. MMPs have been associated with neurological conditions, such as Alzheimer's disease (AD), through a sudden and massive upregulation of particular members of the MMP family. Evidence for this hypothesis can be found in the clinical observation of increased MMP1 and MMP3 expression levels in plasma of AD patients compared to control individuals and in the pro-amyloidogenic effects that have been described for additional MMP family members like MMP13, MT1-MMP, and MT5-MMP. Consequently, we investigated the role of MMP1, 3, 13, MT1-MMP, and MT5-MMP in the genetic etiology of AD. We performed full exonic resequencing of these 5 MMPs in 1278 AD patients (mean age at onset [AAO]: 74.88 ± 9.10, range: 29-96) and 797 age-matched control individuals (mean age at inclusion [AAI]: 74.92 ± 6.48, range: 65-100) from Flanders-Belgium and identified MMP13 as most promising candidate gene. We identified 6 ultra-rare (≤0.01%) MMP13 missense mutations in 6 patients that were absent from the control cohort. We observed in one control individual a frameshift mutation (p.G269Qfs*2) leading to a premature termination codon. Based on previously described functional evidence, suggesting that MMP13 regulates BACE1 processing, and our genetic findings, we hypothesize a gain-of-function disease mechanism for the missense mutations found in patients. Functional experimental studies remain essential to assess the effect of these mutations on disease related processes and genetic replication studies are needed to corroborate our findings.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Hens
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium; Department of Neurology, UZ Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, UZ Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
9
|
Ayengin K, Alp HH, Huyut Z, Yıldırım S, Altındag F, Avci V. The effects of CoQ10 supplement on matrix metalloproteinases, oxidative DNA damage and pro-inflammatory cytokines in testicular ischaemia/reperfusion injury in rats. Andrologia 2020; 53:e13839. [PMID: 33368479 DOI: 10.1111/and.13839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023] Open
Abstract
We aimed to study the effect of coenzyme Q10 on pro-inflammatory cytokine, matrix metalloproteinase, oxidative DNA damage, caspase 3 and caspase 8 in ischaemia/reperfusion injury led to by testicular torsion/detorsion. Our research is a controlled experimental animal research using rats. This study was conducted with fifty-six adult male Albino Wistar rats. Interleucine-1β, 2, 6, 10, tumour necrosis factor-α, matrix metalloproteinase-2, 3, 9, 13, tissue inhibitor matrix metalloproteinase-1, 2, malondialdehyde and leucocyte 8-hydroxy-2-deoxy guanosine/106 deoxyguanosine was detected in serum and tissue samples. In addition, immunohistochemical analysis of caspase 2 and caspase 8 was performed. In testicular I/R injury, especially 24 hr after detorsion, oxidative damage pro-inflammatory cytokines and matrix metalloproteinases were increased. At the coenzyme Q10 group, a meaningful decrease was observed in these parameters. In addition, a decrease in the expression of caspase3 and caspase 8 was viewed in coenzyme Q10-treated groups. The coenzyme Q10 has beneficial effects on oxidative damage, pro-inflammatory cytokine levels, remodelling of extracellular matrix and apoptosis in testicular I/R injury.
Collapse
Affiliation(s)
- Kemal Ayengin
- Department of Pediatric Surgery, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Fikret Altındag
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Veli Avci
- Department of Pediatric Surgery, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
10
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
11
|
Hohjoh H, Horikawa I, Nakagawa K, Segi-Nishida E, Hasegawa H. Induced mRNA expression of matrix metalloproteinases Mmp-3, Mmp-12, and Mmp-13 in the infarct cerebral cortex of photothrombosis model mice. Neurosci Lett 2020; 739:135406. [PMID: 32987131 DOI: 10.1016/j.neulet.2020.135406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
A strong therapeutic target of ischemic stroke is controlling brain inflammation. Recent studies have implicated the critical role of C-C chemokine receptor 5 (CCR5) in neuroinflammation during ischemic stroke. It has been reported that the expression of the matrix metalloproteinases, MMP-3, MMP-12, and MMP-13, is controlled by CCR5; however, their expressional regulation in the infarct brain has not been clearly understood. This study investigated the mRNA expression of Mmp-3, -12, and -13 in the ischemic cerebral cortex of photothrombosis mouse model. The three Mmps were highly upregulated in the early stages of ischemic stroke and were expressed in different types of cells. Mmp-3 and Mmp-13 were expressed in blood vessel endothelial cells after ischemia-induction, whereas Mmp-12 was expressed in activated microglia. The expression of Mmp-13 in resting microglia and in neurons of uninjured cerebral cortex was lost in the infarct region. Therefore, the MMPs responding to CCR5 are differentially regulated during ischemic stroke.
Collapse
Affiliation(s)
- Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Io Horikawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
12
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Zhu BL, Long Y, Luo W, Yan Z, Lai YJ, Zhao LG, Zhou WH, Wang YJ, Shen LL, Liu L, Deng XJ, Wang XF, Sun F, Chen GJ. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain 2019; 142:176-192. [PMID: 30596903 DOI: 10.1093/brain/awy305] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
MMP13 (matrix metallopeptidase 13) plays a key role in bone metabolism and cancer development, but has no known functions in Alzheimer's disease. In this study, we used high-throughput small molecule screening in SH-SY5Y cells that stably expressed a luciferase reporter gene driven by the BACE1 (β-site amyloid precursor protein cleaving enzyme 1) promoter, which included a portion of the 5' untranslated region (5'UTR). We identified that CL82198, a selective inhibitor of MMP13, decreased BACE1 protein levels in cultured neuronal cells. This effect was dependent on PI3K (phosphatidylinositide 3-kinase) signalling, and was unrelated to BACE1 gene transcription and protein degradation. Further, we found that eukaryotic translation initiation factor 4B (eIF4B) played a key role, as the mutation of eIF4B at serine 422 (S422R) or deletion of the BACE1 5'UTR attenuated MMP13-mediated BACE1 regulation. In APPswe/PS1E9 mice, an animal model of Alzheimer's disease, hippocampal Mmp13 knockdown or intraperitoneal CL82198 administration reduced BACE1 protein levels and the related amyloid-β precursor protein processing, amyloid-β load and eIF4B phosphorylation, whereas spatial and associative learning and memory performances were improved. Collectively, MMP13 inhibition/CL82198 treatment exhibited therapeutic potential for Alzheimer's disease, via the translational regulation of BACE1.
Collapse
Affiliation(s)
- Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Wei Luo
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Li-Ge Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Wei-Hui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin-Lin Shen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| |
Collapse
|
14
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
15
|
Muri L, Leppert D, Grandgirard D, Leib SL. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci 2019; 76:3097-3116. [PMID: 31172218 PMCID: PMC7079810 DOI: 10.1007/s00018-019-03174-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
16
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 839] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
17
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
18
|
Chen X, Patra A, Sadowska GB, Stonestreet BS. Ischemic-Reperfusion Injury Increases Matrix Metalloproteinases and Tissue Metalloproteinase Inhibitors in Fetal Sheep Brain. Dev Neurosci 2018; 40:234-245. [PMID: 30048980 DOI: 10.1159/000489700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/29/2018] [Indexed: 12/31/2022] Open
Abstract
Hypoxic-ischemic brain injury is a leading cause of neurodevelopmental morbidities in preterm and full-term infants. Blood-brain barrier dysfunction represents an important component of perinatal hypoxic-ischemic brain injury. The extracellular matrix (ECM) is a vital component of the blood-brain barrier. Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are important ECM components. They contribute to brain development, blood-brain barrier maintenance, and to regenerative and repair processes after hypoxic-ischemic brain injury. We hypothesized that ischemia at different durations of reperfusion affects the ECM protein composition of MMPs and TIMPs in the cerebral cortex of fetal sheep. Cerebral cortical samples were snap-frozen from sham control fetuses at 127 days of gestation and from fetuses after exposure to 30-min carotid occlusion and 4-, 24-, and 48-h of reperfusion. Protein expression of MMP-2, -8, -9, and -13 and TIMP-1, -2, -3, and -4 was measured by Western immunoblotting along with the gelatinolytic activity of MMP-2 and MMP-9 by zymography. The expression of MMP-8 was increased (Kruskal-Wallis, p = 0.04) in fetuses 48 h after ischemia. In contrast, changes were not observed in the protein expression of MMP-2, -9, or -13. The gelatinolytic activity of pro-MMP-2 was increased (ANOVA, p = 0.02, Tukey HSD, p = 0.05) 24 h after ischemia. TIMP-1 and -3 expression levels were also higher (TIMP-1, ANOVA, p = 0.003, Tukey HSD, p = 0.01; TIMP-3, ANOVA, p = 0.006, Tukey HSD, p = 0.01) 24 h after ischemia compared with both the sham controls and with fetuses exposed to 4 h of reperfusion. The changes in the expression of TIMP-1, -2, and -3 correlated with the changes in the MMP-8 and -13 protein expression. We speculate that regulation of MMP-8, MMP-13, and TIMPs contributes to ECM remodeling after is chemic-reperfusion injury in the fetal brain.
Collapse
|
19
|
Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov 2017; 3:17036. [PMID: 28811933 PMCID: PMC5554797 DOI: 10.1038/cddiscovery.2017.36] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/30/2017] [Indexed: 02/08/2023] Open
Abstract
Matrix metalloproteinase (MMP) is defined as an endopeptidase in the extracellular matrix (ECM), which plays essential roles in physiological processes such as organogenesis, wound healing, angiogenesis, apoptosis and motility. MMPs are produced and assembled in the cytoplasm as proenzymes with a cytoplasmic domain and require extracellular activation. MMPs can degrade receptors, extracellular matrix proteins, PARPs and release apoptotic substances. MMPs have been found in the cytosol, organelles and extracellular compartments and recently many types of MMPs have been found in the nucleus. However, the mechanisms and roles of MMPs inside the cell nucleus are still poorly understood. Here we summarized the nuclear localization mechanisms of MMPs and their functions in the nucleus such as apoptosis, tissue remodeling upon injury and cancer progression. Most importantly, we found that nuclear MMPs have evolved to translocate to membrane and target ECM possibly through evolution of nuclear localization signal (NLS), natural selection and anti-apoptotic survival. Thus, the knowledge about the evolution and regulation of nuclear MMPs appears to be essential in understanding a variety of cellular processes along with the development of MMP-targeted therapeutic drugs against the progression of certain diseases.
Collapse
|
20
|
Zhang Y, Fan F, Zeng G, Zhou L, Zhang Y, Zhang J, Jiao H, Zhang T, Su D, Yang C, Wang X, Xiao K, Li H, Zhong Z. Temporal analysis of blood-brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke. J Cereb Blood Flow Metab 2017; 37:2963-2974. [PMID: 27885100 PMCID: PMC5536803 DOI: 10.1177/0271678x16680221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blood-brain barrier (BBB) disruption plays an important role in pathophysiological progress of ischemic stroke. However, our knowledge of the dynamic change of BBB permeability and its mechanism remains limited. In the current study, we used a non-human primate (NHP) MCAO model and a serial CSF sampling method that allowed us to determine the dynamic change of BBB permeability by calculating the CSF/serum albumin ratio (AR). We showed that AR increased rapidly and significantly after ischemia, and the fold increase of AR is highly correlated with the infarction size during the subacute phase. Moreover, we determined the temporal change of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 in CSF and serum. Each MMP and TIMP showed different change patterns when comparing their values in CSF and serum. Based on the longitudinal dataset, we showed that the fold increase of MMP-9 in serum and CSF are both correlated to infarction size. Among the measured MMPs and TIMPs, only MMP-2, MMP-13, and TIMP-2 in CSF correlated with AR to some extent. Our data suggest there is no single MMP or TIMP fully responsible for BBB breakdown, which is regulated by a much more complicated signal network and further investigations of the mechanisms are needed.
Collapse
Affiliation(s)
- Yingqian Zhang
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Fan
- 2 Department of Neurointervention, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guojun Zeng
- 3 Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Zhou
- 4 Department of Medical Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, China
| | - Yinbing Zhang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Jie Zhang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - He Jiao
- 6 Department of Interventional therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yang
- 7 Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Wang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Kai Xiao
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Hongxia Li
- 8 National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Zhong
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| |
Collapse
|
21
|
Das A, Arifuzzaman S, Yoon T, Kim SH, Chai JC, Lee YS, Jung KH, Chai YG. RNA sequencing reveals resistance of TLR4 ligand-activated microglial cells to inflammation mediated by the selective jumonji H3K27 demethylase inhibitor. Sci Rep 2017; 7:6554. [PMID: 28747667 PMCID: PMC5529413 DOI: 10.1038/s41598-017-06914-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Persistent microglial activation is associated with the production and secretion of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify neurodegenerative diseases. A novel synthetic histone 3 lysine 27 (H3K27) demethylase JMJD3 inhibitor, GSK-J4, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for GSK-J4 molecular targets has not been undertaken in microglia. To study the immuno-modulatory effects of GSK-J4 at the transcriptomic level, triplicate RNA sequencing and quantitative real-time PCR analyses were performed with resting, GSK-J4-, LPS- and LPS + GSK-J4-challenged primary microglial (PM) and BV-2 microglial cells. Among the annotated genes, the transcriptional sequencing of microglia that were treated with GSK-J4 revealed a selective effect on LPS-induced gene expression, in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent transcription factors TFs, as well as previously unidentified genes that are important in inflammation was suppressed. Furthermore, we showed that GSK-J4 controls are important inflammatory gene targets by modulating STAT1, IRF7, and H3K27me3 levels at their promoter sites. These unprecedented results demonstrate that the histone demethylase inhibitor GSK-J4 could have therapeutic applications for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Taeho Yoon
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea. .,Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
22
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
23
|
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2043-2055. [PMID: 28526562 DOI: 10.1016/j.bbamcr.2017.05.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Dubey D, McRae PA, Rankin-Gee EK, Baranov E, Wandrey L, Rogers S, Porter BE. Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res 2017; 132:50-58. [PMID: 28292736 DOI: 10.1016/j.eplepsyres.2017.02.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022]
Abstract
Increased neuronal plasticity and neuronal cell loss has been implicated in the development of epilepsy following injury. Parvalbumin fast spiking inhibitory interneurons have a robust extracellular matrix coating their cell bodies and the proximal dendrites called the perineuronal net (PNN). The role of the PNN is not clear but it has been implicated in closing of the critical period, altering seizure thresholds and providing neuronal protection from oxidative stress. The PNN is susceptible to degradation following a prolonged seizure and there is an increase in proteolytic-fragments of the PNN enriched proteoglycan aggrecan (Dzwonek et al., 2004). Here we demonstrate an increase in matrix metalloproteinase (MMP) activity in the hippocampus following status epilepticus (SE). We further assessed MMP3 and 13, two of 24 identified MMPs, both MMP3 and 13 mRNA increase in the hippocampus after SE and MMP13 activity increases by functional assay as well as it co-localizes with PNN in rat brain. In contrast, two of the brain expressed ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) also implicated in aggrecan degradation, did not consistently increase following SE though ADAMTS4 is highly expressed in glia and ADAMTS5 in neuronal cell bodies and their processes. The increase in MMP activity following SE suggests that in the future studies, MMP inhibitors are candidates for blocking PNN degradation and assessing the role of the PNN loss in epileptogenesis and cellular function.
Collapse
Affiliation(s)
- Deepti Dubey
- Department of Neurology, School of Medicine, Stanford University, 1201 Welch Road, P211 MSLS, Stanford CA 94305, United States
| | - Paulette A McRae
- The Children's Hospital of Philadelphia, Department of Pediatrics and Division of Neurology, 34th and Civic Center Boulevard, Philadelphia PA 19104, United States
| | - Elyse K Rankin-Gee
- Department of Neurology, School of Medicine, Stanford University, 1201 Welch Road, P211 MSLS, Stanford CA 94305, United States
| | - Esther Baranov
- The Children's Hospital of Philadelphia, Department of Pediatrics and Division of Neurology, 34th and Civic Center Boulevard, Philadelphia PA 19104, United States
| | - Luke Wandrey
- The Children's Hospital of Philadelphia, Department of Pediatrics and Division of Neurology, 34th and Civic Center Boulevard, Philadelphia PA 19104, United States
| | - Stephanie Rogers
- The Children's Hospital of Philadelphia, Department of Pediatrics and Division of Neurology, 34th and Civic Center Boulevard, Philadelphia PA 19104, United States
| | - Brenda E Porter
- Department of Neurology, School of Medicine, Stanford University, 1201 Welch Road, P211 MSLS, Stanford CA 94305, United States; The Children's Hospital of Philadelphia, Department of Pediatrics and Division of Neurology, 34th and Civic Center Boulevard, Philadelphia PA 19104, United States.
| |
Collapse
|
25
|
The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 2016; 155:36-56. [PMID: 27530222 DOI: 10.1016/j.pneurobio.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitous extracellular endopeptidases, which play important roles in a variety of physiological and pathological conditions, from the embryonic stages throughout adult life. Their extraordinary physiological "success" is due to concomitant broad substrate specificities and strict regulation of their expression, activation and inhibition levels. In recent years, MMPs have gained increasing attention as significant effectors in various aspects of central nervous system (CNS) physiology. Most importantly, they have been recognized as main players in a variety of brain disorders having different etiologies and evolution. A common aspect of these pathologies is the development of acute or chronic neuroinflammation. MMPs play an integral part in determining the result of neuroinflammation, in some cases turning its beneficial outcome into a harmful one. This review summarizes the most relevant studies concerning the physiology of MMPs, highlighting their involvement in both the developing and mature CNS, in long-lasting and acute brain diseases and, finally, in nervous system repair. Recently, a concerted effort has been made in identifying therapeutic strategies for major brain diseases by targeting MMP activities. However, from this revision of the literature appears clear that MMPs have multifaceted functional characteristics, which modulate physiological processes in multiple ways and with multiple consequences. Therefore, when choosing MMPs as possible targets, great care must be taken to evaluate the delicate balance between their activation and inhibition and to determine at which stage of the disease and at what level they become active in order maximize chances of success.
Collapse
|
26
|
Matrix metalloproteinase-13 participates in neuroprotection and neurorepair after cerebral ischemia in mice. Neurobiol Dis 2016; 91:236-46. [DOI: 10.1016/j.nbd.2016.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
|
27
|
Ma F, Rodriguez S, Buxo X, Morancho A, Riba-Llena I, Carrera A, Bustamante A, Giralt D, Montaner J, Martinez C, Bori I, Rosell A. Plasma Matrix Metalloproteinases in Patients With Stroke During Intensive Rehabilitation Therapy. Arch Phys Med Rehabil 2016; 97:1832-1840. [PMID: 27373742 DOI: 10.1016/j.apmr.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/26/2016] [Accepted: 06/08/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To study plasma levels of matrix metalloproteinases (MMPs) as potential markers of recovery during intensive rehabilitation therapy (IRT) after stroke. DESIGN Prospective and descriptive 3-month follow-up study. SETTING Rehabilitation unit and research center. PARTICIPANTS Patients with first-ever ischemic stroke (n=15) enrolled to IRT (≥3h/d and 5d/wk) and healthy volunteers (n=15) (N=30). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The primary outcome was to measure plasma MMP3, MMP12, and MMP13 levels and evaluate potential associations with motor/functional scales using a battery of tests (National Institutes of Health Stroke Scale, modified Rankin scale, Barthel Index, Fugl-Meyer Assessment, Functional Ambulation Categories, Medical Research Council scale, Chedoke Arm and Hand Activity Inventory, and the 10-m walk test) before IRT and at 1- and 3-month follow-ups. The secondary outcome was to evaluate the use of these MMPs as biomarkers as predictors of patient's outcome. RESULTS MMP levels remained stable during the study period and were similar to those in the healthy volunteer group. However, baseline MMP12 and MMP13 levels were strongly associated with stroke severity and were found to be elevated in those patients with the poorest outcomes. Interestingly, plasma MMP3 was independent of baseline stroke characteristics but was found to be increased in patients with better motor/functional recovery and in patients with larger improvements during rehabilitation. CONCLUSIONS MMPs might act as biologic markers of recovery during rehabilitation therapy related to their roles in both injury and tissue remodeling. Future confirmatory investigations in multicenter studies are warranted by our data.
Collapse
Affiliation(s)
- Feifei Ma
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavi Buxo
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iolanda Riba-Llena
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Carrera
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Martinez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Immaculada Bori
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neuroscience Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Hansson E, Werner T, Björklund U, Skiöldebrand E. Therapeutic innovation: Inflammatory-reactive astrocytes as targets of inflammation. IBRO Rep 2016; 1:1-9. [PMID: 30135924 PMCID: PMC6084881 DOI: 10.1016/j.ibror.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study aimed to test pharmaceutical compounds targeting astrocytes showing inflammatory dysregulation. The primary rat brain cultures were treated with different batches of serum with or without microglia added to make the cells inflammatory-reactive. Lipopolysaccharide (LPS) and tryptase were used as inflammatory inducers. Expression levels of Toll-like receptor 4 (TLR4), Na+/K+-ATPase, and matrix metalloprotease-13 (MMP-13), as well as actin filament organization, pro-inflammatory cytokines, and intracellular Ca2+ release, were evaluated. LPS combined with tryptase upregulated TLR4 expression, whereas Na+/K+-ATPase expression was downregulated, ATP-evoked Ca2+ transients were increased, actin filaments were reorganized and ring structures instead of stress fibers were observed. Other aims of the study were to prevent astrocytes from becoming inflammatory-reactive and to restore inflammatory dysregulated cellular changes. A combination of the μ-opioid antagonist (-)-naloxone in ultra-low concentrations, the non-addictive μ-opioid agonist (-)-linalool, and the anti-epileptic agent levetiracetam was examined. The results indicated that this drug cocktail prevented the LPS- and tryptase-induced inflammatory dysregulation. The drug cocktail could also restore the LPS- and tryptase-treated cells back to a normal physiological level in terms of the analyzed parameters.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Tony Werner
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
29
|
Fu J, Li S, Feng R, Ma H, Sabeh F, Roodman GD, Wang J, Robinson S, Guo XE, Lund T, Normolle D, Mapara MY, Weiss SJ, Lentzsch S. Multiple myeloma-derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease. J Clin Invest 2016; 126:1759-72. [PMID: 27043283 DOI: 10.1172/jci80276] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) cells secrete osteoclastogenic factors that promote osteolytic lesions; however, the identity of these factors is largely unknown. Here, we performed a screen of human myeloma cells to identify pro-osteoclastogenic agents that could potentially serve as therapeutic targets for ameliorating MM-associated bone disease. We found that myeloma cells express high levels of the matrix metalloproteinase MMP-13 and determined that MMP-13 directly enhances osteoclast multinucleation and bone-resorptive activity by triggering upregulation of the cell fusogen DC-STAMP. Moreover, this effect was independent of the proteolytic activity of the enzyme. Further, in mouse xenograft models, silencing MMP-13 expression in myeloma cells inhibited the development of osteolytic lesions. In patient cohorts, MMP-13 expression was localized to BM-associated myeloma cells, while elevated MMP-13 serum levels were able to correctly predict the presence of active bone disease. Together, these data demonstrate that MMP-13 is critical for the development of osteolytic lesions in MM and that targeting the MMP-13 protein - rather than its catalytic activity - constitutes a potential approach to mitigating bone disease in affected patients.
Collapse
|
30
|
Turner RJ, Sharp FR. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke. Front Cell Neurosci 2016; 10:56. [PMID: 26973468 PMCID: PMC4777722 DOI: 10.3389/fncel.2016.00056] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/22/2016] [Indexed: 02/03/2023] Open
Abstract
Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA) treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke.
Collapse
Affiliation(s)
- Renée J Turner
- Discipline of Anatomy and Pathology, Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide Adelaide, SA, Australia
| | - Frank R Sharp
- Department of Neurology, MIND Institute, University of California at Davis Medical Center Sacramento, CA, USA
| |
Collapse
|
31
|
Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6927328. [PMID: 26925194 PMCID: PMC4748094 DOI: 10.1155/2016/6927328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/26/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022]
Abstract
Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.
Collapse
|
32
|
Lemmens K, Bollaerts I, Bhumika S, de Groef L, Van Houcke J, Darras VM, Van Hove I, Moons L. Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system. J Comp Neurol 2015; 524:1472-93. [PMID: 26509469 DOI: 10.1002/cne.23920] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/01/2023]
Abstract
Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp-2 and -13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp-2 and -9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp-14 expression decreased during regeneration. Altogether, a phase-dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron-intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472-1493, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kim Lemmens
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Ilse Bollaerts
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Stitipragyan Bhumika
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Lies de Groef
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Jessie Van Houcke
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Leiton CV, Aranmolate A, Eyermann C, Menezes MJ, Escobar-Hoyos LF, Husain S, Winder SJ, Colognato H. Laminin promotes metalloproteinase-mediated dystroglycan processing to regulate oligodendrocyte progenitor cell proliferation. J Neurochem 2015; 135:522-38. [PMID: 26171643 DOI: 10.1111/jnc.13241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 01/26/2023]
Abstract
The cell surface receptor dystroglycan mediates interactions between oligodendroglia and laminin-211, an extracellular matrix protein that regulates timely oligodendroglial development. However, dystroglycan's precise role in oligodendroglial development and the potential mechanisms to regulate laminin-dystroglycan interactions remain unknown. Here we report that oligodendroglial dystroglycan is cleaved by metalloproteinases, thereby uncoupling oligodendroglia from laminin binding. Dystroglycan cleavage is selectively stimulated by oligodendrocyte progenitor cell attachment to laminin-211, but not laminin-111 or poly-D-lysine. In addition, dystroglycan cleavage occurs most prominently in oligodendrocyte progenitor cells, with limited dystroglycan cleavage observed in differentiating oligodendrocytes. When dystroglycan cleavage is blocked by metalloproteinase inhibitors, oligodendrocyte progenitor cell proliferation is substantially decreased. Conversely, expression of the intracellular portion of cleaved dystroglycan results in increased oligodendrocyte progenitor cell proliferation, suggesting that endogenous dystroglycan cleavage may promote oligodendrocyte progenitor cell cycle progression. Intriguingly, while matrix metalloproteinase-2 and/or -9 have been reported to be responsible for dystroglycan cleavage, we find that these two metalloproteinases are neither necessary nor sufficient for cleavage of oligodendroglial dystroglycan. In summary, laminin-211 stimulates metalloproteinase-mediated dystroglycan cleavage in oligodendrocyte progenitor cells (but not in differentiated oligodendrocytes), which in turn promotes oligodendrocyte progenitor cell proliferation. This novel regulation of oligodendroglial laminin-dystroglycan interactions may have important consequences for oligodendroglial differentiation, both during development and during disease when metalloproteinase levels become elevated.
Collapse
Affiliation(s)
- Cindy V Leiton
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Azeez Aranmolate
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Christopher Eyermann
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Michael J Menezes
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Luisa F Escobar-Hoyos
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Solomon Husain
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
34
|
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 2015; 1623:30-8. [PMID: 25916577 DOI: 10.1016/j.brainres.2015.04.024] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 01/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are important in injury and recovery in ischemic injury. They are proteolytic enzymes that degrade all components of the extracellular matrix (ECM). They are secreted in a latent form, protecting the cell from damage, but once activated induce injury prior to rapid inactivation by four tissue inhibitors to metalloproteinases (TIMPs). Normally the constitutive enzymes, MMP-2 and membrane type MMP (MMP-14), are activated in a spatially specific manner and act close to the site of activation, while the inducible enzymes, MMP-3 and MMP-9, become active through the action of free radicals and other enzymes during neuroinflammation. Because of the complex nature of the interactions with tissues during development, injury and repair, the MMPs have multiple roles, participating in the injury process in the early stages and contributing to recovery during the later stages. This dual role complicates the planning of treatment strategies. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
35
|
Sîrbulescu RF, Ilieş I, Zupanc GKH. Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis. Mol Cell Neurosci 2015; 68:9-23. [PMID: 25827096 DOI: 10.1016/j.mcn.2015.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of highly conserved zinc-dependent proteases involved in both development and pathogenesis. The present study examines the role of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in adult neurogenesis, using the corpus cerebelli, a subdivision of the cerebellum, of knifefish (Apteronotus leptorhynchus) as a model system. Transcripts of five isoforms of these gelatinases were identified in the central nervous system of this species. Sequence similarity analysis and homology modeling indicated that functionally and structurally critical elements were highly conserved in knifefish gelatinases. Immunohistochemical staining revealed a differential distribution of MMP-2 and MMP-9 at both the cellular and subcellular level. MMP-2 expression was found mainly in Sox2-immunopositive stem/progenitor cells, both quiescent and mitotically active; and was localized in both the cytoplasmic compartment and the nucleus. By contrast, MMP-9 immunoreactivity was absent in neurogenic niches and displayed a more homogenous distribution, with low to moderate intensity levels, in the molecular and granular layers. MMP-9 expression appeared to be restricted to the extracellular space. In situ zymography indicated that gelatinase activity matched the cellular and subcellular distributions of the two MMPs. The observed patterns of gelatinase activity and expression support the hypothesis that MMP-2 is primarily involved in regulation of the activity of stem/progenitor cells that give rise to new granule neurons, whereas MMP-9 facilitates migration of the progeny of these cells by proteolysis of extracellular matrix proteins.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Iulian Ilieş
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
36
|
de Castro Brás LE, Cates CA, DeLeon-Pennell KY, Ma Y, Iyer RP, Halade GV, Yabluchanskiy A, Fields GB, Weintraub ST, Lindsey ML. Citrate synthase is a novel in vivo matrix metalloproteinase-9 substrate that regulates mitochondrial function in the postmyocardial infarction left ventricle. Antioxid Redox Signal 2014; 21:1974-85. [PMID: 24382150 PMCID: PMC4208600 DOI: 10.1089/ars.2013.5411] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). RESULTS We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p<0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p<0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. INNOVATION By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. CONCLUSION Our data suggest that MMP-9 deletion improves mitochondrial function post-MI.
Collapse
|
37
|
Kim YS, Joh TH. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol Ther (Seoul) 2014; 20:133-43. [PMID: 24116286 PMCID: PMC3792209 DOI: 10.4062/biomolther.2012.20.2.133] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 12/01/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are responsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, compartmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain development, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer’s disease, multiple sclerosis, ischemia/reperfusion and Parkinson’s disease. We further highlight accumulating evidence that MMPs might be the culprit in Parkinson’s disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflammation, apoptosis and degradation of α-synuclein and DJ-1. MMP inhibitors could represent potential novel therapeutic strategies for treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoon-Seong Kim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827
| | | |
Collapse
|
38
|
Lenglet S, Montecucco F, Mach F, Schaller K, Gasche Y, Copin JC. Analysis of the expression of nine secreted matrix metalloproteinases and their endogenous inhibitors in the brain of mice subjected to ischaemic stroke. Thromb Haemost 2014; 112:363-78. [PMID: 24671655 DOI: 10.1160/th14-01-0007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty secreted and cell-surface endopeptidases. Among them, MMP2, MMP3 and MMP9 are involved in blood-brain barrier injury and neuronal death after cerebral ischaemia. On the other hand, very little is known about the expression of the other secreted MMPs. Herein, we compared the global changes in MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP12 and MMP13, and their endogenous inhibitors TIMP1 and TIMP2, both at the mRNA and protein levels, during the hyperacute (6 h), acute (24 h) and subacute (72 h) stages following transient focal cerebral ischaemia and treatment with recombinant tissue plasminogen activator (rtPA). We observed a significant increase in MMP1, MMP2, MMP9, MMP10, MMP13 and TIMP1 levels during the acute stage of reperfusion, which was further amplified during the subacute stage for MMP1, MMP2, MMP10 and TIMP1. In general, no change of MMP3, MMP7, MMP8, MMP12 and TIMP2 was observed. However, rtPA treatment induced a rapid increase in MMP1/TIMP2, MMP2/TIMP2, MMP8/TIMP2 and MMP9/TIMP2 ratios during the hyperacute stage of reperfusion compared to saline treatment, which may have potential implications in the early disruption of the blood-brain barrier after rtPA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - J-C Copin
- Jean-Christophe Copin, Division of Cardiology, Fondation for Medical Researches, Avenue de la Roseraie 64, 1205 Geneva, Switzerland, E-mail: ;
| |
Collapse
|
39
|
The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Zuo X, Pan W, Feng T, Shi X, Dai J. Matrix metalloproteinase 3 promotes cellular anti-dengue virus response via interaction with transcription factor NFκB in cell nucleus. PLoS One 2014; 9:e84748. [PMID: 24416274 PMCID: PMC3885614 DOI: 10.1371/journal.pone.0084748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.
Collapse
Affiliation(s)
- Xiangyang Zuo
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Wen Pan
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Xiaohong Shi
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
- * E-mail:
| |
Collapse
|
41
|
Hendry RG, Bilawchuk LM, Marchant DJ. Targeting matrix metalloproteinase activity and expression for the treatment of viral myocarditis. J Cardiovasc Transl Res 2014; 7:212-25. [PMID: 24381086 DOI: 10.1007/s12265-013-9528-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/29/2013] [Indexed: 01/17/2023]
Abstract
Infectious agents including viruses can infect the heart muscle, resulting in the development of heart inflammation called myocarditis. Chronic myocarditis can lead to dilated cardiomyopathy (DCM). DCM develops from the extensive extracellular matrix (ECM) remodeling caused by myocarditis and may result in heart failure. Epidemiological data for viral myocarditis has long suggested a worse pathology in males, with more recent data demonstrating sex-dependent pathogenesis in DCM as well. Matrix metalloproteinases (MMPs), long known modulators of the extracellular matrix, have important roles in mediating heart inflammation and remodeling during disease and in convalescence. This ability of MMPs to control both the inflammatory response and ECM remodeling during myocarditis makes them potential drug targets. In this review, we analyze the role of MMPs in mediating myocarditis/DCM disease progression, their sex-dependent expression, and their potential as drug targets during viral myocarditis and DCM.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/virology
- Extracellular Matrix/metabolism
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Male
- Matrix Metalloproteinase Inhibitors/therapeutic use
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Molecular Targeted Therapy
- Myocarditis/drug therapy
- Myocarditis/enzymology
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/virology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/virology
- Sex Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Reid G Hendry
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
42
|
Hernández-Guillamon M, Ortega L, Merino-Zamorano C, Campos-Martorell M, Rosell A, Montaner J. Mild hypothermia protects against oxygen glucose deprivation (OGD)-induced cell death in brain slices from adult mice. J Neural Transm (Vienna) 2013; 121:113-7. [DOI: 10.1007/s00702-013-1090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
|
43
|
Morancho A, Hernández-Guillamon M, Boada C, Barceló V, Giralt D, Ortega L, Montaner J, Rosell A. Cerebral ischaemia and matrix metalloproteinase-9 modulate the angiogenic function of early and late outgrowth endothelial progenitor cells. J Cell Mol Med 2013; 17:1543-53. [PMID: 23945132 PMCID: PMC3914647 DOI: 10.1111/jcmm.12116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022] Open
Abstract
The enhancement of endogenous angiogenesis after stroke will be critical in neurorepair therapies where endothelial progenitor cells (EPCs) might be key players. Our aim was to determine the influence of cerebral ischaemia and the role of matrix metalloproteinase-9 (MMP-9) on the angiogenic function of EPCs. Permanent focal cerebral ischaemia was induced by middle cerebral artery (MCA) occlusion in MMP-9/knockout (MMP-9/KO) and wild-type (WT) mice. EPCs were obtained for cell counting after ischaemia (6 and 24 hrs) and in control animals. Matrigel(™) assays and time-lapse imaging were conducted to monitor angiogenic function of WT and MMP9-deficient EPCs or after treatment with MMP-9 inhibitors. Focal cerebral ischaemia increased the number of early EPCs, while MMP-9 deficiency decreased their number in non-ischaemic mice and delayed their release after ischaemia. Late outgrowth endothelial cells (OECs) from ischaemic mice shaped more vessel structures than controls, while MMP-9 deficiency reduced the angiogenic abilities of OECs to form vascular networks, in vitro. Treatment with the MMP inhibitor GM6001 and the specific MMP-9 inhibitor I also decreased the number of vessel structures shaped by both human and mouse WT OECs, while exogenous MMP-9 could not revert the impaired angiogenic function in MMP-9/KO OECs. Finally, time-lapse imaging showed that the extension of vascular networks was influenced by cerebral ischaemia and MMP-9 deficiency early during the vascular network formation followed by a dynamic vessel remodelling. We conclude that focal cerebral ischaemia triggers the angiogenic responses of EPCs, while MMP-9 plays a key role in the formation of vascular networks by EPCs.
Collapse
Affiliation(s)
- Anna Morancho
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zimowska M, Swierczynska M, Ciemerych MA. Nuclear MMP-9 role in the regulation of rat skeletal myoblasts proliferation. Biol Cell 2013; 105:334-44. [DOI: 10.1111/boc.201300020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/30/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Malgorzata Zimowska
- Department of Cytology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw; Poland
| | - Marta Swierczynska
- Department of Cytology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw; Poland
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw; Poland
| |
Collapse
|
45
|
Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium. J Neurosci 2013; 32:14927-41. [PMID: 23100416 DOI: 10.1523/jneurosci.1588-12.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their related gene products regulate essential cellular functions. An imbalance in MMPs has been implicated in various neurological disorders, including traumatic injuries. Here, we report a role for MMPs and their related gene products in the modulation of cochlear responses to acoustic trauma in rats. The normal cochlea was shown to be enriched in MMP enzymatic activity, and this activity was reduced in a time-dependent manner after traumatic noise injury. The analysis of gene expression by RNA sequencing and qRT-PCR revealed the differential expression of MMPs and their related genes between functionally specialized regions of the sensory epithelium. The expression of these genes was dynamically regulated between the acute and chronic phases of noise-induced hearing loss. Moreover, noise-induced expression changes in two endogenous MMP inhibitors, Timp1 and Timp2, in sensory cells were dependent on the stage of nuclear condensation, suggesting a specific role for MMP activity in sensory cell apoptosis. A short-term application of doxycycline, a broad-spectrum inhibitor of MMPs, before noise exposure reduced noise-induced hearing loss and sensory cell death. In contrast, a 7 d treatment compromised hearing sensitivity and potentiated noise-induced hearing loss. This detrimental effect of the long-term inhibition of MMPs on noise-induced hearing loss was further confirmed using targeted Mmp7 knock-out mice. Together, these observations suggest that MMPs and their related genes participate in the regulation of cochlear responses to acoustic overstimulation and that the modulation of MMP activity can serve as a novel therapeutic target for the reduction of noise-induced cochlear damage.
Collapse
|
46
|
Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 2012; 13:743-57. [PMID: 23047773 PMCID: PMC4900464 DOI: 10.1038/nrn3320] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biological Sciences, The Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
47
|
Hill JW, Poddar R, Thompson JF, Rosenberg GA, Yang Y. Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen-glucose deprivation in neurons. Neuroscience 2012; 220:277-90. [PMID: 22710064 DOI: 10.1016/j.neuroscience.2012.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 11/16/2022]
Abstract
Degradation of the extracellular matrix by elevated matrix metalloproteinase (MMP) activity following ischemia/reperfusion is implicated in blood-brain barrier disruption and neuronal death. In contrast to their characterized extracellular roles, we previously reported that elevated intranuclear MMP-2 and -9 (gelatinase) activity degrades nuclear DNA repair proteins and promotes accumulation of oxidative DNA damage in neurons in rat brain at 3-h reperfusion after ischemic stroke. Here, we report that treatment with a broad-spectrum MMP inhibitor significantly reduced neuronal apoptosis in rat ischemic hemispheres at 48-h reperfusion after a 90-min middle cerebral artery occlusion (MCAO). Since extracellular gelatinases in brain tissue are known to be neurotoxic during acute stroke, the contribution of intranuclear MMP-2 and -9 activities in neurons to neuronal apoptosis has been unclear. To confirm and extend our in vivo observations, oxygen-glucose deprivation (OGD), an in vitro model of ischemia/reperfusion, was employed. Primary cortical neurons were subjected to 2-h OGD with reoxygenation. Increased intranuclear gelatinase activity was detected immediately after reoxygenation onset and was maximal at 24h, while extracellular gelatinase levels remained unchanged. We detected elevated levels of both MMP-2 and -9 in neuronal nuclear extracts and gelatinase activity in neurons co-localized primarily with MMP-2. We found a marked decrease in PARP1, XRCC1, and OGG1, and decreased PARP1 activity. Pretreatment of neurons with selective MMP-2/9 inhibitor II significantly decreased gelatinase activity and downregulation of DNA repair enzymes, decreased accumulation of oxidative DNA damage, and promoted neuronal survival after OGD. Our results confirm the nuclear localization of gelatinases and their nuclear substrates observed in an animal stroke model, further supporting a novel role for intranuclear gelatinase activity in an intrinsic apoptotic pathway in neurons during acute stroke injury.
Collapse
Affiliation(s)
- J W Hill
- University of New Mexico Health Sciences Center, Department of Neurology, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Matrix metalloproteinases (MMPs) were originally identified as matrixin proteases that act in the extracellular matrix. Recent works have uncovered nontraditional roles for MMPs in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized matrixins participate in many physiological and pathological cellular processes, in which they can act as both degradative and regulatory proteases. In this review, we discuss the transcriptional and translational control of matrixin expression, their regulation of intracellular sorting, and the structural basis of activation and inhibition. In particular, we highlight the emerging roles of various matrixin forms in diseases. The activity of matrix metalloproteinases is regulated at several levels, including enzyme activation, inhibition, complex formation and compartmentalization. Most MMPs are secreted and have their function in the extracellular environment. MMPs are also found inside cells, both in the nucleus, cytosol and organelles. The role of intracellular located MMPs is still poorly understood, although recent studies have unraveled some of their functions. The localization, activation and activity of MMPs are regulated by their interactions with other proteins, proteoglycan core proteins and / or their glycosaminoglycan chains, as well as other molecules. Complexes formed between MMPs and various molecules may also include interactions with noncatalytic sites. Such exosites are regions involved in substrate processing, localized outside the active site, and are potential binding sites of specific MMP inhibitors. Knowledge about regulation of MMP activity is essential for understanding various physiological processes and pathogenesis of diseases, as well as for the development of new MMP targeting drugs.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo of Urbino, Via O. Ubaldini 7, 61029 Urbino (PU), Italy.
| | | |
Collapse
|
49
|
Pirici D, Pirici I, Mogoanta L, Margaritescu O, Tudorica V, Margaritescu C, Ion DA, Simionescu C, Coconu M. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke. Neuropathology 2011; 32:492-504. [PMID: 22151540 DOI: 10.1111/j.1440-1789.2011.01279.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology.
Collapse
Affiliation(s)
- Daniel Pirici
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349 Craiova-Dolj, România.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today 2011; 16:762-78. [PMID: 21745586 DOI: 10.1016/j.drudis.2011.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/24/2011] [Accepted: 06/27/2011] [Indexed: 12/11/2022]
Abstract
Deficient blood supply (ischemia) is a common consequence of some surgical procedures and certain pathologies. Once blood circulation is re-established (reperfusion), a complex series of events results in recruitment of inflammatory cells, rearrangement of the extracellular matrix and induction of cell death, which lead to organ dysfunction. Although ischemia/reperfusion (I/R) injury is an important cause of death, there is no effective therapy targeting the molecular mechanism of disease progression. Matrix metalloproteinases (MMPs), which are important regulators of many cellular activities, have a central role in disease progression after I/R injury, as suggested by numerous studies using MMP inhibitors or MMP-deficient mice. Here, we review the involvement of MMP activity in the various processes following I/R injury and the therapeutic potential of MMP inhibition.
Collapse
|