1
|
Ameen AO, Nielsen SW, Kjær MW, Andersen JV, Westi EW, Freude KK, Aldana BI. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate. J Cereb Blood Flow Metab 2024:271678X241270457. [PMID: 39340267 DOI: 10.1177/0271678x241270457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Disruptions to the gut-brain-axis have been linked to neurodegenerative disorders. Of these disruptions, reductions in the levels of short-chain fatty acids (SCFAs), like butyrate, have been observed in mouse models of Alzheimer's disease (AD). Butyrate supplementation in mice has shown promise in reducing neuroinflammation, amyloid-β accumulation, and enhancing memory. However, the underlying mechanisms remain unclear. To address this, we investigated the impact of butyrate on energy metabolism in mouse brain slices, primary cultures of astrocytes and neurons and in-vivo by dynamic isotope labelling with [U-13C]butyrate and [1,2-13C]acetate to map metabolism via mass spectrometry. Metabolic competition assays in cerebral cortical slices revealed no competition between butyrate and the ketone body, β-hydroxybutyrate, but competition with acetate. Astrocytes favoured butyrate metabolism compared to neurons, suggesting that the astrocytic compartment is the primary site of butyrate metabolism. In-vivo metabolism investigated in the 5xFAD mouse, an AD pathology model, showed no difference in 13C-labelling of TCA cycle metabolites between wild-type and 5xFAD brains, but butyrate metabolism remained elevated compared to acetate in both groups, indicating sustained uptake and metabolism in 5xFAD mice. Overall, these findings highlight the role of astrocytes in butyrate metabolism and the potential use of butyrate as an alternative brain fuel source.
Collapse
Affiliation(s)
- Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian W Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin W Kjær
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
McKenna MC, Sonnewald U, Waageptersen HS, White HS. A tribute to Arne Schousboe's contributions to neurochemistry and his innovative and enduring research in GABA, glutamate, and brain energy metabolism. J Neurochem 2024. [PMID: 39183580 DOI: 10.1111/jnc.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
This is a tribute to Arne Schousboe, Professor Emeritus at the University of Copenhagen, an eminent neurochemist and neuroscientist who was a leader in the fields of GABA, glutamate, and brain energy metabolism. Arne was known for his keen intellect, his wide-ranging expertise in neurochemistry and neuropharmacology of GABA and glutamate and brain energy metabolism. Arne was also known for his strong leadership, his warm and engaging personality and his enjoyment of fine wine and great food shared with friends, family, and colleagues. Sadly, Arne passed away on February 27, 2024, after a short illness. He is survived by his wife Inger Schousboe, his two children, and three wonderful grandchildren. His death is a tremendous loss to the neuroscience community. He will be greatly missed by his friends, family, and colleagues. Some of the highlights of Arne's career are described in this tribute.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ursula Sonnewald
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - H Steve White
- Department of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Rothman DL, Behar KL, Dienel GA. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 2024; 168:555-591. [PMID: 36089566 DOI: 10.1111/jnc.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
5
|
Serrano-Castro PJ, Rodríguez-Uranga JJ, Cabezudo-García P, García-Martín G, Romero-Godoy J, Estivill-Torrús G, Ciano-Petersen NL, Oliver B, Ortega-Pinazo J, López-Moreno Y, Aguilar-Castillo MJ, Gutierrez-Cardo AL, Ramírez-García T, Sanchez-Godoy L, Carreño M. Cenobamate and Clobazam Combination as Personalized Medicine in Autoimmune-Associated Epilepsy With Anti-Gad65 Antibodies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200151. [PMID: 37607753 PMCID: PMC10443460 DOI: 10.1212/nxi.0000000000200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Autoimmune-associated epilepsy (AAE) with antiglutamic acid decarboxylase 65 (GAD65) antibodies is considered a T-cell-mediated encephalitis that evolves to drug-resistant epilepsy. We do not have an effective therapeutic strategy for these patients. Because the GAD enzyme is primarily responsible for the conversion of glutamate to GABA, the mechanism of epileptogenesis in this condition predicts decreased levels of GABA content in synaptic vesicles. Cenobamate (CNB) acts as a positive allosteric modulator at synaptic and extra synaptic GABAA receptors, producing increased inhibitory neurotransmission in the brain. This mechanism could be especially beneficial in AAE with anti-GAD65 antibodies because it would be able to correct the imbalance due to the GABAergic stimulation deficit in postsynaptic neurons. METHODS We recruit a retrospective multicentric consecutive case series of AAE with anti-GAD65 antibodies from 5 epilepsy units in Spain who have received treatment with CNB. RESULTS A total of 8 patients were recruited. This cohort of highly refractory patients have failed a mean of 9.50 (SD = 3.20) ASM without control of seizures for sustained periods of time. The average number of seizures per month during the previous 3 months before CNB treatment was 19.63 (SD = 17.03). After the introduction of CNB improvement was achieved in all our patients, with a median reduction in the number of seizures of 92.22% (interquartile range [IQR]: 57.25-98.75). The mean follow-up was 156.75 days (SD = 68.23). In patients with concomitant treatment with clobazam (CLB), the median percentage of seizure reduction was higher than those not taking CLB: 94.72% (IQR: 87.25-100) vs 41.50% (p = 0.044) and also higher than the control group of patients with refractory epilepsy not related to anti-GAD65 treated with the same combination: 94.72% (IQR: 87.25-100) vs 45.00% (IQR: 25.00-87.00) (p = 0.019). DISCUSSION Treatment with the combination CNB + CLB could be a type of personalized medicine in patients with AAE with anti-GAD65. Our preliminary data will need to be endorsed with new prospective and controlled studies.
Collapse
Affiliation(s)
- Pedro J Serrano-Castro
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain.
| | - Juan J Rodríguez-Uranga
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Pablo Cabezudo-García
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain.
| | - Guillermina García-Martín
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Jorge Romero-Godoy
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Guillermo Estivill-Torrús
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Nicolás Lundahl Ciano-Petersen
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Begoña Oliver
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Jesús Ortega-Pinazo
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Yolanda López-Moreno
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Maria J Aguilar-Castillo
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Antonio L Gutierrez-Cardo
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Teresa Ramírez-García
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Lorenzo Sanchez-Godoy
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| | - Mar Carreño
- From the Epilepsy Unit, Regional University Hospital of Málaga (P.J.S.-C., P.C.-G., G.G.-M., Y.L.-M); Institute for Biomedical Research of Málaga (IBIMA-Plataforma Bionand), Málaga (P.J.S.-C., P.C.-G., G.G.-M., N.L.C.-P., B.O., G.E.-T., J.O.-P., T.R.-G., L.S.-G.); Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), Spain (P.J.S.-C., J.J.R.-U., P.C.-G., G.G.-M., B.O.) University of Málaga (P.J.S.-C., B.O.); Vithas Hospital of Málaga, Spain (P.J.S.-C., P.C.-G.); Epilepsy Unit, Center for Avanced Neurology of Seville (J.J.R.-U.); Epilepsy Unit, Virgen de la Victoria University Hospital of Málaga (J.R.-G.), Biotechnology Unit, Regional University Hospital of Málaga (M.J.A.-C., L.S.-G.); Nuclear Medicina Unit, Regional University Hospital of Málaga (A.L.G.-C.); Epilepsy Unit, Clinic Hospital of Barcelona (M.C.), August Pi i Sunyer Biomedical Research Institute, Barcelona (M.C.), European Reference Network for Rare and Complex Epilepsies (EPICARE) (M.C.), Spain
| |
Collapse
|
6
|
Karkala A, Tzinas A, Kotoulas S, Zacharias A, Sourla E, Pataka A. Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms. Neuroimmunomodulation 2023; 30:237-249. [PMID: 37757765 DOI: 10.1159/000533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.
Collapse
Affiliation(s)
- Aliki Karkala
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Tzinas
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Zacharias
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Sourla
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Pataka
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Liu D, Fujihara K, Yanagawa Y, Mushiake H, Ohshiro T. Gad1 knock-out rats exhibit abundant spike-wave discharges in EEG, exacerbated with valproate treatment. Front Neurol 2023; 14:1243301. [PMID: 37830095 PMCID: PMC10566305 DOI: 10.3389/fneur.2023.1243301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Objective To elucidate the functional role of gamma-aminobutyric acid (GABA)-ergic inhibition in suppressing epileptic brain activities such as spike-wave discharge (SWD), we recorded electroencephalogram (EEG) in knockout rats for Glutamate decarboxylase 1 (Gad1), which encodes one of the two GABA-synthesizing enzymes in mammals. We also examined how anti-epileptic drug valproate (VPA) acts on the SWDs present in Gad1 rats and affects GABA synthesis in the reticular thalamic nucleus (RTN), which is known to play an essential role in suppressing SWD. Methods Chronic EEG recordings were performed in freely moving control rats and homozygous knockout Gad1 (-/-) rats. Buzzer tones (82 dB) were delivered to the rats during EEG monitoring to test whether acoustic stimulation could interrupt ongoing SWDs. VPA was administered orally to the rats, and the change in the number of SWDs was examined. The distribution of GABA in the RTN was examined immunohistochemically. Results SWDs were abundant in EEG from Gad1 (-/-) rats as young as 2 months old. Although SWDs were universally detected in older rats irrespective of their Gad1 genotype, SWD symptom was most severe in Gad1 (-/-) rats. Acoustic stimulation readily interrupted ongoing SWDs irrespective of the Gad1 genotype, whereas SWDs were more resistant to interruption in Gad1 (-/-) rats. VPA treatment alleviated SWD symptoms in control rats, however, counterintuitively exacerbated the symptoms in Gad1 (-/-) rats. The immunohistochemistry results indicated that GABA immunoreactivity was significantly reduced in the somata of RTN neurons in Gad1 (-/-) rats but not in their axons targeting the thalamus. VPA treatment greatly increased GABA immunoreactivity in the RTN neurons of Gad1 (-/-) rats, which is likely due to the intact GAD2, another GAD isozyme, in these neurons. Discussion Our results revealed two opposing roles of GABA in SWD generation: suppression and enhancement of SWD. To account for these contradictory roles, we propose a model in which GABA produced by GAD1 in the RTN neuronal somata is released extrasynaptically and mediates intra-RTN inhibition.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazuyuki Fujihara
- Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hajime Mushiake
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
9
|
Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023; 67:77-91. [PMID: 36806927 DOI: 10.1042/ebc20220208] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.
Collapse
|
10
|
Yang Y, Ren L, Li W, Zhang Y, Zhang S, Ge B, Yang H, Du G, Tang B, Wang H, Wang J. GABAergic signaling as a potential therapeutic target in cancers. Biomed Pharmacother 2023; 161:114410. [PMID: 36812710 DOI: 10.1016/j.biopha.2023.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
GABA is the most common inhibitory neurotransmitter in the vertebrate central nervous system. Synthesized by glutamic acid decarboxylase, GABA could specifically bind with two GABA receptors to transmit inhibition signal stimuli into cells: GABAA receptor and GABAB receptor. In recent years, emerging studies revealed that GABAergic signaling not only participated in traditional neurotransmission but was involved in tumorigenesis as well as regulating tumor immunity. In this review, we summarize the existing knowledge of the GABAergic signaling pathway in tumor proliferation, metastasis, progression, stemness, and tumor microenvironment as well as the underlying molecular mechanism. We also discussed the therapeutical advances in targeting GABA receptors to provide the theoretical basis for pharmacological intervention of GABAergic signaling in cancer treatment especially immunotherapy.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Bryson A, Reid C, Petrou S. Fundamental Neurochemistry Review: GABA A receptor neurotransmission and epilepsy: Principles, disease mechanisms and pharmacotherapy. J Neurochem 2023; 165:6-28. [PMID: 36681890 DOI: 10.1111/jnc.15769] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations of excitation-inhibition balance within brain neuronal networks. GABAA receptor neurotransmission is the most prevalent form of inhibitory neurotransmission and is strongly implicated in both the pathophysiology and treatment of epilepsy, serving as a primary target for antiseizure medications for over a century. It is now established that GABA exerts a multifaceted influence through an array of GABAA receptor subtypes that extends far beyond simply negating excitatory activity. As the role of GABAA neurotransmission within inhibitory circuits is elaborated, this will enable the development of precision therapies that correct the network dysfunction underlying epileptic pathology.
Collapse
Affiliation(s)
- Alexander Bryson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Zhang J, Lu Q, Xin L, Lou Y, Xiao W, Wang Z, Zhao L, Xiong Z. A liquid chromatography-mass spectrometry untargeted urinary metabonomics combined with quantitative analysis of seven amino acids biomarkers on yaobitong capsule in the intervention of rheumatoid arthritis rats. J Sep Sci 2022; 45:4209-4223. [PMID: 36200630 DOI: 10.1002/jssc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Yaobitong capsule is a compound preparation of traditional Chinese medicine that has been widely applied in disease treatment. To insight into the therapeutic effects of the yaobitong capsule on rheumatoid arthritis and its mechanisms, a liquid chromatography-mass spectrometry untargeted urine metabolomics method was established and validated, combined with the quantitative analysis of seven potential amino acid biomarkers in rat urine. The results showed that 35 potential biomarkers were found in untargeted metabonomics, which was related to amino acid metabolism, lipid metabolism, energy metabolism, and purine metabolism. Moreover, seven amino acid biomarkers, including proline, methionine, glutamic acid, histidine, lysine, cysteine, and glutamine, were further separated and quantified in multiple-reaction monitoring with a positive ionization mode. Then the linearity, standard curves, accuracy, precision, limit of quantitation, recovery, stability, carryover, and matrix effect of the quantitative method were examined. Finally, the validated method was successfully applied to investigate the urine samples of the control group, adjuvant-induced rheumatoid arthritis model group, yaobitong capsule-treatment group, and positive control group in rats. The contents of seven amino acids in different groups showed significant differences. Consequently, our findings revealed that the yaobitong capsule exerted therapeutic effects on rheumatoid arthritis rats by maintaining amino acid homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Qing Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, P. R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| |
Collapse
|
13
|
Priego-Ranero Á, Opdenakker G, Uribe-Uribe N, Aguilar-León D, Nuñez-Álvarez CA, Hernández-Ramírez DF, Olivares-Martínez E, Coss-Adame E, Valdovinos MA, Furuzawa-Carballeda J, Torres-Villalobos G. Autoantigen characterization in the lower esophageal sphincter muscle of patients with achalasia. Neurogastroenterol Motil 2022; 34:e14348. [PMID: 35254715 DOI: 10.1111/nmo.14348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Serum anti-myenteric autoantibodies define autoimmune achalasia and tissue MMP-9 activity may locally process autoantigenic proteins in the muscle of the lower esophageal sphincter (LES) of achalasia patients. METHODS Biopsies of the LES muscle from 36 achalasia patients, 6 esophagogastric junction outflow obstruction (EGJOO) patients, and 16 transplant donors (TD) were compared in a blind cross-sectional study. Histological characteristics such as inflammation, fibrosis, presence of ganglion cells, cells of Cajal, GAD65, PNMA2, S-100, P substance, and MMP-9 proteoforms in tissue were assessed by H&E and Picrosirius Red staining and immunohistochemistry analysis. Anti-neuronal antibodies, onconeural antigens, recoverin, SOX-1, titin, zic4, GAD65, and Tr were evaluated by immunoblot/line assay. KEY RESULTS Tissue of achalasia patients had heterogeneous inflammatory infiltrates with fibrosis and contrasting higher levels of activated MMP-9, as compared with EGJOO and TD. Moreover, lower ganglion cell percentages and cell of Cajal percentages were determined in esophageal tissues of achalasia patients versus TD. The tissues of achalasia versus EGJOO patients had higher GAD65 and PNMA2 protein expression. Unexpectedly, these proteins were absent in TD tissue. S-100 and P substance had similar expression levels in tissues of achalasia patients versus TD and EGJOO. Most of the achalasia sera had anti-GAD65 (83%) and anti-PNMA2 (90%) autoantibodies versus EGJOO (17% and 33%, respectively) and healthy volunteers (10% and 0%, respectively). CONCLUSIONS AND INFERENCES Tissue-specific ectopic expression of GAD65 and PNMA/Ta2 and active MMP-9, associated with the presence of specific autoantibodies directed against these proteins, might participate in the pathophysiology of achalasia triggering and/or perpetuating autoimmune disease.
Collapse
Affiliation(s)
- Ángel Priego-Ranero
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | - Ghislain Opdenakker
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research and University Hospitals UZ Leuven, KU Leuven, University of Leuven, Leuven, Belgium
| | - Norma Uribe-Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | - Diana Aguilar-León
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | - Carlos A Nuñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | - Diego F Hernández-Ramírez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | - Elizabeth Olivares-Martínez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | - Enrique Coss-Adame
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| | | | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico.,Escuela de Medicin, Universidad Panamericana, Ciudad de México
| | - Gonzalo Torres-Villalobos
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico.,Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico CDMX, Mexico
| |
Collapse
|
14
|
Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, Vendramini PH, Valença AGF, Brandão-Teles C, Zuccoli GDS, Reis-de-Oliveira G, Silva-Costa LC, Saia-Cereda VM, Smith BJ, Codo AC, de Souza GF, Muraro SP, Parise PL, Toledo-Teixeira DA, Santos de Castro ÍM, Melo BM, Almeida GM, Firmino EMS, Paiva IM, Silva BMS, Guimarães RM, Mendes ND, Ludwig RL, Ruiz GP, Knittel TL, Davanzo GG, Gerhardt JA, Rodrigues PB, Forato J, Amorim MR, Brunetti NS, Martini MC, Benatti MN, Batah SS, Siyuan L, João RB, Aventurato ÍK, Rabelo de Brito M, Mendes MJ, da Costa BA, Alvim MKM, da Silva Júnior JR, Damião LL, de Sousa IMP, da Rocha ED, Gonçalves SM, Lopes da Silva LH, Bettini V, Campos BM, Ludwig G, Tavares LA, Pontelli MC, Viana RMM, Martins RB, Vieira AS, Alves-Filho JC, Arruda E, Podolsky-Gondim GG, Santos MV, Neder L, Damasio A, Rehen S, Vinolo MAR, Munhoz CD, Louzada-Junior P, Oliveira RD, Cunha FQ, Nakaya HI, Mauad T, Duarte-Neto AN, Ferraz da Silva LF, Dolhnikoff M, Saldiva PHN, Farias AS, Cendes F, Moraes-Vieira PMM, Fabro AT, Sebollela A, Proença-Modena JL, Yasuda CL, Mori MA, Cunha TM, Martins-de-Souza D. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A 2022. [DOI: 10.1073/pnas.2200960119 1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of “long COVID-19” syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell–derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike–NRP1 interaction. SARS-CoV-2–infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Victor C. Carregari
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Flavio P. Veras
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Lucas S. Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Mateus Henrique Nogueira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Pedro Henrique Vendramini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Caroline Brandão-Teles
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Giuliana da Silva Zuccoli
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Lícia C. Silva-Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Verônica Monteiro Saia-Cereda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Bradley J. Smith
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Ana Campos Codo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Gabriela F de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Stéfanie P. Muraro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Pierina Lorencini Parise
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Daniel A. Toledo-Teixeira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Bruno Marcel Melo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Glaucia M. Almeida
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Isadora Marques Paiva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Rafaela Mano Guimarães
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Niele D. Mendes
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Raíssa L. Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Gabriel P. Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Thiago L. Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Gustavo G. Davanzo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Patrícia Brito Rodrigues
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Julia Forato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Mariene Ribeiro Amorim
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Natália S. Brunetti
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Matheus Cavalheiro Martini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Maíra Nilson Benatti
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Sabrina S. Batah
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Li Siyuan
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Rafael B. João
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Ítalo K. Aventurato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Mariana Rabelo de Brito
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Maria J. Mendes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Beatriz A. da Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Marina K. M. Alvim
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - José Roberto da Silva Júnior
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Lívia L. Damião
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Iêda Maria P. de Sousa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Elessandra D. da Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Solange M. Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Luiz H. Lopes da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Vanessa Bettini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Brunno M. Campos
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Guilherme Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Lucas Alves Tavares
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | | | - Ronaldo B. Martins
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Andre Schwambach Vieira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Eurico Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Marcelo Volpon Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Luciano Neder
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Stevens Rehen
- D'Or Institute for Research and Education, 04502001, Brazil
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, 21941590, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Paulo Louzada-Junior
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Renê Donizeti Oliveira
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Fernando Q. Cunha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Thais Mauad
- University of São Paulo, São Paulo, 05508-220, Brazil
| | | | | | | | | | - Alessandro S. Farias
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Fernando Cendes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Pedro Manoel M. Moraes-Vieira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Alexandre T. Fabro
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Adriano Sebollela
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - José L. Proença-Modena
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Clarissa L. Yasuda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Marcelo A. Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Thiago M. Cunha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
- D'Or Institute for Research and Education, 04502001, Brazil
| |
Collapse
|
15
|
Abstract
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Collapse
|
16
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
17
|
Takasu K, Niidome K, Hasegawa M, Ogawa K. Histone Deacetylase Inhibitor Improves the Dysfunction of Hippocampal Gamma Oscillations and Fast Spiking Interneurons in Alzheimer's Disease Model Mice. Front Mol Neurosci 2021; 14:782206. [PMID: 35027883 PMCID: PMC8751405 DOI: 10.3389/fnmol.2021.782206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/05/2022] Open
Abstract
The hippocampal gamma oscillation is important for cognitive function, and its deficit is related to cognitive impairment in Alzheimer's disease (AD). Recently, it has been recognized that post-translational modification via histone acetylation is a fundamental molecular mechanism for regulating synaptic plasticity and cognitive function. However, little is known regarding the regulation of hippocampal gamma oscillation by histone acetylation. We investigated whether histone acetylation regulated kainate-induced gamma oscillations and their important regulator, fast-spiking interneurons, using acute hippocampal slices of AD model mice (PSAPP transgenic mice). We found a decrease in kainate-induced gamma oscillations in slices from PSAPP mice, accompanied with the increased activity of fast spiking interneurons in basal state and the decreased activity in activated state. The histone deacetylase (HDAC) inhibitor (SAHA, named vorinostat) restored deficits of gamma oscillation in PSAPP mice, accompanied with rescue of activity of fast spiking interneurons in basal and activated state. The effect of SAHA was different from that of the clinical AD drug donepezil, which rescued only function of fast spiking interneurons in basal state. Besides, activator of nuclear receptor family 4a (NR4a) receptor (cytosporone B), as one of the epigenetic modification related to HDAC inhibition, rescued the deficits in gamma oscillations in PSAPP mice. These results suggested a novel mechanism in which HDAC inhibition improved impairment of gamma oscillations in PSAPP mice by restoring the activity of fast spiking interneurons both in basal and activated state. The reversal of gamma oscillation deficits by HDAC inhibition and/or NR4a activation appears to be a potential therapeutic target for treating cognitive impairment in AD patients.
Collapse
Affiliation(s)
| | | | | | - Koichi Ogawa
- Pain and Neuroscience, Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
18
|
Long C, Yang Y, Wang Y, Zhang X, Zhang L, Huang S, Yang D, Qiao X, Yang Y, Guo Y. Role of Glutamine-Glutamate/GABA cycle and potential target GLUD2 in alleviation of rheumatoid arthritis by Tripterygium hypoglaucum (levl.) Hutch based on metabolomics and molecular pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114561. [PMID: 34454056 DOI: 10.1016/j.jep.2021.114561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium hypoglaucum (levl.) Hutch (Celastraceae) (THH), as a traditional Chinese medicine, was clinically exploited to treat rheumatoid arthritis (RA), yet the underlying mechanism for this effect remains largely unclear. AIM OF THE STUDY This study aimed to examine the beneficial effects of THH extract (THHE) against rheumatoid arthritis and its regulating role in differential metabolic pathways and potential targets. MATERIALS AND METHODS In the present study, the Lewis rat model with rheumatoid arthritis induced by adjuvant was established and administrated THHE for 14 days. Untargeted/targeted metabolomics analysis were used for determining the changes of differential metabolites, and molecular docking method was further developed to verify predicted targets and investigate the therapeutic mechanism of THH extract on RA. RESULTS The results showed that THH extract could obviously improve body weight, significantly decrease the joint index and swelling degree of the RA model rats to reduce damage in the joint. Meanwhile, THHE could significantly suppress the releases of IL-1α, IL-1β and MMP3, but also the expression levels of IL-4 and IL-10 and percentage of Treg cells were significantly improved, a result consistent with inhibitory effects on multiplication of macrophages, inflammatory cell infiltration and fibro genesis in the synovial tissues. Furthermore, 516 differential metabolites were identified by serum metabolic profiles analysis, including vitamin, organic acids and derivatives, lipids and lipid-like molecule, hormone, amino acids and derivatives, and other compounds, which targeted 47 metabolic pathways highly correlated with immunosuppression, such as citrate cycle (TCA cycle), sphingolipid metabolism, urea cycle, arachidonic acid metabolism and amino acid metabolism (such as Glutamine-Glutamate metabolism). Targeted metabolomics was used to verify that L-Glutamate and Glutamine changed significantly after THHE administration for 14 days, and many active ingredients of THHE could be successfully docked with glutamate dehydrogenase 2 (GLUD2). CONCLUSION This study indicated that the Glutamine-Glutamate/GABA cycle played essential regulation roles in protective effect of THHE on rat RA following adjuvant-induced damage, and GLUD2 as an attractive target also provides great potential for development of therapy agents for rheumatoid arthritis and autoimmune diseases with less unfavorable tolerability profile.
Collapse
Affiliation(s)
- Chengyan Long
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yang Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Li Zhang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Sixing Huang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| |
Collapse
|
19
|
Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation. Neurochem Res 2021; 47:470-480. [PMID: 34623563 DOI: 10.1007/s11064-021-03463-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Glucose and oxygen (O2) are vital to the brain. Glucose metabolism and mitochondria play a pivotal role in this process, culminating in the increase of reactive O2 species. Hexokinase (HK) is a key enzyme on glucose metabolism and is coupled to the brain mitochondrial redox modulation by recycling ADP for oxidative phosphorylation (OXPHOS). GABA shunt is an alternative pathway to GABA metabolism that increases succinate levels, a Krebs cycle intermediate. Although glucose and GABA metabolisms are intrinsically connected, their interplay coordinating mitochondrial function is poorly understood. Here, we hypothesize that the HK and the GABA shunt interact to control mitochondrial metabolism differently in the cortex and the hypothalamus. The GABA shunt stimulated mitochondrial O2 consumption and H2O2 production higher in hypothalamic synaptosomes (HSy) than cortical synaptosomes (CSy). The GABA shunt increased the HK coupled to OXPHOS activity in both population of synaptosomes, but the rate of activation was higher in HSy than CSy. Significantly, malonate and vigabatrin blocked the effects of the GABA shunt in the HK activity coupled to OXPHOS. It indicates that the glucose phosphorylation is linked to GABA and Krebs cycle reactions. Together, these data shed light on the HK and SDH role on the metabolism of each region fed by GABA turnover, which depends on the neurons' metabolic route.
Collapse
|
20
|
Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry 2021; 90:47-57. [PMID: 33892915 PMCID: PMC8243491 DOI: 10.1016/j.biopsych.2021.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Visuospatial working memory (vsWM), which is commonly impaired in schizophrenia, involves information processing across the primary visual cortex, association visual cortex, posterior parietal cortex, and dorsolateral prefrontal cortex (DLPFC). Within these regions, vsWM requires inhibition from parvalbumin-expressing basket cells (PVBCs). Here, we analyzed indices of PVBC axon terminals across regions of the vsWM network in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, tissue sections from the primary visual cortex, association visual cortex, posterior parietal cortex, and DLPFC were immunolabeled for PV, the 65- and 67-kDa isoforms of glutamic acid decarboxylase (GAD65 and GAD67) that synthesize GABA (gamma-aminobutyric acid), and the vesicular GABA transporter. The density of PVBC terminals and of protein levels per terminal was quantified in layer 3 of each cortical region using fluorescence confocal microscopy. RESULTS In comparison subjects, all measures, except for GAD65 levels, exhibited a caudal-to-rostral decline across the vsWM network. In subjects with schizophrenia, the density of detectable PVBC terminals was significantly lower in all regions except the DLPFC, whereas PVBC terminal levels of PV, GAD67, and GAD65 proteins were lower in all regions. A composite measure of inhibitory strength was lower in subjects with schizophrenia, although the magnitude of the diagnosis effect was greater in the primary visual, association visual, and posterior parietal cortices than in the DLPFC. CONCLUSIONS In schizophrenia, alterations in PVBC terminals across the vsWM network suggest the presence of a shared substrate for cortical dysfunction during vsWM tasks. However, regional differences in the magnitude of the disease effect on an index of PVBC inhibitory strength suggest region-specific alterations in information processing during vsWM tasks.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M DeDionisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Voss CM, Arildsen L, Nissen JD, Waagepetersen HS, Schousboe A, Maechler P, Ott P, Vilstrup H, Walls AB. Glutamate Dehydrogenase Is Important for Ammonia Fixation and Amino Acid Homeostasis in Brain During Hyperammonemia. Front Neurosci 2021; 15:646291. [PMID: 34220417 PMCID: PMC8244593 DOI: 10.3389/fnins.2021.646291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Impaired liver function may lead to hyperammonemia and risk for hepatic encephalopathy. In brain, detoxification of ammonia is mediated mainly by glutamine synthetase (GS) in astrocytes. This requires a continuous de novo synthesis of glutamate, likely involving the action of both pyruvate carboxylase (PC) and glutamate dehydrogenase (GDH). An increased PC activity upon ammonia exposure and the importance of PC activity for glutamine synthesis has previously been demonstrated while the importance of GDH for generation of glutamate as precursor for glutamine synthesis has received little attention. We therefore investigated the functional importance of GDH for brain metabolism during hyperammonemia. To this end, brain slices were acutely isolated from transgenic CNS-specific GDH null or litter mate control mice and incubated in aCSF containing [U-13C]glucose in the absence or presence of 1 or 5 mM ammonia. In another set of experiments, brain slices were incubated in aCSF containing 1 or 5 mM 15N-labeled NH4Cl and 5 mM unlabeled glucose. Tissue extracts were analyzed for isotopic labeling in metabolites and for total amounts of amino acids. As a novel finding, we reveal a central importance of GDH function for cerebral ammonia fixation and as a prerequisite for de novo synthesis of glutamate and glutamine during hyperammonemia. Moreover, we demonstrated an important role of the concerted action of GDH and alanine aminotransferase in hyperammonemia; the products alanine and α-ketoglutarate serve as an ammonia sink and as a substrate for ammonia fixation via GDH, respectively. The role of this mechanism in human hyperammonemic states remains to be studied.
Collapse
Affiliation(s)
- Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Arildsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob D Nissen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Medical Centre, Geneva, Switzerland
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Kida E, Walus M, Albertini G, Golabek AA. Long-term voluntary running modifies the levels of proteins of the excitatory/inhibitory system and reduces reactive astrogliosis in the brain of Ts65Dn mouse model for Down syndrome. Brain Res 2021; 1766:147535. [PMID: 34043998 DOI: 10.1016/j.brainres.2021.147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 09/30/2022]
Abstract
We showed previously that voluntary long-term running improved cognition and motor skills, but in an age-dependent manner, in the Ts65Dn mouse model for Down syndrome (DS). Presently, we investigated the effect of running on the levels of some key proteins of the excitatory/inhibitory system, which is impaired in the trisomic brain, and on astroglia, a vital component of this system. Ts65Dn mice had free access to a running wheel for 9-13 months either from weaning or from the age of 7 months. Sedentary Ts65Dn mice served as controls. We found that running modified the levels of four of the seven proteins we tested that are associated with the glutamatergic/GABA-ergic system. Thus, Ts65Dn runners demonstrated increased levels of glutamine synthetase and metabotropic glutamate receptor 1 and decreased levels of glutamate transporter 1 and glutamic acid decarboxylase 65 (GAD65) versus sedentary mice, but of metabotropic glutamate receptor 1 and GAD65 only in the post-weaning cohort. GAD67, ionotropic N-methyl-D-aspartate type receptor subunit 1, and GABAAα5 receptors' levels were similar in runners and sedentary animals. The number of glial fibrillary acidic protein (GFAP)-positive astrocytes and the levels of GFAP were significantly reduced in runners relative to sedentary mice. Our study provides new insight into the mechanisms underlying the beneficial effect of voluntary, sustained running on function of the trisomic brain by identifying the involvement of proteins associated with glutamatergic and GABAergic systems and reduction in reactive astrogliosis.
Collapse
Affiliation(s)
- Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Giorgio Albertini
- Child Development Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
23
|
Wang X, Hu Y, Liu W, Ma Y, Chen X, Xue T, Cui D. Molecular Basis of GABA Hypofunction in Adolescent Schizophrenia-Like Animals. Neural Plast 2021; 2021:9983438. [PMID: 33936193 PMCID: PMC8062182 DOI: 10.1155/2021/9983438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder that NMDA receptor (NMDAR) hypofunction appears centrally involved. Schizophrenia typically emerges in adolescence or early adulthood. Electrophysiological and several neurochemical changes have linked the GABA deficits to abnormal behaviors induced by NMDAR hypofunction. However, few studies have systematically investigated the molecular basis of GABA deficits, especially during adolescence. To address this issue, we transiently administrated MK-801 to mice on PND 10, which exhibited schizophrenia-relevant deficits in adolescence. Slice recording showed reduced GABA transmission and PVI+ hypofunction, indicating GABAergic hypofunction. Cortical proteomic evaluation combined with analysis of single cell data from the Allen Brain showed that various metabolic processes were enriched in top ranks and differentially altered in excitatory neurons, GABAergic interneurons, and glial cells. Notably, the GABA-related amino acid metabolic process was disturbed in both astrocytes and interneurons, in which we found a downregulated set of GABA-related proteins (GAD65, SYNPR, DBI, GAT3, SN1, and CPT1A). They synergistically regulate GABA synthesis, release, reuptake, and replenishment. Their downregulation indicates impaired GABA cycle and homeostasis regulated by interneuron-astrocyte communication in adolescence. Our findings on molecular basis of GABA deficits could provide potential drug targets of GABAergic rescue for early prevention and intervention.
Collapse
Affiliation(s)
- Xiaodan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Hu
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenxin Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuanyuan Ma
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xi Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals. Pharmacol Rep 2021; 73:971-983. [PMID: 33743175 DOI: 10.1007/s43440-021-00249-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 01/14/2023]
Abstract
The nucleus accumbens (NAc) is a terminal region of mesocorticolimbic dopamine (DA) neuronal projections from the ventral tegmental area. Accumbal DA release is integrated by afferents from other brain regions and by interneurons, which involve a diversity of neurotransmitters and neuropeptides. These integrative processes, implicated in the pathobiology of neuropsychiatric disorders, are mediated via receptor subtypes whose relative roles in the regulation of accumbal DA release are poorly understood. Such complex interactions are exemplified by how selective activation of opioid receptor subtypes enhances accumbal DA efflux in a manner that is modulated by changes in neural activity through GABA receptor subtypes. This review delineates the roles of GABAA and GABAB receptors in GABAergic neural mechanisms in NAc that participate in delta- and mu-opioid receptor-mediated increases in accumbal DA efflux in freely moving rats, focusing on studies using in vivo brain microdialysis. First, we consider how endogenous GABA exerts inhibition of accumbal DA efflux through GABA receptor subtypes. We also consider possible intra-neuronal source of the endogenous GABA that inhibits accumbal DA efflux. As NAc contains GABAergic neurons that express delta- or mu-opioid receptors, inhibition of accumbal GABAergic neurons is a candidate for mediating delta- or mu-opioid receptor-mediated increases in accumbal DA efflux. Therefore, we provide a detailed analysis of the effects of GABA receptor subtype ligands on delta- and mu-opioid receptor-mediated accumbal DA efflux. Finally, we present an integrative model to explain the mechanisms of interaction among delta- and mu-opioid receptors, GABAergic neurons and DAergic neurons in NAc.
Collapse
|
25
|
Astroglial contribution to tau-dependent neurodegeneration. Biochem J 2020; 476:3493-3504. [PMID: 31774919 DOI: 10.1042/bcj20190506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023]
Abstract
Astrocytes, by maintaining an optimal environment for neuronal function, play a critical role in proper function of mammalian nervous system. They regulate synaptic transmission and plasticity and protect neurons against toxic insults. Astrocytes and neurons interact actively via glutamine-glutamate cycle (GGC) that supports neuronal metabolic demands and neurotransmission. GGC deficiency may be involved in different diseases of the brain, where impaired astrocytic control of glutamate homeostasis contributes to neuronal dysfunction. This includes tau-dependent neurodegeneration, where astrocytes lose key molecules involved in regulation of glutamate/glutamine homeostasis, neuronal survival and synaptogenesis. Astrocytic dysfunction in tauopathy appears to precede neurodegeneration and overt tau neuropathology such as phosphorylation, aggregation and formation of neurofibrillary tangles. In this review, we summarize recent studies demonstrating that activation of astrocytes is strictly associated with neurodegenerative processes including those involved in tau related pathology. We propose that astrocytic dysfunction, by disrupting the proper neuron-glia signalling early in the disease, significantly contributes to tauopathy pathogenesis.
Collapse
|
26
|
Ge MM, Chen SP, Zhou YQ, Li Z, Tian XB, Gao F, Manyande A, Tian YK, Yang H. The therapeutic potential of GABA in neuron-glia interactions of cancer-induced bone pain. Eur J Pharmacol 2019; 858:172475. [DOI: 10.1016/j.ejphar.2019.172475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
|
27
|
Disruption of Selenium Handling During Puberty Causes Sex-Specific Neurological Impairments in Mice. Antioxidants (Basel) 2019; 8:antiox8040110. [PMID: 31022880 PMCID: PMC6523490 DOI: 10.3390/antiox8040110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Selenium is an essential trace element linked to normal development and antioxidant defense mechanisms through its incorporation into selenoproteins via the amino acid, selenocysteine (Sec). Male mice lacking both the Se transporter, selenoprotein P (SELENOP), and selenocysteine lyase (Scly), which plays a role in intracellular Se utilization, require Se supplementation for viability and exhibit neuromotor deficits. Previously, we demonstrated that male SELENOP/Scly double knockout (DKO) mice suffer from loss of motor function and audiogenic seizures due to neurodegeneration, both of which are alleviated by prepubescent castration. The current study examined the neuromotor function of female DKO mice using the rotarod and open field test, as well as the effects of dietary Se restriction. Female DKO mice exhibited a milder form of neurological impairment than their male counterparts. This impairment is exacerbated by removal of Se supplementation during puberty. These results indicate there is a critical time frame in which Se supplementation is essential for neurodevelopment. These sex-specific differences may unveil new insights into dietary requirements for this essential nutrient in humans.
Collapse
|
28
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
29
|
Demin KA, Sysoev M, Chernysh MV, Savva AK, Koshiba M, Wappler-Guzzetta EA, Song C, De Abreu MS, Leonard B, Parker MO, Harvey BH, Tian L, Vasar E, Strekalova T, Amstislavskaya TG, Volgin AD, Alpyshov ET, Wang D, Kalueff AV. Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opin Drug Discov 2019; 14:365-378. [PMID: 30793996 DOI: 10.1080/17460441.2019.1575360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Depression is a highly debilitating psychiatric disorder that affects the global population and causes severe disabilities and suicide. Depression pathogenesis remains poorly understood, and the disorder is often treatment-resistant and recurrent, necessitating the development of novel therapies, models and concepts in this field. Areas covered: Animal models are indispensable for translational biological psychiatry, and markedly advance the study of depression. Novel approaches continuously emerge that may help untangle the disorder heterogeneity and unclear categories of disease classification systems. Some of these approaches include widening the spectrum of model species used for translational research, using a broader range of test paradigms, exploring new pathogenic pathways and biomarkers, and focusing more closely on processes beyond neural cells (e.g. glial, inflammatory and metabolic deficits). Expert opinion: Dividing the core symptoms into easily translatable, evolutionarily conserved phenotypes is an effective way to reevaluate current depression modeling. Conceptually novel approaches based on the endophenotype paradigm, cross-species trait genetics and 'domain interplay concept', as well as using a wider spectrum of model organisms and target systems will enhance experimental modeling of depression and antidepressant drug discovery.
Collapse
Affiliation(s)
- Konstantin A Demin
- a Institute of Experimental Medicine , Almazov National Medical Research Centre , St. Petersburg , Russia.,b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Maxim Sysoev
- c Laboratory of Preclinical Bioscreening , Russian Research Center for Radiology and Surgical Technologies , St. Petersburg , Russia.,d Institute of Experimental Medicine , St. Petersburg , Russia
| | - Maria V Chernysh
- b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Anna K Savva
- e Faculty of Biology , St. Petersburg State University , St. Petersburg , Russia
| | | | | | - Cai Song
- h Research Institute of Marine Drugs and Nutrition , Guangdong Ocean University , Zhanjiang , China.,i Marine Medicine Development Center, Shenzhen Institute , Guangdong Ocean University , Shenzhen , China
| | - Murilo S De Abreu
- j Bioscience Institute , University of Passo Fundo (UPF) , Passo Fundo , Brazil
| | | | - Matthew O Parker
- l Brain and Behaviour Lab , School of Pharmacy and Biomedical Science, University of Portsmouth , Portsmouth , UK
| | - Brian H Harvey
- m Center of Excellence for Pharmaceutical Sciences , Division of Pharmacology, School of Pharmacy, North-West University , Potchefstroom , South Africa
| | - Li Tian
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Eero Vasar
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Tatyana Strekalova
- o Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, and Department of Normal Physiology , Sechenov First Moscow State Medical University , Moscow , Russia.,p Laboratory of Cognitive Dysfunctions , Institute of General Pathology and Pathophysiology , Moscow , Russia.,q Department of Neuroscience , Maastricht University , Maastricht , The Netherlands
| | | | - Andrey D Volgin
- g The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell , LA , USA.,r Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia
| | - Erik T Alpyshov
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Dongmei Wang
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Allan V Kalueff
- s School of Pharmacy , Southwest University , Chongqing , China.,t Almazov National Medical Research Centre , St. Petersburg , Russia.,u Ural Federal University , Ekaterinburg , Russia.,v Granov Russian Research Center of Radiology and Surgical Technologies , St. Petersburg , Russia.,w Laboratory of Biological Psychiatry, Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia.,x Laboratory of Translational Biopsychiatry , Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia.,y ZENEREI Institute , Slidell , LA , USA.,z The International Stress and Behavior Society (ISBS), US HQ , New Orleans , LA , USA
| |
Collapse
|
30
|
Mayorquin LC, Rodriguez AV, Sutachan JJ, Albarracín SL. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons. Front Mol Neurosci 2018; 11:118. [PMID: 29695954 PMCID: PMC5905222 DOI: 10.3389/fnmol.2018.00118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/27/2018] [Indexed: 01/24/2023] Open
Abstract
The central nervous system (CNS) requires sophisticated regulation of neuronal activity. This modulation is partly accomplished by non-neuronal cells, characterized by the presence of transmembrane gap junctions (GJs) and hemichannels (HCs). This allows small molecule diffusion to guarantee neuronal synaptic activity and plasticity. Astrocytes are metabolically and functionally coupled to neurons by the uptake, binding and recycling of neurotransmitters. In addition, astrocytes release metabolites, such as glutamate, glutamine, D-serine, adenosine triphosphate (ATP) and lactate, regulating synaptic activity and plasticity by pre- and postsynaptic mechanisms. Uncoupling neuroglial communication leads to alterations in synaptic transmission that can be detrimental to neuronal circuit function and behavior. Therefore, understanding the pathways and mechanisms involved in this intercellular communication is fundamental for the search of new targets that can be used for several neurological disease treatments. This review will focus on molecular mechanisms mediating physiological and pathological coupling between astrocytes and neurons through GJs and HCs.
Collapse
Affiliation(s)
- Lady C Mayorquin
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea V Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon-Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L Albarracín
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
31
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
32
|
Aubrey KR. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles. Neurochem Int 2016; 98:94-102. [PMID: 27296116 DOI: 10.1016/j.neuint.2016.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/21/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
In mammals, fast inhibitory neurotransmission is carried out by two amino acid transmitters, γ-aminobutyric acid (GABA) and glycine. The higher brain uses only GABA, but in the spinal cord and brain stem both GABA and glycine act as inhibitory signals. In some cases GABA and glycine are co-released from the same neuron where they are co-packaged into synaptic vesicles by a shared vesicular inhibitory amino acid transporter, VIAAT (also called vGAT). The vesicular content of all other classical neurotransmitters (eg. glutamate, monoamines, acetylcholine) is determined by the presence of a specialized vesicular transporter. Because VIAAT is non-specific, the phenotype of inhibitory synaptic vesicles is instead predicted to be dependent on the relative concentration of GABA and glycine in the cytosol of the presynaptic terminal. This predicts that changes in GABA or glycine supply should be reflected in vesicle transmitter content but as yet, the mechanisms that control GABA versus glycine uptake into synaptic vesicles and their potential for modulation are not clearly understood. This review summarizes the most relevant experimental data that examines the link between GABA and glycine accumulation in the presynaptic cytosol and the inhibitory vesicle phenotype. The accumulated evidence challenges the hypothesis that vesicular phenotype is determined simply by the competition of inhibitory transmitter for VIAAT and instead suggest that the GABA/glycine balance in vesicles is dynamically regulated.
Collapse
Affiliation(s)
- Karin R Aubrey
- Pain Management Research Institute, Kolling Institute of Medical Research & Northern Clinical School, University of Sydney at Royal North Shore Hospital, Pacific Hwy, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
33
|
Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:9-42. [PMID: 27885625 DOI: 10.1007/978-3-319-45096-4_2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.
Collapse
|
34
|
Kann O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol Dis 2015; 90:75-85. [PMID: 26284893 DOI: 10.1016/j.nbd.2015.08.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022] Open
Abstract
Fast-spiking, inhibitory interneurons - prototype is the parvalbumin-positive (PV+) basket cell - generate action potentials at high frequency and synchronize the activity of numerous excitatory principal neurons, such as pyramidal cells, during fast network oscillations by rhythmic inhibition. For this purpose, fast-spiking, PV+ interneurons have unique electrophysiological characteristics regarding action potential kinetics and ion conductances, which are associated with high energy expenditure. This is reflected in the neural ultrastructure by enrichment with mitochondria and cytochrome c oxidase, indicating the dependence on oxidative phosphorylation for adenosine-5'-triphosphate (ATP) generation. The high energy expenditure is most likely required for membrane ion transport in dendrites and the extensive axon arbor as well as for presynaptic release of neurotransmitter, gamma-aminobutyric acid (GABA). Fast-spiking, PV+ interneurons are central for the emergence of gamma oscillations (30-100Hz) that provide a fundamental mechanism of complex information processing during sensory perception, motor behavior and memory formation in networks of the hippocampus and the neocortex. Conversely, shortage in glucose and oxygen supply (metabolic stress) and/or excessive formation of reactive oxygen and nitrogen species (oxidative stress) may render these interneurons to be a vulnerable target. Dysfunction in fast-spiking, PV+ interneurons might set a low threshold for impairment of fast network oscillations and thus higher brain functions. This pathophysiological mechanism might be highly relevant for cerebral aging as well as various acute and chronic brain diseases, such as stroke, vascular cognitive impairment, epilepsy, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
35
|
Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Res 2015; 116:27-33. [PMID: 26354164 DOI: 10.1016/j.eplepsyres.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Glutamic acid decarboxylase (GAD), the enzyme responsible for GABA synthesis, requires pyridoxal phosphate (PLP) as a cofactor. Thiosemicarbazide (TSC) and γ-glutamyl-hydrazone (PLPGH) inhibit the free PLP-dependent isoform (GAD65) activity after systemic administration, leading to epilepsy in mice and in young, but not in adult rats. However, the competitive GAD inhibitor 3-mercaptopropionic acid (MPA) induces convulsions in both immature and adult rats. In the present study we tested comparatively the epileptogenic and neurotoxic effects of PLPGH, TSC and MPA, administered by microdialysis in the hippocampus of adult awake rats. Cortical EEG and motor behavior were analyzed during the next 2h, and aspartate, glutamate and GABA were measured by HPLC in the microdialysis-collected fractions. Twenty-four hours after drug administration rats were fixed for histological analysis of the hippocampus. PLPGH or TSC did not affect the motor behavior, EEG or cellular morphology, although the extracellular concentration of GABA was decreased. In contrast, MPA produced intense wet-dog shakes, EEG epileptiform discharges, a >75% reduction of extracellular GABA levels and remarkable neurodegeneration of the CA1 region, with >80% neuronal loss. The systemic administration of the NMDA glutamate receptor antagonist MK-801 30 min before MPA did not prevent the MPA-induced epilepsy but significantly protected against its neurotoxic effect, reducing neuronal loss to <30%. We conclude that in adult awake rats, drugs acting on PLP availability have only a weak effect on GABA neurotransmission, whereas direct GAD inhibition produced by MPA induces hyperexcitation leading to epilepsy and hippocampal neurodegeneration. Because this degeneration was prevented by the blockade of NMDA receptors, we conclude that it is due to glutamate-mediated excitotoxicity consequent to disinhibition of the hippocampal excitatory circuits.
Collapse
|
36
|
Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134:7-20. [PMID: 25832906 DOI: 10.1111/jnc.13107] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate. Alzheimer's disease is a panglial-neuronal disorder with long-standing brain hypometabolism, aberrations in both neuronal and astrocytic glucose metabolism, inflammation, hyperexcitability, and dementia. Relatively low doses of β-hydroxybutyrate can have an ameliorating effect on cognitive function. This could be because of metabolic supplementation or inhibition of Aβ-induced release of glutamate as gliotransmitter, which is likely to reduce hyperexcitability and inflammation. The therapeutic β-hydroxybutyrate doses are too low to reduce neuronally released glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Tao W, Chen Q, Wang L, Zhou W, Wang Y, Zhang Z. Brainstem Brain-Derived Neurotrophic Factor Signaling Is Required for Histone Deacetylase Inhibitor–Induced Pain Relief. Mol Pharmacol 2015; 87:1035-41. [DOI: 10.1124/mol.115.098186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
|
38
|
Leke R, Escobar TDC, Rao KVR, Silveira TR, Norenberg MD, Schousboe A. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochem Int 2015; 88:32-7. [PMID: 25842041 DOI: 10.1016/j.neuint.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim of the present study was to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1 and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond with the increase in gene transcription since it remained unaltered. These data indicate that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA.
| | - Thayssa D C Escobar
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Themis Reverbel Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
39
|
Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia. Biol Psychiatry 2015; 77:167-76. [PMID: 24993056 PMCID: PMC4247819 DOI: 10.1016/j.biopsych.2014.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. METHODS GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. RESULTS Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. CONCLUSIONS In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity.
Collapse
|
40
|
The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism. Neurochem Res 2014; 40:402-9. [DOI: 10.1007/s11064-014-1473-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
41
|
Hypermetabolic state in the 7-month-old triple transgenic mouse model of Alzheimer's disease and the effect of lipoic acid: a 13C-NMR study. J Cereb Blood Flow Metab 2014; 34:1749-60. [PMID: 25099753 PMCID: PMC4269751 DOI: 10.1038/jcbfm.2014.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-(13)C]glucose followed by an ex vivo (13)C nuclear magnetic resonance to determine the concentrations of (13)C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-(13)C]glucose+[1,2-(13)C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total ((12)C+(13)C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of (13)C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice.
Collapse
|
42
|
Zhang X, Du Z, Liu J, He J. Γ-aminobutyric acid receptors affect the progression and migration of tumor cells. J Recept Signal Transduct Res 2014; 34:431-9. [DOI: 10.3109/10799893.2013.856918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 2014; 34:1270-82. [PMID: 24896567 PMCID: PMC4126088 DOI: 10.1038/jcbfm.2014.104] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023]
Abstract
Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency ('fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition ('clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited ('interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia.
Collapse
|
44
|
Walls AB, Eyjolfsson EM, Schousboe A, Sonnewald U, Waagepetersen HS. A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo. J Cereb Blood Flow Metab 2014; 34:1340-6. [PMID: 24824917 PMCID: PMC4126094 DOI: 10.1038/jcbfm.2014.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 11/09/2022]
Abstract
Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-(13)C]acetate and [1-(13)C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-(13)C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and (13)C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elvar M Eyjolfsson
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. ADVANCES IN NEUROBIOLOGY 2014; 11:13-30. [PMID: 25236722 DOI: 10.1007/978-3-319-08894-5_2] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools in both glutamatergic and GABAergic neurons. Since the glutamate-glutamine cycle is an open cycle that actively interfaces with other pathways, the de novo synthesis of glutamine in astrocytes helps to maintain the operation of this cycle. The fine-tuned biochemical specialization of astrocytes allows these cells to respond to subtle changes in neurotransmission by dynamically adjusting their anaplerotic and glycolytic activities, and adjusting the amount of glutamate oxidized for energy relative to direct formation of glutamine, to meet the demands for maintaining neurotransmission. This chapter summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain.
Collapse
Affiliation(s)
- Arne Schousboe
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
46
|
Robertson CL, Saraswati M, Scafidi S, Fiskum G, Casey P, McKenna MC. Cerebral glucose metabolism in an immature rat model of pediatric traumatic brain injury. J Neurotrauma 2013; 30:2066-72. [PMID: 24032394 DOI: 10.1089/neu.2013.3007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Altered cerebral metabolism and mitochondrial function have been identified in experimental and clinical studies of pediatric traumatic brain injury (TBI). Metabolic changes detected using (1)H (proton) magnetic resonance spectroscopy correlate with long-term outcomes in children after severe TBI. We previously identified early (4-h) and sustained (24-h and 7-day) abnormalities in brain metabolites after controlled cortical impact (CCI) in immature rats. The current study aimed to identify specific alterations of cerebral glucose metabolism at 24 h after TBI in immature rats. Rats (postnatal days 16-18) underwent CCI to the left parietal cortex. Sham rats underwent craniotomy only. Twenty-four hours after CCI, rats were injected (intraperitoneally) with [1,6-(13)C]glucose. Brains were removed, separated into hemispheres, and frozen. Metabolites were extracted with perchloric acid and analyzed using (1)H and (13)C-nuclear magnetic resonance spectroscopy. TBI resulted in decreases in N-acetylaspartate in both hemispheres, compared to sham contralateral. At 24 h after TBI, there was significant decrease in the incorporation of (13)C label into [3-(13)C]glutamate and [2-(13)C]glutamate in the injured brain. There were no differences in percent enrichment of [3-(13)C]glutamate, [4-(13)C]glutamate, [3-(13)C]glutamine, or [4-(13)C]glutamine. There was significantly lower percent enrichment of [2-(13)C]glutamate in both TBI sides and the sham craniotomy side, compared to sham contralateral. No differences were detected in enrichment of (13)C glucose label in [2-(13)C]glutamine, [2-(13)C]GABA (gamma-aminobutyric acid), [3-(13)C]GABA, or [4-(13)C]GABA, [3-(13)C]lactate, or [3-(13)C]alanine between groups. Results suggest that overall oxidative glucose metabolism in the immature brain recovers at 24 h after TBI. Specific reductions in [2-(13)C]glutamate could be the result of impairments in either neuronal or astrocytic metabolism. Future studies should aim to identify pathways leading to decreased metabolism and develop cell-selective "metabolic rescue."
Collapse
Affiliation(s)
- Courtney L Robertson
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
47
|
Sickmann HM, Patten AR, Morch K, Sawchuk S, Zhang C, Parton R, Szlavik L, Christie BR. Prenatal ethanol exposure has sex-specific effects on hippocampal long-term potentiation. Hippocampus 2013; 24:54-64. [PMID: 23996604 DOI: 10.1002/hipo.22203] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Alcohol consumption during pregnancy is deleterious to the developing brain of the fetus and leads to persistent deficits in adulthood. Long-term potentiation (LTP) is a biological model for learning and memory processes and previous evidence has shown that prenatal ethanol exposure (PNEE) affects LTP in a sex specific manner during adolescence. The objective of this study was to determine if there are sex specific differences in adult animals and to elucidate the underlying molecular mechanisms that contribute to these differences. Pregnant Sprague-Dawley dams were assigned to either; liquid ethanol, pair-fed or standard chow diet. In vivo electrophysiology was performed in the hippocampal dentate gyrus (DG) of adult offspring. LTP was induced by administering 400 Hz stimuli. Western blot analysis for glutamine synthetase (GS) and glutamate decarboxylase from tissue of the DG indicated that GS expression was increased following PNEE. Surprisingly, adult females did not show any deficit in N-methyl-D-aspartate (NMDA)-dependent LTP after PNEE. In contrast, males showed a 40% reduction in LTP. It was indicated that glutamine synthetase expression was increased in PNEE females, suggesting that altered excitatory neurotransmitter replenishment may serve as a compensatory mechanism. Ovariectomizing females did not influence LTP in control or PNEE animals, suggesting that circulating estradiol levels do not play a major role in maintaining LTP levels in PNEE females. These results demonstrate the sexually dimorphic effects of PNEE on the ability for the adult brain to elicit LTP in the DG. The mechanisms for these effects are not fully understood, but an increase in glutamine synthetase in females may underlie this phenomenon.
Collapse
Affiliation(s)
- H M Sickmann
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang L, Tu P, Bonet L, Aubrey KR, Supplisson S. Cytosolic transmitter concentration regulates vesicle cycling at hippocampal GABAergic terminals. Neuron 2013; 80:143-58. [PMID: 24094108 DOI: 10.1016/j.neuron.2013.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
Sustained synaptic transmission requires vesicle recycling and refilling with transmitter, two processes considered to proceed independently. Contrary to this assumption, we show here that depletion of cytosolic transmitter at GABAergic synapses reversibly reduces the number of recycling vesicles. Using paired recordings in hippocampal cultures, we show that repetitive activity causes two phases of reduction of the postsynaptic response. The first involves the classical depletion of the readily releasable and recycling pools, while the second reflects impairment of vesicle filling as GABA is consumed, since it can only be reversed by uptake of GABA or its precursors, glutamate or glutamine. Surprisingly, this second phase is associated with reduced quantal release, a faster depression rate and lower FM5-95 labeling, suggesting that the size of the cycling vesicular pool is regulated by cytosolic transmitter availability. Regulation of vesicular cycling may represent a general mechanism of presynaptic plasticity, matching synaptic release to transmitter supply.
Collapse
Affiliation(s)
- Lu Wang
- INSERM, U1024, F-75005 Paris, France; CNRS, UMR 8197, F-75005 Paris, France; Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France; Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 200062 Shanghai, China
| | | | | | | | | |
Collapse
|
49
|
Tiwari V, Ambadipudi S, Patel AB. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain. J Cereb Blood Flow Metab 2013; 33:1523-31. [PMID: 23838829 PMCID: PMC3790929 DOI: 10.1038/jcbfm.2013.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/22/2013] [Accepted: 06/14/2013] [Indexed: 11/09/2022]
Abstract
The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.
Collapse
Affiliation(s)
- Vivek Tiwari
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda India
| | | | | |
Collapse
|
50
|
Leke R, Silveira TR, Escobar TDC, Schousboe A. Expression of Glutamate Decarboxylase (GAD) mRNA in the brain of bile duct ligated rats serving as a model of hepatic encephalopathy. Neurochem Res 2013; 39:605-11. [PMID: 23904086 DOI: 10.1007/s11064-013-1116-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy (HE) is a neurologic disorder that involves different pathophysiological mechanisms, including disturbances in the GABAergic neurotransmitter system. Albeit an overall increase in the level of neurotransmitter GABA has not been found in HE, alterations in GABA receptors and metabolism have been described. Moreover, it has been reported that bile duct ligated (BDL) rats, an animal model for the study of HE, exhibited an altered GABA biosynthesis involving preferentially the tricarboxylic (TCA) cycle. In this context it should be noted that the GABA synthesizing enzyme glutamate decarboxylase (GAD) is expressed in the brain in two isoforms GAD67 and GAD65, GAD65 being related to the synthesis of GABA that occurs via the TCA cycle and coupled to the vesicular pool of the neurotransmitter. The aim of the present study was to investigate whether changes in mRNA expression of GAD67 and GAD65 were related to the altered GABA biosynthesis previously observed. To study this, cerebral cortices and hippocampi were dissected from control and BDL rats, total mRNA was isolated and cDNA was synthesized by reverse transcription reaction. Subsequently samples were analyzed for gene expression of GAD67 and GAD65 by qPCR multiplex assay, using GAPDH as endogenous control. No changes in GAD67 and GAD65 mRNA expression between control and BDL rats either in cerebral cortex or in hippocampus were observed indicating that the HE condition did not lead to changes in GAD mRNA expression. However, other regulatory mechanism might be affecting GAD activity and to clarify this additional studies need to be conducted.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Avenida Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil,
| | | | | | | |
Collapse
|