1
|
Ma H, He S, Li Y, Zhang X, Chang H, Du M, Yan C, Jiang S, Gao H, Zhao J, Wang Q. Augmented Mitochondrial Transfer Involved in Astrocytic PSPH Attenuates Cognitive Dysfunction in db/db Mice. Mol Neurobiol 2024; 61:8872-8885. [PMID: 38573412 DOI: 10.1007/s12035-024-04064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024]
Abstract
Diabetes-associated cognitive dysfunction (DACD) has ascended to become the second leading cause of mortality among diabetic patients. Phosphoserine phosphatase (PSPH), a pivotal rate-limiting enzyme in L-serine biosynthesis, has been documented to instigate the insulin signaling pathway through dephosphorylation. Concomitantly, CD38, acting as a mediator in mitochondrial transfer, is activated by the insulin pathway. Given that we have demonstrated the beneficial effects of exogenous mitochondrial supplementation on DACD, we further hypothesized whether astrocytic PSPH could contribute to improving DACD by promoting astrocytic mitochondrial transfer into neurons. In the Morris Water Maze (MWM) test, our results demonstrated that overexpression of PSPH in astrocytes alleviated DACD in db/db mice. Astrocyte specific-stimulated by PSPH lentivirus/ adenovirus promoted the spine density both in vivo and in vitro. Mechanistically, astrocytic PSPH amplified the expression of CD38 via initiation of the insulin signaling pathway, thereby promoting astrocytic mitochondria transfer into neurons. In summation, this comprehensive study delineated the pivotal role of astrocytic PSPH in alleviating DACD and expounded upon its intricate cellular mechanism involving mitochondrial transfer. These findings propose that the specific up-regulation of astrocytic PSPH holds promise as a discerning therapeutic modality for DACD.
Collapse
Affiliation(s)
- Hongli Ma
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100029, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hui Gao
- Department of Anesthesiology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi, 716000, China
| | - Jing Zhao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100029, China.
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100029, China.
| |
Collapse
|
2
|
Radosinska D, Gaal Kovalcikova A, Gardlik R, Chomova M, Snurikova D, Radosinska J, Vrbjar N. Oxidative Stress Markers and Na,K-ATPase Enzyme Kinetics Are Altered in the Cerebellum of Zucker Diabetic Fatty fa/fa Rats: A Comparison with Lean fa/+ and Wistar Rats. BIOLOGY 2024; 13:759. [PMID: 39452068 PMCID: PMC11505095 DOI: 10.3390/biology13100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Type 2 diabetes mellitus has been referred to as being closely related to oxidative stress, which may affect brain functions and brain glucose metabolism due to its high metabolic activity and lipid-rich content. Na,K-ATPase is an essential enzyme maintaining intracellular homeostasis, with properties that can sensitively mirror various pathophysiological conditions such as diabetes. The goal of this study was to determine oxidative stress markers as well as Na,K-ATPase activities in the cerebellum of Zucker diabetic fatty (ZDF) rats depending on diabetes severity. The following groups of male rats were used: Wistar, ZDF Lean (fa/+), and ZDF (fa/fa) rats, arbitrarily divided according to glycemia into ZDF obese (ZO, less severe diabetes) and ZDF diabetic (ZOD, advanced diabetes) groups. In addition to basic biometry and biochemistry, oxidative stress markers were assessed in plasma and cerebellar tissues. The Na, K-ATPase enzyme activity was measured at varying ATP substrate concentrations. The results indicate significant differences in basic biometric and biochemical parameters within all the studied groups. Furthermore, oxidative damage was greater in the cerebellum of both ZDF (fa/fa) groups compared with the controls. Interestingly, Na,K-ATPase enzyme activity was highest to lowest in the following order: ZOD > ZO > Wistar > ZDF lean rats. In conclusion, an increase in systemic oxidative stress resulting from diabetic conditions has a significant impact on the cerebellar tissue independently of diabetes severity. The increased cerebellar Na,K-ATPase activity may reflect compensatory mechanisms in aged ZDF (fa/fa) animals, rather than indicating cerebellar neurodegeneration: a phenomenon that warrants further investigation.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Alexandra Gaal Kovalcikova
- Department of Pediatrics, National Institute of Children’s Diseases, Faculty of Medicine, Comenius University in Bratislava, 833 40 Bratislava, Slovakia;
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Maria Chomova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovakia;
| | - Denisa Snurikova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| |
Collapse
|
3
|
Liu Q, Zhang Z, Ji P, Liu J, Chen B, E M, Qi H, Hou T, Huang Q, Ding L, Guo C, Zhao D, Yang W, Wang Z, Li X. Ginseng polysaccharide components attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation. Int J Biol Macromol 2024; 269:131872. [PMID: 38677706 DOI: 10.1016/j.ijbiomac.2024.131872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The increasing incidence of obesity has led to widespread attention in the exploration of natural ingredients. Ginseng polysaccharides (PGP), the main components from Panax ginseng, have been reported potential effect to attenuate obesity and regulate lipid metabolism. In this study, we found that PGP inhibited the high-fat diet (HFD)-induced weight gain, fat ratio and fat tissue weight after 8-week administration. Serum and liver lipid analysis showed that PGP decreased the levels of triglyceride and total cholesterol, which was mediated by the inhibition of key genes for fatty acid and cholesterol metabolisms. Metabolomics studies showed that the inhibitory effect of PGP on liver lipid accumulation was significantly correlated with its regulation of citric acid cycle and lysine degradation. PGP regulated the expression of genes related to lysine degradation in both liver tissue and hepatocytes. In addition, PGP reshaped the composition of fecal microbiota at the genus and species levels in obese mice. Spearman's correlation analysis demonstrated that Staphylococcus sciuri, Staphylococcus lentus, and Pseudoflavonifractor sp. An85 may be the potential targets that PGP maintains the abundance of l-lysine against obesity. It concluded that PGP can attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation.
Collapse
Affiliation(s)
- Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jiaqi Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Boxue Chen
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Tong Hou
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Qingxia Huang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
4
|
Hepsomali P, Costabile A, Schoemaker M, Imakulata F, Allen P. Adherence to unhealthy diets is associated with altered frontal gamma-aminobutyric acid and glutamate concentrations and grey matter volume: preliminary findings. Nutr Neurosci 2024:1-13. [PMID: 38794782 DOI: 10.1080/1028415x.2024.2355603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
OBJECTIVES Common mental disorders (CMD) are associated with impaired frontal excitatory/inhibitory (E/I) balance and reduced grey matter volume (GMV). Larger GMV (in the areas that are implicated in CMD-pathology) and improved CMD-symptomatology have been observed in individuals who adhere to high quality diets. Moreover, preclinical studies have shown altered neurometabolites (primarily gamma-aminobutyric acid: GABA and glutamate: GLU) in relation to diet quality. However, neurochemical correlates of diet quality and how these neurobiological changes are associated with CMD and with its transdiagnostic factor, rumination, is unknown in humans. Therefore, in this study, we examined the associations between diet quality and frontal cortex neuro-chemistry and structure, as well as CMD and rumination in humans. METHODS Thirty adults were classified into high and low diet quality groups and underwent 1H-MRS to measure medial prefrontal cortex (mPFC) metabolite concentrations and volumetric imaging to measure GMV. RESULTS Low (vs High) diet quality group had reduced mPFC-GABA and elevated mPFC-GLU concentrations, as well as reduced right precentral gyrus (rPCG) GMV. However, CMD and rumination were not associated with diet quality. Notably, we observed a significant negative correlation between rumination and rPCG-GMV and a marginally significant association between rumination and mPFC-GLU concentrations. There was also a marginally significant association between mPFC-GLU concentrations and rPCG-GMV. DISCUSSION Adhering to unhealthy dietary patterns may be associated with compromised E/I balance, and this could affect GMV, and subsequently, rumination.
Collapse
Affiliation(s)
- Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London, UK
| | | | | | - Paul Allen
- Department of Neuroimaging, Kings College London, Institute of Psychology and Neuroscience, London, UK
| |
Collapse
|
5
|
McNay EC. Diet-induced diabetes is associated with lower hippocampal glycogen and reduced glycogenolysis following local exogenous insulin. J Neurochem 2024; 168:760-764. [PMID: 37885343 PMCID: PMC11045660 DOI: 10.1111/jnc.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Brain fuel (specifically, glucose) supply and metabolism are well-established to be limiting factors for cognitive performance, with the largest body of data being for hippocampally mediated tasks. Consistent with this, disease states such as Alzheimer's disease and insulin-resistant diabetes, that impair cognitive metabolism, impair cognition with this being shown again most prominently for hippocampally mediated processes. In addition to glucose supplied from the blood, brain oxidative metabolism can use local glycogen stores (within astrocytes) as a fuel source via conversion to lactate; both lactate and glycogen have been shown to be important contributors to regulation of cognitive metabolism. Insulin has been shown to be a key regulator of hippocampal cognitive and metabolic processes; in the periphery, insulin facilitates glycogen synthesis and storage, but the impact on brain glycogen is unclear. Furthermore, the impact of diet-induced diabetes on hippocampal glycogen levels and/or metabolism is unknown. Here, we show that in rats with high-fat diet-induced diabetes, hippocampal glycogen is reduced and is less responsive to acute intrahippocampal administration of insulin, which significantly reduces glycogen in the hippocampi of control animals: Our data suggest that impaired fuel availability from glycogen may be a contributing factor to the cognitive impairment seen in disease states that include central insulin resistance.
Collapse
Affiliation(s)
- Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA
| |
Collapse
|
6
|
Shang Z, Jiang Y, Fang P, Zhu W, Guo J, Li L, Liang Y, Zhang S, Ma S, Mei B, Fan Y, Xie Z, Shen Q, Liu X. The Association of Preoperative Diabetes With Postoperative Delirium in Older Patients Undergoing Major Orthopedic Surgery: A Prospective Matched Cohort Study. Anesth Analg 2024; 138:1031-1042. [PMID: 38335150 DOI: 10.1213/ane.0000000000006893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Postoperative delirium (POD) is a common form of postoperative brain dysfunction, especially in the elderly. However, its risk factors remain largely to be determined. This study aimed to investigate whether (1) preoperative diabetes is associated with POD after elective orthopedic surgery and (2) intraoperative frontal alpha power is a mediator of the association between preoperative diabetes and POD. METHODS This was a prospective matched cohort study of patients aged 60 years or more, with a preoperative diabetes who underwent elective orthopedic surgery. Nondiabetic patients were matched 1:1 to diabetic patients in terms of age, sex, and type of surgery. Primary outcome was occurrence of POD, assessed using the 3-minute Diagnostic Confusion Assessment Method (3D-CAM) once daily from 6 pm to 8 pm during the postoperative days 1-7 or until discharge. Secondary outcome was the severity of POD which was assessed for all participants using the short form of the CAM-Severity. Frontal electroencephalogram (EEG) was recorded starting before induction of anesthesia and lasting until discharge from the operating room. Intraoperative alpha power was calculated using multitaper spectral analyses. Mediation analysis was used to estimate the proportion of the association between preoperative diabetes and POD that could be explained by intraoperative alpha power. RESULTS A total of 138 pairs of eligible patients successfully matched 1:1. After enrollment, 6 patients in the diabetes group and 4 patients in the nondiabetes group were excluded due to unavailability of raw EEG data. The final analysis included 132 participants with preoperative diabetes and 134 participants without preoperative diabetes, with a median age of 68 years and 72.6% of patients were female. The incidence of POD was 16.7% (22/132) in patients with preoperative diabetes vs 6.0% (8/134) in patients without preoperative diabetes. Preoperative diabetes was associated with increased odds of POD after adjustment of age, sex, body mass index, education level, hypertension, arrhythmia, coronary heart disease, and history of stroke (odds ratio, 3.2; 95% confidence interval [CI], 1.4-8.0; P = .009). The intraoperative alpha power accounted for an estimated 20% (95% CI, 2.6-60%; P = .021) of the association between diabetes and POD. CONCLUSIONS This study suggests that preoperative diabetes is associated with an increased risk of POD in older patients undergoing major orthopedic surgery, and that low intraoperative alpha power partially mediates such association.
Collapse
Affiliation(s)
- Zixiang Shang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yu Jiang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Panpan Fang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Wenjie Zhu
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Jiaxin Guo
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Lili Li
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yongjie Liang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Sichen Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, P.R. China
| | - Shenglan Ma
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, P.R. China
| | - Bin Mei
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, P.R. China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Qiying Shen
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Xuesheng Liu
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
7
|
Hristov M, Nankova A, Andreeva-Gateva P. Alterations of the glutamatergic system in diabetes mellitus. Metab Brain Dis 2024; 39:321-333. [PMID: 37747631 DOI: 10.1007/s11011-023-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by elevated blood glucose levels caused by a lack of insulin production (type 1 diabetes) or insulin resistance (type 2 diabetes). It is well known that DM is associated with cognitive deficits and metabolic and neurophysiological changes in the brain. Glutamate is the main excitatory neurotransmitter in the central nervous system that plays a key role in synaptic plasticity, learning, and memory processes. An increasing number of studies have suggested that abnormal activity of the glutamatergic system is implicated in the pathophysiology of DM. Dysfunction of glutamatergic neurotransmission in the central nervous system can provide an important neurobiological substrate for many disorders. Magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows a better understanding of the central nervous system factors by measuring in vivo the concentrations of brain metabolites within the area of interest. Here, we briefly review the MRS studies that have examined glutamate levels in the brain of patients with DM. The present article also summarizes the available data on abnormalities in glutamatergic neurotransmission observed in different animal models of DM. In addition, the role of gut microbiota in the development of glutamatergic alterations in DM is addressed. We speculate that therapeutic strategies targeting the glutamatergic system may be beneficial in the treatment of central nervous system-related changes in diabetic patients.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria.
| | - Anelia Nankova
- Department of Endocrinology, Faculty of Medicine, Medical University of Sofia, Sofia, 1431, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria
| |
Collapse
|
8
|
Dastgheib ZA, Lithgow BJ, Moussavi ZK. Evaluating the Diagnostic Value of Electrovestibulography (EVestG) in Alzheimer's Patients with Mixed Pathology: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2091. [PMID: 38138194 PMCID: PMC10744488 DOI: 10.3390/medicina59122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Diagnosis of dementia subtypes caused by different brain pathophysiologies, particularly Alzheimer's disease (AD) from AD mixed with levels of cerebrovascular disease (CVD) symptomology (AD-CVD), is challenging due to overlapping symptoms. In this pilot study, the potential of Electrovestibulography (EVestG) for identifying AD, AD-CVD, and healthy control populations was investigated. Materials and Methods: A novel hierarchical multiclass diagnostic algorithm based on the outcomes of its lower levels of binary classifications was developed using data of 16 patients with AD, 13 with AD-CVD, and 24 healthy age-matched controls, and then evaluated on a blind testing dataset made up of a new population of 12 patients diagnosed with AD, 9 with AD-CVD, and 8 healthy controls. Multivariate analysis was run to test the between population differences while controlling for sex and age covariates. Results: The accuracies of the multiclass diagnostic algorithm were found to be 85.7% and 79.6% for the training and blind testing datasets, respectively. While a statistically significant difference was found between the populations after accounting for sex and age, no significant effect was found for sex or age covariates. The best characteristic EVestG features were extracted from the upright sitting and supine up/down stimulus responses. Conclusions: Two EVestG movements (stimuli) and their most informative features that are best selective of the above-populations' separations were identified, and a hierarchy diagnostic algorithm was developed for three-way classification. Given that the two stimuli predominantly stimulate the otholithic organs, physiological and experimental evidence supportive of the results are presented. Disruptions of inhibition associated with GABAergic activity might be responsible for the changes in the EVestG features.
Collapse
Affiliation(s)
| | | | - Zahra K. Moussavi
- Diagnostic and Neurological Processing Research Laboratory, Biomedical Engineering Program, University of Manitoba, Riverview Health Centre, Winnipeg, MB R3L 2P4, Canada; (Z.A.D.); (B.J.L.)
| |
Collapse
|
9
|
Huang YQ, Gu X, Chen X, Du YT, Chen BC, Sun FY. BMECs Ameliorate High Glucose-Induced Morphological Aberrations and Synaptic Dysfunction via VEGF-Mediated Modulation of Glucose Uptake in Cortical Neurons. Cell Mol Neurobiol 2023; 43:3575-3592. [PMID: 37418138 PMCID: PMC10477237 DOI: 10.1007/s10571-023-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
It has been demonstrated that diabetes cause neurite degeneration in the brain and cognitive impairment and neurovascular interactions are crucial for maintaining brain function. However, the role of vascular endothelial cells in neurite outgrowth and synaptic formation in diabetic brain is still unclear. Therefore, present study investigated effects of brain microvascular endothelial cells (BMECs) on high glucose (HG)-induced neuritic dystrophy using a coculture model of BMECs with neurons. Multiple immunofluorescence labelling and western blot analysis were used to detect neurite outgrowth and synapsis formation, and living cell imaging was used to detect uptake function of neuronal glucose transporters. We found cocultured with BMECs significantly reduced HG-induced inhibition of neurites outgrowth (including length and branch formation) and delayed presynaptic and postsynaptic development, as well as reduction of neuronal glucose uptake capacity, which was prevented by pre-treatment with SU1498, a vascular endothelial growth factor (VEGF) receptor antagonist. To analyse the possible mechanism, we collected BMECs cultured condition medium (B-CM) to treat the neurons under HG culture condition. The results showed that B-CM showed the same effects as BMEC on HG-treated neurons. Furthermore, we observed VEGF administration could ameliorate HG-induced neuronal morphology aberrations. Putting together, present results suggest that cerebral microvascular endothelial cells protect against hyperglycaemia-induced neuritic dystrophy and restorate neuronal glucose uptake capacity by activation of VEGF receptors and endothelial VEGF release. This result help us to understand important roles of neurovascular coupling in pathogenesis of diabetic brain, providing a new strategy to study therapy or prevention for diabetic dementia. Hyperglycaemia induced inhibition of neuronal glucose uptake and impaired to neuritic outgrowth and synaptogenesis. Cocultured with BMECs/B-CM and VEGF treatment protected HG-induced inhibition of glucose uptake and neuritic outgrowth and synaptogenesis, which was antagonized by blockade of VEGF receptors. Reduction of glucose uptake may further deteriorate impairment of neurites outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Yu-Qi Huang
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Gu
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
10
|
Ribeiro R, Silva EG, Moreira FC, Gomes GF, Cussat GR, Silva BSR, da Silva MCM, de Barros Fernandes H, de Sena Oliveira C, de Oliveira Guarnieri L, Lopes V, Ferreira CN, de Faria AMC, Maioli TU, Ribeiro FM, de Miranda AS, Moraes GSP, de Oliveira ACP, Vieira LB. Chronic hyperpalatable diet induces impairment of hippocampal-dependent memories and alters glutamatergic and fractalkine axis signaling. Sci Rep 2023; 13:16358. [PMID: 37773430 PMCID: PMC10541447 DOI: 10.1038/s41598-023-42955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023] Open
Abstract
Chronic consumption of hyperpalatable and hypercaloric foods has been pointed out as a factor associated with cognitive decline and memory impairment in obesity. In this context, the integration between peripheral and central inflammation may play a significant role in the negative effects of an obesogenic environment on memory. However, little is known about how obesity-related peripheral inflammation affects specific neurotransmission systems involved with memory regulation. Here, we test the hypothesis that chronic exposure to a highly palatable diet may cause neuroinflammation, glutamatergic dysfunction, and memory impairment. For that, we exposed C57BL/6J mice to a high sugar and butter diet (HSB) for 12 weeks, and we investigated its effects on behavior, glial reactivity, blood-brain barrier permeability, pro-inflammatory features, glutamatergic alterations, plasticity, and fractalkine-CX3CR1 axis. Our results revealed that HSB diet induced a decrease in memory reconsolidation and extinction, as well as an increase in hippocampal glutamate levels. Although our data indicated a peripheral pro-inflammatory profile, we did not observe hippocampal neuroinflammatory features. Furthermore, we also observed that the HSB diet increased hippocampal fractalkine levels, a key chemokine associated with neuroprotection and inflammatory regulation. Then, we hypothesized that the elevation on glutamate levels may saturate synaptic communication, partially limiting plasticity, whereas fractalkine levels increase as a strategy to decrease glutamatergic damage.
Collapse
Affiliation(s)
- Roberta Ribeiro
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Emanuele Guimarães Silva
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta Moreira
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanni Freitas Gomes
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriela Reis Cussat
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Barbara Stehling Ramos Silva
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Carolina Machado da Silva
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | | | - Carolina de Sena Oliveira
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | | | - Victoria Lopes
- Colégio Técnico, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Tatiani Uceli Maioli
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Department of Immunology and Biochemistry, ICB, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Luciene Bruno Vieira
- Department of Pharmacology, ICB, Federal University of Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
11
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
12
|
Sandoval-Salazar C, Jiménez-García SN, Beltrán-Campos V, Vera-Becerra LE, Núñez-Colín CA. Effect of berrycactus fruit ( Myrtillocactus geometrizans) on glutamate, glutamine, and GABA levels in the frontal cortex of rats fed with a high-fat diet. Open Life Sci 2023; 18:20220529. [PMID: 36742451 PMCID: PMC9883687 DOI: 10.1515/biol-2022-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 01/25/2023] Open
Abstract
In addition to the known metabolic alterations, obesity has consequences at the brain level, driving imbalance in neurotransmitters such as glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA). The consumption of fruits with antioxidant properties, such as the berrycactus Myrtillocactus geometrizans, could have beneficial effects in such an imbalance. The study objective was to evaluate frontal cortex neurotransmitter levels and weight changes in rats fed with a high-fat diet (HFD) and MG. To achieve that, five groups of Wistar rats received different diets for 24 weeks: standard diet (SDt), HFD, HFD + MG extract 150 mg (HMg150), HFD + MG extract 300 mg (HMg300), and HFD + MG extract 450 mg (HMg450); rats received MG extract for the last 4 weeks. Weight and food intake were recorded every week, and also neurotransmitter levels were quantified using high-performance liquid chromatography. Groups fed with HFDs had increased Glu and Gln levels, decreased GABA, and also gained more weight compared to the SDt group; MG extract of 450 mg decreased Glu levels. Concentrations of 300 and 450 mg of MG extract decreased weight compared to the HFD and HMg150 groups. This study reports that HFDs have an impact on neurotransmitter levels and weight, MG extract showed a reduction in Glu concentration and weight.
Collapse
Affiliation(s)
- Cuauhtémoc Sandoval-Salazar
- Division of Health Sciences and Engineering, University of Guanajuato, Campus Celaya-Salvatierra, Celaya 38060, México
| | - Sandra Neli Jiménez-García
- Division of Health Sciences and Engineering, University of Guanajuato, Campus Celaya-Salvatierra, Celaya 38060, México
| | - Vicente Beltrán-Campos
- Division of Health Sciences and Engineering, University of Guanajuato, Campus Celaya-Salvatierra, Celaya 38060, México
| | | | - Carlos Alberto Núñez-Colín
- Division of Health Sciences and Engineering, University of Guanajuato, Campus Celaya-Salvatierra, Celaya 38060, México
| |
Collapse
|
13
|
Feng C, Jiang Y, Li S, Ge Y, Shi Y, Tang X, Le G. Methionine Restriction Improves Cognitive Ability by Alleviating Hippocampal Neuronal Apoptosis through H19 in Middle-Aged Insulin-Resistant Mice. Nutrients 2022; 14:4503. [PMID: 36364766 PMCID: PMC9653609 DOI: 10.3390/nu14214503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 10/29/2023] Open
Abstract
LncRNA H19 has been reported to regulate apoptosis and neurological diseases. Hippocampal neuron apoptosis damages cognitive ability. Methionine restriction (MR) can improve cognitive impairment. However, the effect of MR on hippocampal neuronal apoptosis induced by a high-fat diet (HFD) in middle-aged mice remains unclear. For 25 weeks, middle-aged mice (C57BL/6J) were given a control diet (CON, 0.86% methionine + 4.2% fat), a high-fat diet (HFD, 0.86% methionine + 24% fat), or an HFD + MR diet (HFMR, 0.17% methionine + 24% fat). The HT22 cells were used to establish the early apoptosis model induced by high glucose (HG). In vitro, the results showed that MR significantly improved cell viability, suppressed the generation of ROS, and rescued HT22 cell apoptosis in a gradient-dependent manner. In Vivo, MR inhibited the damage and apoptosis of hippocampal neurons caused by a high-fat diet, reduced hippocampal oxidative stress, improved hippocampal glucose metabolism, relieved insulin resistance, and enhanced cognitive ability. Furthermore, MR could inhibit the overexpression of H19 and caspase-3 induced by HFD, HG, or H2O2 in vivo and in vitro, and promoted let-7a, b, e expression. These results indicate that MR can protect neurons from HFD-, HG-, or H2O2-induced injury and apoptosis by inhibiting H19.
Collapse
Affiliation(s)
- Chuanxing Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Qi L, Gao R, Chen Z, Lin D, Liu Z, Wang L, Lin L, Liu X, Liu X, Liu L. Liraglutide reduces oxidative stress and improves energy metabolism in methylglyoxal-induced SH-SY5Y cells. Neurotoxicology 2022; 92:166-179. [PMID: 35985417 DOI: 10.1016/j.neuro.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Diabetes mellitus can result in severe complications, such as neurodegenerative diseases including cognitive impairment and dementia. The glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide, is a novel antidiabetic drug with neuroprotective effects against neurodegenerative diseases. In this study, we explored the protective effect of liraglutide on SH-SY5Y cells exposed to methylglyoxal (MG), a byproduct of glucose metabolism that plays a key role in the development of diabetic encephalopathy. We found that liraglutide reduced the MG-induced oxidative stress, increased the activity of superoxide dismutase (SOD) and expression levels of P22phox, Gp91phox, and Xdh genes, and reduced reactive oxygen species (ROS) content. Metabolomics analysis based on 1H nuclear magnetic resonance showed that liraglutide induced alterations in metabolites involved in energy metabolism,including promotion of gluconeogenesis. Moreover, we found that liraglutide promoted oxidative phosphorylation and inhibited glycolysis in SH-SY5Y cells. This study revealed that liraglutide improved diabetes-related neuropathy damage by reducing the level of oxidative stress and maintaining the balance of energy metabolism, thus offering new insights into the potential mechanism of liraglutide in neuronal protection.
Collapse
Affiliation(s)
- Liqin Qi
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Ruonan Gao
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhiqing Liu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Linxi Wang
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Lijing Lin
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Libin Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
15
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
16
|
Song X, Zhu Z, Qian X, Liu X, Chen S, Tang H. Multi-Omics Characterization of Type 2 Diabetes Mellitus-Induced Cognitive Impairment in the db/db Mouse Model. Molecules 2022; 27:1904. [PMID: 35335269 PMCID: PMC8951264 DOI: 10.3390/molecules27061904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder frequently accompanied by cognitive impairment. Contributing factors such as modern lifestyle, genetic predisposition, and gene environmental interactions have been postulated, but the pathogenesis remains unclear. In this study, we attempt to investigate the potential mechanisms and interventions underlying T2DM-induced cognitive deficits from the brain-gut axis perspective. A combined analysis of the brain transcriptome, plasma metabolome, and gut microbiota in db/db mice with cognitive decline was conducted. Transcriptome analysis identified 222 upregulated gene sets and 85 downregulated gene sets, mainly related to mitochondrial respiratory, glycolytic, and inflammation. In metabolomic analysis, a total of 75 significantly altered metabolites were identified, correlated with disturbances of glucose, lipid, bile acid, and steroid metabolism under disease state. Gut microbiota analysis suggested that the species abundance and diversity of db/db mice were significantly increased, with 23 significantly altered genus detected. Using the multi-omics integration, significant correlations among key genes (n = 33), metabolites (n = 41), and bacterial genera (n = 21) were identified. Our findings suggest that disturbed circulation and brain energy metabolism, especially mitochondrial-related disturbances, may contribute to cognitive impairment in db/db mice. This study provides novel insights into the functional interactions among the brain, circulating metabolites, and gut microbiota.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Zeyu Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaohang Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaoli Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201400, China;
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Huidong Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
- Department of Neurology, Shanghai Guangci Memorial Hospital, Shanghai 200025, China
| |
Collapse
|
17
|
Garcia-Serrano AM, Mohr AA, Philippe J, Skoug C, Spégel P, Duarte JMN. Cognitive Impairment and Metabolite Profile Alterations in the Hippocampus and Cortex of Male and Female Mice Exposed to a Fat and Sugar-Rich Diet are Normalized by Diet Reversal. Aging Dis 2022; 13:267-283. [PMID: 35111373 PMCID: PMC8782561 DOI: 10.14336/ad.2021.0720] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes impacts on brain metabolism, structure, and function. Alterations in brain metabolism have been observed in obesity and diabetes models induced by exposure to diets rich in saturated fat and/or sugar and have been linked to memory impairment. However, it remains to be determined whether brain dysfunction induced by obesogenic diets results from permanent brain alterations. We tested the hypothesis that an obesogenic diet (high-fat and high-sucrose diet; HFHSD) causes reversible changes in hippocampus and cortex metabolism and alterations in behavior. Mice were exposed to HFHSD for 24 weeks or for 16 weeks followed by 8 weeks of diet normalization. Development of the metabolic syndrome, changes in behavior, and brain metabolite profiles by magnetic resonance spectroscopy (MRS) were assessed longitudinally. Control mice were fed an ingredient-matched low-fat and low-sugar diet. Mice fed the HFHSD developed obesity, glucose intolerance and insulin resistance, with a more severe phenotype in male than female mice. Relative to controls, both male and female HFHSD-fed mice showed increased anxiety-like behavior, impaired memory in object recognition tasks, but preserved working spatial memory as evaluated by spontaneous alternation in a Y-maze. Alterations in the metabolite profiles were observed both in the hippocampus and cortex but were more distinct in the hippocampus. HFHSD-induced metabolic changes included altered levels of lactate, glutamate, GABA, glutathione, taurine, N-acetylaspartate, total creatine and total choline. Notably, HFHSD-induced metabolic syndrome, anxiety, memory impairment, and brain metabolic alterations recovered upon diet normalization for 8 weeks. In conclusion, cortical and hippocampal derangements induced by long-term HFHSD consumption are reversible rather than being the result of permanent tissue damage.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Adélaïde A Mohr
- 3Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juliette Philippe
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Peter Spégel
- 4Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund Sweden
| | - João M N Duarte
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Obara-Michlewska M. The contribution of astrocytes to obesity-associated metabolic disturbances. J Biomed Res 2022; 36:299-311. [PMID: 36131679 PMCID: PMC9548436 DOI: 10.7555/jbr.36.20200020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
- Marta Obara-Michlewska, Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, Warsaw 02-106, Poland. Tel/Fax: +48-22-6046416, E-mail:
| |
Collapse
|
19
|
Martínez-Orozco H, Reyes-Castro LA, Lomas-Soria C, Sandoval-Salazar C, Ramírez-Emiliano J, Díaz-Cintra S, Solís-Ortiz S. High-fat and combined high-fat-high-fructose diets impair episodic-like memory and decrease glutamate and glutamine in the hippocampus of adult mice. Nutr Neurosci 2021; 25:2479-2489. [PMID: 34719357 DOI: 10.1080/1028415x.2021.1977452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diet-induced obesity is associated with premature cognitive decline. Elevated consumption of fats and sugars in humans and rodents has been associated with deficits in recognition memory, which is modulated by the hippocampus. Alterations in excitatory and inhibitory neurotransmitters in this area have been observed after hypercaloric diets, but the effects on episodic-like memory are not conclusive. OBJECTIVE To investigate the effects of hypercaloric diets on memory and their relationship with γ-aminobutyric acid (GABA), glutamate and glutamine and their genetic expression in the hippocampus. DESIGN A control diet (CD), a high-fat diet (HFD) and a combined high-fat-high-fructose diet (HFFrD) were administered to 30 C57BL/6 adult mice for 10 weeks. The discrimination indexes and exploration time of the novel object recognition (NOR) and novel object location (NOL) tasks were evaluated and GABA, glutamate and glutamine concentrations and their genetic expression were obtained from the hippocampus. RESULTS The HFFrD induced lower discrimination indexes, decreased exploration time in the recognition memory tasks, and lowered the concentrations of glutamate and glutamine, and HFD increased their expression in the hippocampus. CONCLUSIONS These findings suggest that a possible adaptative long-term mechanism in the hippocampal neurotransmitters, and this possibility may underlie the episodic-like memory deficits in mice fed HFD and HFFrD.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, México
| | - Luis A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Consuelo Lomas-Soria
- CONACYT Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Cuauhtémoc Sandoval-Salazar
- Departamento de Enfermería y Obstetricia, División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya, México
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, México
| | - Sofía Díaz-Cintra
- Laboratorio de Neuromorfometría y Desarrollo, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Silvia Solís-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, México
| |
Collapse
|
20
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Sovrani V, Bobermin LD, Schmitz I, Leipnitz G, Quincozes-Santos A. Potential Glioprotective Strategies Against Diabetes-Induced Brain Toxicity. Neurotox Res 2021; 39:1651-1664. [PMID: 34258694 DOI: 10.1007/s12640-021-00393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes are crucial for the maintenance of brain homeostasis by actively participating in the metabolism of glucose, which is the main energy substrate for the central nervous system (CNS), in addition to other supportive functions. More specifically, astrocytes support neurons through the metabolic coupling of synaptic activity and glucose utilization. As such, diabetes mellitus (DM) and consequent glucose metabolism disorders induce astrocyte damage, affecting CNS functionality. Glioprotective molecules can promote protection by improving glial functions and avoiding toxicity in different pathological conditions, including DM. Therefore, this review discusses specific pathomechanisms associated with DM/glucose metabolism disorder-induced gliotoxicity, namely astrocyte metabolism, redox homeostasis/mitochondrial activity, inflammation, and glial signaling pathways. Studies investigating natural products as potential glioprotective strategies against these deleterious effects of DM/glucose metabolism disorders are also reviewed herein. These products include carotenoids, catechins, isoflavones, lipoic acid, polysaccharides, resveratrol, and sulforaphane.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
22
|
Zhuang T, Liu X, Wang W, Song J, Zhao L, Ding L, Yang L, Zhou M. Dose-Related Urinary Metabolic Alterations of a Combination of Quercetin and Resveratrol-Treated High-Fat Diet Fed Rats. Front Pharmacol 2021; 12:655563. [PMID: 33935771 PMCID: PMC8085560 DOI: 10.3389/fphar.2021.655563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Most herbal polyphenols and flavonoids reveals multiple ameliorative benefits for obesity caused by chronic metabolic disorders. Accumulated studies have revealed that preferable therapeutic effects can be obtained through clinical combination of these two kinds of natural compounds for obesity improvement. The typical representative research was the combination of quercetin and resveratrol (CQR), in which the ratio of quercetin and resveratrol is 2:1, demonstrating a synergistic effect in anti-obesity process. Although there exists reports clarifying the mechanism of the combination of two to improve obesity from the perspective of improving adipose tissue inflammation or modulating the composition of intestinal flora, there are few further studies on the mechanism of drug action from the perspective of metabolites transformation. In this research, we mainly focused on the alterations of endogenous metabolites in rats, and analyzed the urine metabolites of obese and intervention model. Therefore, a gas chromatography-mass spectrometry (GC-MS) based metabolomics approach was applied to assess the potential effects and mechanisms of CQR at different dosages (45, 90, and 180 mg/kg) in high fat diet (HFD)-induced obesity rats. Body weight gain and visceral fat weight were reduced by CQR, as well as blood lipid and inflammatory factor levels were increased by CQR in a dose-related manner. Urinary metabolomics revealed 22 differential metabolites related to the HFD-induced obesity, which were reversed in a dose-dependent manner by CQR, of which 8 were reversed in the 45 mg/kg CQR group, 15 were reversed in the 90 mg/kg CQR group, and 18 were reversed in the 180 mg/kg CQR group. Combined with bioinformatics and pattern recognition, the results demonstrated that the key differential metabolites were basically involved in amino acid metabolism, galactose metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism and lysine degradation. In summary, our results showed significant therapeutic action by CQR administration and remarkable metabolomic changes after HFD feeding and CQR intervention. Urinary metabolomic analysis was highlighted on account of providing holistic and comprehensive insights into the pathophysiological mechanisms of the HFD-induced obesity, which also supplied clues for the future mechanism studies of CQR's anti-obesity effects.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhua Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Song
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Le Zhao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Obesity and Age-Related Changes in the Brain of the Zucker Lepr fa/fa Rats. Nutrients 2020; 12:E1356. [PMID: 32397542 PMCID: PMC7284640 DOI: 10.3390/nu12051356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome (MetS) is an association between obesity, dyslipidemia, hyperglycemia, hypertension, and insulin resistance. A relationship between MetS and vascular dementia was hypothesized. The purpose of this work is to investigate brain microanatomy alterations in obese Zucker rats (OZRs), as a model of MetS, compared to their counterparts lean Zucker rats (LZRs). 12-, 16-, and 20-weeks-old male OZRs and LZRs were studied. General physiological parameters and blood values were measured. Immunochemical and immunohistochemical techniques were applied to analyze the brain alterations. The morphology of nerve cells and axons, astrocytes and microglia were investigated. The blood-brain barrier (BBB) changes occurring in OZRs were assessed as well using aquaporin-4 (AQP4) and glucose transporter protein-1 (GLUT1) as markers. Body weight gain, hypertension, hyperglycemia, and hyperlipidemia were found in OZRs compared to LZRs. In the frontal cortex and hippocampus, a decrease of neurons was noticeable in the older obese rats in comparison to their age-matched lean counterparts. In OZRs, a reduction of neurofilament immunoreaction and gliosis was observed. The BBB of older OZRs revealed an increased expression of AQP4 likely related to the development of edema. A down-regulation of GLUT1 was found in OZRs of 12 weeks of age, whereas it increased in older OZRs. The behavioral analysis revealed cognitive alterations in 20-week-old OZRs. Based on these results, the OZRs may be useful for understanding the mechanisms through which obesity and related metabolic alterations induce neurodegeneration.
Collapse
Affiliation(s)
- Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany;
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, Italy; (I.M.); (M.V.M.D.B.); (F.A.)
| |
Collapse
|
24
|
Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, Wang H, Pi C, Shi Y, He X. Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer's Disease. J Diabetes Res 2020; 2020:4981814. [PMID: 32083135 PMCID: PMC7011481 DOI: 10.1155/2020/4981814] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) is broadly characterized by elevated levels of blood glucose. Novel epidemiological studies demonstrate that some diabetic patients have an increased risk of developing dementia compared with healthy individuals. Alzheimer's disease (AD) is the most frequent cause of dementia and leads to major progressive deficits in memory and cognitive function. Multiple studies have identified an increased risk for AD in some diabetic populations, but it is still unclear which diabetic patients will develop dementia and which biological characteristics can predict cognitive decline. Although few mechanistic metabolic studies have shown clear pathophysiological links between DM and AD, there are several plausible ways this may occur. Since AD has many characteristics in common with impaired insulin signaling pathways, AD can be regarded as a metabolic disease. We conclude from the published literature that the body's diabetic status under certain circumstances such as metabolic abnormalities can increase the incidence of AD by affecting glucose transport to the brain and reducing glucose metabolism. Furthermore, due to its plentiful lipid content and high energy requirement, the brain's metabolism places great demands on mitochondria. Thus, the brain may be more susceptible to oxidative damage than the rest of the body. Emerging evidence suggests that both oxidative stress and mitochondrial dysfunction are related to amyloid-β (Aβ) pathology. Protein changes in the unfolded protein response or endoplasmic reticulum stress can regulate Aβ production and are closely associated with tau protein pathology. Altogether, metabolic disorders including glucose/lipid metabolism, oxidative stress, mitochondrial dysfunction, and protein changes caused by DM are associated with an impaired insulin signal pathway. These metabolic factors could increase the prevalence of AD in diabetic patients via the promotion of Aβ pathology.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cao Ma
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Huan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Peng
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Zibo Zhou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Hongwei Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Chenchen Pi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu He
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
25
|
Thielen J, Gancheva S, Hong D, Rohani Rankouhi S, Chen B, Apostolopoulou M, Anadol‐Schmitz E, Roden M, Norris DG, Tendolkar I. Higher GABA concentration in the medial prefrontal cortex of Type 2 diabetes patients is associated with episodic memory dysfunction. Hum Brain Mapp 2019; 40:4287-4295. [PMID: 31264324 PMCID: PMC6865552 DOI: 10.1002/hbm.24702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with an accelerated episodic memory decline, but the underlying pathophysiological mechanisms are not well understood. Hallmarks of T2D comprise impairment of insulin secretion and insulin sensitivity. Insulin signaling modulates cerebral neurotransmitter activity, including the excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) systems. Here we tested the hypothesis that the glutamate and GABA systems are altered in T2D patients and this relates to memory decline and insulin resistance. Using 1 H-magnetic resonance spectroscopy (MRS), we examined glutamate and GABA concentrations in episodic memory relevant brain regions (medial prefrontal cortex and precuneus) of T2D patients and matched controls. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps and memory performance was assessed using a face-profession associations test. T2D patients exhibited peripheral insulin resistance and had a decreased memory for face-profession associations as well as elevated GABA concentration in the medial prefrontal cortex but not precuneus. In addition, medial prefrontal cortex GABA concentration was negatively associated with memory performance suggesting that abnormal GABA levels in the medial prefrontal cortex are linked to the episodic memory decline that occurs in T2D patients.
Collapse
Affiliation(s)
- Jan‐Willem Thielen
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- Department for Psychiatry and Psychotherapy, Faculty of MedicineUniversity of Duisburg‐EssenEssenGermany
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Donghyun Hong
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
| | | | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Evrim Anadol‐Schmitz
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - David G. Norris
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- MIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschedethe Netherlands
| | - Indira Tendolkar
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
26
|
Lin HT, Cheng ML, Lo CJ, Lin G, Lin SF, Yeh JT, Ho HY, Lin JR, Liu FC. 1H Nuclear Magnetic Resonance (NMR)-Based Cerebrospinal Fluid and Plasma Metabolomic Analysis in Type 2 Diabetic Patients and Risk Prediction for Diabetic Microangiopathy. J Clin Med 2019; 8:jcm8060874. [PMID: 31248127 PMCID: PMC6616639 DOI: 10.3390/jcm8060874] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/07/2023] Open
Abstract
Insulin resistance and metabolic derangement are present in patients with type 2 diabetes mellitus (T2DM). However, the metabolomic signature of T2DM in cerebrospinal fluid (CSF) has not been investigated thus far. In this prospective metabolomic study, fasting CSF and plasma samples from 40 T2DM patients to 36 control subjects undergoing elective surgery with spinal anesthesia were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy. NMR spectra of CSF and plasma metabolites were analyzed and correlated with the presence of T2DM and diabetic microangiopathy (retinopathy, nephropathy, and neuropathy) using an area under the curve (AUC) estimation. CSF metabolomic profiles in T2DM patients vs. controls revealed significantly increased levels of alanine, leucine, valine, tyrosine, lactate, pyruvate, and decreased levels of histidine. In addition, a combination of alanine, histidine, leucine, pyruvate, tyrosine, and valine in CSF showed a superior correlation with the presence of T2DM (AUC:0.951), diabetic retinopathy (AUC:0.858), nephropathy (AUC:0.811), and neuropathy (AUC:0.691). Similar correlations also appeared in plasma profiling. These metabolic alterations in CSF suggest decreasing aerobic metabolism and increasing anaerobic glycolysis in cerebral circulation of patients with T2DM. In conclusion, our results provide clues for the metabolic derangements in diabetic central neuropathy among T2DM patients; however, their clinical significance requires further exploration.
Collapse
Affiliation(s)
- Huan-Tang Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Department of Medical Imaging and Intervention, Imaging Core Lab, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Shu-Fu Lin
- Department of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Jiun-Ting Yeh
- Division of Trauma, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jr-Rung Lin
- Clinical Informatics and Medical Statistics Research Center and Graduate Institute of Clinical Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
27
|
Abdul Ghani ZDF, Ab Rashid AH, Shaari K, Chik Z. Urine NMR Metabolomic Study on Biochemical Activities to Investigate the Effect of P. betle Extract on Obese Rats. Appl Biochem Biotechnol 2019; 189:690-708. [DOI: 10.1007/s12010-019-03042-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
|
28
|
Soares AF, Nissen JD, Garcia‐Serrano AM, Nussbaum SS, Waagepetersen HS, Duarte JMN. Glycogen metabolism is impaired in the brain of male type 2 diabetic Goto‐Kakizaki rats. J Neurosci Res 2019; 97:1004-1017. [DOI: 10.1002/jnr.24437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Jakob D. Nissen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - Alba M. Garcia‐Serrano
- Faculty of Medicine, Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| | - Sakura S. Nussbaum
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Helle S. Waagepetersen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Faculty of Medicine, Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| |
Collapse
|
29
|
Sandoval-Salazar C, Oviedo-Solís CI, Lozoya-Gloria E, Aguilar-Zavala H, Solís-Ortiz MS, Pérez-Vázquez V, Balcón-Pacheco CD, Ramírez-Emiliano J. Strawberry Intake Ameliorates Oxidative Stress and Decreases GABA Levels Induced by High-Fat Diet in Frontal Cortex of Rats. Antioxidants (Basel) 2019; 8:E70. [PMID: 30897746 PMCID: PMC6466532 DOI: 10.3390/antiox8030070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.
Collapse
Affiliation(s)
- Cuauhtémoc Sandoval-Salazar
- Departamento de Enfermería y Obstetricia, División de Ciencias de Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico.
| | | | - Edmundo Lozoya-Gloria
- Laboratorio de Bioquímica y Biología Molecular de Productos Naturales de Plantas, CINVESTAV, Irapuato 36821, Mexico.
| | - Herlinda Aguilar-Zavala
- Departamento de Enfermería y Obstetricia, División de Ciencias de Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico.
| | - Martha S Solís-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Victoriano Pérez-Vázquez
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Cristina D Balcón-Pacheco
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| |
Collapse
|
30
|
Borse SP, Singh DP, Nivsarkar M. Understanding the relevance of herb-drug interaction studies with special focus on interplays: a prerequisite for integrative medicine. Porto Biomed J 2019; 4:e15. [PMID: 31595257 PMCID: PMC6726296 DOI: 10.1016/j.pbj.0000000000000015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Integrative medicine refers to the blending of conventional and evidence-based complementary medicines and therapies with the aim of using the most appropriate of either or both modalities for ultimate patient benefits. One of the major hurdles for the same is the chances of potential herb–drug interactions (HDIs). These HDIs could be beneficial or harmful, or even fatal; therefore, a thorough understanding of the eventualities of HDIs is essential so that a successful integration of the modern and complementary alternative systems of medicine could be achieved. Here, we summarize all the important points related to HDIs, including types, tools/methods for study, and prediction of the HDIs, along with a special focus on interplays between drug metabolizing enzymes and transporters. In addition, this article covers future perspective, with a focus on background endogenous players of interplays and approaches to predict the drug–disease–herb interactions so as to fetch the desired effects of these interactions.
Collapse
Affiliation(s)
- Swapnil P Borse
- Department of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej.,NIRMA University, Sarkhej-Gandhinagar Highway, Ahmadabad, Gujarat, India
| | - Devendra P Singh
- Department of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej.,NIRMA University, Sarkhej-Gandhinagar Highway, Ahmadabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej
| |
Collapse
|
31
|
Hirase H, Akther S, Wang X, Oe Y. Glycogen distribution in mouse hippocampus. J Neurosci Res 2019; 97:923-932. [PMID: 30675919 DOI: 10.1002/jnr.24386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
The hippocampus is a limbic structure involved in the consolidation of episodic memory. In the recent decade, glycogenolysis in the rodent hippocampus has been shown critical for synaptic plasticity and memory formation. Astrocytes are the primary cells that store glycogen which is subject to degradation in hypoglycemic conditions. Focused microwave application to the brain halts metabolic activities, and therefore preserves brain glycogen. Immunohistochemistry against glycogen on focused microwave-assisted brain samples is suitable for both macroscopic and microscopic investigation of glycogen distribution. Glycogen immunohistochemistry in the hippocampus showed a characteristic punctate signal pattern that depended on hippocampal layers. In particular, the hilus is the most glycogen-rich subregion of the hippocampus. Moreover, large glycogen puncta (>0.5 µm in diameter) observed in neuropil areas are organized in a patchy pattern consisting of puncta-rich and -poor astrocytes. These observations are discussed with respect to distinct hippocampal neural activity states observed in live animals.
Collapse
Affiliation(s)
- Hajime Hirase
- RIKEN Center for Brain Science, Wako, Japan.,Saitama University Brain Science Institute, Saitama, Japan.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonam Akther
- RIKEN Center for Brain Science, Wako, Japan.,Saitama University Brain Science Institute, Saitama, Japan
| | | | - Yuki Oe
- RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
32
|
Metelo AM, Arias-Ramos N, Lopez-Larrubia P, Castro MMCA. Metabolic effects of VO(dmpp) 2– an ex vivo1H-HRMAS NMR study to unveil its pharmacological properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj02491c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VO(dmpp)2ameliorates liver metabolic profile of obese pre-diabetic Zucker rats after 4 weeks of treatment, as demonstrated byex vivo1H-HRMAS NMR study.
Collapse
Affiliation(s)
- Ana M. Metelo
- Department of Life Sciences
- University of Coimbra
- Coimbra
- Portugal
- Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM)
| | - Nuria Arias-Ramos
- Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM)
- UAM/CSIC
- Madrid
- Spain
| | - Pilar Lopez-Larrubia
- Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM)
- UAM/CSIC
- Madrid
- Spain
| | | |
Collapse
|
33
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Dysregulation of Glycogen Metabolism with Concomitant Spatial Memory Dysfunction in Type 2 Diabetes: Potential Beneficial Effects of Chronic Exercise. ADVANCES IN NEUROBIOLOGY 2019; 23:363-383. [DOI: 10.1007/978-3-030-27480-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Pedroso AP, Dornellas APS, de Souza AP, Pagotto JF, Oyama LM, Nascimento CMO, Klawitter J, Christians U, Tashima AK, Ribeiro EB. A proteomics-metabolomics approach indicates changes in hypothalamic glutamate-GABA metabolism of adult female rats submitted to intrauterine growth restriction. Eur J Nutr 2018; 58:3059-3068. [PMID: 30406389 PMCID: PMC6842332 DOI: 10.1007/s00394-018-1851-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Intrauterine growth restriction (IUGR) has been shown to induce the programming of metabolic disturbances and obesity, associated with hypothalamic derangements. The present study aimed at investigating the effects of IUGR on the protein and metabolite profiles of the hypothalamus of adult female rats. METHODS Wistar rats were mated and either had ad libitum access to food (control group) or received only 50% of the control intake (restricted group) during the whole pregnancy. Both groups ate ad libitum throughout lactation. At 4 months of age, the control and restricted female offspring was euthanized for blood and tissues collection. The hypothalami were processed for data independent acquisition mass spectrometry-based proteomics or targeted mass spectrometry-based metabolomics. RESULTS The adult females submitted to IUGR showed increased glycemia and body adiposity, with normal body weight and food intake. IUGR modulated significantly 28 hypothalamic proteins and 7 hypothalamic metabolites. The effects of IUGR on hypothalamic proteins and metabolites included downregulation of glutamine synthetase, glutamate decarboxylase, glutamate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate, and up-regulation of NADH dehydrogenase and phosphoenolpyruvate. Integrated pathway analysis indicated that IUGR affected GABAergic synapse, glutamate metabolism, and TCA cycle, highly interconnected pathways whose derangement has potentially multiple consequences. CONCLUSION The present findings suggested that the effects of IUGR on GABA/glutamate-glutamine cycle may be involved in the programming of obesity and hyperglycemia in female rats.
Collapse
Affiliation(s)
- Amanda P Pedroso
- Departamento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Ana P S Dornellas
- Departamento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Adriana P de Souza
- Departamento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Josias F Pagotto
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Cláudia M O Nascimento
- Departamento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandre K Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, Vila Clementino, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
36
|
Cardoso S, Moreira PI. Diabesity and brain disturbances: A metabolic perspective. Mol Aspects Med 2018; 66:71-79. [PMID: 30321556 DOI: 10.1016/j.mam.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
The last decades have been marked by an increased prevalence in non-communicable diseases such as obesity and type 2 diabetes (T2D) as well as by population aging and age-related (brain) diseases. The current notion that the brain and the body are interrelated units is gaining the attention of the scientific and medical community. Growing evidence demonstrates that there is a significant overlap in risk, comorbidity, and pathophysiological mechanisms across obesity, T2D and brain disturbances; settings that seem to be worsened when both obesity and T2D occur simultaneously, the so-called diabesity. Thereupon, there is a great concern to critically appraise and understand the mechanisms by which diabesity can affect brain responses, and may accelerate the decline in brain health. In this framework, metabolic disturbances mediated by altered insulin signaling and mitochondrial function arise among the multifactorial interactions described to occur between obesity, T2D and neurocognitive deficits. In this review we have compiled all the notions and evidence describing how diabesity negatively influences brain function putting the emphasis on insulin signaling pathway disturbances and mitochondrial anomalies. We also debate lifestyle interventions as amenable strategies to lessen metabolic anomalies and, consequently, diabesity-associated brain alterations.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Institute of Physiology - Faculty of Medicine - University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
37
|
Karczewska-Kupczewska M, Nikolajuk A, Filarski R, Majewski R, Tarasów E. Intralipid/Heparin Infusion Alters Brain Metabolites Assessed With 1H-MRS Spectroscopy in Young Healthy Men. J Clin Endocrinol Metab 2018; 103:2563-2570. [PMID: 29860500 DOI: 10.1210/jc.2018-00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT We previously demonstrated that insulin infusion altered metabolite concentrations in cerebral tissues assessed with proton magnetic resonance spectroscopy (1H-MRS) in young subjects with high insulin sensitivity, but not in those with low insulin sensitivity. Fat overload is an important factor leading to insulin resistance. OBJECTIVE The purpose of the current study was to examine the effect of elevated circulating free fatty acid (FFA) levels on metabolites in cerebral tissues assessed with 1H-MRS. DESIGN The study group comprised 10 young, healthy male subjects. 1H-MRS was performed at baseline and after 4-hour Intralipid (Fresenius Kabi)/heparin or saline infusions administered in random order. Voxels were positioned in the left frontal lobe, left temporal lobe, and hippocampus. The ratios of N-acetylaspartate (NAA), choline (Cho)-containing compounds, myo-inositol (mI), and glutamate/glutamine/γ-aminobutyric acid complex (Glx) to creatine (Cr) and nonsuppressed water signal were determined. RESULTS Intralipid/heparin infusion resulted in a significant increase in circulating FFAs (P < 0.0001). Significant changes in brain neurometabolite concentrations in response to Intralipid/heparin infusion were increases in frontal mI/Cr (P = 0.041) and mI/H2O (P = 0.037), decreases in frontal and hippocampal Glx/Cr (P = 0.018 and P = 0.015, respectively) and Glx/H2O (P = 0.03 and P = 0.067, respectively), and a decrease in hippocampal NAA/Cr (P = 0.007) and NAA/H2O (P = 0.019). No changes in neurometabolites were observed during the saline infusion. CONCLUSIONS Acute circulating FFA elevation influenced cerebral metabolites in healthy humans and lipid-induced insulin resistance could be partly responsible for these effects.
Collapse
Affiliation(s)
- Monika Karczewska-Kupczewska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Nikolajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Remigiusz Filarski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Radoslaw Majewski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Eugeniusz Tarasów
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
38
|
Bak LK, Walls AB, Schousboe A, Waagepetersen HS. Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 2018; 293:7108-7116. [PMID: 29572349 DOI: 10.1074/jbc.r117.803239] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K+ and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| |
Collapse
|
39
|
Ribeiro M, Castelhano J, Petrella LI, Sereno J, Rodrigues T, Neves C, Letra L, Baptista FI, Seiça R, Matafome P, Castelo-Branco M. High-fat diet induces a neurometabolic state characterized by changes in glutamate and N-acetylaspartate pools associated with early glucose intolerance: An in vivo multimodal MRI study. J Magn Reson Imaging 2018; 48:757-766. [PMID: 29377412 DOI: 10.1002/jmri.25942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/18/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Type-2 diabetes mellitus (T2DM) is a metabolic disorder with a broad range of complications in the brain that depend on the conditions that precede its onset, such as obesity and metabolic syndromes. It has been suggested that neurotransmitter and metabolic perturbations may emerge even before the early stages of T2DM and that high-caloric intake could adversely influence the brain in such states. Notwithstanding, evidence for neurochemical and structural alterations in these conditions are still sparse and controversial. PURPOSE To evaluate the influence of high-fat diet in the neurochemical profile and structural integrity of the rodent brain. STUDY TYPE Prospective. SUBJECTS Wistar rats (n = 12/group). FIELD STRENGTH/SEQUENCE A PRESS, ISIS, RARE, and EPI sequences were performed at 9.4T. ASSESSMENT Neurochemical and structural parameters were assessed by magnetic resonance spectroscopy, voxel-based morphometry, volumetry, and diffusion tensor imaging. STATISTICAL TESTS Measurements were compared through Student and Mann-Whitney tests. Pearson correlation was used to assess relationships between parameters. RESULTS Animals submitted to high-caloric intake gained weight (P = 0.003) and developed glucose intolerance (P < 0.001) but not hyperglycemia. In the hippocampus, the diet induced perturbations in glutamatergic metabolites reflected by increased levels of glutamine (P = 0.016) and glutamatergic pool (Glx) (P = 0.036), which were negatively correlated with glucose intolerance (glutamine, r = -0.804, P = 0.029), suggesting a link with neurometabolic dysregulation. At caudate-putamen, high-fat diet led to a surprising increase in the pool of N-acetylaspartate (P = 0.028). A relation with metabolic changes was again suggested by the negative correlation between glucose intolerance and levels of glutamatergic metabolites in this region (glutamate, r = -0.845, P = 0.014; Glx, r = -0.834, P = 0.020). Neither changes in phosphate compounds nor major structural alterations were observed for both regions. DATA CONCLUSION We found evidence that high-fat diet-induced obesity leads to distinct early and region-specific metabolic/neurochemical imbalances in the presence of early glucose intolerance even when structural alterations or T2DM are absent. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Mário Ribeiro
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Lorena I Petrella
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - José Sereno
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Christian Neves
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Liliana Letra
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
- Coimbra Health School (ESTeSC), Department of Complementary Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
A High-fat, High-sugar 'Western' Diet Alters Dorsal Striatal Glutamate, Opioid, and Dopamine Transmission in Mice. Neuroscience 2017; 372:1-15. [PMID: 29289718 DOI: 10.1016/j.neuroscience.2017.12.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Understanding neuroadaptations involved in obesity is critical for developing new approaches to treatment. Diet-induced neuroadaptations within the dorsal striatum have the capacity to drive excessive food seeking and consumption. Five-week-old C57BL/6J mice consumed a high-fat, high-sugar 'western diet' (WD) or a control 'standard diet' (SD) for 16 weeks. Weight gain, glucose tolerance, and insulin tolerance were measured to confirm an obese-like state. Following these 16 weeks, electrophysiological recordings were made from medium spiny neurons (MSNs) in the medial (DMS) and lateral (DLS) portions of dorsal striatum to evaluate diet effects on neuronal excitability and synaptic plasticity. In addition, fast-scan cyclic voltammetry evaluated dopamine transmission in these areas. WD mice gained significantly more weight and consumed more calories than SD mice and demonstrated impaired glucose tolerance. Electrophysiology data revealed that MSNs from WD mice demonstrated increased AMPA-to-NMDA receptor current ratio and prolonged spontaneous glutamate-mediated currents, specifically in the DLS. Evoked dopamine release was also significantly greater and reuptake slower in both subregions of WD striatum. Finally, dorsal striatal MSNs from WD mice were significantly less likely to demonstrate mu-opioid receptor-mediated synaptic plasticity. Neuronal excitability and GABAergic transmission were unaffected by diet in either striatal subregion. Our results demonstrate that a high-fat, high-sugar diet alters facets of glutamate, dopamine, and opioid signaling within the dorsal striatum, with some subregion specificity. These alterations within a brain area known to play a role in food motivation/consumption and habitual behavior are highly relevant for the clinical condition of obesity and its treatment.
Collapse
|
41
|
Li S, Wang X, Yang J, Lei H, Wang X, Xiang Y. Metabolic profile of visual cortex in diabetic rats measured with in vivo proton MRS. NMR IN BIOMEDICINE 2017; 30:e3783. [PMID: 28915340 DOI: 10.1002/nbm.3783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The purpose of the present study was to characterize the metabolic profile of the visual cortex in streptozotocin-induced Type 1 diabetic rats by means of in vivo proton MRS. Several metabolite concentration ratios in the visual cortex were calculated. In addition, postmortem histologic analyses for retinal ganglion cell (RGC) loss, optic nerve injury and visual cortex alterations were monitored. The results showed that diabetes induced several changes in visual cortex metabolites, such as reduced N-acetylaspartate, glutamate, γ-aminobutyric acid, taurine and choline-containing compound levels. Nevertheless, myo-inositol levels increased significantly as compared with controls. Remarkable RGC loss and optic nerve degeneration were observed by morphological analysis. Moreover, the results showed significant neuronal loss and glial activation in the visual cortex. These findings indicated that, besides vascular abnormalities, neuronal loss and degeneration in the visual pathway were induced due to disrupted glucose homeostasis in diabetes. Metabolic or functional abnormalities were induced in cerebral neurons of the visual cortex by diabetes.
Collapse
Affiliation(s)
- Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junjie Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yi Xiang
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
42
|
Girault FM, Sonnay S, Gruetter R, Duarte JMN. Alterations of Brain Energy Metabolism in Type 2 Diabetic Goto-Kakizaki Rats Measured In Vivo by 13C Magnetic Resonance Spectroscopy. Neurotox Res 2017; 36:268-278. [DOI: 10.1007/s12640-017-9821-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
|
43
|
Öz G, DiNuzzo M, Kumar A, Moheet A, Khowaja A, Kubisiak K, Eberly LE, Seaquist ER. Cerebral glycogen in humans following acute and recurrent hypoglycemia: Implications on a role in hypoglycemia unawareness. J Cereb Blood Flow Metab 2017; 37:2883-2893. [PMID: 27834283 PMCID: PMC5536796 DOI: 10.1177/0271678x16678240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supercompensated brain glycogen levels may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) following recurrent hypoglycemia (RH) by providing energy for the brain during subsequent periods of hypoglycemia. To assess the role of glycogen supercompensation in the generation of HAAF, we estimated the level of brain glycogen following RH and acute hypoglycemia (AH). After undergoing 3 hyperinsulinemic, euglycemic and 3 hyperinsulinemic, hypoglycemic clamps (RH) on separate occasions at least 1 month apart, five healthy volunteers received [1-13C]glucose intravenously over 80+ h while maintaining euglycemia. 13C-glycogen levels in the occipital lobe were measured by 13C magnetic resonance spectroscopy at ∼8, 20, 32, 44, 56, 68 and 80 h at 4 T and glycogen levels estimated by fitting the data with a biophysical model that takes into account the tiered glycogen structure. Similarly, prior 13C-glycogen data obtained following a single hypoglycemic episode (AH) were fitted with the same model. Glycogen levels did not significantly increase after RH relative to after euglycemia, while they increased by ∼16% after AH relative to after euglycemia. These data suggest that glycogen supercompensation may be blunted with repeated hypoglycemic episodes. A causal relationship between glycogen supercompensation and generation of HAAF remains to be established.
Collapse
Affiliation(s)
- Gülin Öz
- 1 Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Mauro DiNuzzo
- 2 Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjali Kumar
- 3 Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Amir Moheet
- 3 Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Ameer Khowaja
- 3 Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Kristine Kubisiak
- 4 Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Lynn E Eberly
- 4 Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
44
|
Cognitive impairment in diabetes and poor glucose utilization in the intracellular neural milieu. Med Hypotheses 2017; 104:160-165. [DOI: 10.1016/j.mehy.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/01/2023]
|
45
|
Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism. Anal Biochem 2017; 529:117-126. [DOI: 10.1016/j.ab.2016.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/31/2016] [Accepted: 12/23/2016] [Indexed: 01/20/2023]
|
46
|
Impaired Hippocampal Glutamate and Glutamine Metabolism in the db/db Mouse Model of Type 2 Diabetes Mellitus. Neural Plast 2017; 2017:2107084. [PMID: 28695014 PMCID: PMC5488168 DOI: 10.1155/2017/2107084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for the development of Alzheimer's disease, and changes in brain energy metabolism have been suggested as a causative mechanism. The aim of this study was to investigate the cerebral metabolism of the important amino acids glutamate and glutamine in the db/db mouse model of T2DM. Glutamate and glutamine are both substrates for mitochondrial oxidation, and oxygen consumption was assessed in isolated brain mitochondria by Seahorse XFe96 analysis. In addition, acutely isolated cerebral cortical and hippocampal slices were incubated with [U-13C]glutamate and [U-13C]glutamine, and tissue extracts were analyzed by gas chromatography-mass spectrometry. The oxygen consumption rate using glutamate and glutamine as substrates was not different in isolated cerebral mitochondria of db/db mice compared to controls. Hippocampal slices of db/db mice exhibited significantly reduced 13C labeling in glutamate, glutamine, GABA, citrate, and aspartate from metabolism of [U-13C]glutamate. Additionally, reduced 13C labeling were observed in GABA, citrate, and aspartate from [U-13C]glutamine metabolism in hippocampal slices of db/db mice when compared to controls. None of these changes were observed in cerebral cortical slices. The results suggest specific hippocampal impairments in glutamate and glutamine metabolism, without affecting mitochondrial oxidation of these substrates, in the db/db mouse.
Collapse
|
47
|
Pedroso AP, Souza AP, Dornellas APS, Oyama LM, Nascimento CMO, Santos GMS, Rosa JC, Bertolla RP, Klawitter J, Christians U, Tashima AK, Ribeiro EB. Intrauterine Growth Restriction Programs the Hypothalamus of Adult Male Rats: Integrated Analysis of Proteomic and Metabolomic Data. J Proteome Res 2017; 16:1515-1525. [PMID: 28314371 DOI: 10.1021/acs.jproteome.6b00923] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.
Collapse
Affiliation(s)
- Amanda P Pedroso
- Department of Physiology, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Adriana P Souza
- Department of Physiology, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Ana P S Dornellas
- Department of Physiology, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Lila M Oyama
- Department of Physiology, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Cláudia M O Nascimento
- Department of Physiology, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Gianni M S Santos
- Division of Applied Statistics, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - José C Rosa
- Protein Chemistry Center, Department of Molecular and Cell Biology, Ribeirão Preto Medical School, Universidade de São Paulo , Ribeirão Preto, SP 03178-200, Brazil
| | - Ricardo P Bertolla
- Department of Surgery, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver , Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver , Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Alexandre K Tashima
- Department of Biochemistry, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| | - Eliane B Ribeiro
- Department of Physiology, Universidade Federal de São Paulo UNIFESP , São Paulo, SP 04021-001, Brazil
| |
Collapse
|
48
|
Shima T, Matsui T, Jesmin S, Okamoto M, Soya M, Inoue K, Liu YF, Torres-Aleman I, McEwen BS, Soya H. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes. Diabetologia 2017; 60:597-606. [PMID: 27928614 DOI: 10.1007/s00125-016-4164-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. METHODS The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. RESULTS OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. CONCLUSIONS/INTERPRETATION Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.
Collapse
Affiliation(s)
- Takeru Shima
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takashi Matsui
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Cajal Institute, CSIC, Madrid, Spain
| | - Subrina Jesmin
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Mariko Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Yu-Fan Liu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | | | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan.
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
49
|
Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery. Neurochem Res 2017; 42:1629-1635. [PMID: 28083850 DOI: 10.1007/s11064-017-2178-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.
Collapse
|
50
|
Zheng H, Zheng Y, Zhao L, Chen M, Bai G, Hu Y, Hu W, Yan Z, Gao H. Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1863:266-273. [DOI: 10.1016/j.bbadis.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
|