1
|
Bani-Sadr A, Hermier M, de Bourguignon C, Mechtouff L, Eker OF, Cappucci M, Tommasino E, Martin A, Cho TH, Derex L, Nighoghossian N, Berthezene Y. Oxygen Extraction Fraction Mapping on Admission Magnetic Resonance Imaging May Predict Recovery of Hyperacute Ischemic Brain Lesions After Successful Thrombectomy: A Retrospective Observational Study. Stroke 2024; 55:2685-2693. [PMID: 39391984 DOI: 10.1161/strokeaha.124.047311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND In acute stroke, diffusion-weighted imaging (DWI) is used to assess the ischemic core. Dynamic-susceptibility contrast perfusion magnetic resonance imaging allows an estimation of the oxygen extraction fraction (OEF), but the outcome of DWI lesions with increased OEF postrecanalization is unclear. This study investigated the impact of OEF on the fate of DWI lesions in patients achieving recanalization after thrombectomy. METHODS This was a retrospective analysis of the HIBISCUS-STROKE cohort (Cohort of Patients to Identify Biological and Imaging Markers of Cardiovascular Outcomes in Stroke; NCT: 03149705), a single-center observational study that prospectively enrolled patients who underwent magnetic resonance imaging triage for thrombectomy and a day-6 T2-fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging. Automated postprocessing of admission dynamic-susceptibility contrast perfusion magnetic resonance imaging generated OEF maps. At visual analysis, the OEF status within DWI lesions was assessed in comparison to the contralateral side and correlated with volume changes (difference of ischemic lesion between admission DWI and registered day-6 T2-FLAIR). At voxel-based analysis, recovered DWI regions (lesions present on the admission DWI but absent on the registered day-6 T2-FLAIR) and nonrecovered regions were segmented to extract semiquantitative OEF values. RESULTS Of the participants enrolled from 2016 to 2022, 134 of 321 (41.7%) were included (median age, 71.0 years; 58.2% male; median baseline National Institutes of Health Scale score, 15.0). At visual analysis, 46 of 134 (34.3%) patients had increased OEF within DWI lesions. These patients were more likely to show a reduction in ischemic lesion volumes compared with those without increased OEF (median change, -4.0 versus 4.8 mL; P<0.0001). Multivariable analysis indicated that increased OEF within DWI lesions was associated with a reduction in ischemic lesion volumes from admission DWI to day-6 T2-FLAIR (odds ratio, 0.68 [95% CI, 0.49-0.87]; P=0.008). At voxel-based analysis, recovered DWI regions had increased OEF, while nonrecovered regions had decreased OEF (median, 126.9% versus -27.0%; P<0.0001). CONCLUSIONS Increased OEF within hyperacute DWI lesions was associated with ischemic lesion recovery between admission DWI and day-6 T2-FLAIR in patients achieving recanalization after thrombectomy. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03149705.
Collapse
Affiliation(s)
- Alexandre Bani-Sadr
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Marc Hermier
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
| | | | - Laura Mechtouff
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France (L.M., T.-H.C., N.N.)
| | - Omer F Eker
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Matteo Cappucci
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Emanuele Tommasino
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Anna Martin
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Tae-Hee Cho
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France (L.M., T.-H.C., N.N.)
| | - Laurent Derex
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Nobert Nighoghossian
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France (L.M., T.-H.C., N.N.)
| | - Yves Berthezene
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| |
Collapse
|
2
|
Bateman GA, Bateman AR. A lumped parameter modelling study of cerebral autoregulation in normal pressure hydrocephalus suggests the brain chooses to be ischemic. Sci Rep 2024; 14:24373. [PMID: 39420020 PMCID: PMC11487127 DOI: 10.1038/s41598-024-75214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Normal pressure hydrocephalus (NPH) is associated with a reduction in cerebral blood flow and an ischemic metabolic state. Ischemia should exhaust the available autoregulation in an attempt to correct the metabolic imbalance. There is evidence of some retained autoregulation reserve in NPH. The aim of this study is to model the cerebral autoregulation in NPH to discover a solution to this apparent paradox. A lumped parameter model was developed utilizing the known limits of autoregulation in man. The model was tested by predicting the cerebral blood volume changes which would be brought about by changes in resistance. NPH and the post shunt state were then modeled using the known constraints provided from the literature. The model successfully predicted the cerebral blood volume changes brought about by altering the cerebral perfusion pressure to the limit of autoregulation. The model suggests that NPH is associated with a balanced increase in resistance within the arterial and venous outflow segments. The arterial resistance decreased after modelling shunt insertion. The model suggests that the cerebral blood flow is actively limited in NPH by arteriolar constriction. This may occur to minimize the rise in ICP by reducing the apparent CSF formation rate.
Collapse
Affiliation(s)
- Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Locked Bag 1, Newcastle Region Mail Center, Newcastle, NSW, 2310, Australia.
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia.
| | | |
Collapse
|
3
|
Coelho FMS, de Carvalho Cremaschi RM, Novak P. Cerebral blood flow and end-tidal CO 2 predict lightheadedness during head-up tilt in patients with orthostatic intolerance. Neurol Sci 2024:10.1007/s10072-024-07673-8. [PMID: 38980457 DOI: 10.1007/s10072-024-07673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Orthostatic intolerance (OI) is a common problem. Reliable markers of OI are missing, as orthostatic blood pressure and heart rate poorly correlate with orthostatic symptoms. The objective of this study was to assess the relationship between orthostatic lightheadedness and cerebral blood flow. In this retrospective study patients with OI were evaluated at the Autonomic Laboratory of the Department of Neurology, Brigham and Women's Faulkner Hospital, Boston. The 10-minute head-up tilt test was performed as a part of autonomic testing. Orthostatic lightheadedness was evaluated at every minute of the head-up tilt. Heart rate, blood pressure, capnography, and cerebral blood flow velocity (CBFv) in the middle cerebral artery using transcranial Doppler were measured. Repeated-measures design with a linear mixed-effects model was used to evaluate the relationship between orthostatic lightheadedness and hemodynamic variables. Correlation analyses were done by calculating Pearson's coefficient. Twenty-two patients with OI were compared to nineteen controls. Orthostatic CBFv and end-tidal CO2 decreased in OI patients compared to controls (p < 0.001) and predicted orthostatic lightheadedness. Orthostatic heart rate and blood pressure failed to predict orthostatic lightheadedness. The lightheadedness threshold, which marked the onset of lightheadedness, was equal to an average systolic CBFv decrease of 18.92% and end-tidal CO2 of 12.82%. The intensity of lightheadedness was proportional to the CBFv and end-tidal CO2 decline. Orthostatic lightheadedness correlated with systolic CBFv (r=-0.6, p < 0.001) and end-tidal CO2 (r=-0.33, p < 0.001) decline. In conclusion, orthostatic CBFv and end-tidal CO2 changes predict orthostatic lightheadedness and can be used as objective markers of OI.
Collapse
Affiliation(s)
- Fernando Morgadinho Santos Coelho
- Department of Neurology, Brigham and Women's Faulkner Hospital, 1153 Centre Street, Boston, MA, USA
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renata Maria de Carvalho Cremaschi
- Department of Neurology, Brigham and Women's Faulkner Hospital, 1153 Centre Street, Boston, MA, USA
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Peter Novak
- Department of Neurology, Brigham and Women's Faulkner Hospital, 1153 Centre Street, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Albers GW, Heit JJ, Lansberg MG, Inoue M, Huo X, Yedavalli VS, Seners P, McCullough-Hicks M, Cereda CW, Tsai JP, Mistry EA, Chatterjee AR, Derdeyn CP, Khatri P, Olivot JM, Hill MD, Saver JL, Fisher M. Exploring the Limits of Endovascular Therapy for Large Core Patients: Where Do We Need More Data? Stroke 2024; 55:1956-1960. [PMID: 38836345 DOI: 10.1161/strokeaha.124.047228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Gregory W Albers
- Department of Neurology (G.W.A., M.G.L.), Stanford University, CA
| | - Jeremy J Heit
- Department of Radiology (J.J.H.), Stanford University, CA
| | | | - Manabu Inoue
- Division of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (M.I.)
| | - Xiaochuan Huo
- Cerebral Vascular Disease Department, Beijing Anzhen Hospital, Capital Medical University, China (X.H.)
| | - Vivek S Yedavalli
- Department of Neurology, Johns Hopkins University, Baltimore, MD (V.S.Y.)
| | - Pierre Seners
- Neurology Department, Hôpital Fondation A. de Rothschild, Paris, France (P.S.)
| | | | - Carlo W Cereda
- Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland (C.W.C.)
| | - Jenny P Tsai
- Cerebrovascular Center and Department of Neurology, Cleveland Clinic, OH (J.P.T.)
| | - Eva A Mistry
- Department of Neurology, University of Cincinnati, OH (E.A.M., P.K.)
| | - Arindam R Chatterjee
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO (A.R.C.)
| | - Colin P Derdeyn
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville (C.P.D.)
| | - Pooja Khatri
- Department of Neurology, University of Cincinnati, OH (E.A.M., P.K.)
| | - J M Olivot
- Neurology Department, CHU Toulouse, France (J.M.O.)
| | - Michael D Hill
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Canada (M.D.H.)
| | - Jeffrey L Saver
- Department of Neurology, University of California Los Angeles (J.L.S.)
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA (M.F.)
| |
Collapse
|
5
|
Li J, Zhang Y, Zhang D, Wang W, Xie H, Ruan J, Jin Y, Li T, Li X, Zhao B, Zhang X, Lin J, Shi H, Jia JM. Ca 2+ oscillation in vascular smooth muscle cells control myogenic spontaneous vasomotion and counteract post-ischemic no-reflow. Commun Biol 2024; 7:332. [PMID: 38491167 PMCID: PMC10942987 DOI: 10.1038/s42003-024-06010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.
Collapse
Affiliation(s)
- Jinze Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wentao Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiao Jin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoxuan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
6
|
Díaz-Peregrino R, Kentar M, Trenado C, Sánchez-Porras R, Albiña-Palmarola P, Ramírez-Cuapio FL, San-Juan D, Unterberg A, Woitzik J, Santos E. The neurophysiological effect of mild hypothermia in gyrencephalic brains submitted to ischemic stroke and spreading depolarizations. Front Neurosci 2024; 18:1302767. [PMID: 38567280 PMCID: PMC10986791 DOI: 10.3389/fnins.2024.1302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Characterize the neurophysiological effects of mild hypothermia on stroke and spreading depolarizations (SDs) in gyrencephalic brains. Methods Left middle cerebral arteries (MCAs) of six hypothermic and six normothermic pigs were permanently occluded (MCAo). Hypothermia began 1 h after MCAo and continued throughout the experiment. ECoG signals from both frontoparietal cortices were recorded. Five-minute ECoG epochs were collected 5 min before, at 5 min, 4, 8, 12, and 16 h after MCAo, and before, during, and after SDs. Power spectra were decomposed into fast (alpha, beta, and gamma) and slow (delta and theta) frequency bands. Results In the vascular insulted hemisphere under normothermia, electrodes near the ischemic core exhibited power decay across all frequency bands at 5 min and the 4th hour after MCAo. The same pattern was registered in the two furthest electrodes at the 12th and 16th hour. When mild hypothermia was applied in the vascular insulted hemispheres, the power decay was generalized and seen even in electrodes with uncompromised blood flow. During SD analysis, hypothermia maintained increased delta and beta power during the three phases of SDs in the furthest electrode from the ischemic core, followed by the second furthest and third electrode in the beta band during preSD and postSD segments. However, in hypothermic conditions, the third electrode showed lower delta, theta, and alpha power. Conclusion Mild hypothermia attenuates all frequency bands in the vascularly compromised hemisphere, irrespective of the cortical location. During SD formation, it preserves power spectra more significantly in electrodes further from the ischemic core.
Collapse
Affiliation(s)
- Roberto Díaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Modar Kentar
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Departement of Neurosurgery, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Carlos Trenado
- Heinrich Heine University, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Düsseldorf, Germany
- Institute for the Future of Education Europe, Tecnológico de Monterrey, Cantabria, Spain
| | - Renán Sánchez-Porras
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pablo Albiña-Palmarola
- Neuroradiologische Klinik, Klinikum Stuttgart, Stuttgart, Germany
- Medizinische Fakultät, Universität Duisburg-Essen, Essen, Germany
- Department of Anatomy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco L. Ramírez-Cuapio
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Shrouder JJ, Calandra GM, Filser S, Varga DP, Besson-Girard S, Mamrak U, Dorok M, Bulut-Impraim B, Seker FB, Gesierich B, Laredo F, Wehn AC, Khalin I, Bayer P, Liesz A, Gokce O, Plesnila N. Continued dysfunction of capillary pericytes promotes no-reflow after experimental stroke in vivo. Brain 2024; 147:1057-1074. [PMID: 38153327 DOI: 10.1093/brain/awad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.
Collapse
Affiliation(s)
- Joshua James Shrouder
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Gian Marco Calandra
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Severin Filser
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Core Research Facilities and Services-Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Daniel Peter Varga
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Maximilian Dorok
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Buket Bulut-Impraim
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fatma Burcu Seker
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fabio Laredo
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Neurosurgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France
| | - Patrick Bayer
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
9
|
ter Schiphorst A, Turc G, Hassen WB, Oppenheim C, Baron JC. Incidence, severity and impact on functional outcome of persistent hypoperfusion despite large-vessel recanalization, a potential marker of impaired microvascular reperfusion: Systematic review of the clinical literature. J Cereb Blood Flow Metab 2024; 44:38-49. [PMID: 37871624 PMCID: PMC10905632 DOI: 10.1177/0271678x231209069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
The reported incidence of persistent hypoperfusion despite complete recanalization as surrogate for impaired microvascular reperfusion (IMR) has varied widely among clinical studies, possibly due to differences in i) definition of complete recanalization, with only recent Thrombolysis in Cerebral Infarction (TICI) grading schemes allowing distinction between complete (TICI3) and partial recanalization with distal occlusions (TICI2c); ii) operational definition of IMR; and iii) consideration of potential alternative causes for hypoperfusion, notably carotid stenosis, re-occlusion and post-thrombectomy hemorrhage. We performed a systematic review to identify clinical studies that carried out brain perfusion imaging within 72 hrs post-thrombectomy for anterior circulation stroke and reported hypoperfusion rates separately for TICI3 and TICI2c grades. Authors were contacted if this data was missing. We identified eight eligible articles, altogether reporting 636 patients. The incidence of IMR after complete recanalization (i.e., TICI3) tended to decrease with the number of considered alternative causes of hypoperfusion: range 12.5-42.9%, 0-31.6% and 0-9.1% in articles that considered none, two or all three causes, respectively. No study reported the impact of IMR on functional outcome separately for TICI-3 patients. Based on this systematic review, IMR in true complete recanalization appears relatively rare, and reported incidence highly depends on definition used and consideration of confounding factors.
Collapse
Affiliation(s)
- Adrien ter Schiphorst
- Department of Neurology, University Hospital of Montpellier, CHU Gui de Chauliac, Montpellier, France
| | - Guillaume Turc
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, Paris, France
| | - Wagih Ben Hassen
- Department of Neuroradiology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, Paris, France
| | - Catherine Oppenheim
- Department of Neuroradiology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, Paris, France
| | - Jean-Claude Baron
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, Paris, France
| |
Collapse
|
10
|
Andersen L, Appelblad M, Wiklund U, Sundström N, Svenmarker S. Our initial experience of monitoring the autoregulation of cerebral blood flow during cardiopulmonary bypass. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:209-217. [PMID: 38099638 PMCID: PMC10723576 DOI: 10.1051/ject/2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cerebral blood flow (CBF) is believed to be relatively constant within an upper and lower blood pressure limit. Different methods are available to monitor CBF autoregulation during surgery. This study aims to critically analyze the application of the cerebral oxygenation index (COx), one of the commonly used techniques, using a reference to data from a series of clinical registrations. METHOD CBF was monitored using near-infrared spectroscopy, while cerebral blood pressure was estimated by recordings obtained from either the radial or femoral artery in 10 patients undergoing cardiopulmonary bypass. The association between CBF and blood pressure was calculated as a moving continuous correlation coefficient. A COx index > 0.4 was regarded as a sign of abnormal cerebral autoregulation (CA). Recordings were examined to discuss reliability measures and clinical feasibility of the measurements, followed by interpretation of individual results, identification of possible pitfalls, and suggestions of alternative methods. RESULTS AND CONCLUSION Monitoring of CA during cardiopulmonary bypass is intriguing and complex. A series of challenges and limitations should be considered before introducing this method into clinical practice.
Collapse
Affiliation(s)
- Leon Andersen
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| | - Micael Appelblad
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University 901 87 Umeå Sweden
| | - Nina Sundström
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University 901 87 Umeå Sweden
| | - Staffan Svenmarker
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| |
Collapse
|
11
|
Qiao H, Xu Q, Xu Y, Zhao Y, He N, Tang J, Zhao J, Liu Y. Molecular chaperones in stroke-induced immunosuppression. Neural Regen Res 2023; 18:2638-2644. [PMID: 37449602 DOI: 10.4103/1673-5374.373678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
Collapse
Affiliation(s)
- Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Yang T, Sun Y, Li Q, Alraqmany N, Zhang F. Effects of Ischemic Stroke on Interstitial Fluid Clearance in Mouse Brain: a Bead Study. Cell Mol Neurobiol 2023; 43:4141-4156. [PMID: 37634198 DOI: 10.1007/s10571-023-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The clearance of brain interstitial fluid (ISF) is important in maintaining brain homeostasis. ISF clearance impairment leads to toxic material accumulation in the brain, and ischemic stroke could impair ISF clearance. The present study investigates ISF clearance under normal and ischemic conditions. The carboxylate-modified FluoSpheres beads (0.04 μm in diameter) were injected into the striatum. Sham or transient middle cerebral artery occlusion surgeries were performed on the mice. The brain sections were immunostained with cell markers, and bead distribution at various time points was examined with a confocal microscope. Primary mouse neuronal cultures were incubated with the beads to explore in vitro endocytosis. Two physiological routes for ISF clearance were identified. The main one was to the lateral ventricle (LV) through the cleft between the striatum and the corpus callosum (CC)/external capsule (EC), where some beads were captured by the ependymal macrophages and choroid plexus. An alternative and minor route was to the subarachnoid space through the CC/EC and the cortex, where some of the beads were endocytosed by neurons. After ischemic stroke, a significant decrease in the main route and an increase in the minor route were observed. Additionally, microglia/macrophages engulfed the beads in the infarction. In conclusion, we report that the physiological clearance of ISF and beads mainly passes through the cleft between the CC/EC and striatum into the LV, or alternatively through the cortex into the subarachnoid space. Stroke delays the main route but enhances the minor route, and microglia/macrophages engulf the beads in the infarction. Ischemic stroke impairs the clearance of brain interstitial fluid/beads. Under physiological conditions, the main route ( ① ) of interstitial fluid clearance is to the lateral ventricle, and the minor one ( ② ) is to the subarachnoid space. Ischemic stroke weakens the main route ( ① ), enhances the minor one ( ② ), and leads to microglial/macrophage phagocytosis within the infarction ( ③ ).
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Nour Alraqmany
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
14
|
Sirimarco G, Strambo D, Nannoni S, Labreuche J, Cereda C, Dunet V, Puccinelli F, Saliou G, Meuli R, Eskandari A, Wintermark M, Michel P. Predicting Penumbra Salvage and Infarct Growth in Acute Ischemic Stroke: A Multifactor Survival Game. J Clin Med 2023; 12:4561. [PMID: 37510676 PMCID: PMC10380847 DOI: 10.3390/jcm12144561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Effective treatment of acute ischemic stroke requires reperfusion of salvageable tissue. We investigated the predictors of penumbra salvage (PS) and infarct growth (IG) in a large cohort of stroke patients. METHODS In the ASTRAL registry from 2003 to 2016, we selected middle cerebral artery strokes <24 h with a high-quality CT angiography and CT perfusion. PS and IG were correlated in multivariate analyses with clinical, biochemical and radiological variables, and with clinical outcomes. RESULTS Among 4090 patients, 551 were included in the study, 50.8% male, mean age (±SD) 66.3 ± 14.7 years, mean admission NIHSS (±SD 13.3 ± 7.1) and median onset-to-imaging-time (IQR) 170 (102 to 385) minutes. Increased PS was associated with the following: higher BMI and lower WBC; neglect; larger penumbra; absence of early ischemic changes, leukoaraiosis and other territory involvement; and higher clot burden score. Reduced IG was associated with the following: non-smokers; lower glycemia; larger infarct core; absence of early ischemic changes, chronic vascular brain lesions, other territory involvement, extracranial arterial pathology and hyperdense middle cerebral artery sign; and higher clot burden score. When adding subacute variables, recanalization was associated with increased PS and reduced IG, and the absence of haemorrhage with reduced IG. Collateral status was not significantly associated with IG nor with PS. Increased PS and reduced IG correlated with better 3- and 12-month outcomes. CONCLUSION In our comprehensive analysis, multiple factors were found to be responsible for PS or IG, the strongest being radiological features. These findings may help to better select patients, particularly for more aggressive or late acute stroke treatment.
Collapse
Affiliation(s)
- Gaia Sirimarco
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Neurology Unit, Department of Internal Medicine, Riviera Chablais Hospital, 1847 Rennaz, Switzerland
| | - Davide Strambo
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stefania Nannoni
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Julien Labreuche
- Statistical Unit, Regional House of Clinical Research, University of Lille, CHU Lille, EA 2694-Santé Publique: Épidémiologie et Qualité des Soins, 59000 Lille, France
| | - Carlo Cereda
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Stroke Center, Neurology Service, Ospedale Civico di Lugano, 6900 Lugano, Switzerland
| | - Vincent Dunet
- Diagnostic and Interventional Radiology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Francesco Puccinelli
- Diagnostic and Interventional Radiology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Guillaume Saliou
- Diagnostic and Interventional Radiology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Reto Meuli
- Diagnostic and Interventional Radiology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ashraf Eskandari
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Max Wintermark
- Diagnostic and Interventional Radiology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Department of Diagnostic and Interventional Radiology, Neuroradiology Division, Stanford University and Medical Center, Stanford, CA 94305, USA
| | - Patrik Michel
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
15
|
Zedde M, Napoli M, Grisendi I, Assenza F, Moratti C, Valzania F, Pascarella R. Perfusion Status in Lacunar Stroke: A Pathophysiological Issue. Diagnostics (Basel) 2023; 13:2003. [PMID: 37370898 DOI: 10.3390/diagnostics13122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The pathophysiology of lacunar infarction is an evolving and debated field, where relevant information comes from histopathology, old anatomical studies and animal models. Only in the last years, have neuroimaging techniques allowed a sufficient resolution to directly or indirectly assess the dynamic evolution of small vessel occlusion and to formulate hypotheses about the tissue status and the mechanisms of damage. The core-penumbra concept was extensively explored in large vessel occlusions (LVOs) both from the experimental and clinical point of view. Then, the perfusion thresholds on one side and the neuroimaging techniques studying the perfusion of brain tissue were focused and optimized for LVOs. The presence of a perfusion deficit in the territory of a single small perforating artery was negated for years until the recent proposal of the existence of a perfusion defect in a subgroup of lacunar infarcts by using magnetic resonance imaging (MRI). This last finding opens pathophysiological hypotheses and triggers a neurovascular multidisciplinary reasoning about how to image this perfusion deficit in the acute phase in particular. The aim of this review is to summarize the pathophysiological issues and the application of the core-penumbra hypothesis to lacunar stroke.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
16
|
Luby M, Hsia AW, Lomahan CA, Davis R, Burton S, Kim Y, Craft V, Uche V, Cabatbat R, Adil MM, Thomas LC, De Vis JB, Afzal MM, McGavern D, Lynch JK, Leigh R, Latour LL. Post-ischemic hyperemia following endovascular therapy for acute stroke is associated with lesion growth. J Cereb Blood Flow Metab 2023; 43:856-868. [PMID: 36748316 PMCID: PMC10196753 DOI: 10.1177/0271678x231155222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
A substantial proportion of acute stroke patients fail to recover following successful endovascular therapy (EVT) and injury to the brain and vasculature secondary to reperfusion may be a contributor. Acute stroke patients were included with: i) large vessel occlusion of the anterior circulation, ii) successful recanalization, and iii) evaluable MRI early after EVT. Presence of hyperemia on MRI perfusion was assessed by consensus using a modified ASPECTS. Three different approaches were used to quantify relative cerebral blood flow (rCBF). Sixty-seven patients with median age of 66 [59-76], 57% female, met inclusion criteria. Hyperemia was present in 35/67 (52%) patients early post-EVT, in 32/65 (49%) patients at 24 hours, and in 19/48 (40%) patients at 5 days. There were no differences in incomplete reperfusion, HT, PH-2, HARM, severe HARM or symptomatic ICH rates between those with and without early post-EVT hyperemia. A strong association (R2 = 0.81, p < 0.001) was found between early post-EVT hyperemia (p = 0.027) and DWI volume at 24 hours after adjusting for DWI volume at 2 hours (p < 0.001) and incomplete reperfusion at 24 hours (p = 0.001). Early hyperemia is a potential marker for cerebrovascular injury and may help select patients for adjunctive therapy to prevent edema, reperfusion injury, and lesion growth.
Collapse
Affiliation(s)
- Marie Luby
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
| | - Amie W Hsia
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- MedStar Washington Hospital Center
Comprehensive Stroke Center, Washington, DC, USA
| | - Carolyn A Lomahan
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- Suburban Hospital, Johns Hopkins
Medicine, Bethesda, MD, USA
| | - Rachel Davis
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- Suburban Hospital, Johns Hopkins
Medicine, Bethesda, MD, USA
| | - Shannon Burton
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- MedStar Washington Hospital Center
Comprehensive Stroke Center, Washington, DC, USA
| | - Yongwoo Kim
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- MedStar Washington Hospital Center
Comprehensive Stroke Center, Washington, DC, USA
| | - Veronica Craft
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- MedStar Washington Hospital Center
Comprehensive Stroke Center, Washington, DC, USA
| | - Victoria Uche
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- MedStar Washington Hospital Center
Comprehensive Stroke Center, Washington, DC, USA
| | - Rainier Cabatbat
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- MedStar Washington Hospital Center
Comprehensive Stroke Center, Washington, DC, USA
| | - Malik M Adil
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- Suburban Hospital, Johns Hopkins
Medicine, Bethesda, MD, USA
- Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | - Leila C Thomas
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- Suburban Hospital, Johns Hopkins
Medicine, Bethesda, MD, USA
| | - Jill B De Vis
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- Department of Radiation Oncology,
Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Dorian McGavern
- NIH/NINDS Viral Immunology and
Intravital Imaging Section, Bethesda, MD, USA
| | | | - Richard Leigh
- NIH/NINDS, Stroke Branch, Bethesda,
MD, USA
- Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
18
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
19
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
20
|
Xu S, Li X, Wang Y. Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review). Exp Ther Med 2023; 25:113. [PMID: 36793330 PMCID: PMC9922943 DOI: 10.3892/etm.2023.11812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.
Collapse
Affiliation(s)
- Shuangli Xu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xuewei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China,Correspondence to: Dr Yanqiang Wang, Department of Neurology, Affiliated Hospital of Weifang Medical University, 2,428 Yuhe Road, Kuiwen, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
21
|
High-resolution micro-CT for 3D infarct characterization and segmentation in mice stroke models. Sci Rep 2022; 12:17471. [PMID: 36261475 PMCID: PMC9582034 DOI: 10.1038/s41598-022-21494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies.
Collapse
|
22
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
23
|
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19:184. [PMID: 35836200 PMCID: PMC9281066 DOI: 10.1186/s12974-022-02551-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.
Collapse
Affiliation(s)
- Ye Yingze
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Zhihong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yina
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Xiaoxing
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gu Lijuan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
24
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Topography of neurotrophins in the rat neocortex and their role in neuron apoptosis after experimental ischemic stroke. J Chem Neuroanat 2022; 124:102122. [PMID: 35718293 DOI: 10.1016/j.jchemneu.2022.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
Neuronal loss due to apoptosis after ischemic injury depends on the trophic support of neurons and cytoprotective effects of neurotrophins (NTs). Different NTs may activate both pro- and antiapoptotic factors. Their distribution in the ischemic core (IC) and penumbra (IP) has been poorly studied. The available data on the localization of NTs in the ischemic brain are contradictory and depend to a certain degree on the pathogenetic model used. The distribution of NTs in different layers of the ischemic cortex is also largely unknown hindering our understanding of their exact effects and targets in different zones of the ischemic brain. We examined the immunolocalization of brain-derived neurotrophic factor (BDNF), neurotrophin-3, and glial cell line-derived neurotrophic factor (GDNF) in the parietal cortex using a rat model of ischemic stroke due to permanent occlusion of the middle cerebral artery. The spatial density of immunoreactive (IR) cells varied across the cortical layers and changed with time after ischemic injury. Their distribution in the IC differed considerably from that in the IP. The immunolocalization of neurotrophins in the contralateral hemisphere was similar to that in IP. We also studied the distribution of pro- and anti-apoptotic factors in IC and IP with and without intravenous BDNF administration. In the model without BDNF administration, the proportions of Bcl-2-, p53-, caspase-3-, and Mdm2-IR cells showed different dynamics during the ischemic period. In the model with BDNF administration, Mdm2 immunoreactivity was mainly observed in pyramidal cells of layers V/VI, and Bcl-2, in interneurons of layers II and III. The dynamics of p53 immunoreactivity was opposite to that of caspase-3 throughout the ischemic period. The present results suggest that after ischemic injury, 1) the number of neurotrophin-positive cells increases in the early ischemic period and decreases afterwards; 2) there is a close metabolic relationship between astrocytes and neurons contributing to their adaptation to ischemic conditions; 3) the IP borders undergo constant changes; 4) in the IP, neuronal loss occurs mainly by apoptotic pathway throughout the ischemic period; 5) BDNF may enhance considerably antiapoptotic mechanisms with a predominance of Mdm-2 activity in pyramidal neurons.
Collapse
|
26
|
Binder NF, Glück C, Middleham W, Alasoadura M, Pranculeviciute N, Wyss MT, Chuquet J, Weber B, Wegener S, El Amki M. Vascular Response to Spreading Depolarization Predicts Stroke Outcome. Stroke 2022; 53:1386-1395. [PMID: 35240860 PMCID: PMC10510800 DOI: 10.1161/strokeaha.121.038085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cortical spreading depolarization (CSD) is a massive neuro-glial depolarization wave, which propagates across the cerebral cortex. In stroke, CSD is a necessary and ubiquitous mechanism for the development of neuronal lesions that initiates in the ischemic core and propagates through the penumbra extending the tissue injury. Although CSD propagation induces dramatic changes in cerebral blood flow, the vascular responses in different ischemic regions and their consequences on reperfusion and recovery remain to be defined. METHODS Ischemia was performed using the thrombin model of stroke and reperfusion was induced by r-tPA (recombinant tissue-type plasminogen activator) administration in mice. We used in vivo electrophysiology and laser speckle contrast imaging simultaneously to assess both electrophysiological and hemodynamic characteristics of CSD after ischemia onset. Neurological deficits were assessed on day 1, 3, and 7. Furthermore, infarct sizes were quantified using 2,3,5-triphenyltetrazolium chloride on day 7. RESULTS After ischemia, CSDs were evidenced by the characteristic propagating DC shift extending far beyond the ischemic area. On the vascular level, we observed 2 types of responses: some mice showed spreading hyperemia confined to the penumbra area (penumbral spreading hyperemia) while other showed spreading hyperemia propagating in the full hemisphere (full hemisphere spreading hyperemia). Penumbral spreading hyperemia was associated with severe stroke-induced damage, while full hemisphere spreading hyperemia indicated beneficial infarct outcome and potential viability of the infarct core. In all animals, thrombolysis with r-tPA modified the shape of the vascular response to CSD and reduced lesion volume. CONCLUSIONS Our results show that different types of spreading hyperemia occur spontaneously after the onset of ischemia. Depending on their shape and distribution, they predict severity of injury and outcome. Furthermore, our data show that modulating the hemodynamic response to CSD may be a promising therapeutic strategy to attenuate stroke outcome.
Collapse
Affiliation(s)
- Nadine Felizitas Binder
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, Experimental Imaging and Neuroenergetics, University of Zurich (UZH), Switzerland (C.G., M.T.W., B.W.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - William Middleham
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Michael Alasoadura
- Normandie University, Unirouen, INSERM U1239, Rouen, France (M.A., J.C.)
| | - Nikolete Pranculeviciute
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Matthias Tasso Wyss
- Institute of Pharmacology and Toxicology, Experimental Imaging and Neuroenergetics, University of Zurich (UZH), Switzerland (C.G., M.T.W., B.W.)
| | - Julien Chuquet
- Normandie University, Unirouen, INSERM U1239, Rouen, France (M.A., J.C.)
- Normandie University, Unirouen, IRIB, EA3830-GRHVN, Rouen, France (J.C.)
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, Experimental Imaging and Neuroenergetics, University of Zurich (UZH), Switzerland (C.G., M.T.W., B.W.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
| | - Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich (UZH), Switzerland (N.F.B., W.M., N.P., S.W., M.E.A.)
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Switzerland (N.F.B., C.G., W.M., N.P., B.W., S.W., M.E.A.)
| |
Collapse
|
27
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
28
|
del Zoppo GJ, Moskowitz MA, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Auer RN, Sommer CJ. Histopathology of Brain Tissue Response to Stroke and Injury. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Kim BJ, Lee Y, Kwon B, Chang JY, Song YS, Lee DH, Kwon SU, Kim JS, Kang DW. Clinical-Diffusion Mismatch Is Associated with Early Neurological Improvement after Late-Window Endovascular Treatment. Cerebrovasc Dis 2021; 51:331-337. [PMID: 34638120 DOI: 10.1159/000519310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clinical-diffusion mismatch (CDM) and perfusion-diffusion mismatch (PDM) are used to select patients for endovascular thrombectomy (EVT) in the late-window period. As CDM well reflects true penumbra, we hypothesized that patients with CDM and PDM would respond better to EVT than those with PDM only at the late-window period. METHODS Acute ischemic stroke patients who received EVT 6-24 h after stroke onset were included. PDM (perfusion-/diffusion-weighted image (DWI) lesion volume >1.8) was used to select candidates for EVT in this time-period in our center. CDM was defined according to the DAWN trial criteria. Response to EVT was compared between patients with and without CDM. Early neurological improvement (ENI) was defined as improvement >4 points on National Institutes of Health Stroke Scale (NIHSS) score 1 day after EVT. Multivariable analysis was performed to investigate independent factors associated with ENI. The correlation between DWI lesion volume and NIHSS score was investigated in those with and without CDM. RESULTS Among 94 patients enrolled, all patients had PDM and 44 (46.3%) had CDM. Forty-eight patients (51.1%) showed ENI. The prevalence of hypertension, initial NIHSS score, improvement in NIHSS score after EVT, and prevalence of ENI were greater in patients with CDM than those without. ENI was independently associated with onset-to-door time (odds ratio [95% confidence interval]: 0.998 [0.997-1.000]; p = 0.042), complete recanalization (23.912 [2.238-255.489]; p = 0.009), initial NIHSS score (1.180 [1.012-1.377]; p = 0.034), and the presence of CDM (5.160 [1.448-18.386]; p = 0.011). The correlation between DWI lesion volume and initial NIHSS score was strong in patients without CDM (r = 0.731) but only moderate in patients with CDM (r = 0.355). CONCLUSION Patients with both CDM and PDM had a better response to late-window EVT than those with PDM only.
Collapse
Affiliation(s)
- Bum Joon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoojin Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Boseong Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Young Chang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun Sun Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deok Hee Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Wha Kang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
32
|
Arenillas JF. Infarct Core Growth Velocity: Characterizing the Hot Penumbra Without Looking at It. Stroke 2021; 52:4007-4009. [PMID: 34583529 DOI: 10.1161/strokeaha.121.035682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Juan F Arenillas
- Stroke Program, Department of Neurology, Hospital Clínico Universitario Valladolid, Spain. Clinical Neurosciences Research Group, Department of Medicine, University of Valladolid, Spain
| |
Collapse
|
33
|
Mages B, Fuhs T, Aleithe S, Blietz A, Hobusch C, Härtig W, Schob S, Krueger M, Michalski D. The Cytoskeletal Elements MAP2 and NF-L Show Substantial Alterations in Different Stroke Models While Elevated Serum Levels Highlight Especially MAP2 as a Sensitive Biomarker in Stroke Patients. Mol Neurobiol 2021; 58:4051-4069. [PMID: 33931805 PMCID: PMC8280005 DOI: 10.1007/s12035-021-02372-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
In the setting of ischemic stroke, the neurofilament subunit NF-L and the microtubule-associated protein MAP2 have proven to be exceptionally ischemia-sensitive elements of the neuronal cytoskeleton. Since alterations of the cytoskeleton have been linked to the transition from reversible to irreversible tissue damage, the present study investigates underlying time- and region-specific alterations of NF-L and MAP2 in different animal models of focal cerebral ischemia. Although NF-L is increasingly established as a clinical stroke biomarker, MAP2 serum measurements after stroke are still lacking. Therefore, the present study further compares serum levels of MAP2 with NF-L in stroke patients. In the applied animal models, MAP2-related immunofluorescence intensities were decreased in ischemic areas, whereas the abundance of NF-L degradation products accounted for an increase of NF-L-related immunofluorescence intensity. Accordingly, Western blot analyses of ischemic areas revealed decreased protein levels of both MAP2 and NF-L. The cytoskeletal alterations are further reflected at an ultrastructural level as indicated by a significant reduction of detectable neurofilaments in cortical axons of ischemia-affected areas. Moreover, atomic force microscopy measurements confirmed altered mechanical properties as indicated by a decreased elastic strength in ischemia-affected tissue. In addition to the results from the animal models, stroke patients exhibited significantly elevated serum levels of MAP2, which increased with infarct size, whereas serum levels of NF-L did not differ significantly. Thus, MAP2 appears to be a more sensitive stroke biomarker than NF-L, especially for early neuronal damage. This perspective is strengthened by the results from the animal models, showing MAP2-related alterations at earlier time points compared to NF-L. The profound ischemia-induced alterations further qualify both cytoskeletal elements as promising targets for neuroprotective therapies.
Collapse
Affiliation(s)
- Bianca Mages
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, Leipzig University, Leipzig, Germany
| | - Susanne Aleithe
- Department of Neurology, Leipzig University, Leipzig, Germany
| | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, Leipzig University, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
34
|
Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Transl Stroke Res 2021; 12:937-945. [PMID: 34224106 DOI: 10.1007/s12975-021-00916-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
The ischemic penumbra defined four decades ago has been the main battleground of ischemic stroke. The evolving ischemic penumbra concept has been providing insight for the development of vascular and cellular approaches as well as diagnostic tools for the treatment of ischemic stroke. rt-PA thrombolytic therapy to prevent the transition of ischemic penumbra to core has been approved for acute ischemic stroke within 3 h and was later recommended to extend to 4.5 h after symptom onset. Mechanical thrombectomy was introduced for the treatment of acute ischemic stroke with a therapeutic window of up to 24 h after stroke onset. Multiple modalities brain imaging techniques have been developed that provide guidance to define ischemic penumbra for reperfusion therapy in clinical practice. Cellular and molecular dissection of ischemic penumbra has been providing targets for the development of neuroprotective therapy for ischemic stroke. However, the dynamic nature of ischemic penumbra implicates that infarct core eventually expands into penumbra over time without reperfusion, dictating relative short therapeutic windows and limiting the impact of current reperfusion intervention. Entering the 5th decade since the introduction, ischemic penumbra remains the main focus of ischemic stroke research and clinical practice. In this review, we summarized the evolving ischemic penumbra concept and its implication in the development of vascular and cellular interventions as well as diagnostic tools for acute ischemic stroke. In addition, we discussed future perspectives on expansion of the campaign beyond ischemic penumbra to develop treatment for ischemic stroke.
Collapse
|
35
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
36
|
Pires Monteiro S, Voogd E, Muzzi L, De Vecchis G, Mossink B, Levers M, Hassink G, Van Putten M, Le Feber J, Hofmeijer J, Frega M. Neuroprotective effect of hypoxic preconditioning and neuronal activation in a in vitro human model of the ischemic penumbra. J Neural Eng 2021; 18:036016. [PMID: 33724235 DOI: 10.1088/1741-2552/abe68a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE In ischemic stroke, treatments to protect neurons from irreversible damage are urgently needed. Studies in animal models have shown that neuroprotective treatments targeting neuronal silencing improve brain recovery, but in clinical trials none of these were effective in patients. This failure of translation poses doubts on the real efficacy of treatments tested and on the validity of animal models for human stroke. Here, we established a human neuronal model of the ischemic penumbra by using human induced pluripotent stem cells and we provided an in-depth characterization of neuronal responses to hypoxia and treatment strategies at the network level. APPROACH We generated neurons from induced pluripotent stem cells derived from healthy donor and we cultured them on micro-electrode arrays. We measured the electrophysiological activity of human neuronal networks under controlled hypoxic conditions. We tested the effect of different treatment strategies on neuronal network functionality. MAIN RESULTS Human neuronal networks are vulnerable to hypoxia reflected by a decrease in activity and synchronicity under low oxygen conditions. We observe that full, partial or absent recovery depend on the timing of re-oxygenation and we provide a critical time threshold that, if crossed, is associated with irreversible impairments. We found that hypoxic preconditioning improves resistance to a second hypoxic insult. Finally, in contrast to previously tested, ineffective treatments, we show that stimulatory treatments counteracting neuronal silencing during hypoxia, such as optogenetic stimulation, are neuroprotective. SIGNIFICANCE We presented a human neuronal model of the ischemic penumbra and we provided insights that may offer the basis for novel therapeutic approaches for patients after stroke. The use of human neurons might improve drug discovery and translation of findings to patients and might open new perspectives for personalized investigations.
Collapse
Affiliation(s)
- Sara Pires Monteiro
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rolfes L, Riek-Burchardt M, Pawlitzki M, Minnerup J, Bock S, Schmidt M, Meuth SG, Gunzer M, Neumann J. Neutrophil granulocytes promote flow stagnation due to dynamic capillary stalls following experimental stroke. Brain Behav Immun 2021; 93:322-330. [PMID: 33486002 DOI: 10.1016/j.bbi.2021.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/01/2022] Open
Abstract
Flow stagnation of peri-ischemic capillaries due to dynamic leukocyte stalls has been described to be a contributor to ongoing penumbral injury in transient brain ischemia, but has not been investigated in permanent experimental stroke so far. Moreover, it is discussed that obstructing neutrophils are involved in this process; however, their contribution has not yet been proven. Here, we characterize the dynamics of neutrophil granulocytes in two models of permanent stroke (photothrombosis and permanent middle cerebral artery occlusion) using intravital two-photon fluorescence microscopy. Different to previous studies on LysM-eGFP+ cells we additionally apply a transgenic mouse model with tdTomato-expressing neutrophils to avoid interference from additional immune cell subsets. We identify repetitively occurring capillary stalls of varying duration promoted by neutrophils in both models of permanent cerebral ischemia, validating the suitability of our new transgenic mouse model in determining neutrophil occlusion formation in vivo. Flow cytometric analysis of peripheral blood (PB) and brain tissue from mice subjected to photothrombosis reveal an increase in the total proportion of neutrophils, with selective upregulation of endothelial adherence markers in the PB. In conclusion, the dynamic microcirculatory stall phenomenon that is described after transient ischemia followed by reperfusion also occurs after permanent small- or large-vessel stroke and is clearly attributable to neutrophils.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | | | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Stefanie Bock
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Mariella Schmidt
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Germany.
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
38
|
Ter Schiphorst A, Charron S, Hassen WB, Provost C, Naggara O, Benzakoun J, Seners P, Turc G, Baron JC, Oppenheim C. Tissue no-reflow despite full recanalization following thrombectomy for anterior circulation stroke with proximal occlusion: A clinical study. J Cereb Blood Flow Metab 2021; 41:253-266. [PMID: 32960688 PMCID: PMC8370008 DOI: 10.1177/0271678x20954929] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite early thrombectomy, a sizeable fraction of acute stroke patients with large vessel occlusion have poor outcome. The no-reflow phenomenon, i.e. impaired microvascular reperfusion despite complete recanalization, may contribute to such "futile recanalizations". Although well reported in animal models, no-reflow is still poorly characterized in man. From a large prospective thrombectomy database, we included all patients with intracranial proximal occlusion, complete recanalization (modified thrombolysis in cerebral infarction score 2c-3), and availability of both baseline and 24 h follow-up MRI including arterial spin labeling perfusion mapping. No-reflow was operationally defined as i) hypoperfusion ≥40% relative to contralateral homologous region, assessed with both visual (two independent investigators) and automatic image analysis, and ii) infarction on follow-up MRI. Thirty-three patients were eligible (median age: 70 years, NIHSS: 18, and stroke onset-to-recanalization delay: 208 min). The operational criteria were met in one patient only, consistently with the visual and automatic analyses. This patient recanalized 160 min after stroke onset and had excellent functional outcome. In our cohort of patients with complete and stable recanalization following thrombectomy for intracranial proximal occlusion, severe ipsilateral hypoperfusion on follow-up imaging associated with newly developed infarction was a rare occurrence. Thus, no-reflow may be infrequent in human stroke and may not substantially contribute to futile recanalizations.
Collapse
Affiliation(s)
- Adrien Ter Schiphorst
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Charron
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Wagih Ben Hassen
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Corentin Provost
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Olivier Naggara
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Joseph Benzakoun
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Pierre Seners
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Guillaume Turc
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Jean-Claude Baron
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Catherine Oppenheim
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| |
Collapse
|
39
|
Li F, Gong X, Yang B. Geranylgeranylacetone ameliorated ischemia/reperfusion induced-blood brain barrier breakdown through HSP70-dependent anti-apoptosis effect. Am J Transl Res 2021; 13:102-114. [PMID: 33527011 PMCID: PMC7847529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Geranylgeranylacetone (GGA) has been recently reported to be centrally active after oral administration and protect against ischemic brain injury. This study was aimed to investigate the underlying mechanism of the protective effect of GGA. METHODS In this study, transient middle cerebral artery occlusion (tMCAO) was established. Neurological score and brain water content were adopted to investigate the role of GGA in vivo. Evans-blue (EB), western blot and immunofluorescence staining of tight junction proteins were performed to evaluate blood brain barrier (BBB) permeability. Inflammation response was assessed by immunofluorescence staining of MPO and Iba-1 and quantitative real-time polymerase chain reaction (qRT-PCR) of proinflammatory cytokines. In in vitro experiment, after oxygen-glucose deprivation (OGD), transepithelial electrical resistance (TEER) and endothelial cell monolayer permeability assay were conducted to examine the effects of GGA on barrier integrity. Furthermore, heat shock protein (HSP) 70 expression was knockdown by RNA interference in bEnd.3 cells to verify the involvement of HSP70 in the action of GGA. TEER, endothelial cell monolayer permeability, CCK8 and flow cytometry were performed. Expression of caspase-3 was detected by western blot and immunofluorescence staining. RESULTS Our results indicated that pretreatment with a single oral GGA dose (800 mg/kg) reduced the infarct volume and prevented the neurological impairments after tMCAO. Importantly, GGA ameliorated cerebral ischemia/reperfusion (I/R) induced BBB breakdown and rescued tight junction proteins (TJPs). GGA also profoundly decreased neutrophil infiltration, inhibited glial activation and reduced the expression of proinflammatory cytokines. Consistently, GGA significantly decreased OGD-induced BBB hyper-permeability in vitro. Consistent with the previous studies, GGA promoted HSP70 induction after I/R insult. Mechanistic study showed that GGA inhibited OGD-induced apoptosis of bEnd.3 cells. Genetic inhibition of HSP70 attenuated GGA's anti-apoptotic effect and reversed the protective effects of GGA.
Collapse
Affiliation(s)
- Fazhao Li
- Department of General Surgery, 2nd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Xiyu Gong
- Department of Neurology, 2nd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| |
Collapse
|
40
|
Di Iorio R, Pilato F, Valente I, Laurienzo A, Gaudino S, Frisullo G, Profice P, Cottonaro S, Alexandre A, Caliandro P, Morosetti R, Lozupone E, D'Argento F, Pedicelli A, Colosimo C, Calabresi P, Della Marca G, Broccolini A. Role of Favorable Perfusion Imaging in Predicting the Outcome of Patients with Acute Ischemic Stroke due to Large Vessel Occlusion Undergoing Effective Thrombectomy: A Single-Center Study. Cerebrovasc Dis Extra 2021; 11:1-8. [PMID: 33454704 PMCID: PMC7879261 DOI: 10.1159/000513025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction We sought to verify the predicting role of a favorable profile on computed tomography perfusion (CTP) in the outcome of patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO) undergoing effective mechanical thrombectomy (MT). Methods We retrospectively enrolled 25 patients with AIS due to LVO and with a CTP study showing the presence of ischemic penumbra who underwent effective MT, regardless of the time of onset. The controls were 25 AIS patients with overlapping demographics and clinical and computed tomography angiography features at admission who had undergone successful MT within 6 h from onset and without a previous CTP study. The outcome measure was the modified Rankin Scale (mRS) score at 90 days. Results Sixty-four percent of the study patients had an mRS score of 0–1 at 90 days versus 12% of the control patients (p < 0.001). Patients of the study group had a more favorable distribution of disability scores (median mRS [IQR] score of 0 [0–2] vs. 2 [2–3]). Multivariate analysis showed that the selection of patients based on a favorable CTP study was strongly associated (p < 0.001) with a better neurological outcome. Conclusions In our small-sized and retrospective study, the presence of ischemic penumbra was associated with a better clinical outcome in patients with AIS due to LVO after MT. In the future, a larger and controlled study with similar criteria of enrollment is needed to further validate the role of CTP in patient selection for MT, regardless of the time from the onset of symptoms.
Collapse
Affiliation(s)
- Riccardo Di Iorio
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Pilato
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Iacopo Valente
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Laurienzo
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Gaudino
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Frisullo
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Profice
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Neurology Unit, Mater Olbia Hospital, Olbia, Italy
| | - Simone Cottonaro
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Alexandre
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pietro Caliandro
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Morosetti
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Emilio Lozupone
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco D'Argento
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Pedicelli
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cesare Colosimo
- Area Diagnostica per Immagini, UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Catholic University School of Medicine, Rome, Italy
| | - Paolo Calabresi
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Catholic University School of Medicine, Rome, Italy
| | - Giacomo Della Marca
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Catholic University School of Medicine, Rome, Italy
| | - Aldobrando Broccolini
- Area Neuroscienze, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy, .,Catholic University School of Medicine, Rome, Italy,
| |
Collapse
|
41
|
Heitsch L, Ibanez L, Carrera C, Binkley MM, Strbian D, Tatlisumak T, Bustamante A, Ribó M, Molina C, Antoni DA, López-Cancio E, Muñoz-Narbona L, Soriano-Tárraga C, Giralt-Steinhauer E, Obach V, Slowik A, Pera J, Lapicka-Bodzioch K, Derbisz J, Sobrino T, Castillo J, Campos F, Rodríguez-Castro E, Arias-Rivas S, Segura T, Serrano-Heras G, Vives-Bauza C, Díaz-Navarro R, Tur S, Jimenez C, Martí-Fàbregas J, Delgado-Mederos R, Arenillas J, Krupinski J, Cullell N, Torres-Águila NP, Muiño E, Cárcel-Márquez J, Moniche F, Cabezas JA, Ford AL, Dhar R, Roquer J, Khatri P, Jiménez-Conde J, Fernandez-Cadenas I, Montaner J, Rosand J, Cruchaga C, Lee JM. Early Neurological Change After Ischemic Stroke Is Associated With 90-Day Outcome. Stroke 2021; 52:132-141. [PMID: 33317415 PMCID: PMC7769959 DOI: 10.1161/strokeaha.119.028687] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Large-scale observational studies of acute ischemic stroke (AIS) promise to reveal mechanisms underlying cerebral ischemia. However, meaningful quantitative phenotypes attainable in large patient populations are needed. We characterize a dynamic metric of AIS instability, defined by change in National Institutes of Health Stroke Scale score (NIHSS) from baseline to 24 hours baseline to 24 hours (NIHSSbaseline - NIHSS24hours = ΔNIHSS6-24h), to examine its relevance to AIS mechanisms and long-term outcomes. METHODS Patients with NIHSS prospectively recorded within 6 hours after onset and then 24 hours later were enrolled in the GENISIS study (Genetics of Early Neurological Instability After Ischemic Stroke). Stepwise linear regression determined variables that independently influenced ΔNIHSS6-24h. In a subcohort of tPA (alteplase)-treated patients with large vessel occlusion, the influence of early sustained recanalization and hemorrhagic transformation on ΔNIHSS6-24h was examined. Finally, the association of ΔNIHSS6-24h with 90-day favorable outcomes (modified Rankin Scale score 0-2) was assessed. Independent analysis was performed using data from the 2 NINDS-tPA stroke trials (National Institute of Neurological Disorders and Stroke rt-PA). RESULTS For 2555 patients with AIS, median baseline NIHSS was 9 (interquartile range, 4-16), and median ΔNIHSS6-24h was 2 (interquartile range, 0-5). In a multivariable model, baseline NIHSS, tPA-treatment, age, glucose, site, and systolic blood pressure independently predicted ΔNIHSS6-24h (R2=0.15). In the large vessel occlusion subcohort, early sustained recanalization and hemorrhagic transformation increased the explained variance (R2=0.27), but much of the variance remained unexplained. ΔNIHSS6-24h had a significant and independent association with 90-day favorable outcome. For the subjects in the 2 NINDS-tPA trials, ΔNIHSS3-24h was similarly associated with 90-day outcomes. CONCLUSIONS The dynamic phenotype, ΔNIHSS6-24h, captures both explained and unexplained mechanisms involved in AIS and is significantly and independently associated with long-term outcomes. Thus, ΔNIHSS6-24h promises to be an easily obtainable and meaningful quantitative phenotype for large-scale genomic studies of AIS.
Collapse
Affiliation(s)
- Laura Heitsch
- Division of Emergency Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Caty Carrera
- Neurovascular Research Laboratory and Neurovascular Unit. Vall d’Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Neurology, Hospital Universitari Vall d”Hebron. Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Michael M Binkley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Turgut Tatlisumak
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alejandro Bustamante
- Neurovascular Research Laboratory and Neurovascular Unit. Vall d’Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Neurology, Hospital Universitari Vall d”Hebron. Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Marc Ribó
- Department of Neurology, Hospital Universitari Vall d”Hebron. Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Carlos Molina
- Department of Neurology, Hospital Universitari Vall d”Hebron. Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Dávalos A Antoni
- Department of Neurology, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Elena López-Cancio
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Lucia Muñoz-Narbona
- Institut Hospital del Mar d’Investigacions Mediques (IMIM), Barcelona, Spain
| | | | - Eva Giralt-Steinhauer
- Institut Hospital del Mar d’Investigacions Mediques (IMIM), Barcelona, Spain
- Department of Neurology, Hospital de Mar, Barcelona, Spain
| | - Victor Obach
- Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi I SUnyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Justyna Derbisz
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Hospital Clinico Universitario, Universidade de Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Hospital Clinico Universitario, Universidade de Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Hospital Clinico Universitario, Universidade de Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Hospital Clinico Universitario, Universidade de Santiago de Compostela, Spain
| | - Susana Arias-Rivas
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Hospital Clinico Universitario, Universidade de Santiago de Compostela, Spain
| | - Tomás Segura
- Department of Neurology, Hospital Universitario de Albacete, Albacete, Spain
| | - Gemma Serrano-Heras
- Department of Neurology, Hospital Universitario de Albacete, Albacete, Spain
| | - Cristófol Vives-Bauza
- Department of Neurology, Son Espases University Hospital, IdISBa, Palma de Mallorca, Spain
| | - Rosa Díaz-Navarro
- Department of Neurology, Son Espases University Hospital, IdISBa, Palma de Mallorca, Spain
| | - Silva Tur
- Department of Neurology, Son Espases University Hospital, IdISBa, Palma de Mallorca, Spain
| | - Carmen Jimenez
- Department of Neurology, Son Espases University Hospital, IdISBa, Palma de Mallorca, Spain
| | - Joan Martí-Fàbregas
- Department of Neurology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - Juan Arenillas
- Department of Neurology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
- Neurovascular research laboratory. Instituto de Biología y Genética Molecular (IBGM). Universidad de Valladolid & Consejo Superior Investigaciones Científicas. Valladolid, Spain
| | - Jerzy Krupinski
- Department of Neurology, Hospital Mutua de Terrassa, Terrassa, Spain
- School of Life Sciences, Centre for Biosciences, Manchester Met University, Manchester, UK
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Fundacio Docencia I Recerca Mutua de Terrassa, Terassa, Spain
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Sant Pau Hospital, Barcelona, Spain
| | - Nuria P Torres-Águila
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Sant Pau Hospital, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Fundacio Docencia I Recerca Mutua de Terrassa, Terassa, Spain
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Sant Pau Hospital, Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Fundacio Docencia I Recerca Mutua de Terrassa, Terassa, Spain
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Sant Pau Hospital, Barcelona, Spain
| | - Francisco Moniche
- Department of Neurology, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Juan A Cabezas
- Department of Neurology, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Jaume Roquer
- Institut Hospital del Mar d’Investigacions Mediques (IMIM), Barcelona, Spain
- Department of Neurology, Hospital de Mar, Barcelona, Spain
| | - Pooja Khatri
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| | - Jordi Jiménez-Conde
- Institut Hospital del Mar d’Investigacions Mediques (IMIM), Barcelona, Spain
- Department of Neurology, Hospital de Mar, Barcelona, Spain
| | - Israel Fernandez-Cadenas
- Neurovascular Research Laboratory and Neurovascular Unit. Vall d’Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Neurology, Hospital Mutua de Terrassa, Terrassa, Spain
- Stroke Pharmacogenomics and Genetics, Fundacio Docencia I Recerca Mutua de Terrassa, Terassa, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurovascular Unit. Vall d’Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Institute de Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville
| | - Jonathan Rosand
- Henry and Alison Center for Brain Health, Center for Genomic Medicine, Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Jin-Moo Lee
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
42
|
Endovascular stroke treatment using balloon guide catheters may reduce penumbral tissue damage and improve long-term outcome. Eur Radiol 2020; 31:2191-2198. [PMID: 33037911 PMCID: PMC7979594 DOI: 10.1007/s00330-020-07260-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022]
Abstract
Objectives During mechanical recanalization of large vessel occlusions (LVO), the use of proximal flow arrest with balloon guide catheters (BGC) was shown to be associated with better angiographic and even clinical outcome. The aim of the study was to analyze the impact of BGC use on microstructural alterations in the salvaged penumbra. Methods All patients who underwent mechanical recanalization of LVO of the anterior circulation were reviewed within a prospective stroke registry of a single comprehensive stroke center. Fifty-two patients received an admission CT perfusion together with post-interventional diffusion tensor imaging. Technical details such as BGC usage were correlated with microstructural integrity changes of the salvaged gray matter through the mean diffusivity (MD) index. Moderation analysis was performed to test the interaction of BGC on the correlation between angiographic and clinical outcomes. Results For all patients with complete reperfusion, microstructural integrity changes with lowered MD index were found within the salvaged penumbra for cases of non-BGC usage (mean − 0.02) compared to cases with BGC usage (0.01, p = 0.04). The importance of complete reperfusion for good clinical outcome is predominantly based on patients treated with BGC (effect 2.78, p = 0.01 vs. for non-BGC: 0.3, p = 0.71). Conclusions The lowered MD index early after mechanical recanalization without BGC usage can be interpreted as microstructural ischemic damage of the salvaged penumbra. It was shown that achieving complete reperfusion in a setting of BGC usage with proximal flow arrest minimizes penumbral damage and improves long-term outcomes. Key Points • Microstructural ischemic damage can be reduced by using proximal flow arrest during endovascular treatment with balloon guide catheter. • Complete reperfusion in a setting of balloon guide catheter minimizes penumbral damage and improves long-term outcome. Electronic supplementary material The online version of this article (10.1007/s00330-020-07260-3) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Vancheri F, Longo G, Vancheri S, Henein M. Coronary Microvascular Dysfunction. J Clin Med 2020; 9:E2880. [PMID: 32899944 PMCID: PMC7563453 DOI: 10.3390/jcm9092880] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
Many patients with chest pain undergoing coronary angiography do not show significant obstructive coronary lesions. A substantial proportion of these patients have abnormalities in the function and structure of coronary microcirculation due to endothelial and smooth muscle cell dysfunction. The coronary microcirculation has a fundamental role in the regulation of coronary blood flow in response to cardiac oxygen requirements. Impairment of this mechanism, defined as coronary microvascular dysfunction (CMD), carries an increased risk of adverse cardiovascular clinical outcomes. Coronary endothelial dysfunction accounts for approximately two-thirds of clinical conditions presenting with symptoms and signs of myocardial ischemia without obstructive coronary disease, termed "ischemia with non-obstructive coronary artery disease" (INOCA) and for a small proportion of "myocardial infarction with non-obstructive coronary artery disease" (MINOCA). More frequently, the clinical presentation of INOCA is microvascular angina due to CMD, while some patients present vasospastic angina due to epicardial spasm, and mixed epicardial and microvascular forms. CMD may be associated with focal and diffuse epicardial coronary atherosclerosis, which may reinforce each other. Both INOCA and MINOCA are more common in females. Clinical classification of CMD includes the association with conditions in which atherosclerosis has limited relevance, with non-obstructive atherosclerosis, and with obstructive atherosclerosis. Several studies already exist which support the evidence that CMD is part of systemic microvascular disease involving multiple organs, such as brain and kidney. Moreover, CMD is strongly associated with the development of heart failure with preserved ejection fraction (HFpEF), diabetes, hypertensive heart disease, and also chronic inflammatory and autoimmune diseases. Since coronary microcirculation is not visible on invasive angiography or computed tomographic coronary angiography (CTCA), the diagnosis of CMD is usually based on functional assessment of microcirculation, which can be performed by both invasive and non-invasive methods, including the assessment of delayed flow of contrast during angiography, measurement of coronary flow reserve (CFR) and index of microvascular resistance (IMR), evaluation of angina induced by intracoronary acetylcholine infusion, and assessment of myocardial perfusion by positron emission tomography (PET) and magnetic resonance (CMR).
Collapse
Affiliation(s)
- Federico Vancheri
- Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy
| | - Giovanni Longo
- Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy;
| | - Sergio Vancheri
- Radiology Department, I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy;
| | - Michael Henein
- Institute of Public Health and Clinical Medicine, Umea University, SE-90187 Umea, Sweden;
- Department of Fluid Mechanics, Brunel University, Middlesex, London UB8 3PH, UK
- Molecular and Nuclear Research Institute, St George’s University, London SW17 0RE, UK
| |
Collapse
|
44
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
45
|
Laredo C, Renú A, Tudela R, Lopez-Rueda A, Urra X, Llull L, Macías NG, Rudilosso S, Obach V, Amaro S, Chamorro Á. The accuracy of ischemic core perfusion thresholds varies according to time to recanalization in stroke patients treated with mechanical thrombectomy: A comprehensive whole-brain computed tomography perfusion study. J Cereb Blood Flow Metab 2020; 40:966-977. [PMID: 31208242 PMCID: PMC7181085 DOI: 10.1177/0271678x19855885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Computed tomography perfusion (CTP) allows the estimation of pretreatment ischemic core after acute ischemic stroke. However, CTP-derived ischemic core may overestimate final infarct volume. We aimed to evaluate the accuracy of CTP-derived ischemic core for the prediction of final infarct volume according to time from stroke onset to recanalization in 104 patients achieving complete recanalization after mechanical thrombectomy who had a pretreatment CTP and a 24-h follow-up MRI-DWI. A range of CTP thresholds was explored in perfusion maps at constant increments for ischemic core calculation. Time to recanalization modified significantly the association between ischemic core and DWI lesion in a non-linear fashion (p-interaction = 0.018). Patients with recanalization before 4.5 h had significantly lower intraclass correlation coefficient (ICC) values between CTP-predicted ischemic core and DWI lesion (n = 54; best threshold relative cerebral blood flow (rCBF) < 25%, ICC = 0.673, 95% CI = 0.495-0.797) than those with later recanalization (n = 50; best threshold rCBF < 30%, ICC = 0.887, 95% CI = 0.811-0.935, p = 0.013), as well as poorer spatial lesion agreement. The significance of the associations between CTP-derived ischemic core and clinical outcome at 90 days was lost in patients recanalized before 4.5 h. CTP-derived ischemic core must be interpreted with caution given its dependency on time to recanalization, primarily in patients with higher chances of early recanalization.
Collapse
Affiliation(s)
- Carlos Laredo
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Arturo Renú
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Raúl Tudela
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Group of Biomedical Imaging of the University of Barcelona, Barcelona, Spain
| | | | - Xabier Urra
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Laura Llull
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Víctor Obach
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sergio Amaro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ángel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
46
|
Alambyan V, Pace J, Sukpornchairak P, Yu X, Alnimir H, Tatton R, Chitturu G, Yarlagadda A, Ramos-Estebanez C. Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics. Neurotherapeutics 2020; 17:522-538. [PMID: 32240530 PMCID: PMC7283376 DOI: 10.1007/s13311-020-00843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern neurocritical care relies on ancillary diagnostic testing in the form of multimodal monitoring to address acute changes in the neurological homeostasis. Much of our armamentarium rests upon physiological and biochemical surrogates of organ or regional level metabolic activity, of which a great deal is invested at the metabolic-hemodynamic-hydrodynamic interface to rectify the traditional intermediaries of glucose consumption. Despite best efforts to detect cellular neuroenergetics, current modalities cannot appreciate the intricate coupling between astrocytes and neurons. Invasive monitoring is not without surgical complication, and noninvasive strategies do not provide an adequate spatial or temporal resolution. Without knowledge of the brain's versatile behavior in specific metabolic states (glycolytic vs oxidative), clinical practice would lag behind laboratory empiricism. Noninvasive metabolic imaging represents a new hope in delineating cellular, nigh molecular level energy exchange to guide targeted management in a diverse array of neuropathology.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Pace
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Persen Sukpornchairak
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Alnimir
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ryan Tatton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gautham Chitturu
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anisha Yarlagadda
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
47
|
Danegaptide Enhances Astrocyte Gap Junctional Coupling and Reduces Ischemic Reperfusion Brain Injury in Mice. Biomolecules 2020; 10:biom10030353. [PMID: 32110860 PMCID: PMC7175267 DOI: 10.3390/biom10030353] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is a complex and devastating event characterized by cell death resulting from a transient or permanent arterial occlusion. Astrocytic connexin43 (Cx43) gap junction (GJ) proteins have been reported to impact neuronal survival in ischemic conditions. Consequently, Cx43 could be a potential target for therapeutic approaches to stroke. We examined the effect of danegaptide (ZP1609), an antiarrhythmic dipeptide that specifically enhances GJ conductance, in two different rodent stroke models. In this study, danegaptide increased astrocytic Cx43 coupling with no significant effects on Cx43 hemichannel activity, in vitro. Using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) the presence of danegaptide within brain tissue sections were detected one hour after reperfusion indicating successful transport of the dipeptide across the blood brain barrier. Furthermore, administration of danegaptide in a novel mouse brain ischemia/reperfusion model showed significant decrease in infarct volume. Taken together, this study provides evidence for the therapeutic potential of danegaptide in ischemia/reperfusion stroke.
Collapse
|
48
|
Berndt MT, Maegerlein C, Boeckh-Behrens T, Wunderlich S, Zimmer C, Wirth S, Mück FG, Mönch S, Friedrich B, Kaesmacher J. Microstructural Integrity of Salvaged Penumbra after Mechanical Thrombectomy. AJNR Am J Neuroradiol 2019; 41:79-85. [PMID: 31857324 DOI: 10.3174/ajnr.a6364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There are sparse data on the microstructural integrity of salvaged penumbral tissue after mechanical thrombectomy of large-vessel occlusions. The aim of the study was to analyze possible microstructural alteration in the penumbra and their association with clinical symptoms as well as angiographic reperfusion success in patients undergoing mechanical thrombectomy. MATERIALS AND METHODS All patients who underwent mechanical thrombectomy for large-vessel occlusions in the anterior circulation and who received an admission CT perfusion together with postinterventional DTIs were included (n = 65). Angiographic reperfusion success by means of modified Thrombolysis in Cerebral Infarction (mTICI) scale and clinical outcome were recorded. Microstructural integrity was assessed by DTI evaluating the mean diffusivity index within the salvaged gray matter of the former penumbra. RESULTS The mean diffusivity index was higher in completely recanalized patients (mTICI 3: -0.001 ± 0.034 versus mTICI <3: -0.030 ± 0.055, P = .03). There was a positive correlation between the mean diffusivity index and NIHSS score improvement (r = 0.49, P = .003) and the mean diffusivity index was associated with midterm functional outcome (r = -0.37, P = .04) after adjustment for confounders. In mediation analysis, the mean diffusivity index and infarction growth mediated the association between reperfusion success and clinical outcomes. CONCLUSIONS The macroscopic salvaged penumbra included areas of microstructural integrity changes, most likely related to the initial hypoperfusion. These abnormalities were found early after mechanical thrombectomy, were dependent on angiographic results, and correlated with the clinical outcome. When confirmed, these findings prompt the evaluation of therapies for protection of the penumbral tissue integrity.
Collapse
Affiliation(s)
- M T Berndt
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - C Maegerlein
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - T Boeckh-Behrens
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - S Wunderlich
- Neurology (S.W.), Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C Zimmer
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - S Wirth
- Department of Radiology (S.W., F.G.M.), Donauisar Hospital, Deggendorf, Germany
| | - F G Mück
- Department of Radiology (S.W., F.G.M.), Donauisar Hospital, Deggendorf, Germany
| | - S Mönch
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - B Friedrich
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - J Kaesmacher
- Department of Neuroradiology (J.K.), Inselspital, University Hospital Bern, University Bern, Bern, Switzerland
| |
Collapse
|
49
|
Affiliation(s)
- Turgay Dalkara
- From the Department of Neurology, Faculty of Medicine and Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey; and Department of Radiology, Massachusetts General Hospital, Harvard University, Boston
| |
Collapse
|
50
|
Ozenne B, Cho TH, Mikkelsen IK, Hermier M, Thomalla G, Pedraza S, Roy P, Berthezène Y, Nighoghossian N, Østergaard L, Baron JC, Maucort-Boulch D. Individualized quantification of the benefit from reperfusion therapy using stroke predictive models. Eur J Neurosci 2019; 50:3251-3260. [PMID: 31283062 DOI: 10.1111/ejn.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Recent imaging developments have shown the potential of voxel-based models in assessing infarct growth after stroke. Many models have been proposed but their relevance in predicting the benefit of a reperfusion therapy remains unclear. We searched for a predictive model whose volumetric predictions would identify stroke patients who are to benefit from tissue plasminogen activator (t-PA)-induced reperfusion. MATERIAL AND METHODS Forty-five cases were used to study retrospectively stroke progression from admission to end of follow-up. Predictive approaches based on various statistical models, predictive variables and spatial filtering methods were compared. The optimal approach was chosen according to the area under the precision-recall curve (AUPRC). The final lesion volume was then predicted assuming that the patient would or would not reperfuse. Patients, with an acute lesion of ≤50 ml and a predicted reduction in the presence of reperfusion >6 ml and >25% of the acute lesion, were classified as responders. RESULTS The optimal model was a logistic regression using the voxel distance to the acute lesion, the volume of the acute lesion and Gaussian-filtered MRI contrast parameters as predictive variables. The predictions gave a median AUPRC of 0.655, a median AUC of 0.976 and a median volumetric error of 8.29 ml. Nineteen patients matched the responder profile. A non-significant trend of improved reduction in NIHSS score (-42.8%, p = .09) and in lesion volume (-78.1%, p = 0.21) following reperfusion was observed for responder patients. CONCLUSION Despite limited volumetric accuracy, predictive stroke models can be used to quantify the benefit of reperfusion therapies.
Collapse
Affiliation(s)
- Brice Ozenne
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark.,Department of Biostatistics, University of Copenhagen, Copenhagen K, Denmark
| | - Tae-Hee Cho
- Department of Stroke Medicine, Université Lyon 1, Lyon, France.,Department of Neuroradiology, Université Lyon 1, Lyon, France.,CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | | | - Marc Hermier
- Department of Stroke Medicine, Université Lyon 1, Lyon, France.,Department of Neuroradiology, Université Lyon 1, Lyon, France.,CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Salvador Pedraza
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Pascal Roy
- Service de Biostatistique, Hospices Civils de Lyon, Lyon, France.,Equipe Biostatistique Santé CNRS UMR 5558, Villeurbanne, France.,Université Lyon I, Lyon, France
| | - Yves Berthezène
- Department of Stroke Medicine, Université Lyon 1, Lyon, France.,Department of Neuroradiology, Université Lyon 1, Lyon, France.,CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Norbert Nighoghossian
- Department of Stroke Medicine, Université Lyon 1, Lyon, France.,Department of Neuroradiology, Université Lyon 1, Lyon, France.,CREATIS, CNRS UMR 5220-INSERM U1044, INSA-Lyon, Hospices Civils de Lyon, Lyon, France
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Århus University, Århus, Denmark
| | - Jean-Claude Baron
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Neurology, INSERM U894, Hôpital Sainte-Anne, Paris Descartes University, Paris, France
| | - Delphine Maucort-Boulch
- Service de Biostatistique, Hospices Civils de Lyon, Lyon, France.,Equipe Biostatistique Santé CNRS UMR 5558, Villeurbanne, France.,Université Lyon I, Lyon, France
| |
Collapse
|