1
|
Mohd Kamal K, Mahamad Maifiah MH, Zhu Y, Abdul Rahim N, Hashim YZHY, Abdullah Sani MS. Isotopic Tracer for Absolute Quantification of Metabolites of the Pentose Phosphate Pathway in Bacteria. Metabolites 2022; 12:1085. [PMID: 36355168 PMCID: PMC9697766 DOI: 10.3390/metabo12111085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 10/18/2023] Open
Abstract
The pentose phosphate pathway (PPP) plays a key role in many metabolic functions, including the generation of NADPH, biosynthesis of nucleotides, and carbon homeostasis. In particular, the intermediates of PPP have been found to be significantly perturbed in bacterial metabolomic studies. Nonetheless, detailed analysis to gain mechanistic information of PPP metabolism remains limited as most studies are unable to report on the absolute levels of the metabolites. Absolute quantification of metabolites is a prerequisite to study the details of fluxes and its regulations. Isotope tracer or labeling studies are conducted in vivo and in vitro and have significantly improved the analysis and understanding of PPP. Due to the laborious procedure and limitations in the in vivo method, an in vitro approach known as Group Specific Internal Standard Technology (GSIST) has been successfully developed to measure the absolute levels of central carbon metabolism, including PPP. The technique adopts derivatization of an experimental sample and a corresponding internal standard with isotope-coded reagents to provide better precision for accurate identification and absolute quantification. In this review, we highlight bacterial studies that employed isotopic tracers as the tagging agents used for the absolute quantification analysis of PPP metabolites.
Collapse
Affiliation(s)
- Khairunnisa Mohd Kamal
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Jalan Gombak 53100, Selangor, Malaysia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Jalan Gombak 53100, Selangor, Malaysia
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Nusaibah Abdul Rahim
- Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Jalan Gombak 53100, Selangor, Malaysia
| | - Muhamad Shirwan Abdullah Sani
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Jalan Gombak 53100, Selangor, Malaysia
| |
Collapse
|
2
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
3
|
Minami N, Hong D, Stevers N, Barger CJ, Radoul M, Hong C, Chen L, Kim Y, Batsios G, Gillespie AM, Pieper RO, Costello JF, Viswanath P, Ronen SM. Imaging biomarkers of TERT or GABPB1 silencing in TERT-positive glioblastoma. Neuro Oncol 2022; 24:1898-1910. [PMID: 35460557 PMCID: PMC9629440 DOI: 10.1093/neuonc/noac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND TERT promoter mutations are observed in 80% of wild-type IDH glioblastoma (GBM). Moreover, the upstream TERT transcription factor GABPB1 was recently identified as a cancer-specific therapeutic target for tumors harboring a TERT promoter mutation. In that context, noninvasive imaging biomarkers are needed for the detection of TERT modulation. METHODS Multiple GBM models were investigated as cells and in vivo tumors and the impact of TERT silencing, either directly or by targeting GABPB1, was determined using 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS). Changes in associated metabolic enzymes were also investigated. RESULTS 1H-MRS revealed that lactate and glutathione (GSH) were the most significantly altered metabolites when either TERT or GABPB1 was silenced, and lactate and GSH levels were correlated with cellular TERT expression. Consistent with the drop in lactate, 13C-MRS showed that hyperpolarized [1-13C]lactate production from [1-13C]pyruvate was also reduced when TERT was silenced. Mechanistically, the reduction in GSH was associated with a reduction in pentose phosphate pathway flux, reduced activity of glucose-6-phosphate dehydrogenase, and reduced NADPH. The drop in lactate and hyperpolarized lactate were associated with reductions in glycolytic flux, NADH, and expression/activity of GLUT1, monocarboxylate transporters, and lactate dehydrogenase A. CONCLUSIONS Our study indicates that MRS-detectable GSH, lactate, and lactate production could serve as metabolic biomarkers of response to emerging TERT-targeted therapies for GBM with activating TERT promoter mutations. Importantly these biomarkers are readily translatable to the clinic, and thus could ultimately improve GBM patient management.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Lee Chen
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Russel O Pieper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Matsuda F, Maeda K, Taniguchi T, Kondo Y, Yatabe F, Okahashi N, Shimizu H. mfapy: An open-source Python package for 13C-based metabolic flux analysis. Metab Eng Commun 2021; 13:e00177. [PMID: 34354925 PMCID: PMC8322459 DOI: 10.1016/j.mec.2021.e00177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
13C-based metabolic flux analysis (13C-MFA) is an essential tool for estimating intracellular metabolic flux levels in metabolic engineering and biology. In 13C-MFA, a metabolic flux distribution that explains the observed isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report the development of mfapy, an open-source Python package developed for more flexibility and extensibility for 13C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by computer simulations of 13C-MFA experiments, and development of new data analysis techniques for stable isotope labeling experiments. mfapy is available to the public from the Github repository (https://github.com/fumiomatsuda/mfapy). An open-source Python package, mfapy, is developed for 13C-MFA. mfapy enables users to write Python codes for data analysis procedures of 13C-MFA. mfapy has a flexibility and extensibility to support various data analysis procedures. Computer simulations of 13C-MFA experiments is supported for experimental design.
Collapse
Affiliation(s)
- Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Maeda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeo Taniguchi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Kondo
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Futa Yatabe
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Ferreira GC, Karimi AJ, Waddell J, McKenna MC. Metabolism of [1,6- 13 C]glucose in the cerebellum of 18-day-old rats: Comparison with cerebral metabolism. J Neurochem 2021; 157:1946-1962. [PMID: 33619759 PMCID: PMC9733799 DOI: 10.1111/jnc.15326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
There is little information on metabolism in developing cerebellum despite the known importance of this region in cognition and motor tasks. Ex vivo 1 H- and 13 C-NMR spectroscopy were used to determine metabolism during late postnatal development in cerebellum and cerebrum from 18-day-old rat pups after intraperitoneal (i.p.) injection of [1,6-13 C]glucose. The concentration of several metabolites in cerebellum was distinctly different than cerebrum; alanine, glutamine, creatine and myo-inositol were higher in cerebellum than cerebrum, the concentrations of lactate, GABA, aspartate and N-acetylaspartate (NAA) were lower in cerebellum than in cerebrum, and levels of glutamate, succinate, choline and taurine were similar in both brain regions. The incorporation of label from the metabolism of [1,6-13 C]glucose into most isotopomers of glutamate (GLU), glutamine (GLN), GABA and aspartate was lower in cerebellum than in cerebrum. Incorporation of label into the C2 position of lactate via the pyruvate recycling pathway was found in both brain regions. The ratio of newly synthesized GLN/GLU was significantly higher in cerebellum than in cerebrum indicating relatively active metabolism via glutamine synthetase in cerebellar astrocytes at postnatal day 18. This is the first study to determine metabolism in the cerebellum and cerebrum of male and female rat brain.
Collapse
Affiliation(s)
- Gustavo C. Ferreira
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD USA 21201,Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arman J. Karimi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD USA 21201
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD USA 21201
| | - Mary C. McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD USA 21201,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
6
|
Abstract
Beriberi is a nutritional complication of gastric surgery, caused by deficiency of vitamin B1, or thiamine. Thiamine deficiency leads to impaired glucose metabolism, decreased delivery of oxygen by red blood cells, cardiac dysfunction, failure of neurotransmission, and neuronal death. This review describes the history and pathophysiology of beriberi as well as the relationship between beriberi and nutritional deficiencies after gastric surgery. A literature review of the history and pathophysiology of beriberi and the risk factors for thiamine deficiency, particularly after gastric resection or bariatric surgery, was performed. Recommendations for nutritional follow-up post gastric surgery are based on current national guidelines. Patients may have subclinical thiamine deficiency after upper gastrointestinal surgery, and thus beriberi may be precipitated by acute illness such as sepsis or poor dietary intake. This may occur very soon or many years after gastrectomy or bariatric surgery, even in apparently well-nourished patients. Prompt recognition and administration of supplemental thiamine can decrease morbidity and mortality in patients with beriberi. Dietary education post surgery and long-term follow-up to determine nutritional status, including vitamin and mineral assessment, is recommended for patients who undergo gastric surgery.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper Gastrointestinal Surgery Department, University of New South Wales, Liverpool Public Hospital, Liverpool, Sydney, New South Wales, Australia, and the Sydney Institute for Obesity Surgery, Ashfield, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Viswanath P, Batsios G, Ayyappan V, Taglang C, Gillespie AM, Larson PEZ, Luchman HA, Costello JF, Pieper RO, Ronen SM. Metabolic imaging detects elevated glucose flux through the pentose phosphate pathway associated with TERT expression in low-grade gliomas. Neuro Oncol 2021; 23:1509-1522. [PMID: 33864084 DOI: 10.1093/neuonc/noab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) is essential for tumor proliferation, including in low-grade oligodendrogliomas (LGOGs). Since TERT is silenced in normal cells, it is also a therapeutic target. Therefore, non-invasive methods of imaging TERT are needed. Here, we examined the link between TERT expression and metabolism in LGOGs, with the goal of leveraging this information for non-invasive magnetic resonance spectroscopy (MRS)-based metabolic imaging of LGOGs. METHODS Immortalized normal human astrocytes with doxycycline-inducible TERT silencing, patient-derived LGOG cells, orthotopic tumors and LGOG patient biopsies were studied to determine the mechanistic link between TERT expression and glucose metabolism. The ability of hyperpolarized [U- 13C, U- 2H]-glucose to non-invasively assess TERT expression was tested in live cells and orthotopic tumors. RESULTS TERT expression was associated with elevated glucose flux through the pentose phosphate pathway (PPP), elevated NADPH, which is a major product of the PPP, and elevated GSH, which is maintained in a reduced state by NADPH. Importantly, hyperpolarized [U- 13C, U- 2H]-glucose metabolism via the PPP non-invasively reported on TERT expression and response to TERT inhibition in patient-derived LGOG cells and orthotopic tumors. Mechanistically, TERT acted via the sirtuin SIRT2 to upregulate the glucose transporter GLUT1 and the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase. CONCLUSIONS We have, for the first time, leveraged a mechanistic understanding of TERT-associated metabolic reprogramming for non-invasive imaging of LGOGs using hyperpolarized [U- 13C, U- 2H]-glucose. Our findings provide a novel way of imaging a hallmark of tumor immortality and have the potential to improve diagnosis and treatment response assessment for LGOG patients.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Vinay Ayyappan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Celiné Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Batsios G, Taglang C, Cao P, Gillespie AM, Najac C, Subramani E, Wilson DM, Flavell RR, Larson PEZ, Ronen SM, Viswanath P. Imaging 6-Phosphogluconolactonase Activity in Brain Tumors In Vivo Using Hyperpolarized δ-[1- 13C]gluconolactone. Front Oncol 2021; 11:589570. [PMID: 33937017 PMCID: PMC8082394 DOI: 10.3389/fonc.2021.589570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The pentose phosphate pathway (PPP) is essential for NADPH generation and redox homeostasis in cancer, including glioblastomas. However, the precise contribution to redox and tumor proliferation of the second PPP enzyme 6-phosphogluconolactonase (PGLS), which converts 6-phospho-δ-gluconolactone to 6-phosphogluconate (6PG), remains unclear. Furthermore, non-invasive methods of assessing PGLS activity are lacking. The goal of this study was to examine the role of PGLS in glioblastomas and assess the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive imaging. METHODS To interrogate the function of PGLS in redox, PGLS expression was silenced in U87, U251 and GS2 glioblastoma cells by RNA interference and levels of NADPH and reduced glutathione (GSH) measured. Clonogenicity assays were used to assess the effect of PGLS silencing on glioblastoma proliferation. Hyperpolarized δ-[1-13C]gluconolactone metabolism to 6PG was assessed in live cells treated with the chemotherapeutic agent temozolomide (TMZ) or with vehicle control. 13C 2D echo-planar spectroscopic imaging (EPSI) studies of hyperpolarized δ-[1-13C]gluconolactone metabolism were performed on rats bearing orthotopic glioblastoma tumors or tumor-free controls on a 3T spectrometer. Longitudinal 2D EPSI studies of hyperpolarized δ-[1-13C]gluconolactone metabolism and T2-weighted magnetic resonance imaging (MRI) were performed in rats bearing orthotopic U251 tumors following treatment with TMZ to examine the ability of hyperpolarized δ-[1-13C]gluconolactone to report on treatment response. RESULTS PGLS knockdown downregulated NADPH and GSH, elevated oxidative stress and inhibited clonogenicity in all models. Conversely, PGLS expression and activity and steady-state NADPH and GSH were higher in tumor tissues from rats bearing orthotopic glioblastoma xenografts relative to contralateral brain and tumor-free brain. Importantly, [1-13C]6PG production from hyperpolarized δ-[1-13C]gluconolactone was observed in live glioblastoma cells and was significantly reduced by treatment with TMZ. Furthermore, hyperpolarized δ-[1-13C]gluconolactone metabolism to [1-13C]6PG could differentiate tumor from contralateral normal brain in vivo. Notably, TMZ significantly reduced 6PG production from hyperpolarized δ-[1-13C]gluconolactone at an early timepoint prior to volumetric alterations as assessed by anatomical imaging. CONCLUSIONS Collectively, we have, for the first time, identified a role for PGLS activity in glioblastoma proliferation and validated the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive in vivo imaging of glioblastomas and their response to therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| |
Collapse
|
9
|
Tefera TW, Steyn FJ, Ngo ST, Borges K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target? Cell Biosci 2021; 11:14. [PMID: 33431046 PMCID: PMC7798275 DOI: 10.1186/s13578-020-00511-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selective degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregulation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impairments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investigations into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, and to also reveal new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Tesfaye Wolde Tefera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Center for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,Center for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Deme P, Rojas C, Slusher BS, Rais R, Afghah Z, Geiger JD, Haughey NJ. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp Neurol 2020; 327:113181. [PMID: 31930991 PMCID: PMC7233457 DOI: 10.1016/j.expneurol.2020.113181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Collapse
Affiliation(s)
- Pragney Deme
- The Johns Hopkins University School of Medicine, Department of Neurology, United States
| | - Camilo Rojas
- The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Raina Rais
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Zahra Afghah
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Jonathan D Geiger
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
11
|
Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 2020; 45:1328-1334. [DOI: 10.1007/s11064-020-03005-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
12
|
Dong W, Moon SJ, Kelleher JK, Stephanopoulos G. Dissecting Mammalian Cell Metabolism through 13C- and 2H-Isotope Tracing: Interpretations at the Molecular and Systems Levels. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joanne K. Kelleher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Matsuda F, Maeda K, Okahashi N. Computational data mining method for isotopomer analysis in the quantitative assessment of metabolic reprogramming. Sci Rep 2020; 10:286. [PMID: 31937835 PMCID: PMC6959353 DOI: 10.1038/s41598-019-57146-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Measurement of metabolic flux levels using stable isotope labeling has been successfully used to investigate metabolic redirection and reprogramming in living cells or tissues. The metabolic flux ratio between two reactions can be estimated from the 13C-labeling patterns of a few metabolites combined with the knowledge of atom mapping in the complicated metabolic network. However, it remains unclear whether an observed change in the labeling pattern of the metabolites is sufficient evidence of a shift in flux ratio between two metabolic states. In this study, a data analysis method was developed for the quantitative assessment of metabolic reprogramming. The Metropolis-Hastings algorithm was used with an in silico metabolic model to generate a probability distribution of metabolic flux levels under a condition in which the 13C-labeling pattern was observed. Reanalysis of literature data demonstrated that the developed method enables analysis of metabolic redirection using whole 13C-labeling pattern data. Quantitative assessment by Cohen’s effect size (d) enables a more detailed read-out of metabolic reprogramming information. The developed method will enable future applications of the metabolic isotopomer analysis to various targets, including cultured cells, whole tissues, and organs.
Collapse
Affiliation(s)
- Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
| | - Kousuke Maeda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Takemoto I, Kawagoe N, Kijima S, Sasaki Y, Watanabe T, Urita Y. 13C-glucose breath tests: a non-invasive method for detecting early clinical manifestations of exogenous glucose metabolism in type 2 diabetic patients. Acta Diabetol 2019; 56:449-456. [PMID: 30593599 PMCID: PMC6420482 DOI: 10.1007/s00592-018-1276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
AIMS 13C-glucose breath tests are reported as an alternative non-invasive method to evaluate glucose metabolism. However, the metabolic results differ based on the site of the carbon atom in the glucose. The aim of this study was to evaluate changes in the metabolism of carbon atoms contained in glucose in patients with diabetes using [1, 2, 3-13C]glucose breath tests. METHODS Sixteen healthy participants and 20 diabetic patients were enrolled in the study. Three types of breath tests, [1-13C], [2-13C], and [3-13C]glucose breath tests, were performed after an overnight fast. Breath samples were taken at baseline and at 10-min intervals over 150 min, and 13CO2 excretion curves were expressed using non-dispersive infrared isotope spectrometry. RESULTS 13CO2 levels increased more rapidly, and the peak value of 13CO2 (Cmax) was highest after the administration of [3-13C]glucose followed by [2-13C] and [1-13C]glucose in controls. Delayed 13CO2 excretion and a low area under the curve through 150 min (AUC150) were obtained in diabetic patients. The group with severe diabetes had a significantly lower Cmax and AUC150 in the [1-13C]glucose breath test. CONCLUSIONS The [1-13C]glucose breath test, which has been used to evaluate glucose metabolism, is suitable for patients with late-stage diabetes, whereas the [2-13C]glucose breath test is ideal in the early stages. Although the [3-13C]glucose breath test is theoretically useful for evaluating the uptake of glucose and the anaerobic glycolysis system, it can be used in practice to distinguish reduced uptake from impaired oxidation of glucose in combination with the other two tests.
Collapse
Affiliation(s)
- Ikutaka Takemoto
- Department of General Medicine and Emergency Care, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Naoyuki Kawagoe
- Department of General Medicine and Emergency Care, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sho Kijima
- Department of General Medicine and Emergency Care, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yosuke Sasaki
- Department of General Medicine and Emergency Care, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Toshiyasu Watanabe
- Department of General Medicine and Emergency Care, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, School of Medicine, Toho University, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
15
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
16
|
Phelan JJ, Basdeo SA, Tazoll SC, McGivern S, Saborido JR, Keane J. Modulating Iron for Metabolic Support of TB Host Defense. Front Immunol 2018; 9:2296. [PMID: 30374347 PMCID: PMC6196273 DOI: 10.3389/fimmu.2018.02296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is the world's biggest infectious disease killer. The increasing prevalence of multidrug-resistant and extensively drug-resistant TB demonstrates that current treatments are inadequate and there is an urgent need for novel therapies. Research is now focused on the development of host-directed therapies (HDTs) which can be used in combination with existing antimicrobials, with a special focus on promoting host defense. Immunometabolic reprogramming is integral to TB host defense, therefore, understanding and supporting the immunometabolic pathways that are altered after infection will be important for the development of new HDTs. Moreover, TB pathophysiology is interconnected with iron metabolism. Iron is essential for the survival of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB disease. Mtb struggles to replicate and persist in low iron environments. Iron chelation has therefore been suggested as a HDT. In addition to its direct effects on iron availability, iron chelators modulate immunometabolism through the stabilization of HIF1α. This review examines immunometabolism in the context of Mtb and its links to iron metabolism. We suggest that iron chelation, and subsequent stabilization of HIF1α, will have multifaceted effects on immunometabolic function and holds potential to be utilized as a HDT to boost the host immune response to Mtb infection.
Collapse
Affiliation(s)
- James J Phelan
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Simone C Tazoll
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sadhbh McGivern
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Judit R Saborido
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
17
|
Oligodendrocytes: Development, Physiology and Glucose Metabolism. ADVANCES IN NEUROBIOLOGY 2018; 13:275-294. [PMID: 27885633 DOI: 10.1007/978-3-319-45096-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The glutamate-glutamine cycle is an outstanding example of how essential neuronal-glial interactions are for brain function. For several decades, this and other metabolic cycles in the brain have only included neurons and astrocytes but not oligodendrocytes, the myelinating cells of the central nervous system (CNS). Recent data revealed that oligodendrocytes are highly metabolically active cells in the brain and, therefore, should not be ignored. Using 13C-labelled glucose in combination with nuclear magnetic resonance spectroscopy (MRS) and/or mass spectrometry (MS) it is possible to characterize metabolic functions in primary oligodendrocyte cultures. Mature rat oligodendrocytes avidly metabolize glucose in the cytosol and pyruvate derived from glucose in mitochondria. Moreover, they seem to have the ability of performing anaplerosis from pyruvate, which might enable them to synthesize metabolites de novo and transfer them to neighbouring cells. All these original findings highlight the importance of investigating oligodendrocyte metabolism separately from that of astrocytes and neurons to be able to discern the roles played by the individual partners. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present book chapter provides some background on oligodendrocyte biology and physiology and summarizes the not very extensive information published on glucose metabolism in oligodendrocytes.
Collapse
|
18
|
Effect of Acupuncture at LR3 on Cerebral Glucose Metabolism in a Rat Model of Hypertension: A 18F-FDG-PET Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5712857. [PMID: 29853959 PMCID: PMC5944276 DOI: 10.1155/2018/5712857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 01/11/2023]
Abstract
Our objective was to investigate the effect of acupuncture at LR3 on cerebral glucose metabolism in spontaneously hypertensive rats (SHRs). We used 18F-2-fluoro-deoxy-D-glucose positron emission tomography (18F-FDG-PET) to examine the effects of acupuncture at LR3 on cerebral glucose metabolism in SHRs. SHRs were randomly allocated to receive no treatment (SHR group), needling at LR3 (SHR + LR3 group), or sham needling (SHR + sham group). Rats received 10 min acupuncture once per day for 7 days and were compared to normotensive Wistar Kyoto (WKY) rats. Blood pressure (BP) measurement and PET were performed after the first needling and the 7-day treatment period. BP was lower in the SHR + LR3 group compared to the other SHR groups between 30 and 60 min after the first needling and at 24 and 48 h after the 7-day treatment period. Glucose metabolism in the motor, sensory, and visual cortices was decreased in SHR group compared to WKY group. Needling at LR3 was associated with decreased glucose metabolism in the dorsal thalamus, thalamus, and hypothalamus and with increased metabolism in the cerebellar anterior and posterior lobes, medulla oblongata, and sensory cortex compared to the SHR group. These findings suggest that LR3 acupuncture improves hypertension through a mechanism involving altered brain activation in SHRs.
Collapse
|
19
|
Putker M, Crosby P, Feeney KA, Hoyle NP, Costa ASH, Gaude E, Frezza C, O'Neill JS. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid Redox Signal 2018; 28:507-520. [PMID: 28506121 PMCID: PMC5806070 DOI: 10.1089/ars.2016.6911] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Circadian rhythms permeate all levels of biology to temporally regulate cell and whole-body physiology, although the cell-autonomous mechanism that confers ∼24-h periodicity is incompletely understood. Reports describing circadian oscillations of over-oxidized peroxiredoxin abundance have suggested that redox signaling plays an important role in the timekeeping mechanism. Here, we tested the functional contribution that redox state and primary metabolism make to mammalian cellular timekeeping. RESULTS We found a circadian rhythm in flux through primary glucose metabolic pathways, indicating rhythmic NAD(P)H production. Using pharmacological and genetic perturbations, however, we found that timekeeping was insensitive to changes in glycolytic flux, whereas oxidative pentose phosphate pathway (PPP) inhibition and other chronic redox stressors primarily affected circadian gene expression amplitude, not periodicity. Finally, acute changes in redox state decreased PER2 protein stability, phase dependently, to alter the subsequent phase of oscillation. INNOVATION Circadian rhythms in primary cellular metabolism and redox state have been proposed to play a role in the cellular timekeeping mechanism. We present experimental data testing that hypothesis. CONCLUSION Circadian flux through primary metabolism is cell autonomous, driving rhythmic NAD(P)+ redox cofactor turnover and maintaining a redox balance that is permissive for circadian gene expression cycles. Redox homeostasis and PPP flux, but not glycolysis, are necessary to maintain clock amplitude, but neither redox nor glucose metabolism determines circadian period. Furthermore, cellular rhythms are sensitive to acute changes in redox balance, at least partly through regulation of PER protein. Redox and metabolic state are, thus, both inputs and outputs, but not state variables, of cellular circadian timekeeping. Antioxid. Redox Signal. 28, 507-520.
Collapse
Affiliation(s)
- Marrit Putker
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Priya Crosby
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Kevin A Feeney
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | | - Ana S H Costa
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - Edoardo Gaude
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - Christian Frezza
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - John S O'Neill
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
20
|
Matsuda F, Toya Y, Shimizu H. Learning from quantitative data to understand central carbon metabolism. Biotechnol Adv 2017; 35:971-980. [DOI: 10.1016/j.biotechadv.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
|
21
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
22
|
Jekabsons MB, Gebril HM, Wang YH, Avula B, Khan IA. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats. Neurochem Int 2017; 109:54-67. [PMID: 28412312 DOI: 10.1016/j.neuint.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2-13C2]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose utilization by aerobic glycolysis as well as the oxidative PPP and/or reverse non-oxidative PPP, but negligible glucose consumption by the pentose cycle.
Collapse
Affiliation(s)
- Mika B Jekabsons
- Department of Biology, 110 Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| | - Hoda M Gebril
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- Department of Biomedical Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
23
|
Toft-Kehler AK, Skytt DM, Svare A, Lefevere E, Van Hove I, Moons L, Waagepetersen HS, Kolko M. Mitochondrial function in Müller cells - Does it matter? Mitochondrion 2017; 36:43-51. [PMID: 28179130 DOI: 10.1016/j.mito.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction might play a key role in the pathogenesis of age-related neurodegenerative inner retinal diseases such as diabetic retinopathy and glaucoma. Therefore, the present review provides a perspective on the impact of functional mitochondria in the most predominant glial cells of the retina, the Müller cells. Müller cells span the entire thickness of the neuroretina and are in close proximity to retinal cells including the retinal neurons that provides visual signaling to the brain. Among multiple functions, Müller cells are responsible for the removal of neurotransmitters, buffering potassium, and providing neurons with essential metabolites. Thus, Müller cells are responsible for a stable metabolic dialogue in the inner retina and their crucial role in supporting retinal neurons is indisputable. Müller cell functions require considerable energy production and previous literature has primarily emphasized glycolysis as the main energy provider. However, recent studies highlight the need of mitochondrial ATP production to upheld Müller cell functions. Therefore, the present review aims to provide an overview of the current evidence on the impact of mitochondrial functions in Müller cells.
Collapse
Affiliation(s)
- Anne Katrine Toft-Kehler
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.
| | - Dorte Marie Skytt
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - Alicia Svare
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Helle S Waagepetersen
- Neuromet, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Zealand University Hospital, Department of Ophthalmology, Vestermarksvej 23, 4000 Roskilde, Denmark.
| |
Collapse
|
24
|
Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions. PLoS One 2016; 11:e0152342. [PMID: 27050411 PMCID: PMC4822961 DOI: 10.1371/journal.pone.0152342] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified the presence of 23 non-coding features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dysregulated across the brain regions. Furthermore, we compared our results with two popular meta-analysis methods RankProd and GeneMeta to validate our findings and performed a sensitivity analysis by removing one dataset at a time to assess the robustness of our results. These new findings may provide new insights into the disease mechanisms and thus make a significant contribution in the near future towards understanding, prevention and cure of AD.
Collapse
Affiliation(s)
- Nisha Puthiyedth
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Carlos Riveros
- Clinical Research Design, Information Technology and Statistics Suport Unit, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Regina Berretta
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Pablo Moscato
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
- * E-mail:
| |
Collapse
|
25
|
Martano G, Murru L, Moretto E, Gerosa L, Garrone G, Krogh V, Passafaro M. Biosynthesis of glycerol phosphate is associated with long-term potentiation in hippocampal neurons. Metabolomics 2016; 12:133. [PMID: 27499721 PMCID: PMC4958395 DOI: 10.1007/s11306-016-1083-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Neurons have a very high energy requirement, and their metabolism is tightly regulated to ensure delivery of adequate substrate to sustain neuronal activity and neuroplastic changes. The mechanisms underlying the regulation of neuronal metabolism, however, are not completely clear. OBJECTIVE The objective of this study was to investigate the central carbon metabolism in neurons, in order to identify the regulatory pathways governing neuronal anabolism and catabolism. METHODS Here we first have applied MS-based endometabolomics to elucidate the metabolic dynamics in cultured hippocampal primary neurons. Using nanoLC-ESI-LTQ Orbitrap MS approach followed by statistical analysis, we measure the dynamics of uniformly labeled 13C-glucose entering neurons. We adapted the method by coupling offline patch-clamp setup with MS to confirm findings in vivo. RESULTS According to non-parametric statistical analysis of metabolic dynamics, in cultured hippocampal neurons, the glycerol phosphate shuttle is active and correlates with the metabolic flux in the pentose phosphate pathway. In the hippocampus, glycerol-3-phosphate biosynthesis was activated in response to long-term potentiation together with the upregulation of glycolysis and the TCA cycle, but was inactive or silenced in basal conditions. CONCLUSIONS We identified the biosynthesis of glycerol-3-phosphate as a key regulator in mechanisms implicated in learning and memory. Notably, defects in enzymes linked with the glycerol phosphate shuttle have been implicated in neurological disorders and intellectual disability. These results could improve our understanding of the general mechanisms of learning and memory and facilitate the development of novel therapies for metabolic disorders linked with intellectual disability.
Collapse
Affiliation(s)
- Giuseppe Martano
- Institute of Neuroscience, CNR, Via L. Vanvitelli 32, 20129 Milan, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, Via L. Vanvitelli 32, 20129 Milan, Italy
| | - Edoardo Moretto
- Institute of Neuroscience, CNR, Via L. Vanvitelli 32, 20129 Milan, Italy
| | - Laura Gerosa
- Institute of Neuroscience, CNR, Via L. Vanvitelli 32, 20129 Milan, Italy
| | - Giulia Garrone
- Fondazione IRCCS, Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy
| | - Vittorio Krogh
- Fondazione IRCCS, Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Via L. Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
26
|
Amaral AI, Hadera MG, Tavares JM, Kotter MRN, Sonnewald U. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 2016; 64:21-34. [PMID: 26352325 PMCID: PMC4832329 DOI: 10.1002/glia.22900] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/22/2015] [Indexed: 12/24/2022]
Abstract
Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS.
Collapse
Affiliation(s)
- Ana I. Amaral
- Anne McLaren LaboratoryWellcome Trust‐Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridgeCB2 0SZUnited Kingdom
| | - Mussie G. Hadera
- Department of Neuroscience, Faculty of MedicineNorwegian University of Science and TechnologyTrondheim7491Norway
| | - Joana M. Tavares
- Anne McLaren LaboratoryWellcome Trust‐Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridgeCB2 0SZUnited Kingdom
| | - Mark R. N. Kotter
- Anne McLaren LaboratoryWellcome Trust‐Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of CambridgeCambridgeCB2 0SZUnited Kingdom
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of MedicineNorwegian University of Science and TechnologyTrondheim7491Norway
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen2100Denmark
| |
Collapse
|
27
|
Gebril HM, Avula B, Wang YH, Khan IA, Jekabsons MB. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Neurochem Int 2015; 93:26-39. [PMID: 26723542 DOI: 10.1016/j.neuint.2015.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022]
Abstract
Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a minimal set of measurements.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biology, Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- Department of Biomedical Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mika B Jekabsons
- Department of Biology, Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
28
|
Takado Y, Knott G, Humbel BM, Masoodi M, Escrig S, Meibom A, Comment A. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from 13C-glucose. J Chem Neuroanat 2015; 69:7-12. [DOI: 10.1016/j.jchemneu.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
29
|
Liu Y, Muñoz N, Bunnell BA, Logan TM, Ma T. Density-Dependent Metabolic Heterogeneity in Human Mesenchymal Stem Cells. Stem Cells 2015; 33:3368-81. [PMID: 26274841 DOI: 10.1002/stem.2097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/12/2015] [Accepted: 06/14/2015] [Indexed: 11/09/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are intrinsically heterogeneous and comprise subpopulations that differ in their proliferation, multi-potency, and functional properties, which are commonly demonstrated by culturing hMSCs at different plating densities. The objective of this study was to investigate the metabolic profiles of different subpopulations of hMSC by testing the hypothesis that the clonogenic hMSC subpopulation, which is selectively enriched in clonal density (CD) and low density (LD) culture (10 and 100 cells per square centimeter, respectively), possesses a metabolic phenotype that differs from that of hMSC in medium- or high-density (MD: 1,000 and HD: 3,000 cells per square centimeter, respectively). Cells at CD and LD conditions exhibited elevated expression of CD146 and colony forming unit-fibroblast compared with cells at MD- or HD. Global metabolic profiles revealed by gas chromatography-mass spectrometry of cell extracts showed clear distinction between LD and HD cultures, and density-dependent differences in coupling of glycolysis to the TCA cycle. Metabolic inhibitors revealed density-dependent differences in glycolysis versus oxidative phosphorylation (OXPHOS) for ATP generation, in glutamine metabolism, in the dependence on the pentose phosphate pathway for maintaining cellular redox state, and sensitivity to exogenous reactive oxygen species. We also show that active OXPHOS is not required for proliferation in LD culture but that OXPHOS activity increases senescence in HD culture. Together, the results revealed heterogeneity in hMSC culture exists at the level of primary metabolism. The unique metabolic characteristics of the clonogenic subpopulation suggest a novel approach for optimizing in vitro expansion of hMSCs.
Collapse
Affiliation(s)
- Yijun Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida, USA
| | - Nathalie Muñoz
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Timothy M Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
30
|
Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks ODK, Malloy C, Metallo CM, Meuillet EJ, Munger J, Nöh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt SM. A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 2015; 34:189-201. [PMID: 25731751 PMCID: PMC4552607 DOI: 10.1016/j.copbio.2015.02.003] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. (13)C tracer analysis, although less information-rich than quantitative (13)C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting (13)C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments.
Collapse
Affiliation(s)
- Joerg M Buescher
- Vesalius Research Center, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Laszlo G Boros
- Department of Pediatrics, UCLA School of Medicine, Los Angeles Biomedical Research Institute at the Harbor-UCLA Medical Center and Sidmap, LLC, Los Angeles, CA, USA
| | - Shawn C Burgess
- Advanced Imaging Research Center-Division of Metabolic Mechanisms of Disease and Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Bart Ghesquiere
- Vesalius Research Center, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Russell G Jones
- Goodman Cancer Research Centre, Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Richard G Kibbey
- Internal Medicine, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Craig Malloy
- Advanced Imaging Research Center-Division of Metabolic Mechanisms of Disease and Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Emmanuelle J Meuillet
- L'Institut des Technologies Avancées en Sciences du Vivant (ITAV), Toulouse Cedex 1, France; The University of Arizona Cancer Center, and Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA
| | - Joshua Munger
- Department of Biochemistry, University of Rochester Medical Center, Rochester, NY, USA; Department of Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Markus Ralser
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, UK; Division of Physiology and Metabolism, MRC National Institute for Medical Research, London, UK
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julie St-Pierre
- Goodman Cancer Research Centre, and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Daniel A Tennant
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sarah-Maria Fendt
- Vesalius Research Center, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Bouzier-Sore AK, Bolaños JP. Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front Aging Neurosci 2015; 7:89. [PMID: 26042035 PMCID: PMC4436897 DOI: 10.3389/fnagi.2015.00089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/01/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca-CSIC Salamanca, Spain
| |
Collapse
|
32
|
Besson MT, Alegría K, Garrido-Gerter P, Barros LF, Liévens JC. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015; 10:e0118765. [PMID: 25761110 PMCID: PMC4356621 DOI: 10.1371/journal.pone.0118765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.
Collapse
Affiliation(s)
- Marie Thérèse Besson
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - Jean-Charles Liévens
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
33
|
Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose. J Cereb Blood Flow Metab 2015; 35:111-20. [PMID: 25335801 PMCID: PMC4294402 DOI: 10.1038/jcbfm.2014.177] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/16/2014] [Accepted: 09/08/2014] [Indexed: 02/02/2023]
Abstract
Increased 'anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-(13)C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. (13)C enrichment for glycolytic 2,3-(13)C2 lactate was the median 5.4% (interquartile range (IQR) 4.6-7.5%) in TBI brain and 4.2% (2.4-4.4%) in 'normal' brain (P<0.01). The ratio of PPP-derived 3-(13)C lactate to glycolytic 2,3-(13)C2 lactate was median 4.9% (3.6-8.2%) in TBI brain and 6.7% (6.3-8.9%) in 'normal' brain. An inverse relationship was seen for PPP-glycolytic lactate ratio versus PbtO2 (r=-0.5, P=0.04) in TBI brain. Thus, glycolytic lactate production was significantly greater in TBI than 'normal' brain. Several TBI patients exhibited PPP-lactate elevation above the 'normal' range. There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain.
Collapse
|
34
|
Hadera MG, Faure JB, Berggaard N, Tefera TW, Nehlig A, Sonnewald U. The anticonvulsant actions of carisbamate associate with alterations in astrocyte glutamine metabolism in the lithium-pilocarpine epilepsy model. J Neurochem 2014; 132:532-545. [PMID: 25345404 DOI: 10.1111/jnc.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Abstract
As reported previously, in the lithium-pilocarpine model of temporal lobe epilepsy (TLE), carisbamate (CRS) produces strong neuroprotection, leads to milder absence-like seizures, and prevents behavioral impairments in a subpopulation of rats. To understand the metabolic basis of these effects, here we injected 90 mg/kg CRS or vehicle twice daily for 7 days starting 1 h after status epilepticus (SE) induction in rats. Two months later, we injected [1-13 C]glucose and [1,2-13 C]acetate followed by head microwave fixation after 15 min. 13 C incorporation into metabolites was analyzed using 13 C magnetic resonance spectroscopy. We found that SE reduced neuronal mitochondrial metabolism in the absence but not in the presence of CRS. Reduction in glutamate level was prevented by CRS and aspartate levels were similar to controls only in rats displaying absence-like seizures after treatment [CRS-absence-like epilepsy (ALE)]. Glutamine levels in CRS-ALE rats were higher compared to controls in hippocampal formation and limbic structures while unchanged in rats displaying motor spontaneous recurrent seizures after treatment (CRS-TLE). Astrocytic mitochondrial metabolism was reduced in CRS-TLE, and either enhanced or unaffected in CRS-ALE rats, which did not affect the transfer of glutamine from astrocytes to neurons. In conclusion, CRS prevents reduction in neuronal mitochondrial metabolism but its effect on astrocytes is likely key in determining outcome of treatment in this model. To understand the metabolic basis of the strong neuroprotection and reduction in seizure severity caused by carisbamate (CRS) in the lithium-pilocarpine (Li-Pilo) model of temporal lobe epilepsy (TLE), we injected CRS for 7 days starting 1 h after status epilepticus and 2 months later [1-13 C]glucose and [1,2-13 C]acetate. 13 C Magnetic resonance spectroscopy analysis was performed on brain extracts and we found that CRS prevented reduction in neuronal mitochondrial metabolism but its effect on astrocytes was likely key in determining outcome of treatment in this model. ALE = absence like epilepsy; acetyl CoA = acetyl coenzyme A; GS = glutamine synthetase; PAG = phosphate activated glutaminase; PC = pyruvate carboxylase; OAA = oxaloacetate; TCA cycle = tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Mussie Ghezu Hadera
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jean-Baptiste Faure
- Faculty of Medicine, INSERM U 666, University of Strasbourg, Strasbourg, France.,Laboratory of Cognitive and Adaptive Neuroscience (LNCA), Faculty of Psychology, UMR 7364, University of Strasbourg-CNRS, Strasbourg, France
| | - Nina Berggaard
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tesfaye Wolde Tefera
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Nehlig
- Faculty of Medicine, INSERM U 666, University of Strasbourg, Strasbourg, France
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
35
|
Connolly NMC, Prehn JHM. The metabolic response to excitotoxicity - lessons from single-cell imaging. J Bioenerg Biomembr 2014; 47:75-88. [PMID: 25262286 DOI: 10.1007/s10863-014-9578-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Niamh M C Connolly
- Department of Physiology and Medical Physics, 123 St Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
36
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 833] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
37
|
Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 2014; 9:2032-48. [PMID: 24937102 PMCID: PMC4168797 DOI: 10.1021/cb400894a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Parkinson’s
disease (PD) is a multifactorial disorder with
a complex etiology including genetic risk factors, environmental exposures,
and aging. While energy failure and oxidative stress have largely
been associated with the loss of dopaminergic cells in PD and the
toxicity induced by mitochondrial/environmental toxins, very little
is known regarding the alterations in energy metabolism associated
with mitochondrial dysfunction and their causative role in cell death
progression. In this study, we investigated the alterations in the
energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial
toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or
different mechanisms of toxicity. A combined metabolomics approach
using nuclear magnetic resonance (NMR) and direct-infusion electrospray
ionization mass spectrometry (DI-ESI-MS) was used to identify unique
metabolic profile changes in response to these neurotoxins. Paraquat
exposure induced the most profound alterations in the pentose phosphate
pathway (PPP) metabolome. 13C-glucose flux analysis corroborated
that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate,
glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat
treatment, which was paralleled by inhibition of glycolysis and the
TCA cycle. Proteomic analysis also found an increase in the expression
of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing
equivalents by regenerating nicotinamide adenine dinucleotide phosphate
(NADPH) levels. Overexpression of G6PD selectively increased paraquat
toxicity, while its inhibition with 6-aminonicotinamide inhibited
paraquat-induced oxidative stress and cell death. These results suggest
that paraquat “hijacks” the PPP to increase NADPH reducing
equivalents and stimulate paraquat redox cycling, oxidative stress,
and cell death. Our study clearly demonstrates that alterations in
energy metabolism, which are specific for distinct mitochondiral/environmental
toxins, are not bystanders to energy failure but also contribute significant
to cell death progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert C. Stanton
- Research
Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
38
|
Reactive oxygen species initiate a metabolic collapse in hippocampal slices: potential trigger of cortical spreading depression. J Cereb Blood Flow Metab 2014; 34:1540-9. [PMID: 25027308 PMCID: PMC4158675 DOI: 10.1038/jcbfm.2014.121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/27/2014] [Accepted: 06/16/2014] [Indexed: 11/08/2022]
Abstract
Excessive accumulation of reactive oxygen species (ROS) underlies oxidative damage. We find that in hippocampal slices, decreased activity of glucose-based antioxidant system induces a massive, abrupt, and detrimental change in cellular functions. We call this phenomenon metabolic collapse (MC). This collapse manifested in long-lasting silencing of synaptic transmission, abnormal oxidation of NAD(P)H and FADH2 associated with immense oxygen consumption, and massive neuronal depolarization. MC occurred without any preceding deficiency in neuronal energy supply or disturbances of ionic homeostasis and spread throughout the hippocampus. It was associated with a preceding accumulation of ROS and was largely prevented by application of an efficient antioxidant Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). The consequences of MC resemble cortical spreading depression (CSD), a wave of neuronal depolarization that occurs in migraine, brain trauma, and stroke, the cellular initiation mechanisms of which are poorly understood. We suggest that ROS accumulation might also be the primary trigger of CSD. Indeed, we found that Tempol strongly reduced occurrence of CSD in vivo, suggesting that ROS accumulation may be a key mechanism of CSD initiation.
Collapse
|
39
|
Sonnewald U. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? J Neurochem 2014; 131:399-406. [PMID: 24989463 DOI: 10.1111/jnc.12812] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 01/11/2023]
Abstract
The central process in energy production is the oxidation of acetyl-CoA to CO2 by the tricarboxylic acid (TCA, Krebs, citric acid) cycle. However, this cycle functions also as a biosynthetic pathway from which intermediates leave to be converted primarily to glutamate, GABA, glutamine and aspartate and to a smaller extent to glucose derivatives and fatty acids in the brain. When TCA cycle ketoacids are removed, they must be replaced to permit the continued function of this essential pathway, by a process termed anaplerosis. Since the TCA cycle cannot act as a carbon sink, anaplerosis must be coupled with cataplerosis; the exit of intermediates from the TCA cycle. The role of anaplerotic reactions for cellular metabolism in the brain has been studied extensively. However, the coupling of this process with cataplerosis and the roles that both pathways play in the regulation of amino acid, glucose, and fatty acid homeostasis have not been emphasized. The concept of a linkage between anaplerosis and cataplerosis should be underscored, because the balance between these two processes is essential. The hypothesis that cataplerosis in the brain is achieved by exporting the lactate generated from the TCA cycle intermediates into the blood and perivascular area is presented. This shifts the generally accepted paradigm of lactate generation as simply derived from glycolysis to that of oxidation and might present an alternative explanation for aerobic glycolysis. Intermediates leave the tricarboxylic acid cycle and must be replaced by a process termed anaplerosis that must be coupled to cataplerosis. We hypothesize that cataplerosis is achieved by exporting the lactate generated from the cycle into the blood and perivascular area. This shifts the paradigm of lactate generation as solely derived from glycolysis to that of oxidation and might present an alternative explanation for aerobic glycolysis.
Collapse
Affiliation(s)
- Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
40
|
Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510:298-302. [PMID: 24805240 PMCID: PMC4104482 DOI: 10.1038/nature13236] [Citation(s) in RCA: 806] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
ATP is the dominant energy source in animals for mechanical and electrical work (e.g., muscle contraction, neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defense and reductive biosynthesis1. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway (oxPPP), with malic enzyme sometimes also important. While the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analyzed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labeled substrates into NADPH, and combine this approach with carbon labeling and mathematical modeling to measure cytosolic NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxPPP. Surprisingly a nearly comparable contribution comes from serine-driven one-carbon metabolism, where oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. Since folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and GSH/GSSG ratios and increased cell sensitivity to oxidative stress. Thus, while the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.
Collapse
|
41
|
Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS. Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS). BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Rodriguez-Rodriguez P, Fernandez E, Bolaños JP. Underestimation of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis. J Cereb Blood Flow Metab 2013; 33:1843-5. [PMID: 24064491 PMCID: PMC3851909 DOI: 10.1038/jcbfm.2013.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023]
Abstract
The rates of glucose oxidized at glycolysis and pentose-phosphate pathway (PPP) in neurons are controversial. Using [3-(3)H]-, [1-(14)C]-, and [6-(14)C]glucose to estimate fluxes through these pathways in resting, intact rat cortical primary neurons, we found that the rate of glucose oxidized through PPP was, apparently, ∼14% of total glucose metabolized. However, inhibition of PPP rate-limiting step, glucose-6-phosphate (G6P) dehydrogenase, increased approximately twofold the glycolytic rate; and, knockdown of phosphoglucose isomerase increased ∼1.8-fold the PPP rate. Thus, in neurons, a considerable fraction of fructose-6-phosphate returning from the PPP contributes to the G6P pool that re-enters PPP, largely underestimating its flux.
Collapse
|
43
|
Bartnik-Olson BL, Harris NG, Shijo K, Sutton RL. Insights into the metabolic response to traumatic brain injury as revealed by (13)C NMR spectroscopy. FRONTIERS IN NEUROENERGETICS 2013; 5:8. [PMID: 24109452 PMCID: PMC3790078 DOI: 10.3389/fnene.2013.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of (13)C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how (13)C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. (13)C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from (13)C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.
Collapse
|
44
|
Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. Neurochem Res 2013; 39:556-69. [PMID: 23504293 DOI: 10.1007/s11064-013-1014-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/04/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.
Collapse
|
45
|
Lv G, Faßhuber HK, Loquet A, Demers JP, Vijayan V, Giller K, Becker S, Lange A. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 228:45-49. [PMID: 23354009 DOI: 10.1016/j.jmr.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-(13)C]Glucose ([2-(13)C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-(13)C]pyruvate produced mainly by glycolysis and [3-(13)C]/[1,3-(13)C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs (13)Cβ-(13)Cγ2 and (13)Cα-(13)Cγ1 in Val, and (13)Cγ-(13)Cδ2 and (13)Cβ-(13)Cδ1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.
Collapse
Affiliation(s)
- Guohua Lv
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int 2013; 62:750-6. [PMID: 23416042 DOI: 10.1016/j.neuint.2013.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/25/2013] [Accepted: 02/03/2013] [Indexed: 02/07/2023]
Abstract
Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) -a key glycolytic-promoting enzyme- as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca(2+)-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.
Collapse
|
47
|
Amaral AI, Meisingset TW, Kotter MR, Sonnewald U. Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front Endocrinol (Lausanne) 2013; 4:54. [PMID: 23717302 PMCID: PMC3651962 DOI: 10.3389/fendo.2013.00054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022] Open
Abstract
Whereas astrocytes have been in the limelight of scientific interest in brain energy metabolism for a while, oligodendrocytes are still waiting for a place on the metabolic stage. We propose to term the interaction of oligodendrocytes with astrocytes and neurons: NOA (neuron-oligodendrocyte-astrocyte) interactions. One of the reasons to find out more about metabolic interactions between oligodendrocytes, neurons, and astrocytes is to establish markers of healthy oligodendrocyte metabolism that could be used for the diagnosis and assessment of white matter disease. The vesicular release of glutamate in the white matter has received considerable attention in the past. Oligodendrocyte lineage cells express glutamate receptors and glutamate toxicity has been implicated in diseases affecting oligodendrocytes such as hypoxic-ischaemic encephalopathy, inflammatory diseases and trauma. As oligodendrocyte precursor cells vividly react to injury it is also important to establish whether cells recruited into damaged areas are able to regenerate lost myelin sheaths or whether astrocytic scarring occurs. It is therefore important to consider metabolic aspects of astrocytes and oligodendrocytes separately. The present review summarizes the limited evidence available on metabolic cycles in oligodendrocytes and so hopes to stimulate further research interests in this important field.
Collapse
Affiliation(s)
- Ana I. Amaral
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Tore W. Meisingset
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Mark R. Kotter
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
- *Correspondence: Ursula Sonnewald, Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, PO Box 8905, MTFS, 7491 Trondheim, Norway. e-mail:
| |
Collapse
|