1
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
2
|
Aufricht C, Kitzmüller E, Lothaller MA, Müller T, Birnbacher R, Balzar E, Greenbaum L. Estimation of Total Creatinine Clearance is Unreliable in Children on Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686089601600117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To test the reliability of creatinine clearance in children on peritoneal dialysis (PD). Design Longitudinal, case-controlled. Setting Routine clinic visits at the pediatric dialysis unit of the Universitätskinderklinik of Vienna. Patients: Eleven children (2 -13 years, 10 -55 kg) with end-stage renal disease on PD. Interventions Creatinine clearance (CCr) was determined by measuring creatinine excretion (ECr) over 24 hours in both dialysate and urine. Each child had three to five separate measurements of their CCr. At the same time we also calculated the schwartz formula clearance from the patient's height and serum creatinine, using a modified correlate. Main Outcome Measures Reliability of CCr was assessed by two approaches. First, we compared each serial measurement with the mean value for each patient and thereby assessed the “intramethodical” variability. Second, we compared each CCr with the simultaneous formula clearance and assessed the “intermethodical” disagreement. Results Twenty-seven percent of the measurements of CCr were classified as unreliable based on a comparison with the mean value for each patient. Reliability was closely correlated with residual renal function (p < 0.01); only 12% of the measurements in the an uric patients were classified as unreliable (vs 31% in the patients with residual renal function). The simultaneous formula clearance was less variable than the CCr. The formula clearance had a sensitivity of 93% and a specificity of 60% for detecting unreliable values of CCr. Conclusion Estimation of total CCr is unreliable in pediatric patients on PD. A simultaneous formula clearance can be used to detect which values are unreliable.
Collapse
Affiliation(s)
| | | | | | - Thomas Müller
- Kinderdialyse, Universtätskinderklinik Wien, Vienna, Austria
| | | | - Egon Balzar
- Kinderdialyse, Universtätskinderklinik Wien, Vienna, Austria
| | | |
Collapse
|
3
|
Li G, Wu W, Zhang X, Huang Y, Wen Y, Li X, Gao R. Serum levels of tumor necrosis factor alpha in patients with IgA nephropathy are closely associated with disease severity. BMC Nephrol 2018; 19:326. [PMID: 30428849 PMCID: PMC6236996 DOI: 10.1186/s12882-018-1069-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Background Tumor necrosis factor alpha (TNF-α) is considered to play an important role in the pathogenesis in IgA nephropathy (IgAN). The correlations between serum TNF-α and disease severity in patients with IgAN remain controversial. Methods Concentrations of serum TNF-α of 147 patients with IgAN and 126 healthy subjects were measured by chemiluminescence immunoassay. Correlations with clinicopathological features of patients with IgAN were evaluated. Results Serum levels of TNF-α [9.20 (7.70–10.60) pg/mL vs. 6.04 (5.11–7.23) pg/mL, P < 0.0001] were higher in patients with IgAN than that in healthy subjects. Receiver operating characteristic curve analysis revealed that TNF-α had better discrimination between patients with IgAN and healthy controls than estimated glomerular filtration rate [TNF-α: (AUC, 0.87; 95% CI, 0.83–0.91; P < 0.0001) vs. estimated glomerular filtration rate: (AUC, 0.76; 95% CI, 0.71–0.82; P < 0.0001), P = 0.007]. Multivariate linear regression analyses showed that serum levels of TNF-α were positively correlated with 24-h urine protein excretion (r = 0.33, P = 0.04), urinary protein to serum creatinine ratio (r = 0.33, P = 0.03), serum creatinine (r = 0.46, P < 0.0001) and Cystatin C (r = 0.59, P < 0.0001) in IgAN and negatively correlated with estimated glomerular filtration rate (r = − 0.49, P < 0.0001) after adjustment for sex, systolic blood pressure and diastolic blood pressure. Patients with higher mesangial hypercellularity or tubular atrophy/interstitial fibrosis score according to Oxford classification showed higher serum levels of TNF-α. Conclusions Our data showed that serum levels of TNF-α detected by chemiluminescence immunoassay was a potential biomarker for evaluating the disease severity in IgAN. Electronic supplementary material The online version of this article (10.1186/s12882-018-1069-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guanhong Li
- Division of Nephrology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Wei Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyao Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yubing Wen
- Division of Nephrology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xuemei Li
- Division of Nephrology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ruitong Gao
- Division of Nephrology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Lambert MP. Platelets in liver and renal disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:251-255. [PMID: 27913488 PMCID: PMC6142504 DOI: 10.1182/asheducation-2016.1.251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review will discuss how 2 common and morbid conditions, renal disease and liver disease, alter platelet number and function. It will review the impact of thrombocytopenia on bleeding complications in patients with these disorders and whether the low platelet count actually correlates with bleeding risk. Emerging data also suggest that platelets are much more than bystanders in both renal and liver disease, but instead play an active role in the pathobiology of these disorders. This review will briefly cover the emerging information on novel roles of platelets in the biology of renal and liver disease.
Collapse
Affiliation(s)
- Michele P Lambert
- Divisions of Hematology, Departments of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Singh K, Prasad KN, Mishra P, Singh SK, Kharwar NK, Prasad N, Gupta A, Srivastava JK. Association of tumour necrosis factor-α polymorphism in patients with end stage renal disease. Nephrology (Carlton) 2015; 20:387-91. [DOI: 10.1111/nep.12398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Kamini Singh
- Department of Microbiology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
- Amity Institute of Biotechnology; Amity University; Lucknow India
| | - Kashi Nath Prasad
- Department of Microbiology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
| | - Priyanka Mishra
- Department of Microbiology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
| | - Satyendra Kumar Singh
- Department of Microbiology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
| | - Nagendra Kumar Kharwar
- Department of Microbiology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
| | - Narayan Prasad
- Department of Nephrology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
| | - Amit Gupta
- Department of Nephrology; Sanjay Gandhi Postgraduate Institute of Medical Sciences; Lucknow India
| | | |
Collapse
|
6
|
Hydrogen peroxide-inducible clone-5 regulates mesangial cell proliferation in proliferative glomerulonephritis in mice. PLoS One 2015; 10:e0122773. [PMID: 25835392 PMCID: PMC4383376 DOI: 10.1371/journal.pone.0122773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/19/2015] [Indexed: 11/19/2022] Open
Abstract
Hydrogen peroxide-inducible clone-5 (Hic-5) is a transforming growth factor (TGF)-β1-inducible focal adhesion protein. We previously demonstrated that Hic-5 was localized in mesangial cells and its expression was associated with glomerular cell proliferation and matrix expansion in human and rat glomerulonephritis (GN). In the present study, we first assessed the role of Hic-5 in mesangioproliferative GN by injecting Habu venom into heminephrectomized wild type (Hic-5+/+) and Hic-5-deficient (Hic-5-/-) mice. Hic-5+/+ GN mice exhibited glomerular cell proliferation on day 7. Surprisingly, glomerular cell number and Ki-67-positive cells in Hic-5-/- GN mice were significantly greater than those in Hic-5+/+ GN mice on day 7, although the number of glomerular apoptotic cells and the expression of growth factors (platelet-derived growth factor-BB and TGF-β1) and their receptors were similarly increased in both Hic-5+/+ and Hic-5-/- GN mice. In culture experiments, proliferation assays showed that platelet-derived growth factor-BB and TGF-β1 enhanced the proliferation of Hic-5-/- mesangial cells compared with Hic-5+/+ mesangial cells. In addition, mitogenic regulation by Hic-5 was associated with altered and coordinated expression of cell cycle-related proteins including cyclin D1 and p21. The present results suggest that Hic-5 might regulate mesangial cell proliferation in proliferative GN in mice. In conclusion, modulation of Hic-5 expression might have a potential to prevent mesangial cell proliferation in the acute mitogenic phase of glomerulonephritis.
Collapse
|
7
|
Lan A, Du J. Potential role of Akt signaling in chronic kidney disease. Nephrol Dial Transplant 2014; 30:385-94. [PMID: 24891436 DOI: 10.1093/ndt/gfu196] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all chronic kidney diseases. However, the mechanisms involved in the development of renal fibrosis are poorly understood. The Akt (also known as protein kinase B, PKB) family is serine/threonine protein kinases that play critical roles in regulating growth, proliferation, survival, metabolism and other cellular activities. Cytokines, high-glucose medium, transforming growth factor-β1 or advanced glycation end-products activate Akt in different renal cells. Increased Akt activation has been found in experimental tubulointerstitial fibrosis. In addition, Akt activation is also an important node in diverse signaling cascades involved in kidney damage. These data give evidence for a role for Akt in renal fibrosis, but no reviews are available on the role of Akt in the process. Thus, our aim is to review the role of Akt activation and signaling in renal fibrosis.
Collapse
Affiliation(s)
- Aiping Lan
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing An Zhen Hospital, Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing 100029, China
| | - Jie Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing An Zhen Hospital, Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing 100029, China
| |
Collapse
|
8
|
Otero C, Peñaloza JP, Rodas PI, Fernández-Ramires R, Velasquez L, Jung JE. Temporal and spatial regulation of cAMP signaling in disease: role of cyclic nucleotide phosphodiesterases. Fundam Clin Pharmacol 2014; 28:593-607. [PMID: 24750474 DOI: 10.1111/fcp.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.
Collapse
Affiliation(s)
- Carolina Otero
- Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
9
|
Human umbilical mesenchymal stem cells attenuate the progression of focal segmental glomerulosclerosis. Am J Med Sci 2014; 346:486-93. [PMID: 23514668 DOI: 10.1097/maj.0b013e3182831777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have suggested the potential of mesenchymal stem cells (MSCs) to repair damaged kidney diseases. However, the effect of human umbilical cord MSCs (HuMSCs) on the progression of focal segmental glomerulosclerosis (FSGS) remains poorly understood. Adriamycin-induced nephropathy is a rodent model of chronic kidney disease that has been studied extensively and has enabled a greater understanding of the processes underlying the progression of FSGS. This study aimed to investigate the role of HuMSCs on the progression of kidney disease using a model of adriamycin-induced nephropathy. Human MSCs were labeled with 5-bromo-2'-deoxyuridine to track their localization to the kidneys after infusion. Clinical parameters and histology suggested amelioration of FSGS in MSC-treated animals at 12 weeks, especially in those that received repeated doses. These results were associated with reduced serum interleukin (IL)-6 and tumor necrosis factor-α, transforming growth factor-β levels, connective tissue growth factor messenger RNA expression and upregulated serum IL-10 levels. In short, this experiment found that HuMSCs improved kidney fibrosis and modulated the inflammatory response, suggesting that xenogenic transplantation of HuMSCs is a novel approach for improving the progression of FSGS and may be a promising therapeutic intervention in the future.
Collapse
|
10
|
Ma H, Wu Y, Zhang W, Dai Y, Li F, Xu Y, Wang Y, Tu H, Li W, Zhang X. The effect of mesenchymal stromal cells on doxorubicin-induced nephropathy in rats. Cytotherapy 2013; 15:703-11. [DOI: 10.1016/j.jcyt.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 01/15/2023]
|
11
|
New DD, Block K, Bhandhari B, Gorin Y, Abboud HE. IGF-I increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells. Am J Physiol Cell Physiol 2011; 302:C122-30. [PMID: 21940672 DOI: 10.1152/ajpcell.00141.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular matrix accumulation contributes to the progression of chronic kidney disease. Many growth factors including insulin-like growth factor-I (IGF-I) enhance matrix protein accumulation. Proximal tubular epithelial cells (PTCs) synthesize matrix proteins. NADPH oxidases are major sources of reactive oxygen species (ROS), important signaling molecules that mediate biological responses in a variety of cells and tissue. We investigated the mechanism by which IGF-I regulates fibronectin accumulation in PTCs and the role of a potential redox-dependent signaling pathway. IGF-I induces an increase in NADPH-dependent superoxide generation, enhances the release of hydrogen peroxide, and increases the expression of NADPH oxidase 4 (Nox4) in PTCs. IGF-I also stimulates phosphorylation of Akt, and inhibition of Akt or its upstream activator phosphatidylinositol 3-kinase attenuates IGF-I-induced fibronectin accumulation. Expression of dominant negative Akt also inhibits IGF-I-induced expression of fibronectin, indicating a role for this kinase in fibronectin accumulation. Expression of dominant negative adenovirus Nox4 inhibits IGF-I-induced NADPH oxidase activity, Akt phosphorylation, and fibronectin protein expression. Moreover, transfection of small interfering RNA targeting Nox4 decreases Nox4 protein expression and blocks IGF-I-induced Akt phosphorylation and the increase in fibronectin, placing Nox4 and ROS upstream of Akt signaling pathway. To confirm the role of Nox4, PTCs were infected with adenovirus construct expressing wild-type Nox4. Ad-Nox4, but not control Ad-green fluorescent protein, upregulated Nox4 expression and increased NADPH oxidase activity as well as fibronectin expression. Taken together, these results provide the first evidence for a role of Nox4 in IGF-I-induced Akt phosphorylation and fibronectin expression in tubular epithelial cells.
Collapse
Affiliation(s)
- David D New
- University of Texas Health Science Center Department of Medicine, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
12
|
Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. J Transl Med 2011; 91:992-1006. [PMID: 21403644 DOI: 10.1038/labinvest.2011.43] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Molecular mechanisms and signaling pathways leading to cellular proliferation and lesion formation in the crescentic glomerulonephritis (CGN) remain elusive. In the present study we have explored a potential role of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway and amino acid transporter (LAT) in the pathogenesis of CGN. Immunohistochemistry and western blot analysis of glomeruli isolated from a rat model of CGN revealed that activation of mTORC1 preceded crescent formation in glomerular parietal epithelial cells (PECs) and podocytes. Daily treatment of rats with the mTOR inhibitor everolimus just after induction of CGN was not beneficial and instead led to increased cellular necrosis of PECs. However, daily treatment starting 7 days after the onset of CGN was beneficial and maintained intact glomeruli. Out of three forms of L-type neutral amino acid transporters (LAT1-LAT3) studied here, only LAT2 was found to be upregulated in the PECs and podocytes in advance of the crescent formation as well as in the crescent lesion itself. Cell culture study revealed that plasma membrane expression of LAT2 markedly stimulated mTORC1 signaling pathway, which was significantly abrogated by coexistence of LAT inhibitor. Finally, LAT inhibitor significantly abrogated development of crescent formation of CGN on day 7. Our data suggest that LAT2 may have a pivotal role in the pathogenesis of CGN by activating the mTORC1 pathway in the glomerular epithelial cells.
Collapse
|
13
|
EMANCIPATOR SN, CHINTALACHARUVU SR, BAGHERI N, SCIVITTARO V. Animal models of IgA nephropathy: Formulating therapeutic strategies. Nephrology (Carlton) 2010. [DOI: 10.1111/j.1440-1797.1997.tb00188.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Yoshida T, Kato K, Yokoi K, Watanabe S, Metoki N, Satoh K, Aoyagi Y, Nishigaki Y, Nozawa Y, Yamada Y. Association of candidate gene polymorphisms with chronic kidney disease in Japanese individuals with hypertension. Hypertens Res 2009; 32:411-8. [PMID: 19282863 DOI: 10.1038/hr.2009.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although hypertension has been recognized as a risk factor for chronic kidney disease (CKD), the genetic factors for predisposition to CKD in individuals with hypertension remain largely unknown. The purpose of this study was to identify the genetic variants that confer susceptibility to CKD among individuals with hypertension. The study population comprised 3696 Japanese individuals with hypertension (2265 men, 1431 women), including 1257 individuals (789 men, 468 women) with CKD (estimated glomerular filtration rate (eGFR) <60 ml min(-1) per 1.73 m(2)) and 2439 controls (1476 men, 963 women; eGFR >or=60 ml min(-1) per 1.73 m(2)). The genotypes for 30 polymorphisms of 26 candidate genes were determined. An initial screening of allele frequencies by the chi(2)-test revealed that eight polymorphisms were significantly (false discovery rate <0.05) associated with the prevalence of CKD in hypertensive individuals. Subsequent multivariable logistic regression analysis with adjustment for covariates as well as a stepwise forward selection procedure revealed that the T --> C (Val591Ala) polymorphism of APOB (rs679899), the -681C --> G polymorphism of PPARG (rs10865710), the T --> C (Cys1367Arg) polymorphism of WRN (rs1346044), the -850C --> T polymorphism of TNF (rs1799724), the -219G --> T polymorphism of APOE (rs405509), the C --> T polymorphism of PTGS1 (rs883484) and the 41A --> G (Glu14Gly) polymorphism of ACAT2 (rs9658625) were significantly (P<0.05) associated with the prevalence of CKD. Our results suggest that APOB, WRN, ACAT2, APOE, PPARG, TNF and PTGS1 are susceptibility loci for CKD among Japanese individuals with hypertension. Determination of the genotypes for these polymorphisms may prove informative for the assessment of genetic risk for CKD among such individuals.
Collapse
Affiliation(s)
- Tetsuro Yoshida
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu Y, Templeton DM. Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. J Cell Physiol 2008; 217:307-18. [PMID: 18506790 DOI: 10.1002/jcp.21499] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cadmium (Cd) is a toxic metal with multiple effects on cell signaling and cell death. We studied the effects of Cd(2+) on quiescent mouse mesangial cells in serum-free conditions. Cadmium induces cell death over 6 h through annexin V+ states without or with causing uptake of propidium iodide, termed apoptotic and apoptosis-like death, respectively. Little or no necrosis is observed, and cell death is caspase-independent and associated with nuclear translocation of the apoptosis-inducing factor, AIF. We previously showed that Cd(2+) increased phosphorylation of Erk and CaMK-II, and CaMK-II activation increased cell death in an Erk-independent manner. Here we demonstrate that Cd(2+) increases Jnk and p38 kinase phosphorylation, and inhibition of p38-but not of Jnk-increases cell viability by suppressing apoptosis in preference to apoptosis-like death. Neither p38 kinase nor CaMK-II inhibition protects against a decrease in mitochondrial membrane potential, psi, indicating that kinase-mediated death is either independent of, or involves events downstream of a mitochondrial pathway. However, both the antioxidant N-acetyl cysteine (NAC) and the mitochondrial membrane-stabilizing agent cyclosporine A (CsA) partially preserve psi, suppress activation of p38 kinase, and partially protect the cells from Cd(2+)-induced death. Whereas the effect of CsA is on apoptosis, NAC acts on apoptosis-like death. Inhibition of glutathione synthesis exacerbates a Cd(2+)-dependent increase in cellular peroxides and favors apoptosis-like death over apoptosis. The caspase-independence of these modes of cell death is not due to an absence of this machinery in the mesangial cells: when they are exposed to Cd(2+) for longer periods in the presence of serum, procaspase-3 and PARP are cleaved and caspase inhibition is protective. We conclude that Cd(2+) can kill mesangial cells by multiple pathways, including caspase-dependent and -independent apoptotic and apoptosis-like death. Necrosis is not prominent. Activation of p38 kinase and of CaMK-II by Cd(2+) are associated with caspase-independent apoptosis that is not dependent on mitochondrial destabilization.
Collapse
Affiliation(s)
- Ying Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
17
|
Dorado F, Velasco S, Esparis-Ogando A, Pericacho M, Pandiella A, Silva J, Lopez-Novoa JM, Rodriguez-Barbero A. The mitogen-activated protein kinase Erk5 mediates human mesangial cell activation. Nephrol Dial Transplant 2008; 23:3403-11. [DOI: 10.1093/ndt/gfn333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Kamanna VS, Bassa BV, Ganji SH. Low density lipoproteins transactivate EGF receptor: role in mesangial cell proliferation. Life Sci 2008; 83:595-601. [PMID: 18805430 DOI: 10.1016/j.lfs.2008.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/18/2008] [Accepted: 08/15/2008] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia and the glomerular accumulation of atherogenic lipoproteins (low density lipoprotein, LDL; and its oxidatively-modified variants, ox-LDL) are commonly associated with the development of glomerular mesangial proliferative diseases. However, cellular signaling mechanisms by which atherogenic lipoproteins stimulate mesangial cell proliferation are poorly defined. In this study, we examined the effect of atherogenic lipoproteins on the activation of mesangial cell epidermal growth factor (EGF) receptor, mitogen activated protein kinase (MAP kinase), Ras, and mesangial cell proliferation. Stimulation of mesangial cells with LDL, and with greater activity, ox-LDL, markedly induced the transactivation of EGF receptor within 5 min of stimulation; the effect persisted up to at least 60 min LDL, and with a greater degree, ox-LDL, increased the activation of Ras, MAP kinase, and mesangial cell proliferation. Inhibition of EGF receptor kinase activity and/or MAP kinase activation blocked both LDL- and ox-LDL-induced mesangial cell proliferation. We suggest that the accumulation of LDL and more potently its oxidized forms within the glomerulus, through the transactivation of EGF receptor, stimulate down-stream Ras-MAP kinase signaling cascade leading to mesangial cell proliferation. Regulation of glomerular accumulation of atherogenic lipoproteins and/or EGF receptor signaling may provide protective environment against mesangial hypercellularity seen in glomerular diseases.
Collapse
Affiliation(s)
- Vaijinath S Kamanna
- Medical Research Service (151), Department of Veterans Affairs Healthcare System, 5901 East Seventh Street, Long Beach, California 90822, United States.
| | | | | |
Collapse
|
19
|
Lin YF, Zhang N, Guo HS, Kong DS, Jiang T, Liang W, Zhao ZH, Tang QQ, Ma D. Recombinant tissue factor pathway inhibitor induces apoptosis in cultured rat mesangial cells via its Kunitz-3 domain and C-terminal through inhibiting PI3-kinase/Akt pathway. Apoptosis 2007; 12:2163-73. [PMID: 17885802 DOI: 10.1007/s10495-007-0136-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tissue factor pathway inhibitor (TFPI) is an endogenous inhibitor of tissue factor (TF) induced coagulation. In addition to its anticoagulation activity, TFPI has other functions such as antiproliferation and inducing apoptosis. In the present study, we investigated whether or not TFPI induced apoptosis in cultured rat mesangial cells (MsCs) and the possible signal pathway that involved in the apoptotic process. We demonstrated that recombinant TFPI (rTFPI) induced apoptosis in cultured MsCs via its Kunitz-3 domain and C-terminal in a dose- and time-dependent manner by Hoechst 33258 assay, flow cytometry, nucleosomal laddering of DNA, caspase 3 assay. Because the serine/threonine protein kinase Akt has attracted attention as a mediator of survival (anti-apoptotic) signal in MsCs, we investigated the expression of phosphospecific-Akt and its downstream signal phospho-IkappaB-alpha and some other signal molecules like Fas and bcl-2. The results indicated that the process of apoptosis triggered by rTFPI is, at least in part, actively conducted by rat MsCs possibly through PI3-Kinase-Akt signal pathway not by binding to tissue factor. Our findings suggest that rTFPI has the potential usefulness in inducing apoptosis of MsCs under inflammatory conditions.
Collapse
Affiliation(s)
- Yi-feng Lin
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim KU, Lee KM, Lee BH, Lim SC, Jung TY, Seo JC. Study on Tumor Necrosis Factor-α· Gene Polymorphism in Rheumatoid Arthritis. J Pharmacopuncture 2007. [DOI: 10.3831/kpi.2007.10.2.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Tomita N, Kashihara N, Morishita R. Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol 2007; 11:7-17. [PMID: 17384993 DOI: 10.1007/s10157-007-0459-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Renal disease, including slight renal injuries, has come to be seen as one of the risk factors for cardiovascular events. At present, most conventional therapy is inefficient, and tends to treat the symptoms rather than the underlying causes of the disorder. Gene therapy based on oligonucleotides (ODN) offers a novel approach for the prevention and treatment of renal diseases. Gene transfer into somatic cells to interfere with the pathogenesis contributing to renal disease may provide such an approach, leading to the better prevention and treatment of renal disease. The major development of gene transfer methods has made an important contribution to an intense investigation of the potential of gene therapy in renal diseases. Amazing advances in molecular biology have provided the dramatic improvement in the technology that is necessary to transfer target genes into somatic cells. Gene transfer methods, especially when mediated by several viral vectors, have improved to a surprising extent. In fact, some (retroviral vectors, adenoviral vectors, or liposome-based vectors, etc.) have already been used in clinical trials. On the other hand, recent progress in molecular biology has provided new techniques to inhibit target gene expression. The transfer of cis-element double-stranded ODN (= decoy) has been reported to be a powerful novel tool in a new class of antigene strategies for gene therapy. The transfer of decoy ODN corresponding to the cis sequence will result in attenuation of the authentic cis-trans interaction, leading to the removal of trans-factors from the endogenous cis-elements with a subsequent modulation of gene expression.
Collapse
Affiliation(s)
- Naruya Tomita
- Division of Nephrology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | | | | |
Collapse
|
22
|
Manchanda PK, Kumar A, Kaul A, Mittal RD. Correlation between a gene polymorphism of tumor necrosis factor-alpha (G/A) and end-stage renal disease: a pilot study from north India. Clin Chim Acta 2006; 370:152-7. [PMID: 16545788 DOI: 10.1016/j.cca.2006.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/04/2006] [Accepted: 02/06/2006] [Indexed: 10/25/2022]
Abstract
BACKGROUND Patients with chronic kidney disease manifest an inflammatory state in comparison to healthy individuals. Tumor necrosis factor-alpha (TNF-alpha) is a potent pro-inflammatory cytokine involved in initiation and progression of renal injury. We examined the 2-promoter region polymorphism of TNF-alpha gene G to A at -308 and at +488 sites in end-stage renal disease (ESRD) subjects. METHODS The TNF-alpha -308 G/A and +488 G/A polymorphisms were genotyped in 231 patients aged 36.5+/-10, and in 180 matched controls (34.96+/-11.3) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS-PCR) method, respectively. RESULTS The genotypic distribution of TNF-alpha -308 and +488 were significantly different between patients and controls (P<0.001 and P<0.006), respectively. The AA genotype was more frequent in ESRD patients than controls for both the sites (42% vs. 2.8% and 17.3% vs. 2.2%), respectively. The allelic frequency of TNF-alpha A was also higher in cases than in controls for both the sites (P<0.001; OR=2.96; 95% CI=2.228-3.945 and P<0.013; OR=1.422; 95% CI=1.078-1.876). Significant difference was observed for haplotype frequency distribution between ESRD patients and controls and 'A-G#' haplotype showed >9-fold higher risk (OR=9.886, 95% CI=4.408-22.172). The two polymorphisms were in linkage disequilibrium in the control group (D'=0.8047, P<0.001). CONCLUSION Both the variants of TNF-alpha (-308 and +488) polymorphism had significant association and may thus be a strong predisposing risk factor for ESRD in a cohort of north Indian population. Further, individuals with haplotypes A-G# may be at higher risk for ESRD.
Collapse
|
23
|
Kondo S, Shimizu M, Urushihara M, Tsuchiya K, Yoshizumi M, Tamaki T, Nishiyama A, Kawachi H, Shimizu F, Quinn MT, Lambeth DJ, Kagami S. Addition of the antioxidant probucol to angiotensin II type I receptor antagonist arrests progressive mesangioproliferative glomerulonephritis in the rat. J Am Soc Nephrol 2006; 17:783-94. [PMID: 16467449 DOI: 10.1681/asn.2005050519] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Angiotensin II (Ang II) and reactive oxidative species (ROS) that are produced by NADPH oxidase have been implicated in the progression of glomerulonephritis (GN). This study examined the effect of simultaneously interrupting Ang II and ROS with an Ang II receptor blocker (ARB), candesartan, and a free radical scavenger, probucol, in a model of progressive mesangioproliferative GN induced by the injection of anti-Thy-1 antibody into uninephrectomized rats. Nephritic rats were divided into four groups and given daily oral doses of the following: Vehicle, 1% probucol diet, 70 mg/L candesartan in drinking water, and probucol plus candesartan. These treatments lasted until day 56. Vehicle-treated nephritic rats developed progressively elevated proteinuria and glomerulosclerosis. Candesartan kept proteinuria significantly lower than vehicle or probucol. The addition of probucol to candesartan normalized urinary protein excretion. Increases in BP in nephritic rats were lowered by these treatments, except with probucol. It is interesting that both glomerular cell number and glomerulosclerosis were significantly decreased by candesartan and normalized by the addition of probucol. Immunohistochemical studies for TGF-beta1, collagen type I, and fibronectin revealed that the combined treatment abolished glomerular fibrotic findings compared with candesartan. In addition, glomerular expression of NADPH oxidase components and superoxide production suggested that the combined treatment completely eliminated NADPH oxidase-associated ROS production. In conclusion, our study provides the first evidence that the antioxidant probucol, when added to an Ang II receptor blockade, fully arrests proteinuria and disease progression in GN. Furthermore, the data suggest that NADPH oxidase-associated ROS production may play a pivotal role in the progression of GN. The combination of probucol and candesartan may represent a novel route of therapy for patients with progressive GN.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, The Institute of Health Bioscience, The University of Tokushima Graduate School, Kuramoto-cho-3-chome, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gunawardana CG, Martinez RE, Xiao W, Templeton DM. Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. Am J Physiol Renal Physiol 2005; 290:F1074-82. [PMID: 16263807 DOI: 10.1152/ajprenal.00067.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cadmium is a potent nephrotoxin that has been shown to induce apoptosis in some cells but also to prevent it under certain circumstances. In several clinical situations and experimental models of injury to the renal glomerulus, pathological proliferation of mesangial cells is followed by resolution involving mesangial cell apoptosis. We investigated the effects of Cd(2+) on rat mesangial cells induced to undergo apoptosis through either the extrinsic receptor-mediated pathway or the intrinsic mitochondrial-dependent pathway. Camptothecin initiated the intrinsic pathway with activation of caspase-9 and caspase-dependent cleavage of procaspase-3. Tumor necrosis factor-alpha (TNF-alpha) initiated caspase-8 activity and cleavage of pro-caspase-3 at the convergence point of the two pathways. However, pro-caspase-8 levels were low, and caspase-9 was also activated in response to TNF-alpha, characteristic of what have been termed type II cells. With both TNF-alpha and camptothecin, concurrent exposure to 10 microM CdCl(2) suppressed DNA laddering, nuclear condensation, and pro-caspase-3 cleavage. It also decreased activity of both caspase-8 and caspase-9, prevented caspase-8-dependent cleavage of the proapoptotic factor Bid, and suppressed release of cytochrome c from mitochondria. At this 10-microM concentration, Cd(2+) was unique among a number of metal ions in preventing DNA fragmentation. We conclude that Cd(2+) is anti-apoptotic in rat mesangial cells, acting by a mechanism that may involve general caspase inhibition. This may have consequences for the resolution of nephritis in situations of mesangial cell hyperproliferation.
Collapse
Affiliation(s)
- C Geeth Gunawardana
- Dept. of Laboratory Medicine and Pathobiology, Medical Sciences Bldg. Rm. 6302, Univ. of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
Terada Y, Kobayashi T, Kuwana H, Tanaka H, Inoshita S, Kuwahara M, Sasaki S. Aldosterone Stimulates Proliferation of Mesangial Cells by Activating Mitogen-Activated Protein Kinase 1/2, Cyclin D1, and Cyclin A. J Am Soc Nephrol 2005; 16:2296-305. [PMID: 15975997 DOI: 10.1681/asn.2005020129] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently, attention has been focused on the role of aldosterone in the pathophysiology of hypertension and cardiovascular disease. Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. However, the molecular mechanisms of the effects of aldosterone in signal transduction and the cell-cycle progression of mesangial cells are not well known. For determining the signaling pathway of aldosterone in cultured mesangial cells, the effects of aldosterone on the mitogen-activated protein kinase 1/2 (MAPK1/2) pathway and the promoter activities of cyclin D1, cyclin A, and cyclin E were investigated. First, it was shown that the mineralocorticoid receptor (MR) was expressed in rat mesangial cells and glomeruli and that aldosterone stimulated the proliferation of mesangial cells via the MR and MAPK1/2 pathway. Next, it was demonstrated that aldosterone stimulated Ki-RasA, c-Raf kinase, MEK1/2, and MAPK1/2 in rat mesangial cells. Aldosterone induced cyclin D1 and cyclin A promoter activities and protein expressions, as well as the increments of CDK2 and CDK4 kinase activities. The presence of CYP11B2 and 11beta-HSD2 mRNA in rat mesangial cells also was shown. In conclusion, aldosterone seems to exert mainly MR-induced effects that stimulate c-Raf, MEK1/2, MAPK1/2, the activities of CDK2 and CDK4, and the cell-cycle progression in mesangial cells. MR antagonists may serve as a potential therapeutic approach to mesangial proliferative disease.
Collapse
Affiliation(s)
- Yoshio Terada
- Department of Nephrology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Eikmans M, Ijpelaar DHT, Baelde HJ, de Heer E, Bruijn JA. The use of extracellular matrix probes and extracellular matrix-related probes for assessing diagnosis and prognosis in renal diseases. Curr Opin Nephrol Hypertens 2005; 13:641-7. [PMID: 15483455 DOI: 10.1097/00041552-200411000-00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Scarring in the kidney results from excessive local synthesis and exogenous accumulation of extracellular matrix components. Once chronic damage is present in the biopsy, therapeutic intervention for the renal patient encounters severe limitations. It is therefore essential to determine clinical outcome preferably at a time point before the development of overt scarring. Clinical parameters and morphologic alterations in the biopsy are currently used as tools for the diagnosis of the renal disease entity and for assessment of the patient's prognosis. Expression levels of extracellular matrix and matrix-related components may serve as additive and even superior prognostic indicators to conventional parameters. We will elaborate on studies supporting this concept. RECENT FINDINGS Several investigators have shown in experimental models for renal disease that extracellular matrix probes and related probes reflect disease progression and predict outcome. In this review, we will provide an update on the most recent studies of human renal biopsies showing that expression of extracellular matrix components, regulators of matrix degradation, and cytokines affecting matrix deposition may be employed for discrimination of diagnostic groups and predicting prognosis. SUMMARY Molecular techniques are expected to be used more and more for diagnostic and prognostic purposes in nephrological practice to supplement the histopathological analysis of the renal biopsy. Assessment of expression of matrix molecules, matrix-regulating cytokines, and metalloproteinases in renal kidney biopsies is helpful to distinguish patients who are at risk of developing progressive renal failure from patients who are likely to recover from renal tissue injury by natural remodeling mechanisms.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Pathology, Leiden University Medical Center, Building 1, L1-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Nakao S, Ogata Y, Yamamoto Y, Furuyama S, Sugiya H. Platelet-derived growth factor-induced arachidonic acid release for enhancement of prostaglandin E(2) synthesis in human gingival fibroblasts pretreated with interleukin-1beta. J Cell Biochem 2004; 92:579-90. [PMID: 15156569 DOI: 10.1002/jcb.20086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.
Collapse
Affiliation(s)
- Sumi Nakao
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | | | | | | | | |
Collapse
|
28
|
Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T. Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int 2004; 66:1794-804. [PMID: 15496150 DOI: 10.1111/j.1523-1755.2004.00954.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Caveolin is a principal component of caveolae and regulates signaling in caveolae. Mesangial cells contain many caveolae, and thus manipulation of caveolin-1 expression level might be useful to control mesangial cell proliferation, which is an important aggravating factor in many renal diseases. METHODS In the present study, we transfected caveolin-1 cDNA to rat primary mesangial cells and MES13 cells, and examined the effects on Raf-extracellular signal-regulated protein kinase (ERK) kinase (MEK)-mitogen-activated protein (MAP) kinase pathway and cell proliferation stimulated by basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF). Activity of the kinases was analyzed by immunofluorescence labeling and Western blot analysis. RESULTS The overexpression of caveolin-1 inhibited the activation of Raf-1, MEK-1/2, and MAP kinase induced by either bFGF or PDGF. Furthermore, it suppressed the cell proliferation caused by the cytokines. The effect was specific to the Raf-MEK-MAP kinase pathway, because it did not influence activation of Smad2 induced by transforming growth factor-beta (TGF-beta). On the contrary, expression of a dominant-negative caveolin mutant, DGV-caveolin, augmented activation of MAP kinase. CONCLUSION The result showed that overexpression of caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Because bFGF and PDGF are two major cytokines involved in the mesangioproliferative nephritis, the result implies that introduction of caveolin-1 expression vector is a potential therapeutic tool for the disease.
Collapse
Affiliation(s)
- Yutaka Fujita
- Division of Clinical Immunology, Department of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
29
|
Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4. Am J Physiol Renal Physiol 2004; 287:F940-53. [PMID: 15280158 DOI: 10.1152/ajprenal.00079.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesangial cell (MC) mitogenesis is regulated through "negative cross talk" between cAMP-PKA and ERK signaling. Although it is widely accepted that cAMP inhibits mitogenesis through PKA-mediated phosphorylation of Raf-1, recent studies have indicated that cAMP-mediated inhibition of mitogenesis may occur independently of Raf-1 phosphorylation or without inhibiting ERK activity. We previously showed that MCs possess functionally compartmentalized intracellular pools of cAMP that are differentially regulated by cAMP phosphodiesterases (PDE); an intracellular pool directed by PDE3 but not by PDE4 suppresses mitogenesis. We therefore sought to determine whether there was a differential effect of PDE3 vs. PDE4 inhibitors on the Ras-Raf-MEK-ERK pathway in cultured MC. Although PDE3 and PDE4 inhibitors activated PKA and modestly elevated cAMP levels to a similar extent, only PDE3 inhibitors suppressed MC mitogenesis (-57%) and suppressed Raf-1 kinase and ERK activity (-33 and -68%, respectively). Both PDE3 and PDE4 inhibitors suppressed B-Raf kinase activity. PDE3 inhibitors increased phosphorylation of Raf-1 on serine 43 and serine 259 and decreased phosphorylation on serine 338; PDE4 inhibitors were without effect. Overexpression of a constitutively active MEK-1 construct reversed the antiproliferative effect of PDE3 inhibitors. PDE3 inhibitors also reduced cyclin A levels (-27%), cyclin D and cyclin E kinase activity (-30 and -50%, respectively), and induced expression of the cell cycle inhibitor p21 (+90%). We conclude that the antiproliferative effects of PDE3 inhibitors are mechanistically related to inhibition of the Ras-Raf-MEK-ERK pathway. Additional cell cycle targets of PDE3 inhibitors include cyclin A, cyclin D, cyclin E, and p21.
Collapse
Affiliation(s)
- Jingfei Cheng
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kalechman Y, Gafter U, Weinstein T, Chagnac A, Freidkin I, Tobar A, Albeck M, Sredni B. Inhibition of Interleukin-10 by the Immunomodulator AS101 Reduces Mesangial Cell Proliferation in Experimental Mesangioproliferative Glomerulonephritis. J Biol Chem 2004; 279:24724-32. [PMID: 15001575 DOI: 10.1074/jbc.m312006200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mesangial cell (MC) proliferation is essential for the pathogenesis and progression of glomerular disease. Using an acute model of mesangial proliferative glomerulonephritis (Thy1 GN), we show that neutralization of interleukin (IL)-10 greatly ameliorated the disease as expressed by both decreased MC expansion and proteinuria. Treatment with the tellurium compound AS101 (ammonium trichloro(dioxoethylene-o,o')tellurate) resulted in favorable effects provided that the compound was administered 24 h before insult, whereas partial effects were obtained when administered after insult. We identified STAT3 as playing a pivotal role in IL-10-induced MC proliferation in vitro and in vivo. IL-10 activates MC STAT3 in vitro as expressed by its phosphorylation and nuclear translocation. The role of STAT3 in MC proliferation induced by IL-10 was deduced from results showing that IL-10-induced proliferation was abrogated if MC transfected with STAT3 antisense oligonucleotides were used or if cells were incubated with inhibitors of STAT3. AS101 deactivates STAT3 in control but not in MC transfected with IL-10 antisense oligonucleotides. Inactivation of STAT3 prevents reduction of MC proliferation by AS101. We further demonstrate the role of STAT3 in the regulation of cell cycle and survival regulatory proteins by AS101 in MC via inhibition of IL-10. IL-10 increased MC expression of Bcl-2 and Bcl-X1 and simultaneously decreased the levels of p27kip1. These survival factors were decreased by AS101 in a STAT3- and IL-10-dependent manner, whereas p27kip1 was similarly increased. In Thy1 GN, phosphorylated STAT3 in glomerular MC peaked at day 6 and correlated with MC expansion. Neutralization of IL-10 or its inhibition by AS101 abolished phosphorylation of STAT3. This effect positively correlated with amelioration of the disease. These in vitro and in vivo studies indicate that the autocrine MC growth factor IL-10 induces MC proliferation via STAT3. We suggest that IL-10 or its downstream target STAT3 might be therapeutic targets for kidney diseases induced by mesangial proliferation.
Collapse
Affiliation(s)
- Yona Kalechman
- Cancer, AIDS, and Immunology Research Institute, Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mitchell D, Rodgers K, Hanly J, McMahon B, Brady HR, Martin F, Godson C. Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:937-46. [PMID: 14982847 PMCID: PMC1614708 DOI: 10.1016/s0002-9440(10)63181-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipoxins (LX) are endogenously produced eicosanoids with a spectrum of bioactions that suggest anti-inflammatory, pro-resolution roles for these agents. Mesangial cell (MC) proliferation plays a pivotal role in the pathophysiology of glomerular inflammation and is coupled to sclerosis and tubulointerstitial fibrosis. We have previously reported that LXA4 acts through a specific G-protein-coupled-receptor (GPCR) to modulate MC proliferation in response to the proinflammatory mediators LTD4 and platelet-derived growth factor (PDGF). Further investigations revealed that these effects were mediated by modulation of receptor tyrosine kinase activity. Here we have explored the underlying mechanisms and report inhibition of growth factor (PDGF; epithelial growth factor) activation of Akt/PKB by LXA4. LXA4 (10 nmol/L) modulates PDGF-induced (10 ng/ml, 24 hours) decrements in the levels of cyclin kinase inhibitors p21Cip1 and p27Kip1. PDGF-induced increases in CDK2-cyclin E complex formation are also inhibited by LXA4. The potential of LXA4 as an anti-inflammatory therapeutic is compromised by its degradation; this has been circumvented by synthesis of stable analogs. We report that 15-(R/S)-methyl-LXA4 and 16-phenoxy-LXA4 mimic the native compound with respect to modulation of cell proliferation and PDGF-induced changes in cell cycle proteins. In vivo, MC proliferation in response to PDGF is associated with TGFbeta1 production and the subsequent development of renal fibrosis. Here we demonstrate that prolonged (24 to 48 hours) exposure to PDGF is associated with autocrine TGFbeta1 production, which is significantly reduced by LXA4. In aggregate these data demonstrate that LX inhibit PDGF stimulated proliferation via modulation of the PI-3-kinase pathway preventing mitogen-elicited G1-S phase progression and suggest the therapeutic potential of LX as anti-fibrotic agents.
Collapse
Affiliation(s)
- Derick Mitchell
- Center for Molecular Inflammation and Vascular Research, Department of Medicine and Therapeutics, Mater Misericordiae Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
32
|
Eikmans M, Baelde JJ, de Heer E, Bruijn JA. ECM homeostasis in renal diseases: a genomic approach. J Pathol 2003; 200:526-36. [PMID: 12845620 DOI: 10.1002/path.1417] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic renal disease is in general histologically accompanied by a vast amount of scar tissue, ie glomerulosclerosis and interstitial fibrosis. Scarring results from excessive accumulation of extracellular matrix (ECM) components, a process driven by a plethora of cytokines and growth factors. Studies in experimental renal disease which target these regulators using gene therapy limit or prevent the development of scarring. This review focuses specifically on the role of transforming growth factor-beta, platelet-derived growth factor, connective tissue growth factor, hepatocyte growth factor, and epidermal growth factor. The results obtained in animal models hold promise for molecular intervention strategies in human renal disease. Microarray technology allows large-scale gene expression profiling in kidney tissue to identify common molecular pathways in a step towards discovery of new drug targets. Molecular techniques are expected to be used for diagnostic and prognostic purposes in nephrological practice to supplement renal biopsy. Several studies already show that molecular techniques might be of use in routine diagnostic practice. Improvement of diagnosis and prediction of outcome in renal patients might lead to more efficient and earlier therapeutic intervention.
Collapse
Affiliation(s)
- M Eikmans
- Department of Pathology, Leiden University Medical Center, Building 1, LI-Q, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Ishaque A, Dunn MJ, Sorokin A. Cyclooxygenase-2 inhibits tumor necrosis factor alpha-mediated apoptosis in renal glomerular mesangial cells. J Biol Chem 2003; 278:10629-40. [PMID: 12511556 DOI: 10.1074/jbc.m210559200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Renal mesangial cell apoptosis is a crucial repair mechanism in glomerular nephritis (GN). These cells express receptors to tumor necrosis factor alpha (TNFalpha), a cytokine with proapoptotic properties implicated in the resolution of GN. Progression to proliferative GN is accompanied by cyclooxygenase-mediated formation of prostaglandins and inefficient apoptosis of mesangial cells. The aims of this study were to quantify TNFalpha-mediated apoptosis in renal mesangial cells and to determine whether expression of the inducible form of cyclooxygenase, cylooxygenase-2 (COX-2), inhibits this apoptosis. By 24 h significant levels of apoptosis were induced by TNFalpha (100 ng/ml) or etoposide control (100 microm), as shown by phosphatidylserine externalization, caspase-3 activation, development of a sub-G(0)/G(1) region, and distinct chromatin condensation. Using adenoviral-mediated delivery of the COX-2 gene (AdCOX-2) apoptotic features were prevented from appearing in AdCOX-2 cells treated with TNFalpha, whereas etoposide-treated AdCOX-2 cells were not protected. Furthermore, COX-2 expression, induced by the vasoconstrictor peptide ET-1 or the cytokine interleukin-1beta also inhibited TNFalpha-mediated but not etoposide-mediated apoptosis, to an extent, similar to adenoviral COX-2 infection. Selective COX-2 inhibition by NS-398 restored TNFalpha-mediated apoptosis. Prostaglandin (PG) E(2) and PGI(2) were shown to be the major prostaglandin metabolites in AdCOX-2 cells. The addition of PGE(2) and PGI(2) protected against TNFalpha-mediated apoptosis. These results demonstrate COX-2 anti-apoptotic activity via a death receptor route and suggest that selective COX-2 inhibition may augment TNFalpha apoptosis in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Adiba Ishaque
- Department of Medicine and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
34
|
Thomas G, Clayton A, Thomas J, Davies M, Steadman R. Structural and functional changes in heparan sulfate proteoglycan expression associated with the myofibroblastic phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:977-89. [PMID: 12598330 PMCID: PMC3278775 DOI: 10.1016/s0002-9440(10)63892-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The principal cells implicated as the source of the extracellular matrix in areas of progressive fibrosis are fibroblasts with the phenotypic appearance of myofibroblasts. This report describes differences in heparan sulfate proteoglycan expression between myofibroblasts and normal fibroblasts, associated with impaired responses to fibroblast growth factor-2 (FGF-2). Although both cell types responded to platelet-derived growth factor, myofibroblasts, unlike fibroblasts, did not proliferate to FGF-2. A response was acquired, however, when myofibroblasts were incubated with FGF-2 in the presence of heparan sulfate (HS) and heparin. Selective digestion with pronase, NaOH/NaBH(4), heparinase I, or low pH nitrous acid showed that each HS-glycosaminoglycan region comprised a pronase-resistant peptide separating two HS chains. The HS-glycosaminoglycan chains from myofibroblasts were larger (K(av), 0.32; molecular weight, 50 kd) than those from fibroblasts (K(av), 0.4; molecular weight, 33 kd), although their disaccharide composition was identical. The chains from myofibroblasts, however, contained three, compared to two, heparinase 1-resistant sequences separated by larger contiguous areas of low sulfation. Furthermore, although there was no difference in FGF-2-binding affinity between the two cell types, the chains secreted by myofibroblasts had twice the binding capacity of those from fibroblasts. Thus, it is likely that the difference in response to FGF-2 is because of a difference in FGF-2 sequestration and receptor interaction with FGF-2-HS complexes. A comparative investigation into HS fine structure is being undertaken to examine these findings in more detail.
Collapse
Affiliation(s)
- Gareth Thomas
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, UK
| | | | | | | | | |
Collapse
|
35
|
Cellier E, Mage M, Duchêne J, Pécher C, Couture R, Bascands JL, Girolami JP. Bradykinin reduces growth factor-induced glomerular ERK1/2 phosphorylation. Am J Physiol Renal Physiol 2003; 284:F282-92. [PMID: 12388422 DOI: 10.1152/ajprenal.00115.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several experimental data report both mitogenic and antimitogenic effects of bradykinin (BK). To conciliate these apparent opposite effects, we hypothesized that, depending on cell context activation, BK could reduce the mitogenic effect of growth factors. Therefore, in the present study we assessed the existence of possible negative cross talk between BK and potential pathogenic growth factors in freshly isolated rat glomeruli (IG). Next, we determined whether this cross talk could be pharmacologically recruited during angiotensin-converting enzyme (ACE) inhibition in the diabetic rat. In IG from normal rats, BK, via activation of the B(2) kinin receptor (B(2)R), causes a transient stimulation of ERK1/2 phosphorylation, whereas it inhibits ERK1/2 phosphorylation induced by IGF-1, PDGF-BB, VEGF, or basic FGF. The reduction of growth factor-induced ERK1/2 phosphorylation is abolished by an inhibitor of tyrosine phosphatase. In glomeruli from diabetic rats, hyperglycemia increased the phosphorylation level of ERK-1/2 as well as oxidative stress. The reversal of these events by ACE inhibition is mediated via B(2)R activation. These observations are consistent with a potential therapeutic role of BK and B(2)R during glomerulosclerosis.
Collapse
Affiliation(s)
- Eric Cellier
- Institut National de la Santé et de la Recherche Médicale U388, IFR 31, Institut Louis Bugnard, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Yang LY, Huang WJ, Hsieh HG, Lin CY. H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2003; 141:74-83. [PMID: 12518171 DOI: 10.1067/mlc.2003.6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H1-A, a pure compound used in traditional Chinese medicine, is effective in the treatment of autoimmune disorders of MRL lpr/lpr mice. We have previously reported that after 8 weeks of oral therapy with H1-A, 40 microg/kg/day, MRL lpr/lpr mice demonstrated significantly less proteinuria, lower serum creatinine levels, and less renal mesangial proliferation than mice in an untreated group. To clarify the pharmacologic properties of H1-A, we studied its cellular and subcellular effects in cultured human mesangial cells. Our results show that H1-A inhibits cell proliferation and promotes the apoptosis of interleukin (IL)-1- and platelet-derived growth factor (PDGF)-BB-activated human mesangial cells in vitro. Uptake of tritiated thymidine was nearly totally suppressed by the addition of 12.5 micromol/L H1-A (counts per minute decreased from 3905 +/- 70 to 141 +/- 5). The population of S-phase cells decreased from 15.5% +/- 1.7% to 10.0% +/- 0.3%, and G0 + G1 phase cells increased from 68.8% +/- 0.07% to 74.6% +/- 0.05%. This suppression was not a result of cytotoxicity. Apoptosis of human mesangial cells was detectable after treatment with 12.5 or 25 micromol/L H1-A. Using immunoprecipitation and immunoblotting, we found that H1-A inhibits tyrosine phosphorylation of human mesangial proteins and that Bcl-2 and Bcl-XL were probably among these proteins. These findings suggest that H1-A modulates some subcellular signal-transduction pathways and changes the balance between proliferation and apoptosis of mesangial cells in vitro or in vivo. H1-A may be effective in the management of autoimmune disorders, and the modulation of the signal transduction proteins Bcl-2 and Bcl-XL may represent a target for future pharmacologic interventions.
Collapse
Affiliation(s)
- Ling-Yu Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taiwan.
| | | | | | | |
Collapse
|
37
|
Changsirikulchai S, Hudkins KL, Goodpaster TA, Volpone J, Topouzis S, Gilbertson DG, Alpers CE. Platelet-derived growth factor-D expression in developing and mature human kidneys. Kidney Int 2002; 62:2043-54. [PMID: 12427128 DOI: 10.1046/j.1523-1755.2002.00662.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) is a family of growth regulatory molecules composed of sulfide-bonded dimeric structures. Two well-studied PDGF peptides (PDGF-A and PDGF-B) have been shown to mediate a wide range of biological effects. PDGF-D is a newly recognized member of the PDGF family. Initial studies of the PDGF-D gene found its expression in cells of the vascular wall, suggesting that it could participate in vascular development and pathology. However, its localization in human kidney tissues has never been studied. METHODS PDGF-D expression in fetal (N = 30) and adult (N = 25) human kidney tissues was examined by immunohistochemistry using an affinity-purified antibody raised to human PDGF-D. Antibody absorption with the immunizing peptide was employed to confirm the specificity of this antibody. PDGF-D protein and gene expression in human kidneys also were demonstrated by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS In the developing kidney, PDGF-D was first expressed by epithelial cells of comma- and S-shaped structures of the developing nephron, and most consistently in the visceral epithelial cells in the later stages of glomerular differentiation. In addition, PDGF-D could be found in mesenchymal, presumptively fibroblast cells in the interstitium of developing renal pelvis and in fetal smooth muscle cells in arterial vessels. In the adult normal kidney, PDGF-D was expressed by the visceral epithelial cells. There was persistent expression in arterial smooth muscle cells as well as in some neointimal smooth muscle cells of arteriosclerotic vessels, and expression in smooth muscle cells of vasa rectae in the medulla. PDGF-D could be identified at the basolateral membrane of some injured tubules in areas of chronic tubulointerstitial injury routinely encountered in aging kidneys. Western blotting of homogenates of adult kidneys demonstrated monospecific bands at 50 kD corresponding to previously established size parameter for this protein. RT-PCR of human kidney RNA resulted in a 918 basepair band, the sequence of which corresponded to human PDGF-D (Genbank number AF336376). CONCLUSIONS To our knowledge, these are the first studies to localize PDGF-D in human kidneys and suggest that PDGF-D may have a role in kidney development. PDGF-D was shown to bind to PDGF beta receptor, which localizes to mesangial cells, parietal epithelial cells, and interstitial fibroblasts, suggesting potential paracrine interactions between those cells and the visceral epithelium.
Collapse
|
38
|
Okado T, Terada Y, Tanaka H, Inoshita S, Nakao A, Sasaki S. Smad7 mediates transforming growth factor-beta-induced apoptosis in mesangial cells. Kidney Int 2002; 62:1178-86. [PMID: 12234288 DOI: 10.1111/j.1523-1755.2002.kid583.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In addition to inhibiting cell growth, transforming growth factor-beta (TGF-beta) has recently been reported to induce apoptosis in various cell lines. Smad proteins are the downstream effectors of TGF-beta signaling. Among them, Smad7 exerts negative feedback control over the action of TGF-beta. However, we do not know how the Smad proteins contribute to TGF-beta-induced apoptosis in mesangial cells. To investigate the function of Smad proteins, we examined the effect of Smad overexpression using adenoviral vector in mesangial cells. METHODS Primary cultured rat mesangial cells were transfected with Smad7-promoter-luciferase-plasmid by electroporation. Smad7 promoter activity was investigated by luciferase assay. The apoptotic phenomena elicited by TGF-beta and Smad7 overexpression were investigated using adenoviral vector (AdCMV-Smad7). Apoptosis was detected by the cell death detection ELISA assay, CPP32/caspase-3 assay, and nucleosomal DNA laddering. RESULTS TGF-beta significantly increased the protein expression and the promoter activity of Smad7 in rat mesangial cells. Overexpression of Smad7 induced DNA fragmentation and significant increases in cell death ELISA and CPP32/caspase-3 assay. On the other hand, overexpression of Smad2 and Smad3 did not elicit any significant increases in CPP32/caspase-3 activity. Furthermore, the antisense oligonucleotide to Smad7 prevented the TGF-beta-induced apoptosis. Overexpression of Smad7 did not affect nuclear factor-kappaB activity in mesangial cells. CONCLUSIONS These data indicate that TGF-beta-induced apoptosis in mesangial cells is mediated through the activation of caspase-3 by Smad7, but not by Smad2 or Smad3. Our results provide new clarification on the function of Smad7 in TGF-beta signaling in mesangial cells.
Collapse
Affiliation(s)
- Tomokazu Okado
- Homeostasis Medicine and Nephrology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Cellier E, Duchêne J, Pécher C, Alric C, Bascands JL, Schanstra JP, Girolami JP. B2 receptor activation reduces Erk1 and Erk2 phosphorylation induced by insulin-like growth factor-1, platelet-derived growth factor-BB, and high glucose in rat isolated glomeruli. Can J Physiol Pharmacol 2002; 80:341-5. [PMID: 12025970 DOI: 10.1139/y02-033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several experimental data document an activation of the mitogen-activated protein kinases Erk1 and Erk2 by bradykinin (BK), an agonist of the kinin B2 receptor (B2R). In contrast, other reports showed an inhibitory modulation of mitogenesis by BK. Therefore, we explored in the isolated glomeruli the effect of B2R activation on the signaling of insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-BB (PDGF-BB), and high glucose (HG), three factors that are believed to be involved in the development of glomerulosclerosis via the phosphorylation of Erk1 and Erk2. We observed that the activation of B2R negatively modulates the phosphorylation of Erk1 and Erk2 induced by IGF-1, PDGF-BB, and HG in the glomerulus. These effects are consistent with the hypothesis of a protective role for BK in the kidney during development of glomerulosclerosis and renal pathologies associated with a hyperproliferative state.
Collapse
Affiliation(s)
- Eric Cellier
- INSERM U388, IFR 31, Institut Louis Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Matsumoto K, Hiraiwa N, Yoshiki A, Ohnishi M, Kusakabe M. PDGF receptor-alpha deficiency in glomerular mesangial cells of tenascin-C knockout mice. Biochem Biophys Res Commun 2002; 290:1220-7. [PMID: 11811993 DOI: 10.1006/bbrc.2001.6316] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tenascin-C (TNC) knockout (TNKO) mice showed reduced proliferation of mesangial cells and abnormal restoration after habu-snake venom (HSV)-induced glomerulonephritis. In this study, we examined the relationship of TNC and platelet-derived growth factor receptor (PDGFR) in glomerular mesangial cells. TNC and PDGFR-alpha and -beta transcriptions were up-regulated in wild type (WT) mice after HSV injection, but in TNKO mice PDGFR-alpha transcription was not up-regulated. Immunohistochemistry showed that PDGFR-alpha was found in mesangial areas of colocalized alpha-smooth muscle actin, but in TNKO mice it was not detectable. In vitro studies showed that the expressions of PDGFR-alpha and -beta mRNA and protein in cultured glomerular mesangial cells (GMC) of TNKO mice were lower than those in WT GMC. These results suggest that failures of both TNC and PDGFR-alpha are a candidate for abnormal restoration of TNKO mice.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Experimental Animal Division, Bio Resource Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | | | | | | | | |
Collapse
|
41
|
Chan W, Wang M, Martin RJ, Trachtman H, Hisano S, Chan JC. mRNA expression for insulin-like growth factor 1, receptors of growth hormone and IGF-1 and transforming growth factor-beta in the kidney and liver of Zucker rats. Nutr Res 2001; 21:1015-1023. [PMID: 11446985 DOI: 10.1016/s0271-5317(01)00299-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kidney dysfunction and mesangial enlargement are consequences of obesity found in Zucker rats. This study examines some of the early mechanisms by which the kidneys of Zucker rats undergo these changes. Our study shows that the glomerular planar area in the genetically obese Zucker rat undergo enlargement as early as 12 weeks of life, compared to the lean controls. This suggests mesangial proliferation is already occurring at this time, earlier than previously shown. The mRNA expression for IGF-I, and GHR in the kidney and liver of the obese Zucker rats were significantly reduced compared to the lean controls. However, the mRNA of the IGF-IR was significantly elevated in the kidney of the obese Zucker rats. The increase in kidney IGF-1R mRNA in the obese Zucker rat may suggest an increase in IGF-1 binding leading to the kidney hypertrophy observed in these rats.
Collapse
Affiliation(s)
- W Chan
- Nephrology Division, Departments of Pediatrics and Biochemistry Molecular Biophysics, Virginia Commonwealth University's Medical College of Virginia Campus, PO Box 980498, 23298-0498, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Clayton A, Thomas J, Thomas GJ, Davies M, Steadman R. Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney Int 2001; 59:2084-94. [PMID: 11380810 DOI: 10.1046/j.1523-1755.2001.00723.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND While the progression of renal disease to end stage is strongly correlated with tubulointerstitial changes, the control of the fibrotic process within the interstitium is poorly understood. Basic fibroblast growth factor (FGF-2) has been implicated as a major growth factor involved in fibroblast activation and extracellular matrix synthesis. Furthermore, in many cells, the activity of FGF-2 is controlled by a low-affinity but high-capacity interaction with heparan sulfate (HS) proteoglycans (PGs), such as members of the syndecan family. These molecules are likely to be central to the control of interstitial fibrosis, but as yet, there has been no characterization of their synthesis by interstitial cells. METHODS The expression of HSPG on the surface of NRK 49F fibroblasts was demonstrated by immunohistochemistry and by metabolic labeling with [(35)S]-sulfate. HSs were characterized by specific enzymatic digestion, size exclusion chromatography, and anion exchange chromatography. The mRNA for syndecan 1 through syndecan 4 in the fibroblasts was detected by semiquantitative reverse transcription-polymerase chain reaction. Fibroblast proliferation was measured by the MTT assay. RESULTS Immunohistochemistry and [(35)S]-sulfate-labeling demonstrated that renal fibroblasts expressed HSPGs on their surface. Furthermore, enzymatic removal of these HS (but not chondroitin sulfate) glycosaminoglycan (GAG) chains, or inhibition of GAG sulfation, abolished the proliferative response of both NRK cells and primary human cortical fibroblasts to FGF-2 but not to platelet-derived growth factor. The addition of conditioned medium, containing HS-GAG fragments, restored the proliferative response to FGF-2, confirming the specificity of the interaction. Finally, the mRNA for all four syndecans was detected in the fibroblasts, and that for syndecan 1 in particular was up-regulated by FGF-2. CONCLUSIONS The present study demonstrates that the expression of cell surface HSPG was essential for the proliferation of renal fibroblasts in response to FGF-2, and therefore may play a major role in the development and persistence of a proliferating phenotype during interstitial nephritis.
Collapse
Affiliation(s)
- A Clayton
- Institute of Nephrology, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Haraguchi M, Border WA, Huang Y, Noble NA. t-PA promotes glomerular plasmin generation and matrix degradation in experimental glomerulonephritis. Kidney Int 2001; 59:2146-55. [PMID: 11380816 DOI: 10.1046/j.1523-1755.2001.00729.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In addition to its well-known role in degrading fibrin, recent evidence suggests that plasmin degrades matrix proteins and activates prometalloproteinases. Plasmin is generated from plasminogen by tissue plasminogen activator (t-PA). We hypothesized that t-PA treatment increases plasmin generation in nephritic glomeruli and degrades pathological matrix leading to a therapeutic reduction in matrix accumulation. METHODS Anti-Thy-1 nephritis was induced by injection of OX-7 antibody. Rats were given twice daily intravenous injections of saline (disease control group) or human recombinant t-PA (rt-PA; 1 mg/kg body weight) on days 3 through 5. Proteinuria, glomerular matrix protein staining, and glomerular mRNA levels for transforming growth factor-beta 1 (TGF-beta 1), fibronectin, and plasminogen activator inhibitor type 1 (PAI-1) were evaluated at day 6. Localization of rt-PA, plasmin generation by glomeruli in vitro, and glomerular production and content of active TGF-beta1 were also investigated. RESULTS Compared with disease control animals, proteinuria and staining score for periodic acid-Schiff (2.75 +/- 0.17 vs. 1.41 +/- 0.09), fibronectin-EDA+ (19 +/- 2 vs. 14 +/- 1), laminin (35 +/- 2 vs. 25 +/- 2), type I collagen (33 +/- 1 vs. 21 +/- 3), and type IV collagen (27 +/- 2 vs. 23 +/- 1) were significantly reduced in treated rats (P < 0.01). Glomerular TGF-beta 1, fibronectin, and PAI-1 mRNA levels were unchanged. rt-PA colocalized with fibrin along glomerular capillary walls and in the mesangium. Nephritic glomeruli in vitro had decreased plasmin activity, which was elevated by an in vivo presacrifice injection of rt-PA. Glomerular production and content of active TGF-beta 1 were unchanged by the rt-PA injection. CONCLUSIONS : These results show that injected rt-PA binds to fibrin in nephritic glomeruli, thus increasing plasmin generation and promoting pathological matrix degradation without activating latent TGF-beta. Agents that increase plasmin generation, such as t-PA, may have potential as antifibrotic therapies.
Collapse
Affiliation(s)
- M Haraguchi
- Fibrosis Research Laboratory, Division of Nephrology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | |
Collapse
|
44
|
Foschi M, Sorokin A, Pratt P, McGinty A, Villa GLA, Franchi F, Dunn MJ. PreproEndothelin-1 Expression in Human Mesangial Cells: Evidence for a p38 Mitogen-Activated Protein Kinase/Protein Kinases-C—Dependent Mechanism. J Am Soc Nephrol 2001; 12:1137-1150. [PMID: 11373337 DOI: 10.1681/asn.v1261137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract. Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor α (TNFα). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFα resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFα-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca2+ release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5′-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5′ portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFα, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.
Collapse
Affiliation(s)
- Marco Foschi
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Internal Medicine, University of Florence, Florence, Italy
| | | | | | - Ann McGinty
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Giorgio LA Villa
- Department of Internal Medicine, University of Florence, Florence, Italy
| | - Franco Franchi
- Department of Internal Medicine, University of Florence, Florence, Italy
| | | |
Collapse
|
45
|
Russell WJ, Cardelli J, Harris E, Baier RJ, Herrera GA. Monoclonal light chain--mesangial cell interactions: early signaling events and subsequent pathologic effects. J Transl Med 2001; 81:689-703. [PMID: 11351041 DOI: 10.1038/labinvest.3780278] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glomerulopathic monoclonal light chains (G-LC) interact with mesangial cells (MC), resulting in alterations of mesangial homeostasis. Early signaling events control mitogenic activities and cytokine production, which in turn participate in the subsequent pathologic events. Mesangial homeostasis is affected in two very different ways, depending on whether the G-LC is from a patient with light chain deposition disease (LCDD) or light chain-related amyloidosis (AL-Am). In contrast, tubulopathic (T)-LC chains from patients with myeloma cast nephropathy do not significantly interact with MC and result in no alterations in mesangial homeostasis. Therefore, understanding early events in the monoclonal LC-MC interactions is fundamental. MC in culture were exposed to LC obtained and purified from the urine of patients with plasma cell dyscrasias and biopsy-proven renal disease, including LCDD, AL-Am, and myeloma cast nephropathy. Incubation of MC with G-LC, but not T-LC, resulted in cytoskeletal and cell shape changes, activation of platelet-derived growth factor-beta (PDGF-beta) and its corresponding receptor, cytoplasmic to nuclear migration of c-fos and NF-kappa beta signals, and production of monocyte chemoattractant protein-1 (MCP-1), as well as increased expression of Ki-67, a proliferation marker. Although NF-kappa beta activation was directly related to MCP-1 production, c-fos activation regulated proliferative signals and cytoskeletal changes in MC. Amyloidogenic LC were avidly internalized by the MC, whereas LCDD-LC effector targets were located at the MC surface. These cellular events are likely initiated as a result of interactions of the G-LC with yet-uncharacterized MC surface receptors. Dissecting the events taking place when G-LC interact with MC may define potential important targets for selective therapeutic manipulation to ameliorate or prevent the glomerular injury that ensues.
Collapse
Affiliation(s)
- W J Russell
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
46
|
Terada Y, Okado T, Inoshita S, Hanada S, Kuwahara M, Sasaki S, Yamamoto T, Marumo F. Glucocorticoids stimulate p21(CIP1) in mesangial cells and in anti-GBM glomerulonephritis. Kidney Int 2001; 59:1706-16. [PMID: 11318941 DOI: 10.1046/j.1523-1755.2001.0590051706.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glucocorticoids are widely used for the treatment of glomerulonephritis, but the mechanism of cell cycle inhibition by glucocorticoids is poorly understood at a molecular level. METHODS The effects of dexamethasone on cell cycle progression were examined in rat mesangial cells. To investigate the mechanisms of cell cycle inhibition by dexamethasone, we transfected the -2.3 kb p21(CIP1) promoter-CAT construct to mesangial cells using an electroporation METHOD We also examined whether glucocorticoids stimulate the expression of p21(CIP1) and inhibit cell proliferation in glomeruli of anti-glomerular basement membrane (GBM) glomerulonephritis in rats. RESULTS Dexamethasone inhibited 3H-thymidine uptake and the percentages of S and G2/M phases in rat mesangial cells. Dexamethasone stimulated CAT activity of the p21(CIP1) promoter 4.5-fold. Deletion analysis of the p21(CIP1) promoter revealed that the glucocorticoid-responsive region (GRE) is present between -1.4 and -1.1 kb upstream of the transcription initiation site. Dexamethasone inducibility of p21(CIP1) promoter activity requires the presence of the C/EBP alpha DNA binding site in the GRE of the p21(CIP1) promoter and C/EBP alpha protein. Intravenous injection of anti-GBM antibody caused mesangial proliferation, crescent formation, and proteinuria in rats. Ten days of administration of prednisolone (1 mg/kg/day) reduced proteinuria and inhibited mesangial cell proliferation and crescent formation. The glomerular-sieving method revealed that prednisolone increased p21(CIP1) expression in glomeruli. CONCLUSION These data suggest that the cell cycle arrest of mesangial cells is mediated by a functional link between the glucocorticoid receptor and the transcriptional control of p21(CIP1) not only in vitro but also in vivo. Our observations provide new insights into the molecular mechanisms of glucocorticoid action in glomerulonephritis.
Collapse
Affiliation(s)
- Y Terada
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
There is growing evidence that dietary phytoestrogens have a beneficial role in chronic renal disease. This review summarizes the recent findings from dietary intervention studies performed in animals and humans suggesting that consumption of soy-based protein rich in isoflavones and flaxseed rich in lignans retards the development and progression of chronic renal disease. In several animal models of renal disease, both soy protein and flaxseed have been shown to limit or reduce proteinuria and renal pathological lesions associated with progressive renal failure. In studies of human subjects with different types of chronic renal disease, soy protein and flaxseed also appear to moderate proteinuria and preserve renal function. However, most of these clinical trials were of relatively short duration and involved a small number of patients. Furthermore, it is not clear whether the renal protective effects of soy protein and flaxseed are caused by the isoflavones (daidzein and genistein) and lignans (matairesinol and secoisolariciresinol) or some other component. The biochemistry, metabolism, and mechanisms of actions of isoflavones and lignans are discussed. Isoflavones and lignans appear to act through various mechanisms that modulate cell growth and proliferation, extracellular matrix synthesis, inflammation, and oxidative stress. Some of these actions have been shown in vitro, but studies of the mechanisms operative in vivo are lacking. The diversity of cellular actions of isoflavones and lignans supports their protective effects in a variety of experimental and human types of chronic renal disease. Further investigations are needed to evaluate their long-term effects on renal disease progression in patients with chronic renal failure.
Collapse
|
48
|
Abstract
BACKGROUND The membrane attack complex C5b-9 causes injury in many forms of immune-mediated glomerular diseases characterized by mesangial cell (MC) proliferation and inhibiting C5b-9 decreases MC proliferation in vivo. Membrane insertion of sublytic quantities of the membrane attack complex of complement (C5b-9) is a potent stimulus for cell activation and the production of a variety of cytokines, growth factors, oxidants, matrix components, and other nephritogenic molecules. In vivo, a common response of MC to C5b-9--mediated injury is cell proliferation, an event closely linked to matrix expansion and sclerosis. In this study, we tested the hypothesis that C5b-9 might also serve as a mitogenic stimulus for MCs. METHODS Rat MCs in vitro were exposed anti-Thy1 antibody and 2% normal PVG serum (a complement source) to induce sublytic C5b-9 attack and DNA synthesis and cell number were measured. Control MCs were exposed to antibody and C6-deficient PVG serum. RESULTS Sublytic C5b-9--induced injury to MCs is sufficient to induce DNA synthesis. Furthermore, C5b-9 augmented DNA synthesis induced by platelet-derived growth factor (PDGF) and 5% fetal calf serum. C5b-9--induced DNA synthesis was reduced by inhibiting reactive oxygen species (ROS) with superoxide dismutase and catalase, but not by neutralizing the mitogenic growth factors PDGF and basic fibroblast growth factor (bFGF). CONCLUSIONS This study demonstrates that C5b-9 may directly increase DNA synthesis in cultured MCs, which are mediated in part by the release of ROS, and that C5b-9 also augments DNA synthesis induced in MCs by other known mitogens.
Collapse
Affiliation(s)
- W G Couser
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
49
|
Nagamatsu T, Nagao T, Koseki J, Sugiura M, Nishiyama T, Suzuki Y. Involvement of prostaglandin E2 in clearance of aggregated protein via protein kinase A in glomeruli. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:139-45. [PMID: 11286395 DOI: 10.1254/jjp.85.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently we immunohistochemically demonstrated that prostaglandin E2 (PGE2) promoted the clearance of aggregated bovine serum albumin (a-BSA) deposited in glomeruli. Herein, we investigated the role of PGE2 and its signal transduction in the disposal of macromolecules in glomeruli. EP2 and EP4 receptor mRNA was detected in glomeruli by RT-PCR analysis. A-BSA was injected twice into mice. Glomeruli were then isolated and incubated. A-BSA gradually disappeared from isolated glomeruli. PGE2 increased the intracellular cyclic AMP and decreased a-BSA level in glomeruli. Additionally, 8-bromocyclic AMP evoked a loss of a-BSA in isolated glomeruli. The effect of 8-bromo-cyclic AMP on the clearance of a-BSA was abolished by KT 5720 in glomeruli. PGE2 and 8-bromo-cyclic AMP also prompted disposal of a-BSA in cultured mesangial cells. These findings indicate that PGE2 positively regulates the removal of macromolecules via cyclic AMP and protein kinase A in glomeruli, and they provide insight into how to prevent the development of glomerulonephritis and glomerulosclerosis.
Collapse
Affiliation(s)
- T Nagamatsu
- Department of Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Lai KN, Lai KB, Lam CW, Chan TM, Li FK, Leung JC. Changes of cytokine profiles during peritonitis in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 2000; 35:644-52. [PMID: 10739785 DOI: 10.1016/s0272-6386(00)70011-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Continuous ambulatory peritoneal dialysis (CAPD) has emerged as an important dialysis treatment modality worldwide. One of the major complications is bacterial peritonitis, which may result in subsequent technique failure because of loss of peritoneal clearance or peritoneal fibrosis. Bacterial peritonitis leads to the release of proinflammatory cytokines from resident and infiltrating cells in the peritoneal cavity. We studied 35 patients undergoing CAPD with acute bacterial peritonitis. All patients treated with antibiotics for 2 weeks after the clinical diagnosis of peritonitis had a good recovery. Peritoneal dialysate effluent (PDE) was collected on days 1, 3, 5, 10, 21, and 42 after the start of treatment. Cell populations were monitored by flow cytometry. PDE levels of interleukin-1beta (IL-1), IL-6, transforming growth factor-beta (TGF-beta), and basic fibroblast growth factor (FGF) were measured by enzyme-linked immunosorbent assay. Gene transcription of TGF-beta in macrophages from PDE was measured by quantitative polymerase chain reaction. Bacterial peritonitis was associated with a sharp increase in total cell and neutrophil counts (400-fold) in PDE up to 3 weeks after peritonitis despite clinical remission (P < 0.0001). There was an increased absolute number of macrophages during the first 3 weeks despite the reduced percentage of macrophages among total cells in PDE compared with noninfective PDE. There was a progressive increase in the percentage of mesothelial cells or dead cells in the total cell population in PDE over the entire 6-week period. PDE levels of IL-1, IL-6, TGF-beta, and FGF increased markedly on day 1 before their levels decreased gradually. PDE levels of these cytokines or growth factors were significantly greater than those in noninfective PDE (n = 76) throughout the study period (P < 0.01). Similarly, TGF-beta complementary DNA (cDNA) molecules per macrophage were significantly greater than those of macrophages in noninfective PDE throughout this period (P < 0.01). There was no significant correlation between PDE levels of TGF-beta and TGF-beta cDNA molecules per macrophage, suggesting that peritoneal macrophages are not the only source of TGF-beta in PDE. We conclude there is an active release of proinflammatory cytokines and sclerogenic growth factors through at least 6 weeks despite apparent clinical remission of peritonitis. The peritoneal cytokine networks after peritonitis may potentially affect the physiological properties of the peritoneal membrane.
Collapse
Affiliation(s)
- K N Lai
- Department of Medicine, Queen Mary Hospital, University of Hong Kong.
| | | | | | | | | | | |
Collapse
|