1
|
Saberi S, Najafipour H, Rajizadeh MA, Etminan A, Jafari E, Iranpour M. NaHS protects brain, heart, and lungs as remote organs from renal ischemia/reperfusion-induced oxidative stress in male and female rats. BMC Nephrol 2024; 25:373. [PMID: 39438873 PMCID: PMC11515705 DOI: 10.1186/s12882-024-03824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Acute Kidney Injury (AKI) is frequently observed in hospitalized patients in intensive care units, often caused by renal ischemia-reperfusion injury (IRI). IRI disrupts the function of various 'remote organs' such as the lungs, pancreas, intestine, liver, heart, and brain through inflammation, oxidative stress, apoptosis, leukocyte infiltration, and increased urea and creatinine levels. Gender differences in renal IRI-induced injury are noted. H2S, an endogenous gaseous modulator, shows potential in vasodilation, bronchodilation, and hypotension and can regulate apoptosis, inflammation, angiogenesis, metabolism, and oxidative stress. This study aims to investigate the protective effects of NaHS on brain, heart, and lung injuries following renal IR and to assess the oxidative system status as a potential mechanism in male and female rats.Forty-eight Wistar rats were randomly divided into eight groups (n = 6): Control/Saline, Sham/Saline, IR/Saline, and IR/NaHS in both sexes. Forty-five minutes of bilateral renal ischemia followed by 24-hour reperfusion was induced in the IR groups. NaHS (100µM/Kg, IP) was administered 10 min before clamp release in treated groups. BUN, SCr, BUN/SCr, albuminuria, histopathology, and oxidative stress biomarkers of the brain, heart, and lung were assessed as remote organs. IR increased serum markers of renal function, albuminuria, malondialdehyde levels, and tissue injury scores while reducing nitrite levels and superoxide dismutase and glutathione peroxidase activities. NaHS treatment reversed the adverse effects of IR in remote organs in both sexes, although it showed limited improvement in renal function. Our findings demonstrate that NaHS has a beneficial effect on remote organ injury following renal IR by mitigating oxidative stress, with noted tissue-specific and gender-specific differences in response. These findings suggest NaHS as a potential therapeutic agent for mitigating multi-organ injury after renal IR, with effects varying by tissue and gender.
Collapse
Affiliation(s)
- Shadan Saberi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of basic and clinical physiology sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Etminan
- Physiology Research Center, Departments of Nephrology, Urology and Renal Transplantation, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024:10.1038/s41581-024-00875-5. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Han YK, Lim HJ, Jang G, Jang SY, Park KM. Kidney ischemia/reperfusion injury causes cholangiocytes primary cilia disruption and abnormal bile secretion. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167225. [PMID: 38749218 DOI: 10.1016/j.bbadis.2024.167225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) causes distant liver injury, to date, which causes poor outcomes of patients with AKI. Many studies have been performed to overcome AKI-associated liver injury. However, those studies have mainly focused on hepatocytes, and AKI-induced liver injury still remains a clinical problem. Here, we investigated the implication of cholangiocytes and their primary cilia which are critical in final bile secretion. Cholangiocyte, a lining cell of bile ducts, are the only liver epithelial cell containing primary cilium (a microtubule-based cell surface signal-sensing organelle). METHODS Cystathione γ-lyase (CSE, a transsulfuration enzyme) deficient and wild-type mice were subjected to kidney ischemia followed by reperfusion (KIR). Some mice were administered with N-acetyl-cysteine (NAC). RESULTS KIR damaged hepatocytes and cholagiocytes, disrupted cholangiocytes primary cilia, released the disrupted ciliary fragments into the bile, and caused abnormal bile secretion. Glutathione (GSH) and H2S levels in the livers were significantly reduced by KIR, resulting in increased the ratio oxidized GSH to total GSH, and oxidation of tissue and bile. CSE and cystathione β-synthase (CBS) expression were lowered in the liver after KIR. NAC administration increased total GSH and H2S levels in the liver and attenuated KIR-induced liver injuries. In contrast, Cse deletion caused the reduction of total GSH levels and worsened KIR-induced liver injuries, including primary cilia damage and abnormal bile secretion. CONCLUSIONS These results indicate that KIR causes cholangiocyte damage, cholangiocytes primary cilia disruption, and abnormal bile secretion through reduced antioxidative ability of the liver.
Collapse
Affiliation(s)
- Yong Kwon Han
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Hui Jae Lim
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Department of Biomedical Science and BK21 Plus, The Graduate School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - GiBong Jang
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Department of Biomedical Science and BK21 Plus, The Graduate School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea; Department of Biomedical Science and BK21 Plus, The Graduate School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea.
| |
Collapse
|
4
|
Baker PR, Li AS, Griffin BR, Gil HW, Orlicky DJ, Fox BM, Park B, Sparagna GC, Goff J, Altmann C, Elajaili H, Okamura K, He Z, Stephenson D, D'Alessandro A, Reisz JA, Nozik ES, Sucharov CC, Faubel S. Disruption in glutathione metabolism and altered energy production in the liver and kidney after ischemic acute kidney injury in mice. Sci Rep 2024; 14:13862. [PMID: 38879688 PMCID: PMC11180093 DOI: 10.1038/s41598-024-64586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic disease that affects energy metabolism in various remote organs in murine models of ischemic AKI. However, AKI-mediated effects in the liver have not been comprehensively assessed. After inducing ischemic AKI in 8-10-week-old, male C57BL/6 mice, mass spectrometry metabolomics revealed that the liver had the most distinct phenotype 24 h after AKI versus 4 h and 7 days. Follow up studies with in vivo [13C6]-glucose tracing on liver and kidney 24 h after AKI revealed 4 major findings: (1) increased flux through glycolysis and the tricarboxylic (TCA) cycle in both kidney and liver; (2) depleted hepatic glutathione levels and its intermediates despite unchanged level of reactive oxygen species, suggesting glutathione consumption exceeds production due to systemic oxidative stress after AKI; (3) hepatic ATP depletion despite unchanged rate of mitochondrial respiration, suggesting increased ATP consumption relative to production; (4) increased hepatic and renal urea cycle intermediates suggesting hypercatabolism and upregulation of the urea cycle independent of impaired renal clearance of nitrogenous waste. Taken together, this is the first study to describe the hepatic metabolome after ischemic AKI in a murine model and demonstrates that there is significant liver-kidney crosstalk after AKI.
Collapse
Affiliation(s)
- Peter R Baker
- Division of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13123 East 16th Avenue, Box 300, Aurora, CO, 80045, USA
| | - Amy S Li
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Benjamin R Griffin
- Division of Nephrology, Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hyo-Wook Gil
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Benjamin M Fox
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Bryan Park
- Division of Pulmonary Sciences and Critical Care, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Jared Goff
- Division of Cardiology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Christopher Altmann
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Hanan Elajaili
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Aurora, CO, B13180045, USA
| | - Kayo Okamura
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Zhibin He
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Eva S Nozik
- Division of Pediatric Critical Care, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Aurora, CO, B13180045, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah Faubel
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Mail Stop C281, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Zahedi K, Barone S, Brooks M, Stewart TM, Foley JR, Nwafor A, Casero RA, Soleimani M. Polyamine Catabolism and Its Role in Renal Injury and Fibrosis in Mice Subjected to Repeated Low-Dose Cisplatin Treatment. Biomedicines 2024; 12:640. [PMID: 38540254 PMCID: PMC10968664 DOI: 10.3390/biomedicines12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 11/03/2024] Open
Abstract
Cisplatin, a chemotherapeutic agent, can cause nephrotoxic and ototoxic injuries. Using a mouse model of repeated low dose cisplatin (RLDC), we compared the kidneys of cisplatin- and vehicle-treated mice on days 3 (early injury phase) and 35 (late injury/recovery phase) after the final treatment. RNA-seq analyses revealed increases in the expression of markers of kidney injury (e.g., lipocalin 2 and kidney injury molecule 1) and fibrosis (e.g., collagen 1, fibronectin, and vimentin 1) in RLDC mice. In addition, we observed increased expression of polyamine catabolic enzymes (spermidine/spermine N1-acetyltransferase, Sat1, and spermine oxidase, Smox) and decreased expression of ornithine decarboxylase (Odc1), a rate-limiting enzyme in polyamine synthesis in mice subjected to RLDC. Upon confirmation of the RNA-seq results, we tested the hypothesis that enhanced polyamine catabolism contributes to the onset of renal injury and development of fibrosis. To test our hypothesis, we compared the severity of RLDC-induced renal injury and fibrosis in wildtype (WT), Sat1-KO, and Smox-KO mice. Our results suggest that the ablation of polyamine catabolic enzymes reduces the severity of renal injury and that modulation of the activity of these enzymes may protect against kidney damage and fibrosis caused by cisplatin treatment.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| | - Sharon Barone
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| | - Marybeth Brooks
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jackson R. Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ashley Nwafor
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Manoocher Soleimani
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| |
Collapse
|
6
|
Caldarelli M, Franza L, Rio P, Gasbarrini A, Gambassi G, Cianci R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023; 11:3063. [PMID: 38002063 PMCID: PMC10669427 DOI: 10.3390/biomedicines11113063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| |
Collapse
|
7
|
Dominguez JH, Xie D, Kelly KJ. Impaired microvascular circulation in distant organs following renal ischemia. PLoS One 2023; 18:e0286543. [PMID: 37267281 PMCID: PMC10237479 DOI: 10.1371/journal.pone.0286543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Mortality in acute kidney injury (AKI) patients remains very high, although very important advances in understanding the pathophysiology and in diagnosis and supportive care have been made. Most commonly, adverse outcomes are related to extra-renal organ dysfunction and failure. We and others have documented inflammation in remote organs as well as microvascular dysfunction in the kidney after renal ischemia. We hypothesized that abnormal microvascular flow in AKI extends to distant organs. To test this hypothesis, we employed intravital multiphoton fluorescence imaging in a well-characterized rat model of renal ischemia/reperfusion. Marked abnormalities in microvascular flow were seen in every organ evaluated, with decreases up to 46% observed 48 hours postischemia (as compared to sham surgery, p = 0.002). Decreased microvascular plasma flow was found in areas of erythrocyte aggregation and leukocyte adherence to endothelia. Intravital microscopy allowed the characterization of the erythrocyte formations as rouleaux that flowed as one-dimensional aggregates. Observed microvascular abnormalities were associated with significantly elevated fibrinogen levels. Plasma flow within capillaries as well as microthrombi, but not adherent leukocytes, were significantly improved by treatment with the platelet aggregation inhibitor dipyridamole. These microvascular defects may, in part, explain known distant organ dysfunction associated with renal ischemia. The results of these studies are relevant to human acute kidney injury.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Danhui Xie
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - K. J. Kelly
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medicine, Renal Section, Roudebush Veterans’ Affairs Medical Center, Indianapolis, Indiana, Unites States of America
| |
Collapse
|
8
|
Matsuura R, Doi K, Rabb H. Acute kidney injury and distant organ dysfunction-network system analysis. Kidney Int 2023; 103:1041-1055. [PMID: 37030663 DOI: 10.1016/j.kint.2023.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Acute kidney injury (AKI) occurs in about half of critically ill patients and associates with high in-hospital mortality, increased long-term mortality post-discharge and subsequent progression to chronic kidney disease. Numerous clinical studies have shown that AKI is often complicated by dysfunction of distant organs, which is a cause of the high mortality associated with AKI. Experimental studies have elucidated many mechanisms of AKI-induced distant organ injury, which include inflammatory cytokines, oxidative stress and immune responses. This review will provide an update on evidence of organ crosstalk and potential therapeutics for AKI-induced organ injuries, and present the new concept of a systemic organ network to balance homeostasis and inflammation that goes beyond kidney-crosstalk with a single distant organ.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, the University of Tokyo Hospital.
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine
| |
Collapse
|
9
|
Khajepour F, Mahmoodpoor F, Jafari E, Kakaei F, Bahraminia F, Aghajani S, Vahed SZ, Bagheri Y. Prazosin Protects the Liver Against Renal Ischemia/Reperfusion Injury in Rats. Drug Res (Stuttg) 2023. [PMID: 36940722 DOI: 10.1055/a-2015-7976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) is a common subsequent problem after many medical conditions. AKI is associated with distant organ dysfunction where systemic inflammation and oxidative stress play major roles. In this study, the effect of Prazosin, an α1-Adrenergic receptor antagonist, was investigated on the liver injury induced by kidney ischemia-reperfusion (I/R) in rats. Male adult Wistar rats (n=21) were divided into three groups: sham, kidney I/R, and kidney I/R pre-treated with Prazosin (1 mg/kg). Kidney I/R was induced by vascular clamping of the left kidney for 45 min to reduce the blood flow. Oxidative and antioxidant factors along with apoptotic (Bax, Bcl-2, caspase3), and inflammatory (NF-κβ, IL-1β, and IL-6) factors were measured in the liver at protein levels. Prazosin could reserve liver function (p<0.01) and increase glutathione level (p<0.05) after kidney I/R significantly. Malonil dialdehyde (MDA), a lipid peroxidation marker, was diminished more significantly in Prazosin-treated rats compared to the kidney I/R group (p<0.001). Inflammatory and apoptotic factors were diminished by Prazosin pre-treatment in the liver tissue (p<0.05). Pre-administration of Prazosin could preserve liver function and decrease its inflammatory and apoptotic factors under kidney I/R conditions.
Collapse
Affiliation(s)
- Fatemeh Khajepour
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Fariba Mahmoodpoor
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elmira Jafari
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farzad Kakaei
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farina Bahraminia
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shadi Aghajani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Baek J, Kim S. Effects of Transfusion of Stored Red Blood Cells on Renal Ischemia-Reperfusion–Induced Hepatic Injury in Rats. Transplant Proc 2023; 55:629-636. [PMID: 37005156 DOI: 10.1016/j.transproceed.2023.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injures the liver as well as the kidneys. Transfusion of stored red blood cells (RBCs) triggers inflammatory responses, oxidative stress, and activation of innate immunity. In the present study, we investigated the effect of transfusion of stored RBCs on renal IR-induced hepatic injury. METHODS Sprague-Dawley rats were randomly divided into 3 groups based on the following treatments: rats subjected to sham operation (sham group), rats subjected to the induction of renal IR only (RIR group), and rats transfused with stored RBCs 1 hour after the start of reperfusion (RIR-TF group). Renal ischemia was induced for 1 hour, and reperfusion was allowed for 24 hours. After reperfusion, blood and liver tissue samples were obtained. RESULTS Serum levels of aspartate and alanine aminotransferase were increased in the RIR-TF group compared with those in the RIR and sham groups. The hepatic mRNA expression levels of heme oxygenase-1 and neutrophil gelatinase-associated lipocalin were increased in the RIR-TF group compared with those in the RIR and sham groups. The mRNA expression level of high mobility group box-1 was also increased in the RIR-TF group compared with that in the RIR group. CONCLUSION The transfusion of stored RBCs exacerbates renal IR-induced liver damage. Oxidative stress may be responsible for hepatic injury.
Collapse
|
11
|
Formeck CL, Feldman R, Althouse AD, Kellum JA. Risk and Timing of De Novo Sepsis in Critically Ill Children after Acute Kidney Injury. KIDNEY360 2023; 4:308-315. [PMID: 36996298 PMCID: PMC10103342 DOI: 10.34067/kid.0005082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Key Points Critically ill children who developed AKI have a 42% increase in the probability of developing subsequent hospital-acquired sepsis when compared with children without AKI. When evaluating risk of sepsis over time, children with stage 3 AKI remain at increased risk for sepsis for at least 2 weeks after AKI onset. Medical providers should monitor for signs of sepsis after AKI and limit exposures that may increase the risk for infection. Background AKI is common among critically ill children and is associated with an increased risk for de novo infection; however, little is known about the epidemiology and temporal relationship between AKI and AKI-associated infection in this cohort. Methods We conducted a single-center retrospective cohort study of children admitted to the pediatric and cardiac intensive care units (ICUs) at a tertiary pediatric care center. The relationship between nonseptic AKI and the development of hospital-acquired sepsis was assessed using Cox proportional hazards models using AKI as a time-varying covariate. Results Among the 5695 children included in this study, AKI occurred in 20.2% from ICU admission through 30 days. Hospital-acquired sepsis occurred twice as often among children with AKI compared with those without AKI (10.1% versus 4.6%) with an adjusted hazard ratio of 1.42 (95% confidence interval, 1.12 to 1.81). Among the 117 children who developed sepsis after AKI, 80.3% developed sepsis within 7 days and 96.6% within 14 days of AKI onset, with a median time from AKI onset to sepsis of 2.6 days (interquartile range, 1.5–4.7). When assessing change in risk over time, the hazard rate for sepsis remained elevated for children with stage 3 AKI compared with children without AKI at 13.5 days after AKI onset, after which the estimation of hazard rates was limited by the number of children remaining in the hospital. Conclusions AKI is an independent risk factor for de novo sepsis. Critically ill children with stage 3 AKI remain at increased risk for sepsis at 13.5 days after AKI onset.
Collapse
Affiliation(s)
- Cassandra L. Formeck
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert Feldman
- Center for Research on Health Care Data Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew D. Althouse
- Center for Research on Health Care Data Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John A. Kellum
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Effect of Renal Ischemia Reperfusion on Brain Neuroinflammation. Biomedicines 2022; 10:biomedicines10112993. [PMID: 36428560 PMCID: PMC9687457 DOI: 10.3390/biomedicines10112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is an inflammatory sequence. It can lead to distant organ injury, including damage to the central nervous system (CNS), mediated by increased circulating cytokines and other inflammatory mediators. It can also lead to increased blood-brain barrier (BBB) permeability. However, the effect of AKI on the inflammatory response of the brain has not yet been investigated. Therefore, we observed the effect of AKI on BBB permeability, microglia and astrocyte activation, and neuronal toxicity in the brain. The striatum and ventral midbrain, known to control overall movement, secrete the neurotransmitter dopamine. The activation of microglia and astrocytes present in this area causes neuro-degenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The activation of astrocytes and microglia in the hippocampus and cerebral cortex, which are responsible for important functions, including memory, learning, concentration, and language, can trigger nerve cell apoptosis. The activation of astrocytes and microglia at this site is also involved in the inflammatory response associated with the accumulation of beta-amyloid. In the situation of kidney ischemia reperfusion (IR)-induced AKI, activation of microglia and astrocytes were observed in the striatum, ventral midbrain, hippocampus, and cortex. However, neuronal cell death was not observed until 48 h.
Collapse
|
13
|
Li X, Yuan F, Zhou L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J Clin Med 2022; 11:jcm11226637. [PMID: 36431113 PMCID: PMC9693488 DOI: 10.3390/jcm11226637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Acute kidney injury (AKI) is becoming a public health problem worldwide. AKI is usually considered a complication of lung, heart, liver, gut, and brain disease, but recent findings have supported that injured kidney can also cause dysfunction of other organs, suggesting organ crosstalk existence in AKI. However, the organ crosstalk in AKI and the underlying mechanisms have not been broadly reviewed or fully investigated. In this review, we summarize recent clinical and laboratory findings of organ crosstalk in AKI and highlight the related molecular mechanisms. Moreover, their crosstalk involves inflammatory and immune responses, hemodynamic change, fluid homeostasis, hormone secretion, nerve reflex regulation, uremic toxin, and oxidative stress. Our review provides important clues for the intervention for AKI and investigates important therapeutic potential from a new perspective.
Collapse
|
14
|
Nguyen VVT, Ye S, Gkouzioti V, van Wolferen ME, Yengej FY, Melkert D, Siti S, de Jong B, Besseling PJ, Spee B, van der Laan LJW, Horland R, Verhaar MC, van Balkom BWM. A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles. J Extracell Vesicles 2022; 11:e12280. [PMID: 36382606 PMCID: PMC9667402 DOI: 10.1002/jev2.12280] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) show therapeutic potential in multiple disease models, including kidney injury. Clinical translation of sEVs requires further preclinical and regulatory developments, including elucidation of the biodistribution and mode of action (MoA). Biodistribution can be determined using labelled sEVs in animal models which come with ethical concerns, are time-consuming and expensive, and may not well represent human physiology. We hypothesised that, based on developments in microfluidics and human organoid technology, in vitro multi-organ-on-a-chip (MOC) models allow us to study effects of sEVs in modelled human organs like kidney and liver in a semi-systemic manner. Human kidney- and liver organoids combined by microfluidic channels maintained physiological functions, and a kidney injury model was established using hydrogenperoxide. MSC-sEVs were isolated, and their size, density and potential contamination were analysed. These sEVs stimulated recovery of the renal epithelium after injury. Microscopic analysis shows increased accumulation of PKH67-labelled sEVs not only in injured kidney cells, but also in the unharmed liver organoids, compared to healthy control conditions. In conclusion, this new MOC model recapitulates therapeutic efficacy and biodistribution of MSC-sEVs as observed in animal models. Its human background allows for in-depth analysis of the MoA and identification of potential side effects.
Collapse
Affiliation(s)
| | - Shicheng Ye
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Vasiliki Gkouzioti
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Monique E. van Wolferen
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Fjodor Yousef Yengej
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
| | - Dennis Melkert
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Sofia Siti
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Bart de Jong
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Paul J. Besseling
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Bart Spee
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Luc J. W. van der Laan
- Dept of Surgery, Erasmus MC Transplant InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | | | | |
Collapse
|
15
|
Deng S, Zhang Y, Xin Y, Hu X. Vagus Nerve Stimulation Attenuates Acute Kidney Injury Induced by Hepatic Ischemia/Reperfusion Injury by Suppressing Inflammation, Oxidative Stress, and Apoptosis in Rats.. [DOI: 10.21203/rs.3.rs-1937916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Hepatic ischemia reperfusion (I/R) injury, caused by limited blood supply and subsequent blood supply, is a causative factor resulting in morbidity and mortality during liver transplantation (LT) and liver resection. Hepatic I/R injury frequently contributes to remote organ injury, such as kidney, lung, and heart. It has been demonstrated that vagus nerve stimulation (VNS) is effective in remote organ injury after ischemia reperfusion injury. Here, our aim is to investigate the potential action of VNS on hepatic I/R injury-induced acute kidney injury (AKI) and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly assigned into three experimental groups: Sham group (sham operation, n=6); I/R group (hepatic I/R with sham VNS, n=6); and VNS group (hepatic I/R with VNS, n=6). VNS was performed during the entire hepatic I/R process. Our results showed that throughout the hepatic I/R process, VNS significantly reduced inflammation, oxidative stress, and apoptosis, and greatly enhanced the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) in the kidneys. These findings suggest that VNS may ameliorate hepatic I/R injury-induced AKI by suppressing inflammation, oxidative stress, and apoptosis probably through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Simin Deng
- Second Xiangya Hospital of Central South University
| | - Yifeng Zhang
- Second Xiangya Hospital of Central South University
| | - Ying Xin
- Second Xiangya Hospital of Central South University
| | - Xinqun Hu
- Second Xiangya Hospital of Central South University
| |
Collapse
|
16
|
Sharma N, Sircar A, Anders HJ, Gaikwad AB. Crosstalk between kidney and liver in non-alcoholic fatty liver disease: mechanisms and therapeutic approaches. Arch Physiol Biochem 2022; 128:1024-1038. [PMID: 32223569 DOI: 10.1080/13813455.2020.1745851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver and kidney are vital organs that maintain homeostasis and injury to either of them triggers pathogenic pathways affecting the other. For example, non-alcoholic fatty liver disease (NAFLD) promotes the progression of chronic kidney disease (CKD), vice versa acute kidney injury (AKI) endorses the induction and progression of liver dysfunction. Progress in clinical and basic research suggest a role of excessive fructose intake, insulin resistance, inflammatory cytokines production, activation of the renin-angiotensin system, redox imbalance, and their impact on epigenetic regulation of gene expression in this context. Recent developments in experimental and clinical research have identified several biochemical and molecular pathways for AKI-liver interaction, including altered liver enzymes profile, metabolic acidosis, oxidative stress, activation of inflammatory and regulated cell death pathways. This review focuses on the current preclinical and clinical findings on kidney-liver crosstalk in NAFLD-CKD and AKI-liver dysfunction settings and highlights potential molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anannya Sircar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
17
|
Repression of inflammatory pathways with Boswellia for alleviation of liver injury after renal ischemia reperfusion. Life Sci 2022; 306:120799. [PMID: 35863426 DOI: 10.1016/j.lfs.2022.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
AIM Acute kidney injury (AKI) is a sudden incident that is linked with a high lethality rate commonly due to distant organ injury. This study aims to explore the role of standardized Boswellia serrata (containing 35 % boswellic acid) in attenuating kidney and liver damage in a model of rats with renal insult. MAIN METHODS Sprague-Dawley rats, exposed to renal injury via ischemia-reperfusion model, were administered a daily regimen of 1000 or 2000 mg/kg Boswellia for seven days then rats were sacrificed on day eight. Alanine aminotransferase, aspartate aminotransferase, serum creatinine and blood urea nitrogen, were assayed. TLR9, oxidative stress markers; namely MDA and GSH, inflammatory cytokines; namely, IL-6, IL-1β, and TNF-α, as well as NF-κB were also measured. KEY FINDINGS Renal ischemia-reperfusion injury (IRI) impaired renal and liver function significantly, but Boswellia attenuated this impairment in a dose-dependent fashion. Histopathological assessment of kidney and liver confirmed that Boswellia decreased damage severity. A marked increase in TLR9, NF-κB, IL-6, IL-1β, TNF-α, and MDA besides decreased GSH levels were observed in the kidney and liver after renal IRI. Boswellia attenuated increases in TLR9, NF-κB, IL-1β, TNF-α, and IL-6 and boosted antioxidant defences via decreasing MDA and increasing GSH in kidney and liver. Anti-inflammatory and antioxidant effects of Boswellia were mostly comparable to those of silymarin. SIGNIFICANCE We conclude that the anti-inflammatory and antioxidant effects of Boswellia could be beneficial in ameliorating kidney and liver damage after AKI and that TLR9 might be the connection that signals liver injury in response to renal damage.
Collapse
|
18
|
Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030038. [PMID: 35893120 PMCID: PMC9326668 DOI: 10.3390/medsci10030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.
Collapse
|
19
|
Hepokoski M, Singh P. Mitochondria as mediators of systemic inflammation and organ cross talk in acute kidney injury. Am J Physiol Renal Physiol 2022; 322:F589-F596. [PMID: 35379000 PMCID: PMC9054254 DOI: 10.1152/ajprenal.00372.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is a systemic inflammatory disease that contributes to remote organ failures. Multiple organ failure is the leading cause of death due to AKI, and lack of understanding of the mechanisms involved has precluded the development of novel therapies. Mitochondrial injury in AKI leads to mitochondrial fragmentation and release of damage-associated molecular patterns, which are known to active innate immune pathways and systemic inflammation. This review presents current evidence suggesting that extracellular mitochondrial damage-associated molecular patterns are mediators of remote organ failures during AKI that have the potential to be modifiable.
Collapse
Affiliation(s)
- Mark Hepokoski
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,2Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California
| | - Prabhleen Singh
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,3Division of Nephrology and Hypertension, University of California, San Diego, California
| |
Collapse
|
20
|
Askin S, Askin H, Dursun E, Palabiyik E, Uguz H, Cakmak Ö, Koc K. The hepato-renal protective potential of walnut seed skin extract against acute renal ischemia/reperfusion damage. Cytokine 2022; 153:155861. [DOI: 10.1016/j.cyto.2022.155861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
|
21
|
Awad AS, Elariny HA, Sallam AS. Colchicine attenuates renal ischemia-reperfusion-induced liver damage: implication of TLR4/NF-κB, TGF-β, and BAX and Bcl-2 gene expression. Can J Physiol Pharmacol 2022; 100:12-18. [PMID: 34411492 DOI: 10.1139/cjpp-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion injury (IRI) is typically associated with a vigorous inflammatory and oxidative stress response to hypoxia and reperfusion that disturbs the function of the organ. The remote effects of renal IRI on the liver, however, require further study. Renal damage associated with liver disease is a common clinical problem. Colchicine, a polymerization inhibitor of microtubules, has been used as an anti-inflammatory and anti-fibrotic drug for liver diseases. The goal of the current study was to investigate the possible protective mechanisms of colchicine on liver injury following renal IRI. Forty rats were divided randomly into four groups: sham group, colchicine-treated group, IRI group, and colchicine-treated + IRI group. Treatment with colchicine significantly reduced hepatic toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) transcription factor, myeloid differentiation factor 88 (MyD88), and tumor necrosis factor-alpha (TNF-α) contents; downregulated BCL2 associated X apoptosis regulator (BAX) gene expression, transforming growth factor-β (TGF-β) content, and upregulated hepatic B cell lymphoma 2 (Bcl-2) gene expression as compared with the IRI group. Finally, hepatic histopathological examinations have confirmed the biochemical results. Renal IRI-induced liver damage in rats was alleviated by colchicine through its anti-inflammatory, anti-apoptotic, and anti-fibrotic actions.
Collapse
Affiliation(s)
- Azza Sayed Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
22
|
Kobuchi S, Kai M, Ito Y. Population Pharmacokinetic Model-Based Evaluation of Intact Oxaliplatin in Rats with Acute Kidney Injury. Cancers (Basel) 2021; 13:cancers13246382. [PMID: 34945005 PMCID: PMC8699120 DOI: 10.3390/cancers13246382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Acute kidney injury (AKI) complicates the dose setting of oxaliplatin (L-OHP), making it difficult to continue treatment cycles and retain antitumor efficacies with minimum L-OHP-related toxicities. Our study aimed to assess the impact of AKI on the pharmacokinetics of intact L-OHP and simulate the relationship between the degree of renal function and intact L-OHP exposures using a population pharmacokinetic model. Mild and severe renal dysfunction model rats were used to determine plasma and urine intact L-OHP concentration–time profiles after L-OHP administration. No significant differences in intact L-OHP levels between rats with normal renal function and those with renal dysfunction were observed, whereas renal excretion of intact L-OHP was correlated with renal function. Results of population PK model simulation suggested that dose reduction is dispensable for patients with mild to moderate AKI. The population PK modeling and simulation approach can contribute to developing an appropriate dose regimen of L-OHP for AKI patients. Abstract Acute kidney injury (AKI) complicates the dosing strategies of oxaliplatin (L-OHP) and the requirement for L-OHP dose reduction in patients with renal failure remains controversial. The objective of this study is to assess the impact of AKI on the pharmacokinetics (PK) of intact L-OHP and simulate the relationship between the degree of renal function and intact L-OHP exposures using a population PK model. Intact L-OHP concentrations in plasma and urine after L-OHP administration were measured in mild and severe AKI models established in rats through renal ischemia-reperfusion. Population PK modeling and simulation were performed. There were no differences among rats in the area under the plasma concentration–time curve of intact L-OHP after intravenous L-OHP administrations. Nevertheless, the amount of L-OHP excretion after administration of 8 mg/kg L-OHP in mild and severe renal dysfunction rats was 63.5% and 37.7%, respectively, and strong correlations were observed between biochemical renal function markers and clearance of intact L-OHP. The population PK model simulated well the observed levels of intact L-OHP in AKI model rats. The population PK model-based simulation suggests that dose reduction is unnecessary for patients with mild to moderate AKI.
Collapse
|
23
|
Early Hypertransaminasemia after Kidney Transplantation: Significance and Evolution According to Donor Type. J Clin Med 2021; 10:jcm10215168. [PMID: 34768688 PMCID: PMC8584479 DOI: 10.3390/jcm10215168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Early hypertransaminasemia after kidney transplantation (KT) is frequent. It has been associated with the crosstalk produced between the liver and the kidney in ischemia-reperfusion situations. However, the influence of the donor type has not been evaluated. We present a retrospective study analyzing the increase in serum aspartate aminotransferase/alanine aminotransferase (AST/ALT) during the first three months post-KT in 151 recipients who received thymoglobulin as induction therapy, either from brain-death donors (DBD, n = 75), controlled circulatory death donors (cDCD, n = 33), or uncontrolled DCD (uDCD, n = 43). Eighty-five KT recipients from DBD who received basiliximab were included as controls. From KT recipients who received thymoglobulin, 33.6/43.4% presented with an increase in AST/ALT at 72 h post-KT, respectively. Regarding donor type, the percentage of recipients who experienced 72 h post-KT hypertransaminasemia was higher in uDCD group (65.1/83.7% vs. 20.3/26% in DBD and 20.7/27.6% in cDCD, p < 0.001). Within the control group, 9.4/12.9% of patients presented with AST/ALT elevation. One month after transplant, AST/ALT values returned to baseline in all groups. The multivariate analysis showed that uDCD recipients had 6- to 12-fold higher risk of developing early post-KT hypertransaminasemia. Early post-KT hypertransaminasemia is a frequent and transient event related to the kidney donor type, being more frequent in uDCD recipients.
Collapse
|
24
|
Hou J, Tolbert E, Birkenbach M, Ghonem NS. Treprostinil alleviates hepatic mitochondrial injury during rat renal ischemia-reperfusion injury. Biomed Pharmacother 2021; 143:112172. [PMID: 34560548 PMCID: PMC8550798 DOI: 10.1016/j.biopha.2021.112172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) causes acute kidney injury as well as liver injury. Renal IRI depletes hepatic antioxidants, promotes hepatic inflammation and dysfunction through Tlr9 upregulation. There is no treatment available for liver injury during renal IRI. This study examines the hepatoprotective role of treprostinil, a prostacyclin analog, during renal IRI. METHODS Male Sprague-Dawley rats were divided into four groups: control, sham, IRI-placebo, or IRI-treprostinil and subjected to bilateral ischemia (45 min) followed by reperfusion (1-72 h). Placebo or treprostinil (100 ng/kg/min) was administered subcutaneously via an osmotic minipump. RESULTS Treprostinil significantly reduced peak serum creatinine, BUN, ALT and AST levels vs. IRI-placebo. Treprostinil also restored hepatic levels of superoxide dismutase, glutathione, catalase, and Gclc expression to baseline, while reducing lipid peroxidation vs. IRI-placebo. Additionally, treprostinil significantly reduced elevated hepatic Tlr9, Il-1β, Ccl2, Vcam1, and Serpine1 mRNA expression. Renal IRI increased hepatic apoptosis which was inhibited by treprostinil through reduced cytochrome c and cleaved caspase-3 protein expression. Treprostinil enhanced hepatic ATP concentrations and mitochondrial DNA copy number and improved mitochondrial dynamics by restoring Pgc-1α expression and significantly upregulating Mfn1, Mfn2, and Sirt3 levels, while reducing Drp-1 protein vs. IRI-placebo. Non-targeted semi-quantitative proteomics showed improved oxidative stress indices and ATP subunits in the IRI-treprostinil group. CONCLUSIONS Treprostinil improved hepatic function and antioxidant levels, while suppressing the inflammatory response and alleviating Tlr9-mediated apoptotic injury during renal IRI. Our study provides evidence of treprostinil's hepatoprotective effect, which supports the therapeutic potential of treprostinil in reducing hepatic injury during renal IRI.
Collapse
Affiliation(s)
- Joyce Hou
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Evelyn Tolbert
- Division of Renal Disease, Department of Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Mark Birkenbach
- Department of Pathology, Rhode Island Hospital, Warren Alpert School of Medicine Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Nisanne S Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA.
| |
Collapse
|
25
|
Gordeeva AE, Kurganova EA, Novoselov VI. The Hepatoprotective Effect of Peroxiredoxin 6 in Ischemia–Reperfusion Kidney Injury. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Han YK, Kim JS, Lee GB, Lim JH, Park KM. Oxidative stress following acute kidney injury causes disruption of lung cell cilia and their release into the bronchoaveolar lavage fluid and lung injury, which are exacerbated by Idh2 deletion. Redox Biol 2021; 46:102077. [PMID: 34315110 PMCID: PMC8326422 DOI: 10.1016/j.redox.2021.102077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) induces distant organ injury, which is a serious concern in patients with AKI. Recent studies have demonstrated that distant organ injury is associated with oxidative stress of organ and damage of cilium, an axoneme-based cellular organelle. However, the role of oxidative stress and cilia damage in AKI-induced lung injury remains to be defined. Here, we investigated whether AKI-induced lung injury is associated with mitochondrial oxidative stress and cilia disruption in lung cells. AKI was induced in isocitrate dehydrogenase 2 (Idh2, a mitochondrial antioxidant enzyme)-deleted (Idh2−/−) and wild-type (Idh2+/+) mice by kidney ischemia-reperfusion (IR). A group of mice were treated with Mito-TEMPO, a mitochondria-specific antioxidant. Kidney IR caused lung injuries, including alveolar septal thickening, alveolar damage, and neutrophil accumulation in the lung, and increased protein concentration and total cell number in bronchoalveolar lavage fluid (BALF). In addition, kidney IR caused fragmentation of lung epithelial cell cilia and the release of fragments into BALF. Kidney IR also increased the production of superoxide, lipid peroxidation, and mitochondrial and nuclei DNA oxidation in lungs and decreased IDH2 expression. Lung oxidative stress and injury relied on the degree of kidney injury. Idh2 deletion exacerbated kidney IR-induced lung injuries. Treatment with Mito-TEMPO attenuated kidney IR-induced lung injuries, with greater attenuation in Idh2−/− than Idh2+/+ mice. Our data demonstrate that AKI induces the disruption of cilia and damages cells via oxidative stress in lung epithelial cells, which leads to the release of disrupted ciliary fragments into BALF.
Collapse
Affiliation(s)
- Yong Kwon Han
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Ji Su Kim
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Gwan Beom Lee
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Jae Hang Lim
- Department of Microbiology, School of Medicine, Ihwa Woman's University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
27
|
Brown CN, Atwood D, Pokhrel D, Holditch SJ, Altmann C, Skrypnyk NI, Bourne J, Klawitter J, Blaine J, Faubel S, Thorburn A, Edelstein CL. Surgical procedures suppress autophagic flux in the kidney. Cell Death Dis 2021; 12:248. [PMID: 33674554 PMCID: PMC7935862 DOI: 10.1038/s41419-021-03518-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
Many surgical models are used to study kidney and other diseases in mice, yet the effects of the surgical procedure itself on the kidney and other tissues have not been elucidated. In the present study, we found that both sham surgery and unilateral nephrectomy (UNX), which is used as a model of renal compensatory hypertrophy, in mice resulted in increased mammalian target of rapamycin complex 1/2 (mTORC1/2) in the remaining kidney. mTORC1 is known to regulate lysosomal biogenesis and autophagy. Genes associated with lysosomal biogenesis and function were decreased in sham surgery and UNX kidneys. In both sham surgery and UNX, there was suppressed autophagic flux in the kidney as indicated by the lack of an increase in LC3-II or autophagosomes seen on immunoblot, IF and EM after bafilomycin A1 administration and a concomitant increase in p62, a marker of autophagic cargo. There was a massive increase in pro-inflammatory cytokines, which are known to activate ERK1/2, in the serum after sham surgery and UNX. There was a large increase in ERK1/2 in sham surgery and UNX kidneys, which was blocked by the MEK1/2 inhibitor, trametinib. Trametinib also resulted in a significant decrease in p62. In summary, there was an intense systemic inflammatory response, an ERK-mediated increase in p62 and suppressed autophagic flux in the kidney after sham surgery and UNX. It is important that researchers are aware that changes in systemic pro-inflammatory cytokines, ERK1/2 and autophagy can be caused by sham surgery as well as the kidney injury/disease itself.
Collapse
Affiliation(s)
- Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Daniel Atwood
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Deepak Pokhrel
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Christopher Altmann
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Nataliya I Skrypnyk
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Jennifer Bourne
- Electron Microscopy Center, University of Colorado at Denver, Aurora, CO, USA
| | - Jelena Klawitter
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado at Denver, Aurora, CO, USA
| | - Judith Blaine
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Sarah Faubel
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado at Denver, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA.
| |
Collapse
|
28
|
Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant 2021; 37:1218-1228. [PMID: 33527986 DOI: 10.1093/ndt/gfaa297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Several theories regarding acute kidney injury (AKI)-related mortality have been entertained, although mounting evidence supports the paradigm that impaired kidney function directly and adversely affects the function of several remote organs. The kidneys and liver are fundamental to human metabolism and detoxification, and it is therefore hardly surprising that critical illness complicated by hepatorenal dysfunction portends a poor prognosis. Several diseases can simultaneously impact the proper functioning of the liver and kidneys, although this review will address the impact of AKI on liver function. While evidence for this relationship in humans remains sparse, we present supportive studies and then discuss the most likely mechanisms by which AKI can cause liver dysfunction. These include 'traditional' complications of AKI (uremia, volume overload and acute metabolic acidosis, among others) as well as systemic inflammation, hepatic leukocyte infiltration, cytokine-mediated liver injury and hepatic oxidative stress. We conclude by addressing the therapeutic implications of these findings to clinical medicine.
Collapse
Affiliation(s)
- Anthony Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas Stiles
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
29
|
Bagheri Y, Aghajani S, Hosseinzadeh M, Hoshmandan F, Abdollahpour A, Vahed SZ. Protective effects of Gamma Oryzanol on distant organs after kidney ischemia-reperfusion in rats: A focus on liver protection. Hum Exp Toxicol 2020; 40:1022-1030. [PMID: 33325270 DOI: 10.1177/0960327120979014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is the main clinical concern resulted from ischemia-reperfusion injury (IRI). Ample clinical data indicates that AKI is associated with distant organ dysfunctions and poor patients' outcomes. Oxidative stress and inflammation have a critical role in the pathogenesis of organ injuries following IRI. The objectives of this study were to determine the impact of Gamma Oryzanol (GO), extracted from rice bran oil, on distant organs in rats after IRI. METHODS Twelve out of 24 Wistar rats were treated by one dosage of GO (100mg/kg) 1 h before I/R induction through both oral gavage and intraperitoneal injection. Then, the AKI model rats were induced by IRI. Oxidative stress and antioxidant protein levels were assessed in the brain, heart, and liver tissues in the experimental groups. Furthermore, the effects of GO on IRI-induced liver dysfunction, apoptosis, and inflammation were measured by Western blot. RESULTS GO pretreatment could significantly restore the levels and activity of antioxidant proteins in the brain, heart, and liver tissues (P < 0.05). Moreover, GO pretreatment could decrease the inflammatory cytokine (IL-1, IL-6, and TNF-α) in the liver (P < 0.01). By reducing Bax/Bcl-2 ratio and down-regulating caspase-3, GO could significantly diminish apoptosis in the liver tissue after the kidney I/R (P < 0.01). Additionally, GO could significantly diminish the deterioration of liver function in the kidney I/R model. CONCLUSION GO protects distant organs against renal IRI-induced oxidative stress. Furthermore, it ameliorates liver function and remarkably exerts anti-oxidative, anti-inflammatory, and anti-apoptotic roles in the liver as an important detoxifying organ.
Collapse
Affiliation(s)
- Yasin Bagheri
- Young Researchers and Elite Club, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shadi Aghajani
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahla Hosseinzadeh
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farid Hoshmandan
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abdollah Abdollahpour
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Nishida K, Watanabe H, Miyahisa M, Hiramoto Y, Nosaki H, Fujimura R, Maeda H, Otagiri M, Maruyama T. Systemic and sustained thioredoxin analogue prevents acute kidney injury and its-associated distant organ damage in renal ischemia reperfusion injury mice. Sci Rep 2020; 10:20635. [PMID: 33244034 PMCID: PMC7691343 DOI: 10.1038/s41598-020-75025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
The mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6-CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
31
|
Kaur J, Kaur T, Sharma AK, Kaur J, Yadav HN, Pathak D, Singh AP. Fenofibrate attenuates ischemia reperfusion-induced acute kidney injury and associated liver dysfunction in rats. Drug Dev Res 2020; 82:412-421. [PMID: 33226649 DOI: 10.1002/ddr.21764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
Ischemia/reperfusion (I/R) is one of the common reasons for acute kidney injury (AKI) and we need to develop effective therapies for treating AKI. We investigated the role of fenofibrate against I/R-induced AKI and associated hepatic dysfunction in rats. In male wistar albino rats, renal pedicle occlusion for 40 min and 24 h reperfusion resulted in AKI. I/R-induced AKI was demonstrated by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, fractional excretion of sodium and urinary microproteins. Oxidative stress in rat kidneys was quantified by assaying superoxide anion generation, thiobarbituric acid reactive substances, and reduced glutathione levels. AKI-induced hepatic damage was quantified by assaying serum aminotransferases, alkaline phosphatase and bilirubin levels. Moreover, serum cholesterol, high density lipoprotein and triglycerides were quantified. Hematoxylin-eosin staining of renal and hepatic tissues was done and the kidney and liver injury scores were determined. Immunohistology of endothelial nitric oxide synthase (eNOS) was done in rat kidneys. Fenofibrate was administered for 1 week before subjecting rats to AKI. In separate group, the nitric oxide synthase inhibitor, L-nitroarginine methyl ester (L-NAME) was administered prior to fenofibrate treatment. In I/R group, significant alteration in the serum/urine parameters indicated AKI and hepatic dysfunction along with marked increase in kidney and liver injury scores. Treatment with fenofibrate attenuated AKI and associated hepatic dysfunction. Moreover, I/R-induced decrease in renal eNOS expression was abrogated by fenofibrate. Pre-treatment with L-NAME abolished fenofibrate mediated reno- and hepato-protective effects. In conclusion, fenofibrate attenuates I/R-induced AKI and associated hepatic dysfunction putatively through modulation of eNOS expression.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmacology, Khalsa College of Pharmacy, Amritsar (INDIA), India
| | - Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.,Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
32
|
Evaluation of the Biomarkers HMGB1 and IL-6 as Predictors of Mortality in Cirrhotic Patients with Acute Kidney Injury. Mediators Inflamm 2020; 2020:2867241. [PMID: 33061824 PMCID: PMC7533024 DOI: 10.1155/2020/2867241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) affects from 20% to 50% of cirrhotic patients, and the one-month mortality rate is 60%. The main cause of AKI is bacterial infection, which worsens circulatory dysfunction through the release of HMGB1 and IL-6. Objectives To evaluate HMGB1 and IL-6 as biomarkers of morbidity/mortality. Methods Prospective, observational study of 25 hospitalised cirrhotic patients with AKI. Clinical and laboratory data were collected at the time of diagnosis of AKI, including serum HMGB1 and IL-6. Results The mean age was 55 years; 70% were male. Infections accounted for 13 cases. The 30-day and three-month mortality rates were 17.4% and 30.4%, respectively. HMGB1 levels were lower in survivors than in nonsurvivors at 30 days (1174.2 pg/mL versus 3338.5 pg/mL, p = 0.035), but not at three months (1540 pg/mL versus 2352 pg/mL, p = 0.243). Serum IL-6 levels were 43.3 pg/mL versus 153.3 pg/mL (p = 0.061) at 30 days and 35.8 pg/mL versus 87.9 pg/mL (p = 0.071) at three months, respectively. The area under the ROC curve for HMGB1 was 0.842 and 0.657, and that for IL-6 was 0.803 and 0.743 for discriminating nonsurvivors at 30 days and three months, respectively. In multivariate analysis, no biomarker was independently associated with mortality. Conclusion HMGB1 levels were associated with decreased survival in cirrhotics. Larger studies are needed to confirm our results.
Collapse
|
33
|
Abstract
Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood-urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated.
Collapse
|
34
|
Park EJ, Dusabimana T, Je J, Jeong K, Yun SP, Kim HJ, Kim H, Park SW. Honokiol Protects the Kidney from Renal Ischemia and Reperfusion Injury by Upregulating the Glutathione Biosynthetic Enzymes. Biomedicines 2020; 8:biomedicines8090352. [PMID: 32942603 PMCID: PMC7555803 DOI: 10.3390/biomedicines8090352] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/29/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022] Open
Abstract
Glutathione (GSH) is an endogenous antioxidant found in plants, animals, fungi, and some microorganisms that protects cells by neutralizing hydrogen peroxide. Honokiol, an active ingredient of Magnolia officinalis, is known for antioxidant, anti-inflammatory, and anti-bacterial properties. We investigated the protective mechanism of honokiol through regulating cellular GSH in renal proximal tubules against acute kidney injury (AKI). First, we measured cellular GSH levels and correlated them with the expression of GSH biosynthetic enzymes after honokiol treatment in human kidney-2 (HK-2) cells. Second, we used pharmacological inhibitors or siRNA-mediated gene silencing approach to determine the signaling pathway induced by honokiol. Third, the protective effect of honokiol via de novo GSH biosynthesis was investigated in renal ischemia-reperfusion (IR) mice. Honokiol significantly increased cellular GSH levels by upregulating the subunits of glutamate-cysteine ligase (Gcl)—Gclc and Gclm. These increases were mediated by activation of nuclear factor erythroid 2-related factor 2, via PI3K/Akt and protein kinase C signaling. Consistently, honokiol treatment reduced the plasma creatinine, tubular cell death, neutrophil infiltration and lipid peroxidation in IR mice and the effect was correlated with upregulation of Gclc and Gclm. Conclusively, honokiol may benefit to patients with AKI by increasing antioxidant GSH via transcriptional activation of the biosynthetic enzymes.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
35
|
Nagata S, Kato A, Isobe S, Fujikura T, Ohashi N, Miyajima H, Yasuda H. Regular exercise and branched-chain amino acids prevent ischemic acute kidney injury-related muscle wasting in mice. Physiol Rep 2020; 8:e14557. [PMID: 32845566 PMCID: PMC7448801 DOI: 10.14814/phy2.14557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) causes glucose and protein metabolism abnormalities that result in muscle wasting, thereby affecting the long-term prognosis of critical illness survivors. Here, we examined whether early intervention with treadmill exercise and branched-chain amino acids (BCAA) can prevent AKI-related muscle wasting and reduced physical performance in mice. Unilateral 15 min ischemia-reperfusion injury was induced in contralateral nephrectomized mice, and muscle histological and physiological changes were assessed and compared with those of pair-fed control mice, since AKI causes severe anorexia. Mice exercised for 30 min each day and received oral BCAA for 7 days after AKI insult. By day 7, ischemic AKI significantly decreased wet weight, myofiber cross-sectional area, and central mitochondrial volume density of the anterior tibialis muscle, and significantly reduced maximal exercise time. Regular exercise and BCAA prevented AKI-related muscle wasting and low physical performance by suppressing myostatin and atrogin-1 mRNA upregulation, and restoring reduced phosphorylated Akt and PGC-1α mRNA expression in the muscle. Ischemic AKI induces muscle wasting by accelerating muscle protein degradation and reducing protein synthesis; however, we found that regular exercise and BCAA prevented AKI-related muscle wasting without worsening kidney damage, suggesting that early rehabilitation with nutritional support could prevent AKI-related muscle wasting.
Collapse
Affiliation(s)
- Soichiro Nagata
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Akihiko Kato
- Blood Purification UnitHamamatsu University HospitalHamamatsuJapan
| | - Shinsuke Isobe
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Tomoyuki Fujikura
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Naro Ohashi
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Hiroaki Miyajima
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Hideo Yasuda
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
36
|
Awad AS, Elariny HA, Sallam AS. The possible protective effect of colchicine against liver damage induced by renal ischemia-reperfusion injury: role of Nrf2 and NLRP3 inflammasome. Can J Physiol Pharmacol 2020; 98:849-854. [PMID: 32640174 DOI: 10.1139/cjpp-2020-0230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ischemia-reperfusion injury (IRI) induces an inflammatory response and production of reactive oxygen species, which affects the organs remote to the sites of renal IR. However, remote effects of renal IRI on the liver need further investigations. Renal injury associated with liver disease is a common clinical problem. Colchicine is an established drug for microtubule stabilization that may reduce tissue injury and has antioxidant and antiinflammatory effects. The aim of the present study was (i) to assess the hepatic changes after induction of renal IRI, (ii) to explore the possible protective effect of colchicine on liver injury following renal IRI, and (iii) to investigate the possible mechanisms underlying the potential effect. Forty rats were randomly divided into four groups: sham operation group, colchicine-treated group, IR group, and colchicine-treated IR group. Colchicine treatment improved liver function (ALT/AST) after renal IRI, decreased hepatic oxidative stress and cell apoptosis by reducing hepatic MDA, upregulating hepatic total antioxidant capacity, Nrf2, and HO-1. Furthermore, colchicine inhibited inflammatory responses by downregulating hepatic NLRP3 inflammasome, IL-1β, and caspase-1. Colchicine attenuates renal IRI-induced liver injury in rats. This effect may be due to reducing inflammation and oxidative stress markers.
Collapse
Affiliation(s)
- Azza Sayed Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menofia, Egypt
| |
Collapse
|
37
|
Shang Y, Madduma Hewage S, Wijerathne CUB, Siow YL, Isaak CK, O K. Kidney Ischemia-Reperfusion Elicits Acute Liver Injury and Inflammatory Response. Front Med (Lausanne) 2020; 7:201. [PMID: 32582723 PMCID: PMC7280447 DOI: 10.3389/fmed.2020.00201] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (IR) is a common risk factor that causes acute kidney injury (AKI). AKI is associated with dysfunction of other organs also known as distant organ injury. The liver function is often compromised in patients with AKI and in animal models. However, the underlying mechanisms are not fully understood. Inflammatory response plays an important role in IR-induced tissue injury. Although increased proinflammatory cytokines have been detected in the kidney and the distant organs after renal IR, their original sources remain uncertain. In the present study, we investigated the acute effect of renal IR on hepatic inflammatory cytokine expression and the mechanism involved. Sprague-Dawley rats that were subjected to renal IR (ischemia for 45 min followed by reperfusion for 1 h or 6 h) had increased plasma levels of creatinine, urea, and transaminases, indicating kidney and liver injuries. There was a significant increase in the expression of proinflammatory cytokine mRNA (MCP-1, TNF-α, IL-6) in the kidney and liver in rats with renal IR. This was accompanied by a significant increase in proinflammatory cytokine protein levels in the plasma, kidney, and liver. Activation of a nuclear transcription factor kappa B (NF-κB) was detected in the liver after renal IR. The inflammatory foci and an increased myeloperoxidase (MPO) activity were detected in the liver after renal IR, indicating hepatic inflammatory response and leukocyte infiltration. These results suggest that renal IR can directly activate NF-κB and induce acute production of proinflammatory cytokines in the liver. Renal IR-induced hepatic inflammatory response may contribute to impaired liver function and systemic inflammation.
Collapse
Affiliation(s)
- Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Cara K Isaak
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
38
|
Silva Barbosa AC, Zhou D, Xie Y, Choi YJ, Tung HC, Chen X, Xu M, Gibbs RB, Poloyac SM, Liu S, Yu Y, Luo J, Liu Y, Xie W. Inhibition of Estrogen Sulfotransferase ( SULT1E1/EST) Ameliorates Ischemic Acute Kidney Injury in Mice. J Am Soc Nephrol 2020; 31:1496-1508. [PMID: 32424001 DOI: 10.1681/asn.2019080767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Studies have suggested that estrogens may protect mice from AKI. Estrogen sulfotransferase (SULT1E1, or EST) plays an important role in estrogen homeostasis by sulfonating and deactivating estrogens, but studies on the role of SULT1E1 in AKI are lacking. METHODS We used the renal ischemia-reperfusion model to investigate the role of SULT1E1 in AKI. We subjected wild-type mice, Sult1e1 knockout mice, and Sult1e1 knockout mice with liver-specific reconstitution of SULT1E1 expression to bilateral renal ischemia-reperfusion or sham surgery, either in the absence or presence of gonadectomy. We assessed relevant biochemical, histologic, and gene expression markers of kidney injury. We also used wild-type mice treated with the SULT1E1 inhibitor triclosan to determine the effect of pharmacologic inhibition of SULT1E1 on AKI. RESULTS AKI induced the expression of Sult1e1 in a tissue-specific and sex-specific manner. It induced expression of Sult1e1 in the liver in both male and female mice, but Sult1e1 induction in the kidney occurred only in male mice. Genetic knockout or pharmacologic inhibition of Sult1e1 protected mice of both sexes from AKI, independent of the presence of sex hormones. Instead, a gene profiling analysis indicated that the renoprotective effect was associated with increased vitamin D receptor signaling. Liver-specific transgenic reconstitution of SULT1E1 in Sult1e1 knockout mice abolished the protection in male mice but not in female mice, indicating that Sult1e1's effect on AKI was also tissue-specific and sex-specific. CONCLUSIONS SULT1E1 appears to have a novel function in the pathogenesis of AKI. Our findings suggest that inhibitors of SULT1E1 might have therapeutic utility in the clinical management of AKI.
Collapse
Affiliation(s)
- Anne C Silva Barbosa
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dong Zhou
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - You-Jin Choi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xinyun Chen
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yanping Yu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Bral M, Shapiro AMJ. Normothermic Preservation of Liver – What Does the Future Hold? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:13-31. [DOI: 10.1007/5584_2020_517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Risk factors and associated complications of acute kidney injury in adult patients undergoing a craniotomy. Clin Neurol Neurosurg 2020; 190:105642. [DOI: 10.1016/j.clineuro.2019.105642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/02/2023]
|
41
|
Husain‐Syed F, Rosner MH, Ronco C. Distant organ dysfunction in acute kidney injury. Acta Physiol (Oxf) 2020; 228:e13357. [PMID: 31379123 DOI: 10.1111/apha.13357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Acute kidney injury (AKI) is a common complication in critically ill patients and it is associated with increased morbidity and mortality. Epidemiological and clinical data show that AKI is linked to a wide range of distant organ injuries, with the lungs, heart, liver, and intestines representing the most clinically relevant affected organs. This distant organ injury during AKI predisposes patients to progression to multiple organ dysfunction syndrome and ultimately, death. The strongest direct evidence of distant organ injury occurring in AKI has been obtained from animal models. The identified mechanisms include systemic inflammatory changes, oxidative stress, increases in leucocyte trafficking and the activation of proapoptotic pathways. Understanding the pathways driving AKI-induced distal organ injury are critical for the development and refinement of therapies for the prevention and attenuation of AKI-related morbidity and mortality. The purpose of this review is to summarize both clinical and preclinical studies of AKI and its role in distant organ injury.
Collapse
Affiliation(s)
- Faeq Husain‐Syed
- Division of Nephrology, Pulmonology, and Critical Care Medicine, Department of Internal Medicine II University Hospital Giessen and Marburg Giessen Germany
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital Vicenza Italy
| | - Mitchell H. Rosner
- Department of Medicine University of Virginia Health System Charlottesville Virginia
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital Vicenza Italy
- Department of Medicine Università degli Studi di Padova Padova PD Italy
| |
Collapse
|
42
|
N-Acetylcysteine Attenuates the Increasing Severity of Distant Organ Liver Dysfunction after Acute Kidney Injury in Rats Exposed to Bisphenol A. Antioxidants (Basel) 2019; 8:antiox8100497. [PMID: 31640182 PMCID: PMC6826922 DOI: 10.3390/antiox8100497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Distant organ liver damage after acute kidney injury (AKI) remains a serious clinical setting with high mortality. This undesirable outcome may be due to some hidden factors that can intensify the consequences of AKI. Exposure to bisphenol A (BPA), a universal chemical used in plastics industry, is currently unavoidable and can be harmful to the liver. This study explored whether BPA exposure could be a causative factor that increase severity of remote liver injury after AKI and examined the preventive benefit by N-acetylcysteine (NAC) in this complex condition. Male Wistar rats were given vehicle, BPA, or BPA + NAC for 5 weeks then underwent 45 min renal ischemia followed by 24 h reperfusion (RIR), a group of vehicle-sham-control was also included. RIR not only induced AKI but produced liver injury, triggered systemic oxidative stress as well as inflammation, which increasing severity upon exposure to BPA. Given NAC to BPA-exposed rats diminished the added-on effects of BPA on liver functional impairment, oxidative stress, inflammation, and apoptosis caused by AKI. NAC also mitigated the abnormalities in mitochondrial functions, dynamics, mitophagy, and ultrastructure of the liver by improving the mitochondrial homeostasis regulatory signaling AMPK-PGC-1α-SIRT3. The study demonstrates that NAC is an effective adjunct for preserving mitochondrial homeostasis and reducing remote effects of AKI in environments where BPA exposure is vulnerable.
Collapse
|
43
|
Tokunaga A, Miyamoto H, Fumoto S, Nishida K. Effect of renal ischaemia/reperfusion-induced acute kidney injury on pharmacokinetics of midazolam in rats. ACTA ACUST UNITED AC 2019; 71:1792-1799. [PMID: 31579949 DOI: 10.1111/jphp.13167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of renal ischaemia/reperfusion (I/R)-induced acute kidney injury (AKI) on the distribution of midazolam (MDZ), a probe drug for cytochrome P450 3A (CYP3A) activity. METHODS We established an AKI model inducing ischaemia of both renal pedicles for 60 min followed by 24-h reperfusion. MDZ was administered intravenously (i.v.) to the rats via the jugular vein, and then, blood samples were collected to determine the plasma concentration of MDZ. KEY FINDINGS While the plasma concentration of MDZ after i.v. administration was decreased in the I/R rats, the tissue concentration was not altered. In addition, the tissue-to-plasma (T/P) ratio of MDZ was increased in the I/R rats. The unbound fraction of MDZ and the level of indoxyl sulphate (IS) in plasma were elevated in the I/R rats. Furthermore, the unbound fraction of MDZ was significantly increased by the addition of IS. CONCLUSIONS These results indicated that the displacement of albumin-bound MDZ by IS changed the unbound fraction of MDZ and elevated the T/P ratio of MDZ in I/R rats.
Collapse
Affiliation(s)
- Ayako Tokunaga
- Department of Pharmaceutics, Graduate, School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate, School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Shintaro Fumoto
- Department of Pharmaceutics, Graduate, School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Department of Pharmaceutics, Graduate, School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
44
|
Zahedi K, Barone S, Soleimani M. Polyamine Catabolism in Acute Kidney Injury. Int J Mol Sci 2019; 20:E4790. [PMID: 31561575 PMCID: PMC6801762 DOI: 10.3390/ijms20194790] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) refers to an abrupt decrease in kidney function. It affects approximately 7% of all hospitalized patients and almost 35% of intensive care patients. Mortality from acute kidney injury remains high, particularly in critically ill patients, where it can be more than 50%. The primary causes of AKI include ischemia/reperfusion (I/R), sepsis, or nephrotoxicity; however, AKI patients may present with a complicated etiology where many of the aforementioned conditions co-exist. Multiple bio-markers associated with renal damage, as well as metabolic and signal transduction pathways that are involved in the mediation of renal dysfunction have been identified as a result of the examination of models, patient samples, and clinical data of AKI of disparate etiologies. These discoveries have enhanced our ability to diagnose AKIs and to begin to elucidate the mechanisms involved in their pathogenesis. Studies in our laboratory revealed that the expression and activity of spermine/spermidine N1-acetyltransferase (SAT1), the rate-limiting enzyme in polyamine back conversion, were enhanced in kidneys of rats after I/R injury. Additional studies revealed that the expression of spermine oxidase (SMOX), another critical enzyme in polyamine catabolism, is also elevated in the kidney and other organs subjected to I/R, septic, toxic, and traumatic injuries. The maladaptive role of polyamine catabolism in the mediation of AKI and other injuries has been clearly demonstrated. This review will examine the biochemical and mechanistic basis of tissue damage brought about by enhanced polyamine degradation and discuss the potential of therapeutic interventions that target polyamine catabolic enzymes or their byproducts for the treatment of AKI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sharon Barone
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Manoocher Soleimani
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
45
|
Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V. Piperine pretreatment attenuates renal ischemia-reperfusion induced liver injury. Heliyon 2019; 5:e02180. [PMID: 31463384 PMCID: PMC6706586 DOI: 10.1016/j.heliyon.2019.e02180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Remote organ injury is one of the complications which are developed following ischemia-reperfusion induced acute kidney injury (AKI), dramatically increasing its mortality rate. The aim of the present study was to investigate the effect of piperine pretreatment on liver dysfunction following ischemia-reperfusion induced AKI. Materials and methods Acute kidney injury was induced by 30 min-bilateral renal ischemia followed by 24 h of reperfusion. To investigate liver damages, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) enzymes were measured in plasma. In order to study oxidative stress, malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) levels were measured. Furthermore, the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA along with infiltration of leukocytes in the liver tissue was measured for inflammation assessment. Histopathological damages were studied through measuring the extent of cellular fibrosis, sinusoidal dilatation, and vascular congestion in liver tissue. Results Following acute kidney injury, AST, ALT, and ALP levels in plasma, MDA level and ICAM-1 expression in the liver tissue, infiltration of leukocytes into the interstitium, and hepatic histopathologic damages increased significantly, while FRAP decreased. Pretreatment with piperine at 10 and 20 mg/kg body weight was able to improve these damages, such that some of them reached its value in the sham group, though piperine in the 20 mg/kg was more effective. Conclusions The results of this study suggest that ischemia-reperfusion induced AKI result in hepatic damages, and pretreatment with piperine can prevent development of these damages through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
46
|
Lai Y, Deng J, Wang M, Wang M, Zhou L, Meng G, Zhou Z, Wang Y, Guo F, Yin M, Zhou X, Jiang H. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomed Pharmacother 2019; 117:109062. [PMID: 31177065 DOI: 10.1016/j.biopha.2019.109062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Renal ischemia reperfusion (I/R) is not an isolated event; however, it results in remote organ dysfunction. Vagus nerve stimulation (VNS) has shown protective effects against renal I/R injury via an anti-inflammatory mechanism. This study aimed to investigate whether VNS could attenuate liver injury induced by renal I/R and identify the underlying mechanisms. METHODS Eighteen healthy male Sprague-Dawley rats (200-250 g) were equally divided into three groups: sham group (sham surgery without I/R or VNS), I/R group (renal I/R) and VNS group (renal I/R plus VNS). The I/R model was established by excising the right kidney and then clamping the left renal pedicle with an occlusive nontraumatic microaneurysm clamp for 45 min followed by a 6-h reperfusion. The rats in the VNS group received spontaneous left cervical VNS with renal ischemia and reperfusion. At the end of the experiment, blood and liver tissues were collected to detect liver function, oxidative stress and inflammatory parameters. Additionally, TUNEL staining, real-time PCR, western blotting and hematoxylin and eosin staining of liver tissues were performed to assess liver injury and the underlying mechanisms. RESULTS Kidney and liver function was severely damaged in the I/R group compared to the sham group. However, VNS significantly protected kidney and liver function. Rats treated with VNS revealed decreases in oxidative enzymes, apoptosis and levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in serum and liver compared with rats in the I/R group. Rats in the VNS group also showed increased antioxidant stress responses compared to rats in the I/R group. CONCLUSION VNS exerts protective effects against liver injury from renal I/R via inhibiting oxidative stress and apoptosis, downregulating inflammatory cytokines and enhancing antioxidative capability in the liver, and may become a promising adjuvant therapeutic strategy for treating liver injury induced by acute renal injury.
Collapse
Affiliation(s)
- Yanqiu Lai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ming Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Remote organ failure in acute kidney injury. J Formos Med Assoc 2019; 118:859-866. [DOI: 10.1016/j.jfma.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
|
48
|
Han SJ, Li H, Kim M, D’Agati V, Lee HT. Intestinal Toll-like receptor 9 deficiency leads to Paneth cell hyperplasia and exacerbates kidney, intestine, and liver injury after ischemia/reperfusion injury. Kidney Int 2019; 95:859-879. [DOI: 10.1016/j.kint.2018.10.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/02/2023]
|
49
|
Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed Pharmacother 2019; 112:108635. [DOI: 10.1016/j.biopha.2019.108635] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
|
50
|
Elshazly S, Soliman E. PPAR gamma agonist, pioglitazone, rescues liver damage induced by renal ischemia/reperfusion injury. Toxicol Appl Pharmacol 2018; 362:86-94. [PMID: 30393147 DOI: 10.1016/j.taap.2018.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
Remote organ damage is the major cause of death in patients with acute kidney injury (AKI) due to renal ischemia reperfusion (IR). Liver is one of the vital organs which are profoundly affected by AKI. The present study aims to investigate the role of peroxisome proliferator activator receptor gamma (PPARγ) in liver damage induced by IR injury in rats. Renal IR was induced by right nephrectomy, occlusion of left renal pedicle for 45 min to induce ischemia, and then reperfusion for 6 or 24 h. The PPARγ agonist, pioglitazone, was given orally for 7 days before renal IR procedure. Animals receiving pioglitazone showed improvement in renal and hepatic functions when compared to IR groups. Renal IR increased renal, hepatic and serum levels of tumor necrosis factor-α (TNF-α) and induced apoptotic cell death in liver. These effects were diminished with pioglitazone. In addition, pioglitazone reduced renal IR-induced oxidative stress in liver. Pioglitazone reduced malondialdehyde (MDA) content and NADPH oxidase mRNA expression and induced further increase in nuclear factor erythroid 2-related factor 2 (Nrf2) expression when compared to IR groups. Furthermore, pioglitazone increased the expression of PPARγ target genes such as renal and hepatic PPARγ1 (Pparg1), hepatic hemoxygenase-1 (Hmox1), and hepatic thioredoxin (TRx). Histological profiles for kidney and liver were also ameliorated with pioglitazone. Hence, PPARγ is a potential target to protect liver in patients with renal IR injury.
Collapse
Affiliation(s)
- Shimaa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|