1
|
Gouveia PQ, Fanelli C, Ornellas FM, Garnica MR, Francini ALR, Murata GM, Matheus LHG, Morales MM, Noronha IL. Adipose Tissue Stem Cells (ASCs) and ASC-Derived Extracellular Vesicles Prevent the Development of Experimental Peritoneal Fibrosis. Cells 2025; 14:436. [PMID: 40136685 PMCID: PMC11941392 DOI: 10.3390/cells14060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 03/27/2025] Open
Abstract
Cell therapy utilizing mesenchymal stromal cells (MSCs) through paracrine mechanisms holds promise for regenerative purposes. Peritoneal fibrosis (PF) is a significant complication of peritoneal dialysis. Various strategies have been proposed to protect the peritoneal membrane (PM). This study explores the effectiveness of adipose-tissue-derived stem cells (ASCs) and extracellular vesicles (EVs) at mitigating PF using a rat model of PF induced by chlorhexidine gluconate. ASC and EV treatments effectively prevented an increase in the thickness of the PM and diminished the number of myofibroblasts, fibronectin expression, collagen III expression, and PF-related factors such as TGF-β and FSP-1. Smad3 gene expression decreased in the treatment groups, whereas Smad7 gene expression increased in treated animals. In addition, ASC and EV injections showed potent anti-inflammatory effects. Glucose transport through the PM remained unaffected in relation to the PF group; both treatments promoted an increase in ultrafiltration (UF) capacity. The PF+EVs treated group showed the highest increase in UF capacity. Another critical aspect of ASC and EV treatments was their impact on neoangiogenesis in the PM which is vital for UF capacity. Although the treated groups displayed a significant decrease in VEGF expression in the PM, peritoneal function remained effective. In conclusion, within the experimental PF model, both ASC and EV treatments demonstrated anti-inflammatory effects and comparably hindered the progression of PF. The EV treatment exhibited superior preservation of peritoneal function, along with enhanced UF capacity. These findings suggest the potential of ASCs and EVs as novel therapeutic approaches to prevent the development of PF associated with peritoneal dialysis.
Collapse
Affiliation(s)
- Priscila Q. Gouveia
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Camilla Fanelli
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Felipe M. Ornellas
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Margoth R. Garnica
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Ana L. R. Francini
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Gilson M. Murata
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Luiz H. G. Matheus
- Laboratory of Carbohydrate and Radioimmunoassay, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil;
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil;
| | - Irene L. Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| |
Collapse
|
2
|
Addario G, Moroni L, Mota C. Kidney Fibrosis In Vitro and In Vivo Models: Path Toward Physiologically Relevant Humanized Models. Adv Healthc Mater 2025:e2403230. [PMID: 39906010 DOI: 10.1002/adhm.202403230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Chronic kidney disease (CKD) affects over 10% of the global population and is a leading cause of mortality. Kidney fibrosis, a key endpoint of CKD, disrupts nephron tubule anatomy and filtration function, and disease pathomechanisms are not fully understood. Kidney fibrosis is currently investigated with in vivo models, that gradually support the identification of possible mechanisms of fibrosis, but with limited translational research, as they do not fully recapitulate human kidney physiology, metabolism, and molecular pathways. In vitro 2D cell culture models are currently used, as a starting point in disease modeling and pharmacology, however, they lack the 3D kidney architecture complexity and functions. The failure of several therapies and drugs in clinical trials highlights the urgent need for advanced 3D in vitro models. This review discusses the urinary system's anatomy, associated diseases, and diagnostic methods, including biomarker analysis and tissue biopsy. It evaluates 2D and in vivo models, highlighting their limitations. The review explores the state-of-the-art 3D-humanized in vitro models, such as 3D cell aggregates, on-chip models, biofabrication techniques, and hybrid models, which aim to mimic kidney morphogenesis and functions. These advanced models hold promise for translating new therapies and drugs for kidney fibrosis into clinics.
Collapse
Affiliation(s)
- Gabriele Addario
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, ER Maastricht, 6229, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, ER Maastricht, 6229, The Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, ER Maastricht, 6229, The Netherlands
| |
Collapse
|
3
|
Zheng L, Chen W, Yao K, Xie Y, Liao C, Lin Y, Zhou T. Efficacy of mesenchymal stem cells in the treatment of peritoneal fibrosis in animal models: a systematic review and meta-analysis. Ren Fail 2024; 46:2438863. [PMID: 39681477 DOI: 10.1080/0886022x.2024.2438863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis, often resulting in functional deterioration and withdrawal from therapy. Mesenchymal stem cells (MSCs) have demonstrated immunomodulatory and antifibrotic effects in various models. This meta-analysis evaluated the efficacy of MSCs therapy in animal models of peritoneal fibrosis. METHODS A comprehensive search of PubMed, the Cochrane Library, Web of Science, and EMBASE was conducted for studies published up to April 27, 2024. Two independent reviewers (LQZ and WMC) screened studies for inclusion, extracted data, and analyzed outcomes using RevMan 5.3 and STATA 17.0. RESULT Fifteen studies met the inclusion criteria. MSC therapy significantly reduced inflammatory cytokines, including IL-6, TGF-β (SMD = -1.79, 95% CI: -2.32, -1.25, p < 0.00001), and TNF-α (SMD = -1.57, 95% CI: -2.71, -0.44, p = 0.006) levels. Additionally, MSCs reduced submesothelial thickness (MD = -63.14, 95% CI: -78.52, -47.76, p < 0.00001), Collagen I and Collagen III levels. MSCs treatment also improved ultrafiltration capacity (MD = 1.21, 95% CI: 0.64, 1.77, p < 0.0001), D/D0 of glucose and E-cadherin levels. However, no significant differences were observed in VEGF, D/P of Na, D/P of BUN, D/P of protein, or glucose mass transfer between the MSCs treatment group and the control group. CONCLUSION MSC therapy significantly improves peritoneal function and attenuates fibrotic and inflammatory responses in animal models. These findings highlight the potential of MSCs as a promising therapeutic strategy for managing peritoneal fibrosis in clinical settings.
Collapse
Affiliation(s)
- Lingqian Zheng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenmin Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kaijin Yao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yina Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yongda Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Miyasako K, Nakashima A, Ishiuchi N, Tanaka Y, Morimoto K, Sasaki K, Nagamatsu S, Matsuda G, Masaki T. Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis. Stem Cells Transl Med 2024; 13:1067-1085. [PMID: 39401338 PMCID: PMC11555481 DOI: 10.1093/stcltm/szae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 11/13/2024] Open
Abstract
Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.
Collapse
Affiliation(s)
- Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Yoshiki Tanaka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Keisuke Morimoto
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Go Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| |
Collapse
|
5
|
Chen S, He Q, Yang H, Huang H. Endothelial Birc3 promotes renal fibrosis through modulating Drp1-mediated mitochondrial fission via MAPK/PI3K/Akt pathway. Biochem Pharmacol 2024; 229:116477. [PMID: 39128586 DOI: 10.1016/j.bcp.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis serves as the shared pathway in chronic kidney disease (CKD) progression towards end-stage renal disease (ESRD). Endothelial-mesenchymal transition (EndMT) is a vital mechanism leading to the generation of myofibroblasts, thereby contributing to the advancement of fibrogenesis. Baculoviral IAP Repeat Containing 3(Birc3) was identified as a crucial inhibitor of cell death and a significant mediator in inflammatory signaling and immunity. However, its involvement in the development of renal interstitial fibrosis via EndMT still needs to be clarified. Herein, elevated levels of Birc3 expression along with EndMT-associated alterations, including increased α-smooth muscle actin (α-SMA) levels and decreased CD31 expression, were observed in fibrotic kidneys of Unilateral Ureteral Obstruction (UUO)-induced mouse models and transforming growth factor-β (TGF-β)-induced EndMT in Human Umbilical Vein Endothelial Cells (HUVECs). Functionally, Birc3 knockdown inhibited EndMT and mitochondrial fission mediated by dynamin-related protein 1 (Drp1) both in vivo and in vitro. Mechanistically, endothelial Birc3 exacerbated Drp-1-induced mitochondrial fission through the MAPK/PI3K/Akt signaling pathway in endothelial cell models stimulated TGF-β. Collectively, these findings illuminate the mechanisms and indicate that targeting Birc3 could offer a promising therapeutic strategy to improve endothelial cell survival and mitigate the progression of CKD.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Urology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Qingqing He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiyu Yang
- Administrative Office, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Hongxing Huang
- Department of Urology, Zhongshan People's Hospital, Zhongshan 528400, China.
| |
Collapse
|
6
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Shinkai Y, Sasaki K, Tamura R, Ike T, Takahashi A, Osaki Y, Ishiuchi N, Maeoka Y, Nakashima A, Masaki T. Selective activation of PPARα by pemafibrate mitigates peritoneal inflammation and fibrosis through suppression of NLRP3 inflammasome and modulation of inflammation. Sci Rep 2024; 14:23816. [PMID: 39394435 PMCID: PMC11470028 DOI: 10.1038/s41598-024-74340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Peritoneal inflammation and fibrosis remain major challenges to the long-term maintenance of peritoneal dialysis. Pemafibrate, a selective peroxisome proliferator-activated receptor α (PPARα) modulator, has been implicated in the management of fibrosis-related disorders. We investigated whether pemafibrate ameliorates peritoneal inflammation and fibrosis and explored the underlying mechanisms in mice with methylglyoxal (MGO)-induced peritoneal fibrosis (MGO mice). MGO mice exhibited peritoneal fibrosis with increased expression of mesenchymal markers, transforming growth factor-β1 (TGF-β1), and substantial deposition of extracellular matrix (ECM) proteins. Additionally, MGO mice exhibited peritoneal inflammation as indicated by elevated tumor necrosis factor-α expression and macrophage infiltration in peritoneal tissue. These effects were mitigated by pemafibrate treatment, which also restored peritoneal membrane function. Furthermore, pemafibrate promoted anti-inflammatory macrophage polarization in both mice and THP-1 cells. In human peritoneal mesothelial cells (HPMCs), pemafibrate effectively inhibited interferon-γ-induced production of TGF-β1 and ECM while suppressing the proinflammatory cytokines nuclear factor-κB (NF-κB) and activator protein 1. The NF-κB inhibitory effect of pemafibrate involved stabilization of the NF-κB inhibitory protein IkBα. Notably, pemafibrate hindered activation of the NLR family pyrin domain containing 3/caspase-1 axis in interferon-γ-stimulated THP-1 cells. These findings suggest that pemafibrate ameliorates peritoneal inflammation and fibrosis, making it a promising candidate for peritoneal fibrosis therapy.
Collapse
Affiliation(s)
- Yutaka Shinkai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Takahashi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yosuke Osaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
8
|
Ikushima A, Ishimura T, Mori KP, Yamada H, Sugioka S, Ishii A, Toda N, Ohno S, Kato Y, Handa T, Yanagita M, Yokoi H. Deletion of p38 MAPK in macrophages ameliorates peritoneal fibrosis and inflammation in peritoneal dialysis. Sci Rep 2024; 14:21220. [PMID: 39261560 PMCID: PMC11391064 DOI: 10.1038/s41598-024-71859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
One of the most common causes of peritoneal dialysis withdrawal is ultrafiltration failure which is characterized by peritoneal membrane thickening and fibrosis. Although previous studies have demonstrated the inhibitory effect of p38 MAPK inhibitors on peritoneal fibrosis in mice, it was unclear which specific cells contribute to peritoneal fibrosis. To investigate the role of p38 MAPK in peritoneal fibrosis more precisely, we examined the expression of p38 MAPK in human peritoneum and generated systemic inducible p38 MAPK knockout mice and macrophage-specific p38 MAPK knockout mice. Furthermore, the response to lipopolysaccharide (LPS) was assessed in p38 MAPK-knocked down RAW 264.7 cells to further explore the role of p38 MAPK in macrophages. We found that phosphorylated p38 MAPK levels were increased in the thickened peritoneum of both human and mice. Both chlorhexidine gluconate (CG)-treated systemic inducible and macrophage-specific p38 MAPK knockout mice ameliorated peritoneal thickening, mRNA expression related to inflammation and fibrosis, and the number of αSMA- and MAC-2-positive cells in the peritoneum compared to CG control mice. Reduction of p38 MAPK in RAW 264.7 cells suppressed inflammatory mRNA expression induced by LPS. These findings suggest that p38 MAPK in macrophages plays a critical role in peritoneal inflammation and thickening.
Collapse
Affiliation(s)
- Akie Ikushima
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Takuya Ishimura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Primary Care & Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Shoko Ohno
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Yukiko Kato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
| | - Takaya Handa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 6068507, Japan.
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.
| |
Collapse
|
9
|
Zheng L, Chen W, Yao K, Xie Y, Liao C, Zhou T. Clinical and preclinical studies of mesenchymal stem cells to alleviate peritoneal fibrosis. Stem Cell Res Ther 2024; 15:237. [PMID: 39080683 PMCID: PMC11290310 DOI: 10.1186/s13287-024-03849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Peritoneal dialysis is an important part of end-stage kidney disease replacement therapy. However, prolonged peritoneal dialysis can result in peritoneal fibrosis and ultrafiltration failure, forcing patients to withdraw from peritoneal dialysis treatment. Therefore, there is an urgent need for some effective measures to alleviate the occurrence and progression of peritoneal fibrosis. Mesenchymal stem cells play a crucial role in immunomodulation and antifibrosis. Numerous studies have investigated the fact that mesenchymal stem cells can ameliorate peritoneal fibrosis mainly through the paracrine pathway. It has been discovered that mesenchymal stem cells participate in the improvement of peritoneal fibrosis involving the following signaling pathways: TGF-β/Smad signaling pathway, AKT/FOXO signaling pathway, Wnt/β-catenin signaling pathway, TLR/NF-κB signaling pathway. Additionally, in vitro experiments, mesenchymal stem cells have been shown to decrease mesothelial cell death and promote proliferation. In animal models, mesenchymal stem cells can enhance peritoneal function by reducing inflammation, neovascularization, and peritoneal thickness. Mesenchymal stem cell therapy has been demonstrated in clinical trials to improve peritoneal function and reduce peritoneal fibrosis, thus improving the life quality of peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lingqian Zheng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Wenmin Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Kaijin Yao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yina Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
10
|
Tan X, Jing L, Neal SM, Gupta MC, Buchowski JM, Setton LA, Huebsch N. IGF-1 Peptide Mimetic-functionalized Hydrogels Enhance MSC Survival and Immunomodulatory Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600680. [PMID: 39005297 PMCID: PMC11244900 DOI: 10.1101/2024.06.27.600680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Human mesenchymal stem cells (MSCs) have demonstrated promise when delivered to damaged tissue or tissue defects for their cytokine secretion and inflammation modulation behaviors that can promote repair. Insulin-like growth factor 1 (IGF-1) has been shown to augment MSCs' viability and survival and promote their secretion of cytokines that signal to endogenous cells, in the treatment of myocardial infarction, wound healing, and age-related diseases. Biomaterial cell carriers can be functionalized with growth factor-mimetic peptides to enhance MSC function while promoting cell retention and minimizing off-target effects seen with direct administration of soluble growth factors. Here, we functionalized alginate hydrogels with three distinct IGF-1 peptide mimetics and the integrin-binding peptide, cyclic RGD. One IGF-1 peptide mimetic (IGM-3) was found to activate Akt signaling and support survival of serum-deprived MSCs. MSCs encapsulated in alginate hydrogels that presented both IGM-3 and cRGD showed a significant reduction in pro-inflammatory cytokine secretion when challenged with interleukin-1β. Finally, MSCs cultured within the cRGD/IGM-3 hydrogels were able to blunt pro-inflammatory gene expression of human primary cells from degenerated intervertebral discs. These studies indicate the potential to leverage cell adhesive and IGF-1 growth factor peptide mimetics together to control therapeutic secretory behavior of MSCs. Significance Statement Insulin-like growth factor 1 (IGF-1) plays a multifaceted role in stem cell biology and may promote proliferation, survival, migration, and immunomodulation for MSCs. In this study, we functionalized alginate hydrogels with integrin-binding and IGF-1 peptide mimetics to investigate their impact on MSC function. Embedding MSCs in these hydrogels enhanced their ability to reduce inflammatory cytokine production and promote anti-inflammatory gene expression in cells from degenerative human intervertebral discs exposed to proteins secreted by the MSC. This approach suggests a new way to retain and augment MSC functionality using IGF-1 peptide mimetics, offering an alternative to co-delivery of cells and high dose soluble growth factors for tissue repair and immune- system modulation.
Collapse
|
11
|
Wang F, Dai H, Zhou Z, Shan Y, Yu M, Sun J, Sheng L, Huang L, Meng X, You Y, Sheng M. Astragalus polysaccharides augment BMSC homing via SDF-1/CXCR4 modulation: a novel approach to counteract peritoneal mesenchymal transformation and fibrosis. BMC Complement Med Ther 2024; 24:204. [PMID: 38789949 PMCID: PMC11127382 DOI: 10.1186/s12906-024-04483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.
Collapse
Affiliation(s)
- Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziren Zhou
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongqing You
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
- Medical Experimental Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China.
| |
Collapse
|
12
|
Olmaz R, Selen T, Gungor O. Vascular calcification inhibitors and cardiovascular events in peritoneal dialysis patients. Ther Apher Dial 2024; 28:169-181. [PMID: 38013624 DOI: 10.1111/1744-9987.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
The prevalence of cardiovascular diseases is high among patients with chronic kidney disease (CKD) and peritoneal dialysis (PD) patients, which increases morbidity and mortality in this population and represents a significant financial burden for both the patients and the healthcare systems. Vascular calcification (VC) is associated with increased morbidity and mortality and VC risk is higher in patients with CKD than in healthy individuals. Calcification inhibitors, compounds that inhibit VC, were discovered as a result of efforts to explain why some patients are spared. It was found that certain proteins (e.g., fetuin-A, osteopontin, osteoprotegerin, bone morphogenetic protein-7) inhibit calcification in dialysis patients. In this narrative review, we provide an overview of known calcification inhibitors, describe the relevant regulatory mechanisms, and discuss their relation to VC development in PD patients.
Collapse
Affiliation(s)
- Refik Olmaz
- Department of Nephrology, Mersin City Hospital, Mersin, Turkey
| | - Tamer Selen
- Department of Nephrology, Duzce Ataturk State Hospital, Duzce, Turkey
| | - Ozkan Gungor
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| |
Collapse
|
13
|
Zhao JL, Zhao L, Zhan QN, Liu M, Zhang T, Chu WW. BMSC-derived Exosomes Ameliorate Peritoneal Dialysis-associated Peritoneal Fibrosis via the Mir-27a-3p/TP53 Pathway. Curr Med Sci 2024; 44:333-345. [PMID: 38622424 DOI: 10.1007/s11596-024-2853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Peritoneal fibrosis (PF) is the main cause of declining efficiency and ultrafiltration failure of the peritoneum, which restricts the long-term application of peritoneal dialysis (PD). This study aimed to investigate the therapeutic effects and mechanisms of bone marrow mesenchymal stem cells-derived exosomes (BMSC-Exos) on PF in response to PD. METHODS Small RNA sequencing analysis of BMSC-Exos was performed by second-generation sequencing. C57BL/6J mice were infused with 4.25% glucose-based peritoneal dialysis fluid (PDF) for 6 consecutive weeks to establish a PF model. A total of 36 mice were randomly divided into 6 groups: control group, 1.5% PDF group, 2.5% PDF group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to measure the expression level of miR-27a-3p in BMSC-Exos and peritoneum of mice treated with different concentrations of PDF. HE and Masson staining were performed to evaluate the extent of PF. The therapeutic potential of BMSC-Exos for PF was examined through pathological examination, RT-qPCR, Western blotting, and peritoneal function analyses. Epithelial-mesenchymal transition (EMT) of HMrSV5 was induced with 4.25% PDF. Cells were divided into control group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Cell Counting Kit-8 assay was used to measure cell viability, and transwell migration assay was used to verify the capacity of BMSC-Exos to inhibit EMT in HMrSV5 cells. RESULTS Small RNA sequencing analysis showed that miR-27a-3p was highly expressed in BMSC-derived exosomes compared to BMSCs. The RT-qPCR results showed that the expression of miR-27a-3p was upregulated in BMSC-Exos, but decreased in PD mice. We found that PF was glucose concentration-dependently enhanced in the peritoneum of the PD mice. Compared with the control mice, the PD mice showed high solute transport and decreased ultrafiltration volume as well as an obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-SMA, collagen-I, fibronectin, and ECM1. The mice with PD showed decreased miR-27a-3p. Peritoneal structural and functional damage was significantly attenuated after BMSC-Exos treatment, while PF and mesothelial damage were significantly ameliorated. Additionally, markers of fibrosis (α-SMA, collagen-I, fibronectin, ECM1) and profibrotic cytokines (TGF-β1, PDGF) were downregulated at the mRNA and protein levels after BMSC-Exos treatment. In HMrSV5 cells, BMSC-Exos reversed the decrease in cell viability and the increase in cell migratory capacity caused by high-glucose PDF. Western blotting and RT-qPCR analysis revealed that BMSC-Exos treatment resulted in increased expression of E-cadherin (epithelial marker) and decreased expression of α-SMA, Snail, and vimentin (mesenchymal markers) compared to those of the 4.25% PDF-treated cells. Importantly, a dual-luciferase reporter assay showed that TP53 was a target gene of miR-27a-3p. TP53 overexpression significantly reversed the decreases in PF and EMT progression induced by BMSC-Exos. CONCLUSION The present results demonstrate that BMSC-Exos showed an obvious protective effect on PD-related PF and suggest that BMSC-derived exosomal miR-27a-3p may exert its inhibitory effect on PF and EMT progression by targeting TP53.
Collapse
Affiliation(s)
- Jun-Li Zhao
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Lin Zhao
- Orthopedic Department, Guangming Traditional Chinese Medicine Hospital of Pudong New Area, Shanghai, 201399, China
| | - Qiu-Nan Zhan
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Miao Liu
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Ting Zhang
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Wen-Wen Chu
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| |
Collapse
|
14
|
Huang W, Xia D, Bi W, Lai X, Yu B, Chen W. Advances in stem cell therapy for peritoneal fibrosis: from mechanisms to therapeutics. Stem Cell Res Ther 2023; 14:293. [PMID: 37817212 PMCID: PMC10566108 DOI: 10.1186/s13287-023-03520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal fibrosis (PF) is a pathophysiological condition caused by a variety of pathogenic factors. The most important features of PF are mesothelial-mesenchymal transition and accumulation of activated (myo-)fibroblasts, which hinder effective treatment; thus, it is critical to identify other practical approaches. Recently, stem cell (SC) therapy has been indicated to be a potential strategy for this disease. Increasing evidence suggests that many kinds of SCs alleviate PF mainly by differentiating into mesothelial cells; secreting cytokines and extracellular vesicles; or modulating immune cells, particularly macrophages. However, there are relatively few articles summarizing research in this direction. In this review, we summarize the risk factors for PF and discuss the therapeutic roles of SCs from different sources. In addition, we outline effective approaches and potential mechanisms of SC therapy for PF. We hope that our review of articles in this area will provide further inspiration for research on the use of SCs in PF treatment.
Collapse
Affiliation(s)
- Weiyan Huang
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendi Bi
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
15
|
Mo M, Zeng Y, Zeng Y, Li S, He X, Chen X, Luo Q, Liu M, Luo C, Dou X, Peng F, Long H. N-methylpiperazine-diepoxyovatodiolide ameliorates peritoneal fibrosis via suppressing TGF-β/Smad and JAK/STAT signaling pathway. Chem Biol Interact 2023; 382:110589. [PMID: 37268199 DOI: 10.1016/j.cbi.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Peritoneal fibrosis (PF) is the main cause of peritoneal ultrafiltration failure in patients undergoing long-term peritoneal dialysis (PD). Epithelial-mesenchymal transition (EMT) is the key pathogenesis of PF. However, currently, no specific treatments are available to suppress PF. N-methylpiperazine-diepoxyovatodiolide (NMPDOva) is a newly synthesized compound that involves a chemical modification of ovatodiolide. In this study, we aimed to explore the antifibrotic effects of NMPDOva in PD-related PF and underlying mechanisms. A mouse model of PD-related PF was established via daily intraperitoneal injection of 4.25% glucose PD fluid. In vitro studies were performed using the transforming growth factor-beta1 (TGF-β1)-stimulated HMrSV5 cell line. Pathological changes were observed, and fibrotic markers were significantly elevated in the peritoneal membrane in mice model of PD-related PF. However, NMPDOva treatment significantly alleviated PD-related PF by decreasing the extracellular matrix accumulation. NMPDOva treatment decreased the expression of fibronectin, collagen Ⅰ, and alpha-smooth muscle actin (α-SMA) in mice with PD-related PF. Moreover, NMPDOva could alleviate TGF-β1-induced EMT in HMrSV5 cells, inhibited phosphorylation and nuclear translocation of Smad2/3, and increased the expression of Smad7. Meanwhile, NMPDOva inhibited phosphorylation of JAK2 and STAT3. Collectively, these results indicated that NMPDOva prevents PD-related PF by inhibiting the TGF-β1/Smad and JAK/STAT signaling pathway. Therefore, because of these antifibrotic effects, NMPDOva may be a promising therapeutic agent for PD-related PF.
Collapse
Affiliation(s)
- Min Mo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China
| | - Yao Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yiqun Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qimei Luo
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China
| | - Mi Liu
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xianrui Dou
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China.
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
16
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.v15i14 10.18632/aging.204883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
17
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
18
|
Ishiuchi N, Nakashima A, Maeda S, Miura Y, Miyasako K, Sasaki K, Uchiki T, Sasaki A, Nagamatsu S, Nakao N, Nagao M, Masaki T. Comparison of therapeutic effects of mesenchymal stem cells derived from superficial and deep subcutaneous adipose tissues. Stem Cell Res Ther 2023; 14:121. [PMID: 37143086 PMCID: PMC10161523 DOI: 10.1186/s13287-023-03350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Fibrosis is a common histological feature in the process from chronic organ injury to organ failure. Chronic tissue injury causes inflammatory cell infiltration into the injured tissue. The persistence of this inflammatory cell infiltration leads to fibrosis and organ failure. Adipose-derived mesenchymal stem cells (ASCs) have received much attention as a regenerative therapeutic tool to prevent progression from organ injury to failure. Subcutaneous abdominal adipose tissue is divided into superficial and deep layers by a superficial fascia. Adipose tissue easily collected by liposuction is usually obtained from a deep layer, so ASCs derived from a deep layer are generally used for regenerative medicine. However, no research has been conducted to investigate differences in the therapeutic effects of ASCs from the superficial and deep layers (Sup-ASCs and Deep-ASCs, respectively). Therefore, we compared the therapeutic potencies of Sup-ASCs and Deep-ASCs. METHODS ASCs were isolated from superficial and deep subcutaneous abdominal adipose tissues collected from patients who underwent breast reconstruction. We first compared cell characteristics, such as morphology, cell proliferation, cell surface markers, adipogenic and osteogenic differentiation, cell senescence markers, and expression of coagulation and anticoagulant factors between Sup-ASCs and Deep-ASCs. Furthermore, we compared their ability to promote polarization of M2 macrophages and to inhibit transforming growth factor (TGF)-β/Smad signaling using THP-1 cells and TGF-β1 stimulated HK-2 cells incubated with conditioned media from Sup-ASCs or Deep-ASCs. In in vivo experiments, after renal ischemia-reperfusion injury (IRI) procedure, Sup-ASCs or Deep-ASCs were injected through the abdominal aorta. At 21 days post-injection, the rats were sacrificed and their left kidneys were collected to evaluate fibrosis. Finally, we performed RNA-sequencing analysis of Sup-ASCs and Deep-ASCs. RESULTS Sup-ASCs had greater proliferation and adipogenic differentiation compared with Deep-ASCs, whereas both ASC types had similar morphology, cell surface markers, senescence markers, and expression of coagulation and anticoagulant factors. Conditioned media from Sup-ASCs and Deep-ASCs equally promoted polarization of M2 macrophages and suppressed TGF-β/Smad signaling. Moreover, administration of Sup-ASCs and Deep-ASCs equally ameliorated renal fibrosis induced by IRI in rats. RNA-sequencing analysis revealed no significant difference in the expression of genes involved in anti-inflammatory and anti-fibrotic effects between Sup-ASCs and Deep-ASCs. CONCLUSIONS These results indicate that both Sup-ASCs and Deep-ASCs can be used effectively and safely as an intravascular ASC therapy for organ injury.
Collapse
Affiliation(s)
- Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Yoshie Miura
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshio Uchiki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayano Sasaki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Nakao
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masataka Nagao
- Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
19
|
Ahmadi A, Moghadasali R, Najafi I, Shekarchian S, Alatab S. Potential of Autologous Adipose-Derived Mesenchymal Stem Cells in Peritoneal Fibrosis: A Pilot Study. ARCHIVES OF IRANIAN MEDICINE 2023; 26:100-109. [PMID: 37543930 PMCID: PMC10685899 DOI: 10.34172/aim.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/01/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND We aimed to determine the effects of systemic therapy with autologous adipose tissue derived mesenchymal stem cells (AD-MSCs) on different parameters of peritoneal function and inflammation in peritoneal dialysis (PD) patients. METHODS We enrolled nine PD patients with ultrafiltration failure (UFF). Patients received 1.2±0.1×106 cell/kg of AD-MSCs via cubital vein and were then followed for six months at time points of baseline, 3, 6, 12, 16 and 24 weeks after infusion. UNI-PET was performed for assessment of peritoneal characteristics at baseline and weeks 12 and 24. Systemic and peritoneal levels of tumor necrosis factor α (TNF-α), interleukin-6(IL-6), IL-2 and CA125 (by ELISA) and gene expression levels of transforming growth factor beta (TGF-β), smooth muscle actin (𝛼-SMA) and fibroblast-specific protein-1 (FSP-1) in PD effluent derived cells (by quantitative real-time PCR) were measured at baseline and weeks 3, 6, 12, 16 and 24. RESULTS Slight improvement was observed in the following UF capacity indices: free water transport (FWT, 32%), ultrafiltration - small pore (UFSP, 18%), ultrafiltration total (UFT, 25%), osmotic conductance to glucose (OCG, 25%), D/P creatinine (0.75 to 0.70), and Dt/D0 glucose (0.23 to 0.26). There was a slight increase in systemic and peritoneal levels of CA125 and a slight decrease in gene expression levels of TGF-β, α-SMA and FSP-1 that was more prominent at week 12 and vanished by the end of the study. CONCLUSION Our results for the first time showed the potential of MSCs for treatment of peritoneal damage in a clinical trial. Our results could be regarded as hypothesis suggestion and will need confirmation in future studies.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Iraj Najafi
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical sciences, Tehran, Iran
| | | | - Sudabeh Alatab
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Giri H, Biswas I, Rezaie AR. Activated protein C inhibits mesothelial-to-mesenchymal transition in experimental peritoneal fibrosis. J Thromb Haemost 2023; 21:133-144. [PMID: 36695376 PMCID: PMC10726528 DOI: 10.1016/j.jtha.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND In addition to its anticoagulant function in downregulating thrombin generation, activated protein C (APC) evokes pleiotropic cytoprotective signaling activities when it binds to endothelial protein C receptor (EPCR) to activate protease-activated receptor 1 (PAR1) in endothelial cells. OBJECTIVES To investigate the protective effect of APC in a chlorhexidine gluconate (CG)-induced peritoneal fibrosis model. METHODS Peritoneal fibrosis was induced in wild-type as well as EPCR- and PAR1-deficient mice via daily injection of CG (0.2 mL of 0.1% CG in 15% ethanol and 85% saline) for 21 days with or without concomitant injection of recombinant human APC derivatives (50 μg/kg of bodyweight). The expression of proinflammatory cytokines and profibrotic markers as well as collagen deposition were analyzed using established methods. RESULTS CG significantly upregulated the expression of transforming growth factor-β1 in peritoneal tissues, which culminated in the deposition of excessive extracellular matrix proteins, thickening of the peritoneal membrane, and mesothelial-to-mesenchymal transition in damaged tissues. APC potently inhibited CG-induced peritoneal fibrosis and downregulated the expression of proinflammatory cytokines, collagen deposition, Smad3 phosphorylation, and markers of mesothelial-to-mesenchymal transition (α-smooth muscle actin, vimentin, and N-cadherin). APC also inhibited transforming growth factor-β1-mediated upregulation of α-smooth muscle actin, Smad3, and fibronectin in human primary mesothelial cells. Employing signaling-selective and anticoagulant-selective variants of APC and mutant mice deficient for either EPCR or PAR1, we demonstrated that the EPCR-dependent signaling function of APC through PAR1 activation was primarily responsible for its antifibrotic activity in the CG-induced peritoneal fibrosis model. CONCLUSION APC and signaling-selective variants of APC may have therapeutic potential for preventing or treating pathologies associated with peritoneal fibrosis.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
21
|
Ike T, Doi S, Nakashima A, Sasaki K, Ishiuchi N, Asano T, Masaki T. The hypoxia-inducible factor-α prolyl hydroxylase inhibitor FG4592 ameliorates renal fibrosis by inducing the H3K9 demethylase JMJD1A. Am J Physiol Renal Physiol 2022; 323:F539-F552. [PMID: 36074918 DOI: 10.1152/ajprenal.00083.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transcription factors hypoxia-inducible factor-1α and -2α (HIF-1α/2α) are the major regulators of the cellular response to hypoxia and play a key role in renal fibrosis associated with acute and chronic kidney disease. Jumonji domain-containing 1a (JMJD1A), a histone H3 lysine 9 (H3K9) demethylase, is reported to be an important target gene of HIF-α. However, whether JMJD1A and H3K9 methylation status play a role in renal fibrosis is unclear. Here, we investigated the involvement of HIF-α, JMJD1A, and monomethylated/dimethylated H3K9 (H3K9me1/H3K9me2) levels in unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Intraperitoneal administration of FG4592, an inhibitor of HIF-α prolyl hydroxylase, which controls HIF-α protein stability, significantly attenuated renal fibrosis on days 3 and 7 following UUO. FG4592 concomitantly increased JMJD1A expression, decreased H3K9me1/me2 levels, reduced profibrotic gene expression, and increased erythropoietin expression in renal tissues of UUO mice. The beneficial effects of FG4592 on renal fibrosis were inhibited by the administration of JMJD1A-specific siRNA to mice immediately following UUO. Incubation of normal rat kidney-49F and/or -52E cells with transforming growth factor-β1 (TGF-β1) in vitro resulted in upregulated expression of α-smooth muscle actin and H3K9me1/me2, and these effects were inhibited by cotreatment with FG4592. In contrast, FG4592 treatment further enhanced the TGF-β1-stimulated upregulation of JMJD1A but had no effect on TGF-β1-stimulated expression of the H3K9 methyltransferase euchromatic histone-lysine N-methyltransferase 2. Collectively, these findings establish a crucial role for the HIF-α1/2-JMJD1A-H3K9me1/me2 regulatory axis in the therapeutic effect of FG4592 in renal fibrosis.NEW & NOTEWORTHY Using a mouse model of renal fibrosis and transforming growth factor-β1-stimulated rat cell lines, we show that treatment with FG4592, an inhibitor of hypoxia-inducible factor-1α and -2α (HIF-1α/2α) prolyl hydroxylase decreases renal fibrosis and concomitantly reduces methylated lysine 9 of histone H3 (H3K9) levels via upregulation of Jumonji domain-containing 1a (JMJD1A). The results identify a novel role for the HIF-1α/2α-JMJD1A-H3K9 regulatory axis in suppressing renal fibrosis.
Collapse
Affiliation(s)
- Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
22
|
Cumulative dialytic glucose exposure is a risk factor for peritoneal fibrosis and angiogenesis in pediatric patients undergoing peritoneal dialysis using neutral-pH fluids. Kidney Int Rep 2022; 7:2431-2445. [DOI: 10.1016/j.ekir.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
|
23
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Upregulation of Mineralocorticoid Receptor Contributes to Development of Salt-Sensitive Hypertension after Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2022; 23:ijms23147831. [PMID: 35887178 PMCID: PMC9324399 DOI: 10.3390/ijms23147831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The ischemia-reperfusion injury (IRI) of rat kidneys is used as a model of acute kidney injury. Salt-sensitive hypertension occurs in rats after IRI, and the distal nephrons play important roles in the development of this condition. We investigated the role of the mineralocorticoid receptor (MR) in the progression of IRI-induced salt-sensitive hypertension in rats. Fourteen days after right-side nephrectomy, IRI was induced by clamping the left renal artery, with sham surgery performed as a control. IRI rats were provided with normal water or water with 1.0% NaCl (IRI/NaCl), or they were implanted with an osmotic mini-pump to infuse vehicle or aldosterone (IRI/Aldo). Esaxerenone, a non-steroidal MR blocker (MRB), was administered to IRI/NaCl and IRI/Aldo rats for 6 weeks. MR expression increased by day 7 post-IRI. Blood pressure and urinary protein excretion increased in IRI/NaCl and IRI/Aldo rats over the 6-week period, but these effects were negated by MRB administration. The MRB attenuated the expression of the gamma-epithelial sodium channel (ENaC) and renal damage. The ENaC inhibitor, amiloride, ameliorated hypertension and renal damage in IRI/NaCl and IRI/Aldo rats. Our findings thus showed that MR upregulation may play a pivotal role in ENaC-mediated sodium uptake in rats after IRI, resulting in the development of salt-sensitive hypertension in response to salt overload or the activation of the renin-angiotensin-aldosterone system.
Collapse
|
25
|
Carmichael SP, Shin J, Vaughan JW, Chandra PK, Holcomb JB, Atala AJ. Regenerative Medicine Therapies for Prevention of Abdominal Adhesions: A Scoping Review. J Surg Res 2022; 275:252-264. [PMID: 35306261 PMCID: PMC9038705 DOI: 10.1016/j.jss.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Globally, abdominal adhesions constitute a significant burden of morbidity and mortality. They represent the commonest complication of abdominal operations with a lifelong risk of multiple pathologies, including adhesive small bowel obstruction, female infertility, and chronic pain. Adhesions represent a problem of the entire abdomen, forming at the time of injury and progressing through multiple complex pathways. Clinically available preventative strategies are limited to barrier technologies. Significant knowledge gaps persist in the characterization and mitigation of the involved molecular pathways underlying adhesion formation. Thus, the objectives of this scoping review are to describe the known molecular pathophysiology implicated in abdominal adhesion formation and summarize novel preclinical regenerative medicine preventative strategies for potential future clinical investigation. METHODS A literature review was performed in accordance with the Preferred Reporting Items for Systematic Reviews Extension for Scoping Reviews. Included peer-reviewed publications were published within the last 5 y and contained in vivo preclinical experimental studies of postoperative adhesions with the assessment of underlying mechanisms of adhesion formation and successful therapy for adhesion prevention. Studies not involving regenerative medicine strategies were excluded. Data were qualitatively synthesized. RESULTS A total of 1762 articles were identified. Of these, 1001 records were excluded by the described screening criteria. Sixty-eight full-text articles were evaluated for eligibility, and 11 studies were included for review. CONCLUSIONS Novel and reliable preventative strategies are urgently needed. Recent experimental data propose novel regenerative medicine targets for adhesion prevention.
Collapse
Affiliation(s)
- Samuel P Carmichael
- Division of Acute Care Surgery, Department of Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Jaewook Shin
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - John W Vaughan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Prafulla K Chandra
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John B Holcomb
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
26
|
Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Promote Peritoneal Healing by Activating MAPK-ERK1/2 and PI3K-Akt to Alleviate Postoperative Abdominal Adhesion. Stem Cells Int 2022; 2022:1940761. [PMID: 35578661 PMCID: PMC9107054 DOI: 10.1155/2022/1940761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Peritoneal regeneration and repair can alleviate postoperative intraperitoneal adhesions, and mesenchymal stem cells (MSCs) have demonstrated the potential for peritoneal repair and regeneration. However, extracellular vesicles (EVs) are the main carriers for the MSC activity. Thus far, the roles of MSC-derived EVs on peritoneal repair are not well understood. To investigate the therapeutic effect of adipose-derived mesenchymal stem cell-derived EVs (ADSC-EVs) in peritoneal injuries, ADSC-EVs were injected in vivo via the tail vein of rats. The antiadhesion effects were evaluated following abdominal surgery. In addition, the levels of the peritoneal fibrinolysis system were determined via enzyme-linked immunosorbent assay. Expression differences in inflammatory and apoptotic markers were detected using immunofluorescence. The expression of extracellular matrix-related indexes and peritoneal healing were observed using immunohistochemistry. In vitro, rat peritoneal mesothelial cell proliferation was assessed via a 5-ethynyl-2-deoxyuridine assay. Cell migration was determined using scratch wound and transwell assays. Related signaling networks were estimated based on sequencing and bioinformatics analyses. The roles of the MAPK–ERK1/2 and PI3K–Akt signaling networks were analyzed using immunoblotting. This is the first report of the effectiveness of ADSC-EVs in the treatment of postoperative adhesions. ADSC-EVs were incorporated in vitro and induced rat peritoneal mesothelial cell proliferation and migration. This was mediated by stimulation of the MAPK–ERK1/2 and PI3K–Akt axes. ADSC-EVs promote the healing of the injured peritoneum, suggesting a promising therapeutic approach for peritoneal adhesions.
Collapse
|
27
|
Vieujean S, Loly JP, Boutaffala L, Meunier P, Reenaers C, Briquet A, Lechanteur C, Baudoux E, Beguin Y, Louis E. Mesenchymal Stem Cell Injection in Crohn's Disease Strictures: A Phase I-II Clinical Study. J Crohns Colitis 2022; 16:506-510. [PMID: 34473270 DOI: 10.1093/ecco-jcc/jjab154] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIM Mesenchymal stem cells [MSCs] have anti-inflammatory and anti-fibrotic properties and could be a potential therapy for Crohn's disease [CD] strictures. In this phase I-II pilot trial, we assessed safety and efficacy of local MSC injection to treat CD strictures. METHODS CD patients with a short [less than 5 cm in length] non-passable stricture accessible by ileocolonoscopy were included. Allogenic bone-marrow derived MSCs were injected in the four quadrants of the stricture. Adverse events and clinical scores were evaluated at each follow-up visit and endoscopy and magnetic resonance enterography were performed at baseline, Week [W]12 and W48. The main judgement criterion for efficacy was the complete [defined by the ability to pass the ileocolonoscope] or partial [defined by a diameter increase] resolution of the stricture at W12. Second efficacy criteria included assessment of the stricture at W48 and evolution of clinical scores at W12 and W48. RESULTS We performed 11 MSC injections in 10 CD patients [three primary and seven anastomotic strictures; one stricture injected twice]. MSC injections were well tolerated but four hospitalisations for occlusion were reported. At W12, five patients presented a complete or partial resolution of the stricture [two complete and three partial]. Seven patients were re-evaluated at W48 [one dilated, one operated, and one lost to follow-up] and four patients had a complete resolution. The evolution of clinical scores between W0, W12, and W48 was not statistically significant. CONCLUSIONS MSCs injection in CD stricture was well tolerated and may offer a benefit.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Jean-Philippe Loly
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Layla Boutaffala
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Paul Meunier
- Department of Radiology, University Hospital CHU of Liège, Liège, Belgium
| | - Catherine Reenaers
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy [LTCG], University Hospital CHU of Liège, Liège, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy [LTCG], University Hospital CHU of Liège, Liège, Belgium
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy [LTCG], University Hospital CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy [LTCG], University Hospital CHU of Liège, Liège, Belgium.,Department of Hematology, University Hospital CHU of Liège and University of Liège, Liège, Belgium
| | - Edouard Louis
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| |
Collapse
|
28
|
Zhang J, Chen H, Weng X, Liu H, Chen Z, Huang Q, Wang L, Liu X. RCAN1.4 attenuates renal fibrosis through inhibiting calcineurin-mediated nuclear translocation of NFAT2. Cell Death Discov 2021; 7:317. [PMID: 34707090 PMCID: PMC8551295 DOI: 10.1038/s41420-021-00713-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is thus deemed to a global health problem. Renal fibrosis, characterized by accumulation of extracellular matrix (ECM) components in the kidney, is considered a common pathway leading to CKD. Regulator of calcineurin1 (RCAN1), identified as a competitive endogenous inhibitor of the phosphatase calcineurin, participates in ECM deposition in various organs. However, the role of RCAN1 in renal fibrosis remains unclear. Here, unilateral ureteral obstruction (UUO), a well-known model to induce renal fibrosis in vivo, was performed on mice for a week. To overexpress RCAN1.4 in vivo, recombinant adeno-associated virus 9-packed RCAN1.4 over-expression plasm was employed in mice kidney. Lentivirus-packed RCAN1.4 over-expression plasm was employed to transfer into HK-2 and NRK-49F cells in vitro. The results indicated that RCAN1.4 expression was impaired both in UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibrosis in vitro. However, knocking in of RCAN1.4 suppressed the production of extracellular matrix (ECM) both in vivo and in vitro. Furthermore, in vitro, the apoptosis-related proteins, including the ratio of Bax/Bcl-2 and cleaved-caspase3, were elevated in cells transfected with RCAN1.4 overexpression plasmid. In addition, we found that RCAN1.4 could rugulated NFAT2 nuclear distribution by inhibiting calcineurin pathway. So overexpression of RCAN1.4 could reverse renal fibrosis, attenuate ECM related protein accumulation, promote apoptosis of myofibroblast via inhibiting Calcineurin/NFAT2 signaling pathway. Taken together, our study demonstrated that targeting RCAN1.4 may be therapeutic efficacy in renal fibrosis.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qin Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
29
|
Maanaoui M, Kerr-Conte J. Pushing the boundaries of organs before it's too late: pre-emptive regeneration. Transpl Int 2021; 34:1761-1769. [PMID: 34532871 DOI: 10.1111/tri.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Solid organ transplantation is marked by accelerated aging and inexorable fibrosis. It is crucial to promote strategies to attenuate, or to reverse, damage before organ failure. Hence, the objective of this article is to provide insight into strategies, which aim to regenerate or rejuvenate the transplanted organs. Cell therapy with mesenchymal stromal cells is currently under investigation because of their antifibrotic properties. Their ability to promote mitochondrial biogenesis, and to transfer mitochondria to wounded cells, is another approach to boost the organ regeneration. Other teams have investigated bioengineered organs, which consists of decellularization of the damaged organ followed by recellularization. Lastly, the development of CAR-T cell-based technologies may revolutionize the field of transplantation, as recent preclinical studies showed that CAR-T cells could efficiently clear senescent cells from an organ and reverse fibrosis. Ultimately, these cutting-edge strategies may bring the holy grail of a pre-emptive regenerated organ closer to reality.
Collapse
Affiliation(s)
- Mehdi Maanaoui
- Department of Nephrology, CHU Lille, Lille, France.,Inserm, CHU Lille, Institut Pasteur Lille, U1190 - EGID, Univ. Lille, Lille, France
| | - Julie Kerr-Conte
- Inserm, CHU Lille, Institut Pasteur Lille, U1190 - EGID, Univ. Lille, Lille, France
| |
Collapse
|
30
|
Ni W, Zhang Y, Yin Z. The protective mechanism of Klotho gene-modified bone marrow mesenchymal stem cells on acute kidney injury induced by rhabdomyolysis. Regen Ther 2021; 18:255-267. [PMID: 34466631 PMCID: PMC8367782 DOI: 10.1016/j.reth.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Studies have shown that the Klotho gene has tremendous potential for future therapeutic purposes in both acute and chronic kidney diseases (CKD). This study aimed to investigate the possible protective mechanisms of the Klotho gene against acute kidney injury (AKI) induced by rhabdomyolysis (RM). Methods In this study, bone marrow mesenchymal stem cells (BMSCs) were transfected with recombinant adenoviruses expressing the Klotho gene (BMSCs-Klotho) and by those expressing empty vector (BMSCs-EV). After successful transfection, we tested the proliferation, secretion and migration abilities of the BMSCs-Klotho compared with those of the BMSCs-EV and BMSCs. Then, 30 male C57BL/6 mice were examined, with 6 mice randomly assigned to the control group (PBS injected into the tail vein, CON) or one of the four treatment groups treated with either BMSCs-Klotho (AKI+BMSCs-Klotho), BMSCs-EV (AKI+BMSCs-EV), BMSCs (AKI+BMSCs) or PBS (AKI+PBS) after induction of RM. Seventy-two h after treatment, serum creatinine (SCr) and blood urea nitrogen (BUN) levels were obtained to assess renal function, and renal tissue was obtained to measure kidney tissue damage. Additionally, kidney protective mechanism-related indexes, such as EPO, IGF-1, KIM-1 and HIF-1, were analysed using Western blot analysis and immunohistochemistry. Results The results obtained showed that the proliferation, secretory and migration abilities of the BMSCs were significantly increased after transfection with the Klotho gene. Treatment with BMSCs-Klotho, BMSCs-EV or BMSCs improved renal function compared to treatment with PBS. However, the improvement observed in renal function in the BMSCs-Klotho group was better than that of the other groups. Histological analysis demonstrated that tissue damage was significantly decreased in the mice in the AKI+BMSCs-Klotho, AKI+BMSCs-EV or AKI+BMSCs groups compared to that in the mice in the AKI+PBS group. However, the best recovery was observed in the mice treated with BMSCs-Klotho concomitantly. Furthermore, the expression of protective factors erythropoietin (EPO) and insulin-like growth factor 1 (IGF-1) increased obviously, and the injury biomarkers kidney injury molecule 1 (KIM-1) and hypoxia inducible factor 1 (HIF-1) decreased notably in the group of BMSCs-Klotho, BMSCs-EV and BMSCs. Additionally, the levels of the aforementioned protein indicators in the AKI+BMSCs-Klotho group were not different from those in the CON group. Conclusion Klotho overexpression exerted positive effects on BMSCs and markedly promoted recovery from RM-induced AKI. These findings suggest that the overexpression of the Klotho gene might be a good candidate for further therapy for AKI in clinical trials.
Collapse
Affiliation(s)
- WenHui Ni
- Department of Renal Medicine, First People's Hospital of Zhangjiagang City, China
| | - Ying Zhang
- Department of Renal Medicine, Xuzhou Medical University Affiliated Hospital, China
| | - Zhongcheng Yin
- Department of Renal Medicine, Xuzhou Medical University Affiliated Hospital, China
| |
Collapse
|
31
|
Duan Z, Yao J, Duan N, Wang M, Wang S. Sulodexide Prevents Peritoneal Fibrosis by Downregulating the Expression of TGF- β1 and Its Signaling Pathway Molecules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2052787. [PMID: 34497655 PMCID: PMC8421132 DOI: 10.1155/2021/2052787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
Peritoneal dialysis is one of the main renal replacement treatments. However, long-term peritoneal dialysis keeps the peritoneum in contact with the sugar-containing nonphysiological peritoneal fluid, which leads to recurrent peritonitis, peritoneal fibrosis, and failure of ultrafiltration. Transforming growth factor-β1 (TGF-β1), related cytokines, and inflammatory factors are closely related to peritoneal fibrosis. Sulodexide (SLX) is a new type of glycosaminoglycan preparation, which is involved in the formation of an anionic charge barrier and can maintain the selective permeability of vascular endothelial cells. In this study, the innovative analysis of SLX specifically prevents the process of peritoneal dialysis peritoneal fibrosis by downregulating the expression of TGF-β1 and its signaling pathway molecules. We randomly divided 30 rats into three groups. The blank control group received no treatment. The peritoneal dialysis model group was injected with 4.25% peritoneal dialysate (PDF) 20 ml daily, and the SLX group was injected with 4.25% PDF 20 ml + sulodexide (SLX) 20 mg/kg daily. After 8 weeks of dialysis, the rats were sacrificed, and the peritoneal function test was performed to determine the amount of glucose transport and ultrafiltration. The thickness of peritoneal per unit area was observed under high magnification. The level of inflammation in peritoneal tissue and the expression of TGF-β1/Smad were detected. The results showed that SLX can significantly improve peritoneal tissue thickening and inflammation, can downregulate the expression of TGF-β1, Smad2, Smad3, and Smad7 in peritoneal tissue, and improve the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Department of Renal Disease, People's Hospital of Tang County (The Fourth Central Hospital of Baoding City), Baoding, Hebei 072350, China
| | - Jia Yao
- Department of Renal Disease, People's Hospital of Tang County (The Fourth Central Hospital of Baoding City), Baoding, Hebei 072350, China
| | - Nan Duan
- Department of Geriatrics, Traditional Chinese Medicine Hospital of Wangdu County, Baoding, Hebei 072450, China
| | - Min Wang
- Department of Renal Disease, People's Hospital of Tang County (The Fourth Central Hospital of Baoding City), Baoding, Hebei 072350, China
| | - Shiwei Wang
- Department of Renal Disease, People's Hospital of Tang County (The Fourth Central Hospital of Baoding City), Baoding, Hebei 072350, China
| |
Collapse
|
32
|
Xiong W, Xiong SH, Chen QL, Linghu KG, Zhao GD, Chu JMT, Wong GTC, Li J, Hu YJ, Wang YT, Yu H. Brij-functionalized chitosan nanocarrier system enhances the intestinal permeability of P-glycoprotein substrate-like drugs. Carbohydr Polym 2021; 266:118112. [PMID: 34044929 DOI: 10.1016/j.carbpol.2021.118112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022]
Abstract
The highly expressed P-glycoprotein (Pgp) in the intestine plays a key role in preventing drugs across the intestinal epithelium, which linked by tight junctions (TJs). Thus increasing the oral bioavailability of Pgp substrate-like drugs (PSLDs) remains a great challenge. Herein, we construct a nanocarrier system derived from Brij-grafted-chitosan (BC) to enhance the oral bioavailability and therapeutic effect of berberine (BBR, a typical PLSD) against diabetic kidney disease. The developed BC nanoparticles (BC-NPs) are demonstrated to improve the intestinal permeability of BBR via transiently and reversibly modulating the intercellular TJs (paracellular pathway) and Pgp-mediated drug efflux (transcellular pathway). As compared to free BBR and chitosan nanoparticles, the BC-NPs enhanced the relative oral bioavailability of BBR in rats (4.4- and 2.7-fold, respectively), and the therapeutic potency of BBR in renal function and histopathology. In summary, such strategy may provide an effective nanocarrier system for oral delivery of BBR and PSLDs.
Collapse
Affiliation(s)
- Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Qi Ling Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Ke Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - John M T Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Gordon T C Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Jia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Yi Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao; HKBU Shenzhen Research Center, Shenzhen, Guangdong, China.
| |
Collapse
|
33
|
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health). Int J Mol Sci 2021; 22:ijms22157955. [PMID: 34360717 PMCID: PMC8347640 DOI: 10.3390/ijms22157955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.
Collapse
|
34
|
Du Y, Zong M, Guan Q, Huang Z, Zhou L, Cai J, da Roza G, Wang H, Qi H, Lu Y, Du C. Comparison of mesenchymal stromal cells from peritoneal dialysis effluent with those from umbilical cords: characteristics and therapeutic effects on chronic peritoneal dialysis in uremic rats. Stem Cell Res Ther 2021; 12:398. [PMID: 34256856 PMCID: PMC8278755 DOI: 10.1186/s13287-021-02473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background A long-term of peritoneal dialysis (PD) using a hypertonic PD solution (PDS) leads to patient’s peritoneal membrane (PM) injury, resulting in ultrafiltration failure (UFF) and PD drop-out. Our previous study shows that PD effluent-derived mesenchymal stromal cells (pMSCs) prevent the PM injury in normal rats after repeated exposure of the peritoneal cavity to a PDS. This study was designed to compare the cytoprotection between pMSCs and umbilical cord-derived MSCs (UC-MSCs) in the treatment of both PM and kidney injury in uremic rats with chronic PD. Methods 5/6 nephrectomized (5/6Nx) Sprague Dawley rats were intraperitoneally (IP) injected Dianeal (4.25% dextrose, 10 mL/rat/day) and were treated with pMSCs or umbilical cord (UC)-MSCs (approximately 2 × 106/rat/week, IP). Ultrafiltration was determined by IP injection of 30 mL of Dianeal (4.25% dextrose) with 1.5-h dewell time, and kidney failure by serum creatinine (SCr) and blood urea nitrogen (BUN). The structure of the PM and kidneys was assessed using histology. Gene expression was examined using quantitative reverse transcription PCR, and protein levels using flow cytometric and Western blot analyses. Results We showed a slight difference in the morphology between pMSCs and UC-MSCs in plastic dishes, and significantly higher expression levels of stemness-related genes (NANOG, OCT4, SOX2, CCNA2, RAD21, and EXO1) and MSCs surface markers (CD29, CD44, CD90 and CD105) in UC-MSCs than those in pMSCs, but no difference in the differentiation to chondrocytes, osteocytes or adipocytes. pMSC treatment was more effective than UC-MSCs in the protection of the MP and remnant kidneys in 5/6Nx rats from PDS-induced injury, which was associated with higher resistance of pMSCs than UC-MSCs to uremic toxins in culture, and more reduction of peritoneal mesothelial cell death by the secretome from pMSCs than from UC-MSCs in response to PDS exposure. The secretome from both pMSCs and UC-MSCs similarly inactivated NOS2 in activated THP1 cells. Conclusions As compared to UC-MSCs, pMSCs may more potently prevent PDS-induced PM and remnant kidney injury in this uremic rat model of chronic PD, suggesting that autotransplantation of ex vivo-expanded pMSCs may become a promising therapy for UFF and deterioration of remnant kidney function in PD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02473-9.
Collapse
Affiliation(s)
- Yangchun Du
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 17, Section 3, Ren Min Nan Road, Chengdu, 610041, China.,Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ming Zong
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Zhongli Huang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 17, Section 3, Ren Min Nan Road, Chengdu, 610041, China.,Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Lan Zhou
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Cai
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Gerald da Roza
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hualin Qi
- Department of Nephrology, Shanghai Pudong New Area People's Hospital, No. 490 Chuanhuan South Road, Pudong New Area, Shanghai, 201299, China.
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 17, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
35
|
Guo Y, Wang L, Gou R, Wang Y, Shi X, Zhang Y, Pang X, Tang L. Ameliorative role of SIRT1 in peritoneal fibrosis: an in vivo and in vitro study. Cell Biosci 2021; 11:79. [PMID: 33906673 PMCID: PMC8077771 DOI: 10.1186/s13578-021-00591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Peritoneal fibrosis is one of the major complications induced by peritoneal dialysis (PD). Damaged integrity and function of peritoneum caused by peritoneal fibrosis not only limits the curative efficacy of PD and but affects the prognosis of patients. However, the detailed mechanisms underlying the process remain unclear and therapeutic strategy targeting TGF‐β is deficient. Transforming growth factor‐β (TGF‐β) signaling participates in the progression of peritoneal fibrosis through enhancing mesothelial-mesenchymal transition of mesothelial cells. Methods The study aims to demonstrate the regulatory role of Sirtuin1 (SIRT1) to the TGF‐β signaling mediated peritoneal fibrosis. SIRT1−/− mice were used to establish animal model. Masson’s staining and peritoneal equilibration assay were performed to evaluate the degree of peritoneal fibrosis. QRT-PCR assays were used to estimate the RNA levels of Sirt1 and matrix genes related to peritoneal fibrosis, and their protein levels were examined by Western blot assays. Results SIRT1 significantly decreased in vivo post PD treatment. SIRT1 knockout exacerbated peritoneal fibrosis both in vivo and vitro. Overexpression of SIRT1 efficiently inhibited peritoneal fibrosis by inhibiting the peritoneal inflammation and the activation of TGF‐β signaling. Conclusion SIRT1 ameliorated peritoneal fibrosis both in vivo and in vitro through inhibiting the expression of protein matrix induced by TGF‐β signaling.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Rong Gou
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xiujie Shi
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
36
|
Localization and Maintenance of Engrafted Mesenchymal Stem Cells Administered via Renal Artery in Kidneys with Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22084178. [PMID: 33920714 PMCID: PMC8072868 DOI: 10.3390/ijms22084178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a potential therapeutic tool for preventing the progression of acute kidney injury (AKI) to chronic kidney disease (CKD). Herein, we investigated the localization and maintenance of engrafted human bone marrow-derived MSCs in rats subjected to a renal ischemia-reperfusion injury (IRI) and compared the effectiveness of two intravascular injection routes via the renal artery or inferior vena cava. Renal artery injection of MSCs was more effective than intravenous injection at reducing IRI-induced renal fibrosis. Additionally, MSCs injected through the renal artery persisted in injured kidneys for over 21 days, whereas MSCs injected through the inferior vena cava survived for less than 7 days. This difference may be attributed to the antifibrotic effects of MSCs. Interestingly, MSCs injected through the renal artery were localized primarily in glomeruli until day 3 post-IRI, and they decreased in number thereafter. In contrast, the number of MSCs localized in tubular walls, and the interstitium increased gradually until day 21 post-IRI. This localization change may be related to areas of damage caused by IRI because ischemia-induced AKI leads to tubular cell damage. Taken together, these findings suggest renal artery injection of MSCs may be useful for preventing the progression of AKI to CKD.
Collapse
|
37
|
Shentu Y, Li Y, Xie S, Jiang H, Sun S, Lin R, Chen C, Bai Y, Zhang Y, Zheng C, Zhou Y. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling. Int Immunopharmacol 2021; 93:107374. [PMID: 33517222 DOI: 10.1016/j.intimp.2021.107374] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/26/2023]
Abstract
Sodium glucose cotransporter-2 (SGLT-2) inhibitor has been reported to exert a glucose-lowering effect in the peritoneum exposed to peritoneal dialysis solution. However, whether SGLT-2 inhibitors can regulate peritoneal fibrosis by suppressing TGF-β/Smad signaling is unclear. We aimed to (i) examine the effect of the SGLT-2 inhibitor empagliflozin in reducing inflammatory reaction and preventing peritoneal dialysis solution-induced peritoneal fibrosis and (ii) elucidate the underlying mechanisms. High-glucose peritoneal dialysis solution or transforming growth factor β1 (TGF-β1) was used to induce peritoneal fibrosis in vivo, in a mouse peritoneal dialysis model (C57BL/6 mice) and in human peritoneal mesothelial cells in vitro, to stimulate extracellular matrix accumulation. The effects of empagliflozin and adeno-associated virus-RNAi, which is used to suppress SGLT-2 activity, on peritoneal fibrosis and extracellular matrix were evaluated. The mice that received chronic peritoneal dialysis solution infusions showed typical features of peritoneal fibrosis, including markedly increased peritoneal thickness, excessive matrix deposition, increased peritoneal permeability, and upregulated α-smooth muscle actin and collagen I expression. Empagliflozin treatment or downregulation of SGLT-2 expression significantly ameliorated these pathological changes. Inflammatory cytokines (TNF-α, IL-1β, IL-6) and TGF-β/Smad signaling-associated proteins, such as TGF-β1 and phosphorylated Smad (p-Smad3), decreased in the empagliflozin-treated and SGLT-2 downregulated groups. In addition, empagliflozin treatment and downregulation of SGLT-2 expression reduced the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6), TGF-β1, α-smooth muscle actin, collagen I, and p-Smad3 accumulation in human peritoneal mesothelial cells. Collectively, these results indicated that empagliflozin exerted a clear protective effect on high-glucose peritoneal dialysis-induced peritoneal fibrosis via suppressing TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuyang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shicheng Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Huanchang Jiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shicheng Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Kidney Health, Center for Health Assessment, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
38
|
Nagasaki K, Nakashima A, Tamura R, Ishiuchi N, Honda K, Ueno T, Doi S, Kato Y, Masaki T. Mesenchymal stem cells cultured in serum-free medium ameliorate experimental peritoneal fibrosis. Stem Cell Res Ther 2021; 12:203. [PMID: 33757592 PMCID: PMC7986267 DOI: 10.1186/s13287-021-02273-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/08/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) provide potential treatments for peritoneal fibrosis. However, MSCs cultured in media containing serum bring risks of infection and other problems. In this study, we compared the effect of human MSCs in serum-free medium (SF-MSCs) on peritoneal fibrosis with that of MSCs cultured in medium containing 10% fetal bovine serum (10%MSCs). METHODS Peritoneal fibrosis was induced by intraperitoneally injecting 0.1% chlorhexidine gluconate (CG). SF-MSCs or 10%MSCs were intraperitoneally administered 30 min after the CG injection. Ten days after the CG and MSC injections, we performed histological analyses and peritoneal equilibrium testing. In the in vitro experiments, we used transforming growth factor (TGF)-β1-stimulated human peritoneal mesothelial cells incubated in conditioned medium from MSCs to examine whether the SF-MSCs showed enhanced ability to produce antifibrotic humoral factors. RESULTS Histological staining showed that the SF-MSCs significantly suppressed CG-induced cell accumulation and thickening compared with that of the 10%MSCs. Additionally, the SF-MSCs significantly inhibited mesenchymal cell expression, extracellular matrix protein deposition and inflammatory cell infiltration. Peritoneal equilibration testing showed that compared with administering 10%MSCs, administering SF-MSCs significantly reduced the functional impairments of the peritoneal membrane. The in vitro experiments showed that although the conditioned medium from MSCs suppressed TGF-β1 signaling, the suppression did not significantly differ between the SF-MSCs and 10%MSCs. CONCLUSIONS Serum-free culture conditions can enhance the antifibrotic abilities of MSCs by suppressing inflammation. Administering ex vivo expanded SF-MSCs may be a potential therapy for preventing peritoneal fibrotic progression.
Collapse
Affiliation(s)
- Kohei Nagasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan. .,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Kiyomasa Honda
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Yukio Kato
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
| |
Collapse
|
39
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
40
|
Yang CY, Chang PY, Chen JY, Wu BS, Yang AH, Lee OKS. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res Ther 2021; 12:193. [PMID: 33741073 PMCID: PMC7977319 DOI: 10.1186/s13287-021-02270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated. Methods We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC) in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of the stem cell secretome. Results In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage polarization. Conclusions In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the application values extremely promising. Graphical abstract In dialysis-induced peritoneal fibrosis, peritoneal mesothelial cells secrete transforming growth factor-β1 (TGF-β1) when exposed to methylglyoxal (MGO)-containing peritoneal dialysate. When situated in TGF-β1, the inflammatory environment induces mesenchymal stem cells to secrete interleukin-6 (IL-6), IL-6 polarizes macrophages into the M2 phenotype. The dominant peritoneal tissue M2 macrophages, marked by upregulated Arg-1 expression, account for the attenuation of MGO-induced dedifferentiation of peritoneal mesothelial cells to maintain epithelial integrity.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02270-4.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, 30010, Taiwan.
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Jun-Yi Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan
| | - Bo-Sheng Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 2F, Shou-Ren Bldg., No.155, Sec.2, Li-Nong St., Beitou Dist, Taipei, 11221, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
41
|
Akan E, Cetinkaya B, Kipmen-Korgun D, Ozmen A, Koksoy S, Mendilcioğlu İ, Sakinci M, Suleymanlar G, Korgun ET. Effects of amnion derived mesenchymal stem cells on fibrosis in a 5/6 nephrectomy model in rats. Biotech Histochem 2021; 96:594-607. [PMID: 33522283 DOI: 10.1080/10520295.2021.1875502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by disruption of the glomerulus, tubule and vascular structures by renal fibrosis. Mesenchymal stem cells (MSC) ameliorate CKD. We investigated the effects of human amnion derived MSC (hAMSC) on fibrosis using expression of transforming growth factor beta (TGF-β), collagen type I (COL-1) and bone morphogenetic protein (BMP-7). We also investigated levels of urinary creatinine and nitrogen in CKD. We used a 5/6 nephrectomy (5/6 Nx) induced CKD model. We used 36 rats in six groups of six animals: sham group, 5/6 Nx group, 15 days after 5/6 Nx (5/6 Nx + 15) group, 30 days after 5/6 Nx (5/6 Nx + 30) group, transfer of hAMSC 15 days after 5/6 Nx (5/6 Nx + hAMSC + 15) group and transfer of hAMSC 30 days after 5/6 Nx (5/6 Nx + hAMSC + 30) group. We isolated 106 hAMSC from the amnion and transplanted them via the rat tail vein into the 5/6 Nx + hAMSC + 15 and 5/6 Nx + hAMSC + 30 groups. We measured the expression of BMP-7, COL-1 and TGF-β using western blot and immunohistochemistry, and their gene expressions were analyzed by quantitative real time PCR. TGF-β and COL-1 protein, and gene expressions were increased in the 5/6 Nx +30 group compared to the 5/6 Nx + hAMSC + 30 group. Conversely, both protein and gene expression of BMP-7 was increased in 5/6 Nx + hAMSC + 30 group compared to the 5/6 Nx groups. Increased TGF-β together with decreased BMP-7 expression may cause fibrosis by epithelial-mesenchymal transition due to chronic renal injury. Increased COL-1 levels cause accumulation of extracellular matrix in CKD. Levels of urea, creatinine and nitrogen were increased significantly in 5/6 Nx + 15 and 5/6 Nx + 30 groups compared to the hAMSC groups. We found that hAMSC ameliorate CKD.
Collapse
Affiliation(s)
- Ezgi Akan
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | - Busra Cetinkaya
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey.,Department of Histology and Embryology, Medical Faculty, Bulent Ecevit University, Zonguldak, Turkey
| | - Dijle Kipmen-Korgun
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | - Aslı Ozmen
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey
| | - Sadi Koksoy
- Department of Medical Microbiology and Immunology, Akdeniz University Medical School, Antalya, Turkey
| | - İnanc Mendilcioğlu
- Department of Obstetrics and Gynecology, Akdeniz University Medical School, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Akdeniz University Medical School, Antalya, Turkey
| | - Gultekin Suleymanlar
- Division of Nephrology, Department of Internal Medicine, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey
| |
Collapse
|
42
|
Li YC, Sung PH, Yang YH, Chiang JY, Yip HK, Yang CC. Dipeptidyl peptidase 4 promotes peritoneal fibrosis and its inhibitions prevent failure of peritoneal dialysis. Commun Biol 2021; 4:144. [PMID: 33514826 PMCID: PMC7846859 DOI: 10.1038/s42003-021-01652-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) possesses multiple advantages for end stage renal disease. However, long-term PD triggers peritoneal fibrosis (PF). From the nationwide analysis of diabetic PD patients (n = 19,828), we identified the incidence of PD failure was significantly lower in diabetic patients treated with dipeptidyl peptidase 4 (DPP4) inhibitors. Experimental study further showed high concentration of glucose remarkably enhanced DPP4 to promote epithelial-mesenchymal transition (EMT) in the mesothelial cells. In chlorhexidine gluconate (CG)-induced PF model of rats, DPP4 expression was enriched at thickening peritoneum. Moreover, as to CG-induced PF model, DPP4 deficiency (F344/DuCrlCrlj strain), sitagliptin and exendin-4 treatments significantly inhibited DPP4 to reverse the EMT process, angiogenesis, oxidative stress, and inflammation, resulting in the protection from PF, preservation of peritoneum and the corresponding functional integrity. Furthermore, DPP4 activity was significantly correlated with peritoneal dysfunction. Taken together, DPP4 caused peritoneal dysfunction/PF, whereas inhibition of DPP4 protected the PD patients against PD failure.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Putzu, Taiwan
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi Branch, Putzu, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Nursing, Asia University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Suppression of Peritoneal Fibrosis by Sonoporation of Hepatocyte Growth Factor Gene-Encoding Plasmid DNA in Mice. Pharmaceutics 2021; 13:pharmaceutics13010115. [PMID: 33477422 PMCID: PMC7829751 DOI: 10.3390/pharmaceutics13010115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is expected to be used for the treatment of peritoneal fibrosis, which is a serious problem associated with long-term peritoneal dialysis. Hepatocyte growth factor (HGF) is a well-known anti-fibrotic gene. We developed an ultrasound and nanobubble-mediated (sonoporation) gene transfection system, which selectively targets peritoneal tissues. Thus, we attempted to treat peritoneal fibrosis by sonoporation-based human HGF (hHGF) gene transfection in mice. To prepare a model of peritoneal fibrosis, mice were intraperitoneally injected with chlorhexidine digluconate. We evaluated the preventive and curative effects of sonoporation-based hHGF transfection by analyzing the following factors: hydroxyproline level, peritoneum thickness, and the peritoneal equilibration test. The transgene expression characteristics of sonoporation were also evaluated using multicolor deep imaging. In early-stage fibrosis in mice, transgene expression by sonoporation was observed in the submesothelial layer. Sonoporation-based hHGF transfection showed not only a preventive effect but also a curative effect for early-stage peritoneal fibrosis. Sonoporation-based hHGF transfection may be suitable for the treatment of peritoneal fibrosis regarding the transfection characteristics of transgene expression in the peritoneum under fibrosis.
Collapse
|
44
|
Interferon-γ enhances the therapeutic effect of mesenchymal stem cells on experimental renal fibrosis. Sci Rep 2021; 11:850. [PMID: 33441701 PMCID: PMC7807061 DOI: 10.1038/s41598-020-79664-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) administered for therapeutic purposes can be activated by interferon-γ (IFN-γ) secreted from natural killer cells in injured tissues and exert anti-inflammatory effects. These processes require a substantial period of time, leading to a delayed onset of MSCs’ therapeutic effects. In this study, we investigated whether pretreatment with IFN-γ could potentiate the anti-fibrotic ability of MSCs in rats with ischemia–reperfusion injury (IRI) and unilateral ureter obstruction. Administration of MSCs treated with IFN-γ strongly reduced infiltration of inflammatory cells and ameliorated interstitial fibrosis compared with control MSCs without IFN-γ treatment. In addition, conditioned medium obtained from IFN-γ-treated MSCs decreased fibrotic changes in cultured cells induced by transforming growth factor-β1 more efficiently than that from control MSCs. Most notably, secretion of prostaglandin E2 from MSCs was significantly increased by treatment with IFN-γ. Increased prostaglandin E2 in conditioned medium obtained from IFN-γ-treated MSCs induced polarization of immunosuppressive CD163 and CD206-positive macrophages. In addition, knockdown of prostaglandin E synthase weakened the anti-fibrotic effects of MSCs treated with IFN-γ in IRI rats, suggesting the involvement of prostaglandin E2 in the beneficial effects of IFN-γ. Administration of MSCs treated with IFN-γ might represent a promising therapy to prevent the progression of renal fibrosis.
Collapse
|
45
|
Li S, Wang Y, Wang Z, Chen L, Zuo B, Liu C, Sun D. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis. Stem Cell Res Ther 2021; 12:27. [PMID: 33413640 PMCID: PMC7792009 DOI: 10.1186/s13287-020-02049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background The therapeutic effect of mesenchymal stem cells (MSCs) from human adipose tissue on renal interstitial fibrosis has been demonstrated by several groups. However, the way to enhance the renoprotective effect of adipose-derived mesenchymal stem cells (AMSCs) and the possible mechanisms are still unclear. The present study aimed to determine whether glial cell line-derived neurotrophic factor (GDNF)-modified AMSCs hold an enhanced protective effect on renal fibrosis. Methods AMSCs were isolated and purified for culture. The gene GDNF has been constructed to transfect into AMSCs. The ability of GFP-AMSCs and GDNF-AMSCs supernatants to promote tube formation of endothelial cells, repair damaged endothelial cell junctions, and improve endothelial cell function was compared by using tube formation assay, immunofluorescence techniques, and vascular ring assay, respectively. Furthermore, HE and Masson staining were used to observe the histological morphology of the kidney in vivo. Peritubular capillary changes were detected and analyzed by fluorescence microangiography (FMA). Meanwhile, the hypoxia, oxidative stress, fibrotic markers, and PI3K/Akt pathway proteins were measured by western blot or qRT-PCR technics. Results Compared with GFP-AMSCs only, GDNF-AMSCs could enhance the repair of injured endothelial cells and promote angiogenesis through secreting more growth factors in the supernatant of GDNF-AMSC culture media demonstrated in vitro studies. Studies in vivo, unilateral ureteral obstruction (UUO)-induced mice were injected with transfected AMSCs through their tail veins. We showed that enhanced homing of AMSCs was observed in the GDNF-AMSC group compared with the GFP-AMSC group. The animals treated with GDNF-AMSCs exhibited an improvement of capillary rarefaction and fibrosis induced by obstructed kidney compared with the GFP-AMSC group. Furthermore, we reported that GDNF-AMSCs protect renal tissues against microvascular injuries via activation of the PI3K/Akt signaling pathway. Therefore, GDNF-AMSCs further ameliorated the tissue hypoxia, suppressed oxidative stress, and finally inhibited endothelial to mesenchymal transition noting by decreased coexpression of endothelial cell (CD31) and myofibroblast (a-SMA) markers. Conclusion Collectively, our data indicated that the GDNF gene enhances the ability of AMSCs in improving renal microcirculation through PI3K/Akt/eNOS signaling pathway and afterward inhibit the EndMT process and kidney fibrogenesis, which should have a vast of implications in designing future remedies for chronic kidney disease (CKD) treatment.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Bangjie Zuo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
46
|
SIRT1-modified human umbilical cord mesenchymal stem cells ameliorate experimental peritoneal fibrosis by inhibiting the TGF-β/Smad3 pathway. Stem Cell Res Ther 2020; 11:362. [PMID: 32811535 PMCID: PMC7436980 DOI: 10.1186/s13287-020-01878-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD). Combination therapies are emerging as a promising treatment for tissue damage. Here, we investigated the therapeutic potential of SIRT1-modified human umbilical cord mesenchymal stem cells (hUCMSCs) for peritoneal fibrosis. Methods SIRT1 was overexpressed in hUCMSCs to establish SIRT1-modified hUCMSCs. Co-culture and transplantation experiments were performed in TGF-β-stimulated Met-5A cells and peritoneal damage rodent model to assess the therapeutic potential of SIRT1-modified hUCMSCs for peritoneal fibrosis through qPCR, Western blot, and peritoneal function analyses. Results SIRT1-modified hUCMSC administration had more potent anti-fibrosis ability than hUCMSCs, which significantly inhibited the expression of fibrotic genes and suppressed EMT process, increased ultrafiltration volume, and restored homeostasis of bioincompatible factors in dialysis solution. Mechanistically, SIRT1-modified hUCMSCs attenuated peritoneal fibrosis through reducing peritoneal inflammation and inhibiting the TGF-β/Smad3 pathway in peritoneal omentum tissues. Conclusion SIRT1-modified hUCMSCs might work as a promising therapeutic strategy for the treatment of peritoneal dialysis-induced peritoneal damage and fibrosis.
Collapse
|
47
|
Adipose-Derived Mesenchymal Stem Cells Modulate Fibrosis and Inflammation in the Peritoneal Fibrosis Model Developed in Uremic Rats. Stem Cells Int 2020; 2020:3768718. [PMID: 32565826 PMCID: PMC7256710 DOI: 10.1155/2020/3768718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Peritoneal fibrosis (PF) represents a long-term complication of peritoneal dialysis (PD), affecting the peritoneal membrane (PM) function. Adipose tissue-derived mesenchymal stem cells (ASC) display immunomodulatory effects and may represent a strategy to block PF. The aim of this study was to analyze the effect of ASC in an experimental PF model developed in uremic rats. To mimic the clinical situation of patients on long-term PD, a combo model, characterized by the combination of PF and chronic kidney disease (CKD), was developed in Wistar rats. Rats were fed with a 0.75% adenine-containing diet, for 30 days, to induce CKD with uremia. PF was induced with intraperitoneal injections of chlorhexidine gluconate (CG) from day 15 to 30. 1 × 106 ASC were intravenously injected at days 15 and 21. Rats were divided into 5 groups: control, normal rats; CKD, rats receiving adenine diet; PF, rats receiving CG; CKD+PF, CKD rats with PF; CKD+PF+ASC, uremic rats with PF treated with ASC. PF was assessed by Masson trichrome staining. Inflammation- and fibrosis-associated factors were assessed by immunohistochemistry, multiplex analysis, and qPCR. When compared with the control and CKD groups, GC administration induced a striking increase in PM thickness and inflammation in the PF and CKD+PF groups. The development of PF was blocked by ASC treatment. Further, the upregulation of profibrotic factors (TGF-β, fibronectin, and collagen) and the increased myofibroblast expression observed in the CKD+PF group were significantly ameliorated by ASC. Beyond the antifibrotic effect, ASC showed an anti-inflammatory effect avoiding leucocyte infiltration and the overexpression of inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the PM induced by GC. ASC were effective in preventing the development of PF in the experimental model of CKD+PF, probably due to their immunomodulatory properties. These results suggest that ASC may represent a potential strategy for treating long-term PD-associated fibrosis.
Collapse
|
48
|
Ishiuchi N, Nakashima A, Doi S, Yoshida K, Maeda S, Kanai R, Yamada Y, Ike T, Doi T, Kato Y, Masaki T. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res Ther 2020; 11:130. [PMID: 32197638 PMCID: PMC7083035 DOI: 10.1186/s13287-020-01642-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been reported to promote the regeneration of injured tissue via their paracrine abilities, which are enhanced by hypoxic preconditioning. In this study, we examined the therapeutic efficacy of hypoxia-preconditioned MSCs on renal fibrosis and inflammation in rats with ischemia-reperfusion injury (IRI). Methods MSCs derived from rats and humans were incubated in 1% O2 conditions (1%O2 MSCs) for 24 h. After IRI, 1%O2 MSCs or MSCs cultured under normoxic conditions (21%O2 MSCs) were injected through the abdominal aorta. At 7 or 21 days post-injection, the rats were sacrificed and their kidneys were analyzed. In in vitro experiments, we examined whether 1%O2 MSCs enhanced the ability to produce anti-fibrotic humoral factors using transforming growth factor (TGF)-β1-stimulated HK-2 cells incubated with conditioned medium from MSCs. Results Administration of rat 1%O2 MSCs (1%O2 rMSCs) attenuated renal fibrosis and inflammation more significantly than rat 21%O2 MSCs. Notably, human 1%O2 MSCs (1%O2 hMSCs) also attenuated renal fibrosis to the same extent as 1%O2 rMSCs. Flow cytometry showed that 1%O2 hMSCs did not change human leukocyte antigen expression. Further in vitro experiments revealed that conditioned medium from 1%O2 MSCs further suppressed TGF-β1-induced fibrotic changes in HK-2 cells compared with 21%O2 MSCs. Hypoxic preconditioning enhanced vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) secretion. Interestingly, VEGF knockdown in 1%O2 MSCs attenuated HGF secretion and the inhibition of TGF-β1-induced fibrotic changes in HK-2 cells. In addition, VEGF knockdown in 1%O2 hMSCs reduced the anti-fibrotic effect in IRI rats. Conclusions Our results indicate that hypoxia-preconditioned MSCs are useful as an allogeneic transplantation cell therapy to prevent renal fibrosis and inflammation.
Collapse
Affiliation(s)
- Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ken Yoshida
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Ryo Kanai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yumi Yamada
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukio Kato
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
49
|
MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther 2019; 10:345. [PMID: 31771622 PMCID: PMC6878630 DOI: 10.1186/s13287-019-1447-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND An uncontrolled inflammatory response is a critical pathophysiological feature of sepsis. Mesenchymal stem cells (MSCs) induce macrophage phenotype polarization and reduce inflammation in sepsis. MSC-secreted transforming growth factor beta (TGF-β) participated in the immune modulatory function of MSCs. However, the underlying mechanism of MSC-secreted TGF-β was not fully elucidated in regulation macrophage M2-like polarization. METHODS The paracrine effects of MSCs on macrophage polarization were studied using a co-culture protocol with LPS-stimulated RAW264.7 cells/mouse peritoneal macrophages and MSCs. The effect of TGF-β in the co-culture system was blocked by the TGF-β receptor inhibitor. To determine the role of MSC-secreted TGF-β, we used recombinant TGF-β to culture with LPS-stimulated RAW264.7 cells. In addition, we employed antibody microarray analysis to determine the mechanisms of MSC secreted TGF-β on LPS-stimulated RAW264.7 cell/mouse peritoneal macrophage M2-like polarization. Furthermore, we used an Akt inhibitor and a FoxO1 inhibitor to inhibit the Akt/FoxO1 pathway. The nuclear translocation of FoxO1 was detected by Western blot. RESULTS MSCs induced LPS-stimulated RAW264.7 cell/mouse peritoneal macrophage polarization towards the M2-like phenotype and significantly reduced pro-inflammatory cytokine levels via paracrine, which was inhibited by TGF-β receptor inhibitor. Furthermore, we found that MSC-secreted TGF-β enhanced the macrophage phagocytic ability. The antibody microarray analysis and Western blot verified that TGF-β treatment activated the Akt/FoxO1 pathway in LPS-stimulated macrophages, TGF-β-induced FoxO1 nuclear translocation and obviously expressed in the cytoplasm, the effects of TGF-β regulatory effects on LPS-stimulated macrophage were inhibited by pre-treatment with Akt inhibitor and FoxO1 inhibitor. CONCLUSIONS TGF-β secreted by MSCs could skew LPS-stimulated macrophage polarization towards the M2-like phenotype, reduce inflammatory reactions, and improve the phagocytic ability via the Akt/FoxO1 pathway, providing potential therapeutic strategies for sepsis.
Collapse
|
50
|
Shi Y, Tao M, Wang Y, Zang X, Ma X, Qiu A, Zhuang S, Liu N. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis. J Pathol 2019; 250:79-94. [PMID: 31579944 DOI: 10.1002/path.5352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Dysregulation of histone methyltransferase enhancer of zeste homolog 2 (EZH2) has been implicated in the pathogenesis of many cancers. However, the role of EZH2 in peritoneal fibrosis remains unknown. We investigated EZH2 expression in peritoneal dialysis (PD) patients and assessed its role in peritoneal fibrosis in cultured human peritoneal mesothelial cells (HPMCs) and murine models of peritoneal fibrosis induced by chlorhexidine gluconate (CG) or high glucose peritoneal dialysis fluid (PDF) by using 3-deazaneplanocin A (3-DZNeP), and EZH2 conditional knockout mice. An abundance of EZH2 was detected in the peritoneum of patients with PD associated peritonitis and the dialysis effluent of long-term PD patients, which was positively correlated with expression of TGF-β1, vascular endothelial growth factor, and IL-6. EZH2 was found highly expressed in the peritoneum of mice following injury by CG or PDF. In both mouse models, treatment with 3-DZNeP attenuated peritoneal fibrosis and inhibited activation of several profibrotic signaling pathways, including TGF-β1/Smad3, Notch1, epidermal growth factor receptor and Src. EZH2 inhibition also inhibited STAT3 and nuclear factor-κB phosphorylation, and reduced lymphocyte and macrophage infiltration and angiogenesis in the injured peritoneum. 3-DZNeP effectively improved high glucose PDF-associated peritoneal dysfunction by decreasing the dialysate-to-plasma ratio of blood urea nitrogen and increasing the ratio of dialysate glucose at 2 h after PDF injection to initial dialysate glucose. Moreover, delayed administration of 3-DZNeP inhibited peritoneal fibrosis progression, reversed established peritoneal fibrosis and reduced expression of tissue inhibitor of metalloproteinase 2, and matrix metalloproteinase-2 and -9. Finally, EZH2-KO mice exhibited less peritoneal fibrosis than EZH2-WT mice. In HPMCs, treatment with EZH2 siRNA or 3-DZNeP suppressed TGF-β1-induced upregulation of α-SMA and Collagen I and preserved E-cadherin. These results indicate that EZH2 is a key epigenetic regulator that promotes peritoneal fibrosis. Targeting EZH2 may have the potential to prevent and treat peritoneal fibrosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, PR China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, PR China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|